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1.  Introduction 

In the original application of his model, Roy (1951) showed that the self-selection of 

individuals into occupations generally implies that observed wages (conditional on occupation 

choice) differ markedly from the underlying distribution of wages in the population. The Roy 

model has subsequently been applied to a wide class of problems in economics as its structure fits 

any setting in which individuals choose among a set of alternatives to maximize an outcome 

associated with that choice.  Given its wide applicability, an important line of recent research has 

analyzed identification in the Roy model.  Beginning with Heckman and Honore (1990), this 

literature has produced a series of results that clarify the conditions under which the underlying 

population distribution of wages can (or cannot) be identified in observational data. 

In this paper, we study the nonparametric identification and estimation of a generalized 

Roy model that includes a non-pecuniary component of utility associated with each alternative. 

An important limitation of the pure Roy model is that it assumes that individuals maximize only 

economic returns (e.g., wages).  Yet non-pecuniary aspects of decisions are important in many 

economic applications.  In the choice of occupation, for example, non-pecuniary components of 

utility would include the amenity value or injury risk associated with different jobs.1 As with the 

pure Roy model, this generalized version is also applicable to settings in which the outcome of 

interest is not economic returns.  In studying the choice of health behaviors or medical treatments, 

for example, the relevant outcome might be the survival rate, while the “non-pecuniary” 

component of utility might capture the enjoyment associated with a behavior (such as smoking) 

or disutility of side-effects associated with various treatments.2  In this way, the generalized 

model developed here can be applied to a wide class of problems in economics.   

                                                 
1In modeling the choice of labor market/residence, the non-pecuniary component of utility would capture 
variation in amenities and cost-of-living across cities.   
2 Likewise, in the study of school choice, the relevant outcome might be achievement scores, while other 
factors affecting the choice of school (e.g., availability of special education programs) might be included as 
part of a separate component of utility. 
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The starting point for our analysis is the well-known result for the pure Roy model in 

Heckman and Honore (1990) – that any cross-sectional dataset (consisting of the observed 

distribution of wages in each sector and the probability that each sector is chosen) can be 

rationalized by an underlying population wage distribution in which wages are distributed 

independently across sectors.  Thus, the correlation of wage offers across sectors is unidentified 

in a single cross-section.   

A common interpretation of this important result is that, without parametric restrictions 

or access to covariates, all of the useful content of cross-sectional data is absorbed in a restricted 

specification of the Roy model (i.e., one that imposes independence).  While this interpretation is 

correct if the data is generated in a pure Roy model, one can in fact glean additional information 

from a single cross-sectional dataset when non-pecuniary considerations matter.  In the analysis 

that follows, we provide two distinct sets of conditions under which the non-pecuniary values 

associated with each choice alternative are non-parametrically identified.  As in Heckman and 

Honore (1990), the identification of the full population wage distribution requires additional 

identifying assumptions; the key insight of our paper is that the non-pecuniary value of 

alternatives in a generalized Roy model can be identified even in a single cross-section.   

Throughout the paper, we consider the nonparametric identification of the model in a 

relatively demanding setting in which (i) the set of available choices is large and (ii) covariates 

are not available to the researcher.3  The objects to be identified are the population wage 

distributions and a common non-pecuniary utility associated with each choice.  In developing a 

first set of conditions for identification, we impose only the relatively innocuous requirement that 

                                                                                                                                                 
 
3 The related problem when covariates are available has been studied extensively in the literature, 
especially in the binomial choice problem. [See, for example, Heckman and Honore (1989) and Heckman 
(1990)] As there is a close link between Roy models and competing risk models, several many of the 
papers in the survey in Powell(1994) are also related to the models we explore here. Some more recent 
related work includes Honore et al.(2002), Lee(2006), Honore and Lleras-Muney (2007), and Khan and 
Tamer (2007).  While identification strategies that rely on the use of covariates can be extended to the 
multinomial choice setting, the requisite demands on the data are enormous, requiring, for example, the 
availability of distinct combinations of covariates that compel individuals to select each choice with 
certainty. 
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the distribution of pecuniary returns has a finite lower bound.  Given this assumption, we 

demonstrate that the difference in the minimum order statistic for any two alternatives exactly 

identifies the difference in the non-pecuniary value of those choices.  Intuitively, this follows 

directly from the observation that no individual will choose a less-preferred choice (on the basis 

of non-pecuniary considerations) unless the wage offered there exceeds this threshold.  Thus, the 

minimum wage observed in the less-preferred sector should be exactly the minimum wage 

observed in the more-preferred sector plus the difference in non-pecuniary components.4  Having 

identified the non-pecuniary component of utility, we show that it is then straightforward to (i) 

back-out underlying unconditional population wage distributions using transformed versions of 

the observed conditional wages distributions for each sector and the Kaplan-Meier (1958) 

procedure, if one assumes independence, or (ii) apply Petersen (1976) bounds to the transformed 

data to bound the unconditional population wage distribution. 

