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ABSTRACT 

 

We discuss geometric properties related to the minimisation of a portfolio kurtosis given 

its first two odd moments, considering a risk-less asset and allowing for short sales. The 

findings are generalised for the minimisation of any given even portfolio moment with 

fixed excess return and skewness, and then for the case in which only excess return is 

constrained. An example with two risky assets provides a better insight on the problems 

related to the solutions. The importance of the geometric properties and their use in the 

higher moments portfolio choice context is highlighted. 
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1. Introduction. 

 

Portfolio optimisation taking into account more than the first two moments has been 

receiving renewed interest in the past years. Be it on the theoretical side – including its 

links with the CAPM extensions -, or on what relates to econometric tests or updates 

based on higher conditional moments, works like Adcock (2002), Adcock and Shutes 

(1999), Athayde and Flôres (1997, 2001, 2002), Jurczenko and Maillet (2001, 2002), 

Pedersen and Satchell (1998), or Athayde and Flôres (2000), Barone-Adesi (1985), 

Harvey and Siddique (1999, 2000), Hwang and Satchell (1999) and Pedersen and 

Satchell (2000), far from exhausting the full list of contributions, pay good witness to 

the growing awareness of the importance of higher moments in both lines of research. 

Since Athayde and Flôres (1997), we have developed a systematic way to treat 

the key optimisation problems posed to anyone dealing with higher moments in 

portfolio theory. The approach uses a new notation to represent any moments tensor 

related to a multivariate random vector of asset returns, and can be used either in a 

utility maximising context or if optimal portfolios are defined by preference relations. 

The new notation seemed necessary in order to treat the problem in an absolutely 

general setting, which means both in the maximum order p of portfolio moments of 

interest and in the possible patterns of the skewness or higher order tensors. The latter is 

crucial as many works generalising the subject consider only the marginal higher 

moments of the returns vector, plainly disregarding any co-moment of the same order. 

Though the full set of co-moments can quickly become prohibitive – what, beyond other 

questions, may pose serious econometric estimation problems for the applications -, and 

simplifying hypotheses on its pattern will usually be imposed in practice, it is important 

to have a way to study the general solution to the problem, irrespective of further 

assumptions that might be imposed. 

The utility function approach, given its more rigid theoretical constraints, and 

the debates involving any non-normality-implying (utility) function proposed, seems 

more suitable for theoretical developments related, for instance, to the CAPM. 

Preference ordering of portfolios, made rigorous by Scott and Horvath (1980), can lead 

to more interesting results in the strict portfolio optimisation context.  

In this paper, we discuss an interesting geometric structure that arises when 

optimising an even moment subject to odd moments constraints. As usual, agents “like” 

odd moments and “dislike” even ones.  



The structure studied – not the only relevant one in the higher moments context 

– bears important consequences and sheds light on the geometry of efficient portfolios 

sets in moments space. We believe that its implications have not been fully exploited 

yet. Moreover, final testing of the gains brought out by using higher moments relies in 

extensive practical applications of the new results. These, in turn, require proper 

software tools for solving the non-linear systems and optimisation problems involved. 

Better knowledge of the surfaces (or manifolds) related to them may greatly improve 

the software design.   

This paper is organised as follows. The next section discusses the optimisation 

of variance, and then kurtosis, given the first and third desired portfolio moments; while 

section three discusses how these results could still be generalised. Section four draws, 

through an example, a few more properties and analyses the sensitivity of certain 

solutions. The final section concludes by explaining how the results can be useful in a 

duality context and sets a few lines of further research. An Appendix provides a brief 

explanation of the notation used.  

 

2. Minimal variances and kurtoses subject to the first two odd moments. 

 

Even moments, being always non-negative, are duly associated with spread, and both 

variance and kurtosis are used as simple numerical summaries of the dispersion of a set 

of observations. For fixed portfolio return and skewness, the latter should perhaps be 

more used in practice as an alternative objective function, given the frequency with 

which the fat-tailed effect in stock returns has been detected. If we minimise the fourth 

moment, we shall be directly attacking the heavy extremes of the density, the ultimate 

culprits of the high volatility and uncertainty of returns. Most measures of risk focused 

on the worst scenarios, like the VaR, would probably be more sensitive to variations in 

the fourth moment rather than in variance. This sort of behaviour will be further 

examined in the example in section 4. The material in this section draws on parts of 

Athayde and Flôres (2001) – where a complete solution to the three moments portfolio 

problem is found – and Athayde and Flôres (2002), for the developments related to the 

kurtosis; proofs omitted here can be found in these papers. 

