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Abstract: New fast estimation methods stemming from control theory lead to a fresh look at
time series, which bears some resemblance to “technical analysis”. The results are applied to
a typical object of financial engineering, namely the forecast of foreign exchange rates, via a
“model-free” setting, i.e., via repeated identifications of low order linear difference equations on
sliding short time windows. Several convincing computer simulations, including the prediction
of the position and of the volatility with respect to the forecasted trendline, are provided. Z-
transform and differential algebra are the main mathematical tools.
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linear difference equations, Z-transform, algebra.

1. INTRODUCTION
1.1 Motivations

Recent advances in estimation and identification (see,
e.g., (Fliess & Sira-Ramirez, 2003; Fliess & Sira-Ramirez,
2004; Fliess, Join & Sira-Ramirez, 2004; Fliess & Sira-
Ramirez, 2008; Fliess, Join & Sira-Ramirez, 2008) and the
references therein) stemming from mathematical control
theory may be summarized by the two following facts:

e Their algebraic nature permits to derive exact non-
asymptotic formulae for obtaining the unknown quan-
tities in real time.

e There is no need to know the statistical properties of
the corrupting noises.

Those techniques have already been applied in many
concrete situations, including signal processing (see the
references in (Fliess, 2008)). Their recent and successful
extension to discrete-time linear control systems (Fliess,
Fuchshumer, Schoberl, Schlacher & Sira-Ramirez, 2008)
has prompted us to study their relevance to financial time
series.

Remark 1.1. The relationship between time series analysis
and control theory is well documented (see, e.g., (Box,
Jenkins & Reinsel, 1994; Gouriéroux & Monfort, 1995;
Hamilton, 1994) and the references therein). Our view-
point seems nevertheless to be quite new when compared
to the existing literature.

Remark 1.2. The title of this communication is due to
its obvious connection with some aspects of technical

analysis, or charting (see, e.g., (Aronson, 2007; Béchu,
Bertrand & Nebenzahl, 2008; Kaufman, 2005; Kirkpatrick
& Dahlquist, 2006; Murphy, 1999) and the references
therein), which is widely used among traders and financial
professionals. !

1.2 Linear difference equations

Consider the univariate time series {z(t) | t € N}: z(t)
is not regarded here as a stochastic process like in the
familiar ARMA and ARIMA models but is supposed to
satisfy “approximatively” a linear difference equation

x(t+n)—azft+n—1)—-—ax(t)=0 (1)
where aj,...,a, € R. Introduce as in digital signal
processing the additive decomposition

z(t) = Ttrendiine(t) + V(1) (2)

where

® Zirendline(t) is the trendline? which satisfies Eq. (1)
exactly;

e the additive “noise” v(t) is the mismatch between the
real data and the trendline.

Thus

z(t+n)—ax{t+n—1)—- —ayx(t) = €(t) (3)
where

ety=v(t+n)—avit+n—1)—-- —a,v(t) (4)

I Technical analysis is often severely criticized in the academic
world and among the practitioners of mathematical finance (see, e.g.,
(Paulos, 2003)).

2 Compare, e.g., with (Durlauf & Philips, 1988).
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We only assume that the “ergodic mean” of v(t) is 0, i.e.,

lim v(0)+v(1)+---+v(N)
N —+o00 N+1

It means that, V ¢t € N, the moving average

v(t)+v(t+1)+---+v(t+N) ©)
N+1

is close to 0 if N is large enough. It follows from Eq. (4)

that e(t) also satisfies the properties (5) and (6). Most of

the stochastic processes, like finite linear combinations of

i.i.d. zero-mean processes, which are associated to time

series modeling, do satisfy almost surely such a weak

assumption. Our analysis

=0 (5)

MA, n(t) =

e does not make any difference between non-stationary
and stationary time series,

e does not need the often tedious and cumbersome
trend and seasonality decomposition (our trendlines
include the seasonalities, if they exist).

1.8 A model-free setting

It should be clear that

e a concrete time series cannot be “well” approximated
in general by a solution of a “parsimonious” Eq. (1),
i.e., a linear difference equation of low order;

e the use of large order linear difference equations, or
of nonlinear ones, might lead to a formidable compu-
tational burden for their identifications without any
clear-cut forecasting benefit.

We adopt therefore the quite promising viewpoint of
(Fliess & Join, 2008) where the control of “complex” sys-
tems is achieved without trying a global identification but
thanks to elementary models which are only valid during
a short time interval and are continuously updated.® We
utilize here low order difference equations.* Then the
window size for the moving average (6) does not need to
be “large”.

1.4 Content

Sect. 2, which considers the identifiability of unknown
parameters, extends to the discrete-time case a result in
(Fliess, 2008). The convincing computer simulations in
Sect. 3 are based on the exchange rates between US Dollars
and €uros. Besides forecasting the trendline, we predict

e the position of the future rate w.r.t. the forecasted
trendline,
e the standard deviation w.r.t. the forecasted trendline.

Those results might lead to a new understanding of volatil-
ity and risk management.® Sect. 4 concludes with a short
discussion on the notion of trend.