While this estimator works very well in controlled data environments, relying exclusively 

on differences in minimum order statistics to identify the non-pecuniary component of utility 

raises concerns about measurement error.  As a result, we consider a second set of formal 

identifying assumptions.  Our second identification proof is based on two key assumptions.  First, 

we assume independence.5  Second, we assume that information is available for (at least) two 

subsets of the population that differ in their non-pecuniary valuation of the set of choice 

alternatives.  In the application that we present below, we consider the choice of regional labor 

market; in that context, moving costs (broadly defined) naturally imply that birth region affects 

the non-pecuniary value one ascribes to a particular destination.  We then exploit the fact that 

                                                 
4 Note that, within the pure Roy model, the minimum order statistics would be identical for all choices and 
the full empirical content of the data would in fact be absorbed by a specification including independent 
population wage distributions, as suggested by Heckman and Honore (1990). 
5 Again, following the existing literature, the independence assumption can be relaxed in more generous 
data environments (e.g., when data is available for more than a single cross-section or when covariates are 
available). See, for example, Khan and Tamer (2007) who achieve identification results under strong 
support conditions in a semi-parametric Roy model. Honore and Llera-Muney (2007) establish set 
identification when the independence assumption is relaxed. 
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wage offers are likely to be similar for individuals with similar characteristics from neighboring 

regions while the non-pecuniary value of residing in these regions will vary significantly with an 

individual’s birthplace.  We refer to this second assumption as “commonality”, i.e., that a 

common wage distribution characterizes wage offers for all individuals regardless of birthplace. 

Given this assumption, we prove that both the non-pecuniary components of utility for each 

population subset and the overall population wage distributions are identified.  

In this case, some intuition for why the model is identified by the commonality 

assumption can again be gained by referring back to Heckman and Honore (1990).  Without non-

pecuniary components of utility, the observed conditional wage distributions and choice 

probabilities map uniquely to a set of independent population wage distributions.  With at least 

two subsets of the population that differ in their non-pecuniary valuations of alternatives, 

however, the resulting unconditional wage distributions that would reconcile the two subsets of 

the data would differ.  What our identification proof ensures is that the identical unconditional 

wage distributions for each subset can only be reconciled at the true values of the non-pecuniary 

components of utility for each population subset. 

Estimation of this model follows directly from the identification proof.  As we show 

below, it is possible to write a system of equations based on the observed conditional wage 

distributions that must equal zero identically at the true values of the non-pecuniary parameters 

for each population subset.  These equations serve as natural moments for a minimum distance 

estimator. 

These results add to a sparse literature that has studied the nonparametric identification of 

a generalized Roy model with many alternatives and non-pecuniary components of utility.  Dahl 

(2001) proposes a multinomial version of the estimator developed in the binomial context by Ahn 

and Powell (1994).  His extension relies on the key assumption that a non-parametric selection 

correction term can be based on the first-best choice probability.  This assumption is not, 

however, based on a model of utility maximizing behavior.  Other work has examined spatial 
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sorting behavior based on wages and non-pecuniary benefits.  Falaris (1987) and Davies, 

Greenwood, and Li (2001) study the determinants of migration decisions in Venezuela and the 

US, respectively.  Falaris applies Lee’s (1983) generalized polychotomous choice model to 

control for non-random selection bias in conditional wage distributions, while Davies, 

Greenwood, and Li essentially ignore it.  The entire literature on wage-hedonics, beginning with 

Roback (1982), has similarly ignored this problem.  In those papers, wage and housing price 

gradients across cities are used to back-out the value of urban amenities.  Wage distributions 

conditional on non-random selection into cities are typically used to calculate the first of these 

gradients, leading to biased estimates. 

We conclude this paper by applying our estimator to US Census data to study the effect 

of spatial sorting on returns to a college education, addressing the same question as Dahl (2001).  

College graduates are more likely to migrate than are high-school graduates, meaning that the 

bias in their conditional wage distributions induced by Roy sorting will be greater.  Controlling 

for this bias for both high-school and college graduates, we find that the estimated returns to a 

college education at the median fall from 42% to only 18%. 