 

2.1. Homothetic properties of the minimum variance set. 



Minimising the variance, for a given mean return and skewness, amounts to find the 

solution to the problem: 
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where  M1 , M2 and M3  are, resp., the matrices related to the first, second and third 

moments tensors1, α  is the vector of n portfolio weights – where short sales are 

allowed, rf  is the riskless rate of return, [1] stands for a nx1 vector of 1’s, the lambdas 

are Lagrange multipliers and the two remaining symbols are the α-portfolio (given) 

mean return and skewness. 

Calling           x = M1 – [1] rf    ,        the vector of mean excess returns, and 

                       R  = E(rp) –  rf              the set (excess) portfolio return,                                                     

the solution to (1) is found by solving the n-equations non-linear system,  
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have subscripts corresponding to their degree of homogeneity as (real) functions of the 

vector α. A0 and A4, in particular, are positive because the inverse of the covariance 

matrix is positive definite.  

Pre-multiplying (2) by the very solutions ,α , gives the optimal variance(s): 
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an expression where both the numerator and denominator are positive. 



The following proposition is fundamental:  

 

Proposition 1: For a given k, let α  define the minimum variance portfolio when R=1 

and ky
p

== 33 3σ , and 2p
σ  be the corresponding minimum variance, THEN for all 

optimal portfolios related to return and skewness pairs (R, 3p
σ ) such that 33

3 Rk
p

=σ , 

or kRy =3 , the solution to (1) will be Rαα = , with corresponding minimum variance 

2
22 R

pp
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The above result implies that along the direction defined in the returns x 

skewness plan by kRy =3 , the optimal variance as a function of the excess return will 

be a parabola. Taking now the three dimensional (3D) space where the standard 

deviation  22 2 y
p

=σ  axis is added, in the half-plane formed by a specific direction k in 

R x y3 space2 and the positive part of the standard deviation axis, the optimal portfolio 

surface will be reduced to the straight line 0,
12

22 ≥
+

= u
k

u
yy

pp
3. As 2p

y  differs 

with k, the angle that this line makes with the standard deviation axis varies also with k,.  

The Proposition has then a far reaching consequence: the optimal surface in the 

positive standard deviation (sd) half of 3D space bears a homothetic property from 

whatever standpoint one assumes. Slicing the surface by a sequence of planes parallel to 

the two odd-moments axes will generate a sequence of curves starting at the origin and 

whose expansion ratio will be equal to that of the respective (constant) variance values. 

Of course, slicing it by planes parallel to the sd and (standardised) skewness axes will 

                                                                                                                                                                          
1 See the Appendix for a further explanation on the notation used. 
2 We shall, from now on, use the angular coefficient k to name the corresponding line/direction in the first 
quadrant of the  R x y3  plane. 



produce a sequence of homothetic curves whose expansion ratio will be that of the 

(excess) returns associated to each plan. Finally, inspection of formula (4) easily 

convinces that for the last combination, i.e. planes parallel to the sd and mean returns 

axes, the same will apply, as Proposition 1 is also true if the role of returns and 

skewness are reversed. 

The proposition below is a direct consequence of this important fact: 

 

Proposition 2: For a given level of y2 (or R, or y3), cut the optimal surface with a plane 

orthogonal to the sd (or returns, or standardised skewness) axis and project the 

intersection curve in the ‘returns x skewness (or sd x skewness, or returns x sd) plane’,   

THEN 

if they exist,  the directions in the R x y3 (or y2 x y3, or R x y2) half plane related to the 

highest and lowest value, in each axis, of the curve are invariant with y2 (or R, or y3). 