3 See the numerous examples and the references in (Fliess & Join,
2008) for concrete illustrations.

4 Compare with (Markovsky, Willems, van Huffel, de Moor &
Pintelon, 2005).

5 See (Taleb, 1997) for a critical appraisal of the existing literature
on this subject, which is of utmost importance in financial engineer-
ing. (Extreme) risks are discussed in (Bouchaud & Potters, 1997; Da-
corogna, Gencay, Miiller, Olsen & Pictet, 2001; Mandelbrot & Hud-
son, 2004; Sornette, 2003) from quite different perspectives. It is the
trendline which would exhibit abrupt changes in our setting (compare
with the probabilistic standpoint; see, e.g., (Wilmott, 2006) and the

2. PARAMETER IDENTIFICATION
2.1 Rational generating functions

Consider again Eq. (1). The Z-transform X of x satisfies
(see, e.g., (Doetsch, 1967; Jury, 1964))

2" X —2(0) —z(1)z"t — - —a(n— 1Dz~

— i —an—12[X —z(0)] —anX =0 (™)

It shows that X, which is called the generating function
of x, is a rational function of z, i.e., X € R(z):
_ P
Q(z)

(8)

where
P(z) =boz" ' +b12" 2+ + by € R[2]
Q(z)=z2" = —ap_12 — an € R[]

Hence

Proposition 2.1. xz(t), t > 0, satisfies a linear difference
equation (1) if, and only if, its generating function X is a
rational function.

It is obvious that the knowledge of P and @ permits to
determine the initial conditions x(0),...,z(n — 1).

Remark 2.2. Consider the inhomogeneous linear difference
equation

x(t+n)—axt+n—1)— - —anx(t)
= Z w(t)a! + Z @' (t) sin(wt + @)
finite finite

where w(t), @' (t) € R[t], a,w,o € R. Then the Z-
transform X € R(z) of z(t) is again rational. It is equiv-
alent saying that x(t), t > 0, still satisfies a homogeneous
difference equation.

2.2 Parameter identifiability

Generalities  Let
R=Q(a,.. ybn-1)

be the field generated over the field Q of rational num-
bers by ai,...,an,bo,...,bh—1, which are considered as
unknown parameters and therefore in our algebraic setting
as independent indeterminates (Fliess & Sira-Ramirez,
2003; Fliess, Join & Sira-Ramirez, 2004; Fliess & Sira-
Ramirez, 2008). Write R the algebraic closure of & (see,
e.g., (Lang, 2002; Chambert-Loir, 2005)). Then X € &(z),
i.e., X is a rational function over . Moreover £(z) is a
differential field (see, e.g., (Chambert-Loir, 2005)) with
respect to the derivation L. Its subfield of constants is
the algebraically closed field &.

.,an,bo,...

dz "

Introduce the square Wronskian matrix M of order 2n+ 1
(Chambert-Loir, 2005) where its x**-row, 0 < x < 2n, is
ax ax ax ax
dzx dX U dx T T e 1 )
It follows from Eq. (7) that the rank of M is 2n if, and
only if, = does not satisfy a linear difference relation of
order strictly less than n. Hence

n—1
sy

references therein). Our estimation techniques permit an efficient
change-point detection (Mboup, Join & Fliess, 2008), which needs
to be extended, if possible, to some kind of forecasting.
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Theorem 2.3. If x does not satisfy a linear difference
equation of order strictly less than n, then the parameters

al,...,an,bo,...,bn_l

are linearly identifiable.®

Identifiability of the dynamics  For identifying the dy-
namics, i.e., ay,...,a,, without having to determine the
initial conditions consider the (n+1) x (n+ 1) Wronskian
matrix A, where its p'P-row, 0 < p < n+1, is

dn—i—u " dn—i—u

e SRR e
It is obtained by taking the X-dependent entries in the
n+ 1 last rows of type (9), i.e., in disregarding the entries
depending on by, . .., b,_1. The rank of N is again n. Hence

Corollary 2.4. a,...,a, are linearly identifiable.
Identifiability of the numerator  Assume now that the
dynamics is known but not the numerator P in Eq. (8).
We obtain by, ..., b,—1 from the first n rows (9). Hence

Corollary 2.5. by, ...,b,_1 are linearly identifiable.

2.8 Some hints on the computer implementation

We proceed as in (Fliess & Sira-Ramirez, 2003; Fliess &
Sira-Ramirez, 2008) and in (Fliess, Fuchshumer, Schoberl,
Schlacher & Sira-Ramirez, 2008). The unknown linearly
identifiable parameters are solutions of a matrix linear
equation, the coefficients of which depend on z. Let
us emphasize that we substitute to x its filtered value
thanks to a discrete-time version of (Mboup, Join &
Fliess, 2009).7

3. EXAMPLE: FORECASTING 5 DAYS AHEAD THE
$ - € EXCHANGE RATES

We are utilizing data from the European Central Bank,
depicted by the blue lines in the Figures 1 and 2, which
summarize the 2400 last daily exchange rates between the
US Dollars and the €uros. 8

3.1 Forecasting the trendline

In order to forecast the exchange rate 5 days ahead we
apply the rules sketched in Sect. 2.3 and we utilize a linear
difference equation (1) of order 3 (the filtered values of the
exchange rates are given by the black lines in the Figures 1,
2). Fig. 3 provides the estimated values of the coefficients
of the difference equation. The results on the forecasted
values of the exchange rates are depicted by the red lines in
the Figures 1 and 2, which should be viewed as a predicted
trendline.