The remainder of the paper is organized as follows.  Section 2 introduces the generalized 

Roy model, proves identification for the case in which wage distributions are assumed to have a 

finite lower support, and develops a corresponding estimator.  Section 3 proves identification 

under the alternative assumptions of independence and commonality, and develops a 

corresponding estimator.  Section 4 outlines the asymptotic properties of our estimators, and 

section 5 shows how each estimator performs in finite samples and under less-than-ideal data 

circumstances.  Section 6 uses the unbounded support estimator to recover an unbiased estimate 

of the returns to a college education.  Section 7 concludes with a discussion of possible 

extensions to this research. 
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2.  Identification and Estimation – Finite Lower Support 

We begin our analysis by describing the generalized Roy model and data environment 

that we study.  We then prove identification under two separate sets of assumptions.  The first 

case is characterized by the assumption that the distribution of the endogenously determined 

payoffs (e.g., wages in a classic Roy model) has a finite lower support.  In this case, our 

estimation strategy is transparent and easily applied.  Our second set of assumptions, described in 

Section 3, is applicable in situations where a finite lower support cannot be assumed, or where the 

minimum order statistic provides a noisy measure of the lower bound.  In both cases, we first 

prove identification with a simple model describing the sorting of individuals from a single origin 

location into one of two destinations (k = 1, 2).  We indicate the wage earned by individual i, 

should he choose to settle in locations #1 and #2 as ω1,i and ω2,i, respectively.  In contrast to the 

classic Roy model, where sorting is simply across employment sectors and driven entirely by 

pecuniary compensation, we model sorting in a geographic context where the individual’s 

location decision depends in part on his wage draw in each location, but also on non-wage 

determinants of utility specific to a particular location, which we label as “tastes”.6  Utility from 

choosing to settle in location k is given by the sum of wages (ωk,i) and tastes (τk): 

 

(1) kikikU τω += ,,  

 

                                                 
6 Tastes would certainly include natural amenities and local public goods associated with the destination 
location.  In addition, they may include “migration costs”; i.e., costs specific to someone moving from a 
particular origin to a particular destination.  In a narrow sense, these costs would be comprised of re-
location expenditures.  In broader terms, these costs would likely involve the psychological costs of living 
far from one’s birth location.  2000 Census data indicate that a majority of US household heads live in the 
narrowly defined region in which they were born. [Bayer, Keohane, and Timmins (2007)] 
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Without loss of generality, we normalize τ1 = 0.7  The goal of our exercise is to recover estimates 

of τ2, f1(ω1), and f2(ω2) (i.e., the taste parameter associated with location #2 and the unconditional 

wage distributions in each location).  The difficulty arises from the fact that we only see (i) wage 

distributions conditional upon optimal sorting behavior, and (ii) an indicator of which location an 

individual chooses. 

 

2.1   Identification of Tastes Based on a Finite Lower Support 

Our first approach uses only the conditional wage distributions and an indicator of 

location choice to recover τ2, f1(ω1), and f2(ω2) according to the following argument based on 

minimum order statistics.  For an individual i, we only observe ω2,i if: 

 

(2) ii ,12,2 ωτω ≥+  

 

and we only observe ω1,i if: 

 

(3) ii ,12,2 ωτω <+  

 

Denote the smallest wage (i.e., the minimum order statistic) that we observe from someone 

choosing to settle in location #1 or #2 by 1w  and 2w , respectively.  Assuming that f1(ω1) and 

f2(ω2) have finite lower points of supports (denoted by 
*

1ω  and 
*

2ω , respectively), we know that 

the smallest value of ω1 that we could ever see given that individuals maximize utility: 

 

                                                 
7 As in all random-utility frameworks, utility is only identified up to an additive constant.  This requires 
some sort of a normalization, which we use to eliminate one of the τ’s from the two-destination example.  
In the more general N x N case, we estimate (N-1) τ’s for each of the N origins. 
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(4) 
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Similarly, the smallest value of ω2 that we could ever see would be: 

 

(5) 

2

*

2

*

12

*
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2

*
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*
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*
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In order to make sense of (4) and (5), define the following two cases: 

 

(6) 

2

*

2

*

1

2

*

2

*

1

:

:

τωω

τωω

+≤

+>

B

A
 

 

We are not able to tell whether case A or B prevails in the data without recovering an estimate of 

τ2.  Conveniently, we are able to recover an estimate of τ2 in either case.  In particular: 

 

(7) 212 ww −=τ     

 