 

 The qualification if they exist is important as, specially in the case of cuts 

parallel to the sd axis, at least part of the curve may go to infinity. For constant variance 

cuts, it may be shown that closed curves will be produced4. Indeed, for this case, the 

highest and lowest directions are particularly noteworthy, as demonstrated by 

 

Proposition 3:  The direction in the R x y3 half plane that gives the highest R for all the 

minimum variance portfolios with the same standard deviation y2 is unique and related 

to the celebrated (Markowitz’s) Capital Market Line (CML). Moreover, in this 

direction, the skewness constraint to programme (1) is not binding. As regards 

                                                                                                                                                                          
3 The variable u stands for the coordinates along the axis defined by the “direction k”.  
4 The proof is rather technical to be included in this text. 



skewness, though there may be more than one “highest” (and “lowest”) direction, the 

constraint property also applies. 

 

This means that the unique solution to the minimum variance portfolio, for a 

given mean return: 

xM
A
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2
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that defines the famous Capital Market Line in mean x variance space, relating the 

optimal variance to the given R,   
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also defines the (unique) direction that will pass through all the points, in each curve, 

yielding the maximum mean return. In other words, in the R x y3 half plane, this 

direction is the geometric locus of all the tangency points between each (projected) 

curve and a straight line, parallel to the skewness axis, which cuts the mean return axis 

in the maximum mean return portfolio value related to the set variance (that defines the 

cut). This last statement is ensured by the well-known duality result in Markowitz 

world. 

Skewnesses - and a k - can also be associated to these optimal portfolios, being 

evident that they are independent of the given y2. It can be proved that the k – the 

angular coefficient of the line related to the extreme means – will be equal to: 
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Hence, kR is indeed an invariant and all maximum mean returns for given variances lie 

in the same direction in mean x skewness space. 



Contrary to the previous, mean returns case, the optimal weights for the 

skewness extremes are implicitly defined by a non-linear system like (2). When 

13 =
p

σ , we have a solution portfolio sα  such that: 
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 The homothecy implies that 33
3

sssss yασαα ==  is a solution to (2), ensuing an 

optimal variance  2)( 322 sss
yσσ = . A corresponding (excess) return and a direction, both 

independent of the variance level, can be found as: 

           3pss yRR =        ,        ss Rk /1=       ,                                         (9) 

implying that all these optimal portfolios lie in the same direction.  

 Combining both results gives a rectangular envelope that circumscribes, in the 

first quadrant of the mean x skewness plane, the corresponding part of the constant 

variance curve. 

  

2.2. The minimum kurtosis case. 

The initial step now is minimising kurtosis for a given skewness and expected return: 
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The first order conditions are:  
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 Defining 
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with the subscripts chosen according to the degree of homogeneity of the term with 

respect to the vector α , one can find the values of λ and γ and arrive at the non-linear 

system that characterises the solution to (10): 
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 The optimal kurtosis will be given by: 
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 Noticing that B(-2) and B2 are positive, because the matrix in their middle is the 

inverse of a positive definite matrix, it can be proved that both the numerator and the 

denominator of the expression above are positive.  

 It is important to remark the similarities between the pairs of formulas (2)-(12) 

and (4)-(13), as they are at the heart of the similar developments that follow. The first is 

a key proposition, close to Proposition 1: 

 

Proposition 1*: For a given k, all the minimum kurtosis portfolios related to expected 

returns, skewnesses pairs (R, 3p
σ ) such that 33

3 Rk
p

=σ , or kRy =3 , are given by 

Rαα = , where α  defines 4p
σ , the (minimum) kurtosis of the optimal portfolio when 

R=1 and ky =3 . Moreover, the minimum kurtosis for any pair of constraints in the k-

line will be 4 4
4

p p
Rσ σ= , or  Ryy

pp 44 = . 

 

 The consequence of the above proposition is that exactly the same homothecy 

applies in 3D space defined by the standardised kurtosis axis and the two odd-moments 



axes. The results in Proposition 2 are then easily translated to the present context and 

the following is valid as well: 

 

Proposition 3*: The direction in the R x y3 half plane that gives the highest R for all the 

minimum kurtosis portfolios with the same standardised kurtosis y4 is unique. 

Moreover, in this direction, the skewness constraint to programme (10) is not binding. 

As regards skewness, there is at least one direction giving the maximum skewness, 

where the constraint property applies.  

 

The solution to the problem of minimising kurtosis for a given excess return is: 

 

4
( 2)

( )R R R

R
M x

B
α α α

−

⊗ ⊗ =                                           ,                                              (14) 

 

which, when R = 1, becomes:               4
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The systems of weights defined by RRR αα =  are solutions to (12); thus one 

only needs to find one portfolio Rα  to generate the whole set of minimum kurtosis 

portfolios for a given R. The skewness corresponding to Rα  is given by:  
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defines a direction in the expected returns x skewness plane which is the “maximum 

mean returns line” for a given (minimum) kurtosis.  