6 It means following the terminology of (Fliess & Sira-Ramirez,
2003; Fliess & Sira-Ramirez, 2008) that ai,...,an,bo,...,bn—1
are uniquely determined by a system of 2n linear equations, the
coefficients of which depend on jz—XXX and jz—xxzm, 0<m<n-1.
7 See, e.g., (Gengay, Selguk & Hafner, 2002) for an excellent presen-
tation of various filtering techniques in economics and finance.

8 The authors are perfectly aware that only computations dealing
with high frequency data might be of practical value. This type of
results will be presented elsewhere.
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Figure 3. Parameter estimations a; (red —.—), a2 (blue

——) and asz (black ——) (5 days ahead)
3.2 Above or under the predicted trendline?

Consider again the “error” v(t) in Eq. (2) and its moving
average MA, y(t) in Eq. (6). Forecasting MA, n(t) as in
Sect. 3.1 tells us an expected position with respect to the
forecasted trendline. The blue line of Fig. 4 displays the
result for the window size N = 100. The meaning of the
indicators /\ and V is clear.

Table 1 compares for various window sizes the signs of the
predicted values of MA, n(t), which tells us if one should
expect to be above or under the trendline, with the true
positions of x(t) with respect to the trendline. The results
are expressed via percentages.

3.8 Predicted volatility w.r.t. the trendline

Introduce the moving standard deviation
MSTD,, y(t) =

Zivzo(”(t +7)—MA, N(t— N +7))32
N+1
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Figure 2. Zoom of Figure 1
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Figure 4. Predicted position w.r.t. the trendline (5 days
ahead) — V: above, A: under

| Window’s size | Percentage |

50 65.6%
100 88.3%
200 62.3%
300 67.1%

Table 1. Comparison between the sign of the
predicted value of MA, n(t) and the true posi-
tion of x(t) w.r.t. the trendline (5 days ahead).

and forecast it as in Sect. 3.2. The results, which are
displayed for a window size N = 100 in Table 2 and Fig.
5 via the familiar confidence intervals,® confirm the time-
dependence of the variance, i.e., the heteroscedasticity.

9 There is of course no need for the underlying statistics to be
Gaussian. Lack of space prevents us from exhibiting forecasts of

| Confidence intervals | Prediction | Real |

mean-3xstd,mean-+3xstd 99% 98.7%
mean-2xstd,mean+2xstd 95% 92.2%
mean-std,mean-+std 68% 64.4%
Table 2. Confidence interval validations (5 days
ahead)
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Figure 5. Confidence interval (95%) (5 days ahead)
3.4 Forcasting 10 days ahead

Figures 6, 7, 8, 9 display the same type of results as
in Sections 3.1, 3.2, 3.3 via similar computations for a
forecasting 10 days ahead. The quality of the computer
simulations only slightly deteriorates.

quantities like skewness and kurtosis, which would be obtained by
similar calculations. This will be done in some future publications.
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Figure 7. Zoom of Figure 6
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Figure 6. Exchange rates (blue ), filtered signal (black -
-), forecasted signal (red —) (10 days ahead)

4. CONCLUSION

The existence of trends, which is

e the key assumption in technical analysis, '°

e quite foreign, to the best of our knowledge, to the
academic mathematical finance, where the paradigm
of random walks is prevalent (see, e.g., (Wilmott,
2006)),

10Trends in technical analysis should not be confused with what are
called trends in the time series literature (see, e.g., (Gouriéroux &
Monfort, 1995; Hamilton, 1994)).
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Figure 8. Predicted position w.r.t. the trendline (10 days
ahead) — V: above, A: under

is fundamental in our approach. A theoretical justification
will appear soon (Fliess & Join, 2009).1* We hope it will
lead to a sound foundation of technical analysis, 12 which
will bring as a byproduct easily implementable real-time
computer programs. '3

1 The existence of trends does not necessarily contradict a random
character (see (Fliess & Join, 2009) for details).

128ee also (Dacorogna, Gengay, Miiller, Olsen & Pictet, 2001) for a
most exciting study which employs high frequency data. There are
also other types of attempts to put technical analysis on a firm basis
(see, e.g., (Lo, Mamaysky & Wang, 2000)). See (Blanchet-Scalliet,
Diop, Gibson, Talay & Tanré, 2007) for a comparison between
technical analysis and model-based approaches with parametric
uncertainties.

13 Our technics already lead to such computer programs in automatic
control and in signal processing.
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Figure 9. Confidence interval (95%) (10 days ahead)
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