Equation (7) therefore describes our first estimator of τ2 in the simplest 1 x 2 case.  The same 

logic extends easily to any number of potential destinations (i.e., 

)....,,2,1,1 Kkww kk =−=τ   Begin by defining the following indicator variables: 

 

(8) ( )[ ]KiKiiii Id τωτωτωω +++>= ,3,32,2,1,1 ...,,,max  

(9) ( )[ ]KiKjijjijijijij Id τωτωτωωτω +++>+= ++−− ,1,11,1,1,, ...,,,...,,max  
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where we continue to normalize 01 =τ .  The observed wage of individual i is defined by: 

 

(10) ∑
=

=
K

k

ikiki dw
1

,,ω  

 

We next define the following indicator variables, which refer to the finite lower bounds in each 

location: 

 

(11) [ ])...,,,max( *

3

*

32

*

2

*

11 KKI τωτωτωωδ +++>=  

 (12) [ ])...,,,...,,max( *

1

*

11

*

1

*

1

*

KKkkkkkkk I τωτωτωωτωδ +++>+= ++−−  

 

We then proceed by evaluating the minimum order statistic for an individual choosing to settle in 

location #1: 

 

(13) ∑
=

++===
K

k

kkkii dww
2

*

1

*

1,11 )()1|min( δτωδω  

 

and in each location 1>j : 

 

(14) ∑
≠
=

−++===
K

jk
k

kjkkjjiij jdww
1

**

,1 )()|min( δττωδω  

By simple inspection, one can see that ....,,2,1,1 Kkww kk =∀−=τ  
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2.2   Identification of f1(ω1) and f2(ω2) with Kaplan-Meier 

Having recovered an estimate of τ2, it is a simple matter to recover f1(ω1) and f2(ω2) by 

employing a variation of the Kaplan-Meier (1958) procedure typically used in competing-risks 

models under independence assumptions.8  The Kaplan-Meier can be interpreted as a 

nonparametric maximum likelihood estimator of a censored distribution, and has been proven be 

asymptotically normally distributed- see, e.g. Gill(1980). 

Our variation will be to apply the Kaplan Meier procedure to draws from ω1+τ1, where τ1 

can be estimated using the proposed procedure.  In particular, we estimate f1(ω1) by first creating 

a new data vector which corresponds to only those values of utilities (i.e., ω1 + τ1) that are 

“uncensored” for destination #1 (i.e., observed for individuals who optimally chose destination 

#1).  Note that, because we were able to recover tastes with equation (7), we can treat utility (i.e., 

the sum of wages and tastes) as observed for the remainder of the exercise – our only goal is to 

recover its unconditional distribution, from which we can recover the unconditional distribution 

of wages.  This vector of utilities will be of smaller dimension than the vector of all utilities, 

which includes draws for individuals who chose destination #1 or destination #2.  

To implement the Kaplan Meier procedure, we can simply use standard software 

packages such as Stata. The resulting value of S is the Kaplan-Meier estimate of the c.d.f. of U2 at 

x.  In the final step, we simply deduct our estimate of τ2 from utility U2 at each point in the 

support of its distribution.  The resulting distribution is a non-parametric representation of  f2(ω2).  

We then repeat this process in order to recover f1(ω1), recalling that τ1 had been normalized to 

zero. 

Note that a portion of the unconditional distribution for one of these two locations will 

necessarily be censored.  Suppose we are in case A, where 
*

1ω  is large relative to 
*

2ω  + τ2.  We 

are therefore able to observe the complete distribution f1(ω1), beginning with 
*

11 ω=w .  We are, 

                                                 
8 As we mentioned previously, an alternative approach in this stage would be to relax independence and 
apply the Petersen (1976) bounds to the transformed data to bound the unconditional distributions. 
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however, unable to observe f2(ω2) to the left of 
*

22

*

12 ωτω >−=w .  While we are unable to 

determine the shape of the distribution f2(ω2) between 
*

2ω  and 2w  in the above case, we are able 

to bound from above the value of 
*

2ω  (i.e., the lower point of support for the censored 

distribution).  In particular, knowing that 1

*

1 w=ω , we know that 21

*

2 τω −< w .  We are unable 

to determine more about the shape of the distribution f2(ω2) between 
*

2ω  and 2w without 

resorting to parametric assumptions. 

 

3.   Identification and Estimation – Unbounded Support 

 While clean and transparent, there are two practical problems with the technique outlined 

in Section 2.  First, the payoff variable in question may not naturally have a finite lower support 

(e.g., theory might dictate using the natural log of wages in the utility function).  Second, the 

minimum order statistic can be a very noisy statistic.9  Unless one has tremendous confidence in 

the estimate of the minimum order statistic, that noise will be translated directly through to the 

estimates of the taste parameters and, subsequently, on to the Kaplan-Meier estimates. 