The “maximum mean returns line” divides the minimum iso-kurtosis curves in 

two parts; since agents want the highest possible skewness, they will probably work 

with the upper half of the curve. In contrast to the classical case of minimising variance 

for a given return, there is no closed form for the portfolio weights Rα , as can be seen 

from (15). However, it is possible to show that this function is strictly convex in its 

entire domain, therefore implying that the solution is unique.  



 The highest/lowest skewness directions, as in the case of variance, will be the 

ones associated to the solution of the problem of finding the lowest kurtosis subject to a 

given skewness. Calling these portfolios sα , they are implicitly defined by system 
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It can also be easily verified that the mean return related to the solution of (18) is 
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Unfortunately, in this case, there can be more than one solution, and 

consequently more than one direction with a local maximum skewness for a given level 

of kurtosis. Notwithstanding, the projection of each iso-kurtosis curve will also be 

enveloped, in the first quadrant, by the two axes and two tangent lines parallel to them. 

 

3. Generalising for higher even moments. 

 

We now consider the general case of minimising an even moment given the two first 

odd moments. The lagrangian of the problem will be: 
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Noticing that  ( 1) ( 2)( )p p
p p nM M Iα α α⊗ − ⊗ −= ⊗   , and that matrix ( 2)( )p

p nM Iα ⊗ − ⊗  is 

symmetric and positive definite, the following system can be formed from (23) to give 

the values of the multipliers: 
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with the subscripts corresponding to the generalised degree of homogeneity with respect 

to the vector of weights, the final solution comes from the system: 
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the optimal portfolio p-th moment being: 
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Again, the similarities (2)-(12)-(25) and (4)-(13)-(26) should be stressed. 

 The following result summarises all the properties of the solutions set: 

 

Theorem: For a given p=2,4, ..., consider in (R,y3,yp) space of standardised moments a 

iso-p-th moment curve Γ of solutions to (22) 

    THEN 

i) the optimal portfolios set is contained in the cone {O}∗Γ , where O=(0,0,0) is 

the origin of (R,y3,yp) space; 



ii) the projection of Γ in the Rxy3 plane is a curve: a) symmetric to the origin and b) 

inscribed in a rectangle whose sides are parallel to the axes; the vertical and 

horizontal sides correspond, resp., to the highest (and lowest) R and y3 values 

which produce a solution in Γ. 

 

Proof (we outline the steps of the proof): For proving i) one first follows steps similar 

to those in Propositions 1 and 1*, showing that on each line passing through the origin 

and a general point (R,y3), the solutions to (22) increase linearly either with R – if the 

solution to (1, y3/R) is taken as the fundamental one – or with y3 – if the solution to 

(R/y3, 1) is the one fixed. As the origin O=(0,0,0) solves (22), this is sufficient to 

demonstrate that any solution will be in the cone. In the case of ii), the symmetry is seen 

by the fact that reverting to the pair (-R,-y3) does not change either (25) or (26). As 

regards the tangents, a reasoning similar to the ones in the previous section determines 

the points relative to the highest R and y3, by symmetry the points of the lowest R and y3 

are obtained and the rectangle can be traced.               � 

      

 This basic result is important in finding the efficient portfolios set for the three 

moments at stake. It is easy to convince oneself that not all points in the cone will 

characterise an efficient portfolio, though, of course, the efficient set will be contained 

in the cone (see Athayde and Flôres (2001)). Moreover, one could be tempted to derive 

the following  

 

(false) Corollary: If problem (22) has a solution THEN the optimal value is unique. 

 

Indeed, by the Theorem, if (22) has a solution then the optimal p-th moments must lie in 

the cone. They will be found in the intersection of a vertical line through the point 

defined by the given odd moments in the Rxy3  plane and the cone. Simple properties of 

a cone in finite dimensional Euclidian spaces ensure that this intersection is unique.      

 This nice property would mean that knowledge of the geometric structure of the 

optimal portfolios set had allowed a simple and elegant proof of uniqueness. However, 

such an argument would be circular, as the curve Γ used to characterise the cone is 

supposedly the curve formed already by the minimum p-th moments, related to the 

optimal solutions of (25). It is worth reminding that system (25), as its special cases (2) 



and (12), implicitly defines the optimal weights, and may as well have more than one 

solution. These others either will be local, not global optima or it might even happen 

that different optimal vectors α yield the same optimal p-th moment in (26). 

Propositions 1 to 3 (and 1* and 3*) are valid for any of these solutions – this meaning 

that even different “solution cones” may exist; but the Theorem considers, by 

hypothesis, the “optimal cone”, and so the Corollary is senseless. Unfortunately, at the 

present stage, we do not have a general, deeper knowledge of the structure of the 

solutions set. Moreover, the hypothesis also requires the existence of a solution; 

rigorous conditions for guaranteeing this, as regards system (25), are still an open 

question. 

 An interesting special case of (22) is when only a mean return restriction is 

imposed, the skewness constraint being disregarded. Without much difficulty one sees 

that the first order conditions become: 
( 1)p
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So that the optimal weights must solve the system 
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and the corresponding p-th moment bears the following relationship with the given 

return: 

            1
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In this case, the homothecy property implies that only one system needs to be solved, 

namely, the one obtained by setting R=1 in (28). 

 

4. Further properties and extensions. 

 

In order to give a further insight both on the geometric aspects discussed as well as on 

the difficulties involved in the solution of system (28), we consider the special problem 

of minimising kurtosis given expected return, in the case of two assets and setting to 

zero all co-kurtoses where an asset appears only once. This leaves us with three distinct 



non-zero elements in the kurtosis tensor, and the M4 matrix – shown, in the general case, 

in the Appendix – becomes: 

 

1 12 12 12

12 12 12 2

0 0 0 0
0 0 0 0

σ σ σ σ
σ σ σ σ

� �
� 
	 


                          . 

 

The simplified notation used for the subscripts, suppressing repetition of identical 

indexes, stresses the identical values and should cause no confusion. Notice that, unless 

the assets distributions are singular, all entries are strictly positive. 

Calling  α = (α1, α2)’ the vector of weights, and noticing that: 

i) 
3 2

3 1 1 1 2 12
4 2 3

1 2 12 2 2

3
3

M
α σ α α σα
α α σ α σ

⊗ � �+
= � +	 


      ; 

ii) matrix  
12

4 2( )M Iα
−⊗� �⊗	 
   will be equal to: 

     
2 2

1 1 12 2 2 1 2 12
2 2

1 2 12 1 1 2 12

2
2

α σ α σ α α σ
α α σ α σ α σ

− � �+ −
∆ � − +	 


  

where    4 2 2 2 4
1 1 12 1 2 1 2 12 2 12 2( 3 )α σ σ α α σ σ σ α σ σ∆ = + − +     is the determinant of the direct 

matrix; 

one is ready to build up system (28). Of course, as said in the previous section, only one 

solution matters, namely that which considers R=1. We shall, however, impose the 

additional assumptions that the marginal kurtoses are equal (i.e., σ1=σ2=σ) and that 

excess returns for both assets are also equal (to a common value x). With this, we can 

finally write system (30): 

 
5 2 4 3 2 2 2 3 2 4 2
1 12 1 2 12 1 2 12 12 1 2 12 1 2 12

4 2 2 2 2 4
1 12 1 2 12 2 12

[ ( 2 ) 4 (3 7 ) 12 3 ]

( 3 )

xα σσ σ α α σσ α α σ σσ α α σ α α σ
α σ σ α α σ σ α σ σ

+ − + + − + =

= + − +
 

 

 
4 2 3 2 2 2 3 2 2 4 5
1 2 12 12 1 2 12 1 2 12 12 1 2 12 2 12

4 2 2 2 2 4
1 12 1 2 12 2 12

[3 (2 ) 12 (3 2 ) 4 ]

( 3 )

xα α σσ σ α α σ α α σ σσ σ α α σσ α σσ
α σ σ α α σ σ α σ σ

+ − + + + − + =

= + − +
  

 

 Given the symmetry of the parameter values, the optimal weights will be 

identical, being easy to see that their common value is: 



x2
1=α          .                                                     (31)                                                                     

These weights, however, can be related to either maxima or minima. For the 

latter, the bordered Hessian sufficient condition5 amounts, in this case, to check whether 

matrix  








�

�
�
�

	

�

−−
−+
−+

0
)(1224

24)(12

12
2

12
2

12
2

12
2

xx
x

x

σσασα
σασσα

                                               (32) 

has a negative determinant. Replacing α by its value in (31), the condition becomes: 

 σσσσ <<− 1212 0)(6 or                                 .                   (33) 

 The symmetric weights solution produces a minimum only if the non-null co-

kurtosis is smaller than the common marginal kurtosis. 