 As an alternative, we propose in this section an estimator that employs data from the full 

distribution of conditional wages.  Importantly, this approach is valid for an unbounded support.10  

With that flexibility, however, comes the need for an additional identification assumption.  In 

particular, we begin by showing that, without an additional assumption, τ2, f1(ω1), and f2(ω2) are 

not identified.  This negative proof, however, reveals just how easily identification can be 

achieved by exploiting the assumption of “commonality” described in Section 3.2. 

 

 

                                                 
9 For example, the bottom 2-3% of wage observations in the US Census data used for our empirical 
application in Section 7 are implausibly low (i.e., less than 50¢ per hour). 
10 In practice, this means that poorly measured data in the lower tail of the wage distribution will not have a 
significant impact on the estimation algorithm, whereas it can have severe effects on the minimum order 
statistic approach. 
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3.1 Non-Identification in the 1 x 2 Case 

We begin with a simple model of individuals sorting over two locations, indexed by 1 and 2.  

We assume for simplicity that the individuals are from location 1, and we therefore normalize 

their taste for staying there to zero (τ1 = 0).  Our interest is in recovering estimates of τ2, f1(ω1), 

and f2(ω2). 

We define a variable di, which functions as an indicator that individual i remained in his 

origin location: 

 

(15) ][ 2,2,1 τωω +>= iii Id  

 

Using this indicator, we can write down an expression for individual i’s observed wage: 

 

(16) iiiii ddw ,2,1 )1( ωω −+=  

 

i.e., the individual receives his draw from location #1 if it was utility maximizing to stay there.  

Next, define the following joint probability distributions, both of which are easily observed in the 

data: 

 

(17) ),0()(),1()( 21 twdPttwdPt iiii ≤==Ψ≤==Ψ  

 

We will also work with the derivatives of these expressions, which we denote by: 

 

(18) ),0()(),1()( 21 twdP
t

ttwdP
t

t iiii ≤=
∂

∂
=≤=

∂

∂
= ψψ  
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Assuming independent wage draws, we can re-write Ψ1(t) as: 

 

(19) 

121211222111

,1,22,1,12,2,1

1

)()()()(

),(),(

),1()(

21

ωτωωωωωω

ωωτωωτωω

τω

dFfdfdf

tPtP

twdPt

tt

iiiiii

ii

−==

≤>−=≤+>=

≤==Ψ

∫∫∫
∞−

−

∞−∞−

 

 

This means that we can define ψ1(t) as follows: 

 

(20) )()()()()( 2211212111 τωτωωψ −=−
∂

∂
= ∫

∞−

tFtfdFf
t

t

t

 

 

An analogous argument defines ψ2(t): 

 

(21) )()()()()( 2122221222 τωτωωψ +=+
∂

∂
= ∫

∞−

tFtfdFf
t

t

t

 

 

Going back to the final integral in equation (19) and carrying out integration-by-parts yields: 

 

(22) ∫ ∫
∞− ∞−

−−−=−=Ψ
t t

dssfsFtFtFdFft )()()()()()()( 2212211212111 ττωτωω  

 

Performing a change of variables 2τ−= su , equation (22) becomes: 
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(23) duufuFtFtFt

t

∫
−

∞−

+−−=Ψ
2

)()()()()( 2212211

τ

ττ  

 

Next, we use the expressions for ψ1(t) and ψ2(t) defined in (20) and (21) to re-write equation (23) 

as follows: 

 

(24) duu
tf

ttF
t

t

∫
−

∞−

−=Ψ
2

)(
)(

)()(
)( 2

1

11
1

τ

ψ
ψ

 

 

Noting that the second integral in (24) is simply )( 22 τ−Ψ t , we can solve for the distribution of 

ω1 as a function of τ2: 

 

(25) 
)()(

)(

)(

)(
)(

221

1

1

1
1

τ

ψ
λ

−Ψ+Ψ
==

tt

t

tF

tf
t  

 

where λ1(t) is a function of the unconditional wage distribution in location #1.  (25) is a single 

equation in two unknowns (λ1(t) and τ2) for a particular value of t, and it is therefore not 

surprising that we cannot identify both of these values without making an additional assumption.   

One solution would involve making a parametric assumption about F1(t).  For example, assuming 

F1(t) ~ N(µ1, σ1
2) would reduce the equation to three parameters.  The number of parameters 

would not increase, however, as one considered the expression evaluated at different values of t.  