This rather simple example may serve as an illustration of how far intuition can 

help when considering higher moments, as well as of the impact of simplifications in 

the higher-moments tensors. The final solution is independent of the marginal kurtoses 

and of the even co-kurtosis. Indeed, as the risk measures have a completely symmetric 

structure as regards the two (risky) assets, the identical weights can be found by direct 

solution of the excess return constraint. The higher the identical return, obviously the 

less will be purchased of each risky asset – as the portfolio excess return is fixed in 1 – 

and more will be put in the riskless asset6.  

Given the similar roles played by kurtosis and variance, we could then expect 

that the same would apply for the identical weights that result when equal marginal 

variances are used instead of kurtosis. In fact, (31) is exactly the solution to (5) in this 

case, the (common) variances and co-variances playing no role at all. Moreover, use of 

the bordered Hessian condition shows that a minimum exists only if    

σσ <12                                 .                             (34) 

Though “identical” to (33), (34) will be always valid if the assets covariance is negative, 

what cannot happen in the case of the even co-kurtosis. Indeed, in our simplified 

kurtosis context, there is no room for diversification. 

Absent from (31) – in its two versions/solutions -, the risk measures do however 

play a role. Beyond determining whether a minimum has been achieved, they explicitly 

                                                           
5 See, for instance, Theorem 9.9, page 202, in Panik (1976). 
6 Asymptotically, all the weight will go to the riskless asset. 



appear in the shadow price of the restrictions, given by the value of the Lagrange 

multipliers. These are equal to    
2

12

2x
σσλ +

=    in the variance case, and to 
2

12

2x
σσλ +

=  

in that of kurtosis7. The formal identity of the two values hides different behaviours. 

Again, in the case of the second moment, a negative covariance may substantially 

decrease “the cost” of the unit return restriction. On the other hand, both (nonnegative) 

kurtoses add up, penalising more heavily an increase in the fixed return. 

Summing up, the example shows that the choice to minimise either kurtosis or 

variance (in this very simple, symmetric case) has, in spite of producing exactly the 

same solution weights, fairly different implications. Moreover, radical simplifications in 

the moments tensor may produce rather particular solutions. A small change in the 

example, like allowing for different marginal kurtoses, would completely alter the 

above discussion. Informally speaking, introducing higher moments in portfolio choice 

makes it a “more non-linear” problem and, consequently, much more sensible to small 

changes in the initial conditions.  

 

5. Concluding remarks. 

 

The availability of a general method to treat portfolio choice in a higher 

moments context seems an unquestionable advantage. We outlined in the previous 

sections one such method, that allows for a compact, analytical treatment of all formulas 

involved in the optimisation problem. Thanks to this, powerful geometric insights could 

be gained. 

Nevertheless, the task before anyone interested in the subject is still nearly 

formidable. A basic existence result and more insights on the solutions set would be 

welcome. Final characterisation of the efficient portfolios set requires more than the 

techniques here discussed, duality methods being needed to completely identify the 

efficient points. We solved this up to the fourth moment, Athayde and Flôres (2001, 

2002), but a general method seems possible. Moving from static to dynamic 

optimisation frameworks generates additional, rather difficult theoretical and 

computational problems8. 

                                                           
7 The reader should keep in mind that both σ  and σ12  have different meanings in the two formulas. 
8 Work in this direction has been initiated with Berç Rustem (Imperial College, London). 



Last, but not least, as section 4 glimpsed into, the number of different situations 

in the higher moments case is extremely large, a great probability existing of senseless 

or unattractive special formulations. These can only be sorted out through a 

combination of more theoretical findings with several examples and applied 

experiments. The notation developed, and its corresponding algebra, may help in 

designing many of these experiments.   

 

Appendix: The matrix notation for the higher moments arrays. 

 

Dealing with higher moments can easily become algebraically cumbersome. Given a n-

dimensional random vector, the set of its p-th order moments is, as a mathematical 

object, a tensor. The second moments tensor is the popular nxn covariance matrix, while 

the third moments one can be visualised as a nxnxn cube in three-dimensional space. 

However, the tensor notation, which is so useful in physics, geometry and some areas of 

statistics (see, for instance, McCullagh (1987)), did not appear so convenient to deal 

with the portfolio choice problem. We then developed a special notation, which allows 

performing all the needed operations within the realm of matrix calculus. The 

advantages of this are manifold. Beyond having a synthetic way to treat complicated 

expressions, the mathematical tools required are standard linear algebra results and, 

with the help of Euler’s theorem – as most real functions involved are homogeneous in 

the vector of portfolio weights -, a differential calculus easily ensues. Moreover, the 

different formulae and systems arrived at are written in a compact and straightforward 

way, easily translated into formal programming languages.  

Before presenting the notation, we remind that, throughout the paper we deal 

with all the possible p-moments of a given n-dimensional random vector of asset 

returns. Undoubtedly, the difficulty in manipulating all these values simultaneously has 

been a deterrent to tackle the problem in its full generality. Thinking of skewness and 

kurtosis, for instance, the respective three and four-dimensional “cubes”, where several 

identical values are found, have n3 and n4 elements. Of course, in practice, gathering all 

these values may quickly become a formidable task. Indeed, as an example, the number 

of different kurtoses is in principle 
�
�

�

�

�
�

�

� +

4

3n
, what, in the case of five assets, gives 

already 70 values to be computed. It is then very likely that, in each practical problem, 



either a significant number of co-moments will be set a priori to zero or another 

simplifying assumption will be used, and very seldom one will work with the full set of 

cross moments. However, as said in the introduction, the great variety of possible 

assumptions is an extra argument for a general treatment of the problem. 

Our notation transforms the full p-th moments tensor, with np elements, into a 

matrix of order nxnp-1 obtained by slicing all bi-dimensional nxnp-2 layers defined by 

fixing one asset and then taking all the moments in which it figures at least once and 

pasting them, in the same order, sideways. Row i’ of the matrix layer corresponding to 

have fixed the i-th asset gives – in a pre-established order – all the moments in which 

assets i and i’ appear at least once. Of course, assets must be ordered once and for all 

and this order respected in the sequencing of the layers and in the numbering of the 

rows of each layer. Accordingly, a conformal ordering must be chosen, and thoroughly 

used, for the combinations (with repetitions) of n elements into groups of p-2 that define 

the columns of each matrix layer.  

In the case of kurtosis, for instance, two indices/variables/co-ordinates must be 

held constant. Calling σijkl a general (co-) kurtosis, when n=2, the resulting 2x8 matrix 

will be: 

 

1111 1112 1121 1122 1211 1212 1221 1222

2111 2112 2121 2122 2211 2212 2221 2222

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ
� �
� 
	 


 

 

where, as expected, many entries are identical.  

 Now suppose that a vector of weights α ∈ Rn is given, and M1, M2 , M3 , ... and Mp 

stand for the matrices containing the expected (excess) returns, (co-)variances, 

skewnesses ... and p-moments of a random vector of n assets. The mean return, 

variance, skewness ... and p-th moment of the portfolio with these weights will be, 

respectively: α’M1  , α’M2α  ,  α’M3 (α⊗α)  ... and  α’Mp (α⊗α⊗α ... ⊗α)≡α’Mpα⊗p-1  

where ‘⊗’ stands for the Kronecker product.  

The above expressions provide a clue on the mentioned advantages of the 

notation. The fact that the tensors were transformed into matrices allows the use of 



matrix algebra – and differential calculus - in all expressions and derivations, giving 

way to compact and elegant formulas. It is immediate to see that, as real functions of α, 

the four expressions above are homogenous functions of the same degree as the order of 

the corresponding moment. This means that Euler’s theorem can be easily used in the 

needed derivations. 

 As an example, the derivative of the portfolio kurtosis with respect to the 

weights will be: 

)(4)]([ 44 ααααααα
α

⊗⊗=⊗⊗′
∂
∂

MM = 4M4α⊗3         .                                                                     
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