By forcing the equation to hold for many values of t, we would have more equations than 

unknowns and could identify the model’s parameters. 

 In the following section, we show how the assumption of commonality can be used to 

non-parametrically recover λ1(t) and τ2 . 
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3.2 Identification via Commonality in the 2 x 2 Case 

Consider now the case of individuals born into one of two locations (again indexed by 1 and 

2), who decide where to reside based on the maximization of utility.  This introduces the need for 

additional notation – we use a superscript to indicate origin location and a subscript to indicate 

destination location. 

The dummy variable indicating that an individual originating in location #1 chooses to stay 

in that location is given by: 

 

(26) ][ 1

2

1

,2

1

,1

1 τωω +>= iii Id  

 

while the indicator that an individual originating in location #2 chooses not to migrate is given 

by: 

 

(27) ][ 2

1

2

,1

2

,2

2 τωω +>= iii Id  

 

As before, we normalize the taste parameter for those choosing not to migrate to zero (i.e., 

02
2

1
1 == ττ ).  With these indicators, we can now write the expression for the observed wage of 

an individual i who originates in location #1: 

 

(28) 
1

,2

11

,1

11 )1( iiiii ddw ωω −+=  

 

Based on these definitions for d and w, we define the following expressions analogously to the 

previous sub-section: 
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(29) 
),1()(),0()(

),0()(),1()(

222
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Continuing in a manner similar to the previous sub-section, we can use equation (29) to derive the 

following four expressions: 
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By itself, the expansion of the 1 x 2 case to the 2 x 2 case does nothing to help with identification.  

It does, however, allow us to introduce an additional assumption – commonality.  Under the 

assumption of commonality, )()( 2
1

1
1 tt λλ =  and ttt ∀= )()( 2

2
1
2 λλ .  Under this assumption, we 

can re-write equations (30)-(33) as the following two equations: 
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Estimation proceeds by forming minimum distance criterion functions based on equations (34) 

and (35): 
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and then relying on the properties of M-estimators to recover 
1
2τ  and 

2
1τ .  [Davidson and 

MacKinnon (1993)]  We then use these taste parameters along with a Kaplan-Meier procedure to 

recover estimates of )( 11 ωf  and )( 22 ωf  as described in Section 2.2. 

We now provide sufficient conditions for identification and estimation of the taste 

parameters in the 2 x 2 setting with commonality.  We begin by rearranging the expressions (34) 

and (35): 
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Note that the right-hand-side of each of these expressions is an observable function of the data for 

a particular value of t.  Our identification result begins with the following lemma: 
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Lemma 1:    At the true parameter values ( **, 2
1

1
2 ττ ), we have 
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ℜ∈∀ t  in the intersection of the supports of )(1

1 tψ , )(1

2 tψ , )(2

1 tψ , and )(2

2 tψ . 

 

 

This is simply a re-statement of our minimum distance criterion function described above.  We 

will now show that, for each set of values of the taste parameters different from ( **, 2

1

1

2 ττ ), 

denoted by (
2

1

1

2
~,~ ττ ), we must have: 
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for some ℜ∈t  in the intersection of the supports of )(1

1 tψ , )(1

2 tψ , )(2

1 tψ , and )(2

2 tψ .  To 

prove this result, first note that if *~ 1

2

1

2 ττ = , then only *~ 2

1

2

1 ττ =  will make equation (40) hold, 

by the monotonicity of the conditional c.d.f.’s that make-up that expression.  By a similar 

argument, if *~ 2

1

2

1 ττ = , then *~ 1

2

1

2 ττ =  in order for equation (40) to hold.  Therefore, we need 

only consider the case in which *~ 1

2

1

2 ττ ≠  and *~ 2

1

2

1 ττ ≠ .  I.e., is it possible that an imposter 

pair (
2

1

1

2
~,~ ττ ) could satisfy equation (40)? 

Consider the following condition which we argue will be sufficient to rule out this 

possibility: 
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for some ℜ∈t  in the intersection of the supports of )(1

1 tψ , )(1

2 tψ , )(2

1 tψ , and )(2

2 tψ .  This 

condition has a simple interpretation – i.e., that the Jacobian matrix associated with equations 

(38) and (39) is non-singular.  There are situations in which this condition will not hold; for 

example, when the two conditional wage distributions are identical and 
1

2τ  = -
2

1τ .11  We consider 

this to be a pathological case. 

 To establish the sufficiency of the above condition for identification, consider a local 

linearization of equations (38) and (39) around the true values of 
1

2τ  and 
2

1τ  and evaluated at t.  

For any pair of perturbations, 
1

2∆  and 
2

1∆ , we require the net effect on the left-hand-side of each 

equation to be zero (since H(t) and J(t) are functions of only t). 
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If condition (42) holds, then the only solution to these expressions is given by 
1

2∆  = 
2

1∆  = 0, 

implying that no imposter values of (
2

1

1

2
~,~ ττ ) could satisfy the system.  Of course, we do not 

know the value(s) of t where equation (42) holds, requiring that we evaluate our minimum 

distance estimator at all available values of t.  In doing so, we are restricted to only using values 

of ℜ∈t  in the intersection of the supports of )(1

1 tψ , )(1

2 tψ , )(2

1 tψ , and )(2

2 tψ .  Without any 

overlap, this identification strategy is not applicable. 

                                                 
11 This would be the case if we took a single location and arbitrarily divided it into two locations with the 
exact same wage distributions and amenities.  This condition therefore places a practical constraint on the 
level of geographic precision at which we can apply our estimator – i.e., at the level at which we can 
observe different spatial wage distributions. 
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4.  Asymptotics 

 Having described two identification strategies for both the taste parameters and 

unconditional wage distributions, we now outline the arguments that will be used in developing 

the asymptotic properties of our proposed estimators.  We begin with a discussion of our 

minimum order statistic estimator.  In practice, we simply replace population extreme quantiles in 

the identification argument with sample minimum order statistics.  Asymptotic properties of 

minimum or maximum order statistics have been studied in recent work by Porter and Hirano 

(2003).  Chernozhukov and Hong (2004) obtain similar results.  As a preliminary step, we 

establish the rate of convergence of the estimator.  The result is based on the following regularity 

conditions: 

 

A1 The K+1 vectors of observed wage and choice indicators (wi, dk,i) are i.i.d. across 
individuals. 

A2 The unconditional wage distributions for alternatives k = 1, 2, …, K are continuously 
distributed with positive density on [ℓk, ∞). 

A3 mink=1,2,…K ℓk > -∞ 
A4  mink=1,2,…K P(dk,i = 1) > 0 

 

Theorem 0.1 Under Assumptions A1-A4, we have 

 

(45) )(ˆ 1−=− nOpkk ττ  

 

A proof that our estimator attains this rate of convergence under Assumption A2 follows from 

arguments similar to those used in van der Vaart (1998), Section 21.4. 

 Turning attention to the second stage estimator of the unconditional wage distributions, 

we proposed applying Kaplan-Meier to yield a consistent estimator of the distribution of ωk,i+τk.  

We note the first stage estimator, which was shown to be “super-consistent”, will have no effect 
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on the limiting distribution of the second stage estimator.  The next theorem establishes the 

limiting distribution of this estimator. 

 

Theorem 0.2 Under Assumptions A1-A4, our second stage estimator of the unconditional wage 

distribution has the following linear representation.  Let π(t) = P(ωk,i ≤ t) and define the set 

}1)(:{ <=Ω tt π .  Then for any Ω∈t , 
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where W is Brownian motion, and ∫
∞

−=
t

dsst )()( 1πϕ . 

 

 

A proof of the above theorem can be found by using the same arguments as in Fleming and 

Harrington (1991).  We omit the details here. 

 We now turn our attention to the asymptotic properties of the unbounded support 

estimator.  To illustrate the basic arguments involved, we will focus on the two-region setting.  

Our estimator of the taste parameter vector, )ˆ,ˆ(ˆ 2

1

1

2 τττ = , is obtained by minimizing the 

minimum distance objective function: 
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The asymptotic properties of our unbounded support estimator are based on the following 

assumptions: 

 

B1 The K+1 vectors of observed wage and choice indicators (wi, 
j

ikd , ) are i.i.d. across 

individuals. 
B2 The true vector τ0 lies in the interior of a compact parameter space. 

B3 The functions )(⋅l

mψ , l, m = 1, 2 are assumed to be uniformly bounded and twice 

continuously differentiable, with uniformly bounded first and second derivatives. 
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B4 The kernel function )(⋅K  used to approximate )(⋅l

mψ has bounded support, integrates to 

one, and has mean zero. 

B5 The bandwidth h associated with kernel function )(⋅K  satisfies 02 →hn  and 

∞→nh . 
 

 

Theorem 0.3 Under Assumptions B1-B4, 

 

(48) 0
ˆ ττ →p

 

 

The proof of the above result can be shown by establishing the four sufficient conditions in 

Theorem 2.1 in Newey and McFadden (1994), which can be characterized as compactness, 

identification, uniform convergence, and continuity. 

 Furthermore, by Newey and McFadden (1994) Theorem 8.11, we can establish the 

parametric rate of convergence as well as the asymptotic normality of our estimator.  The 

parametric rate is attainable despite the nonparametric rate of convergence achieved by some 

components because the parameter of interest ( 0τ ) is a smooth functional of the nonparametric 

components.  Our next theorem is based on the following assumptions: 

 

B6 The functions 2,1, =ml
l

mψ  are assumed to be uniformly bounded and p times 

continuously differentiable, with uniformly bounded pth order derivatives. 
B7 The kernel function K integrates to one, has mean zero, and is of pth order. 

B8 The bandwidth h associated with the kernel function satisfies 0→p
hn  and ∞→nh . 

 
 

The following theorem establishes the root-n consistency and asymptotic normality of our 

estimator.  Its proof is omitted as it follows from the same arguments used in proving Theorem 

8.11 in Newey and McFadden (1994). 
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Theorem 0.4 Under Assumptions B1, B2, B4-B8, 

 

(49) ),0()( 0 xNn Ω⇒−ττ  

 

Where 0>Ω x . 

 

 

Remark 1 The exact form of xΩ  is complicated, as it involves higher order derivates of the 

functions 
l

mψ .  Consequently, for inference on 0τ  in our application, we employ sampling 

methods to avoid using further nonparametric methods. 

 

Remark 2 Note that, in this case, the first stage estimator converges at the parametric rate, 

and consequently will affect the limiting distribution of the second stage estimator.  While the 

precise effect on the limiting distribution can be derived using arguments similar to those used by 

Newey and McFadden (1994) Section 8, we omit the details here. 

 

 

5.  Monte Carlo Results 

 In this section, we use Monte Carlo experiments to describe the properties of both 

estimators in small samples and with less-than-ideal data.  We consider a simple setting with just 

three locations that serve as both origins and destinations, and we model the sorting decisions of 

individuals who care about both pecuniary returns (i.e., wages) and non-pecuniary factors (i.e., 

migration costs and amenities) in deciding where to live.  In each experiment, we consider some 

number of identical individuals (N) originating in each location, and we use their simulated 

behavior to recover the matrix of taste parameters: 
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For the sake of simplicity in exposition, we focus our attention on the performance of the 

estimators in recovering these taste parameters.  Unconditional wage distributions in each 

location could be recovered by applying the Kaplan-Meier technique described in section 2.2 for 

each set of Monte Carlo estimates. 

 We begin by looking at the minimum order statistic estimator.  The results of nine Monte 

Carlo experiments are described in Table 1.  The first three experiments use the baseline 

framework in which wages are random variables determined by the following (j denotes origin 

location): 
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Columns describe the various taste parameter estimates, while rows summarize the mean, 

standard deviation, and mean squared error of 500 Monte Carlo simulations for each experiment. 

 With an increasing number of individuals in each origin location, the minimum order 

statistic becomes a better measure of the true lower bound on wages in a particular location, and 

our estimates of the taste parameters improve accordingly.  This is evident in the declining MSE 

as N increases from 1,000 to 10,000 to 50,000 for each parameter.  Even with as few as 1,000 

observations, however, taste parameter estimates based on the minimum order statistic are quite 

precise. 
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 The fourth and fifth experiments in Table 1 relax the assumption of a finite lower bound 

for the unconditional wage distribution.  In particular, 

 

(52) 
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The impact of this model mis-specification is evident in an increase in the MSE by a factor of 100 

to 10,000, depending upon the parameter.  Conditional upon this mis-specification, however, 

MSE’s still fall as N increases from 10,000 to 50,000. 

 The sixth and seventh experiments address an important concern with our minimum order 

statistic estimator – measurement error.  Because the estimator relies on a single value of wages 

for each origin and destination combination, it could become severely biased if that value were 

mis-measured.  In these experiments, we return to the same wage distributions used in the first 

three experiments (i.e., assuming a finite lower bound), but we add to each wage an i.i.d. 

normally distributed random variable with zero mean and variance equal to 0.25.  This has a 

significant impact on the precision of our estimates, raising the MSE’s associated with our taste 

parameters by nearly as much as the absence of a finite lower bound.  In contrast to that model 

mis-specification, however, this is primarily the result of an increase in the bias of our estimator, 

as opposed to its standard deviation. 

 In the eighth and ninth experiments, we demonstrate a desirable feature of the minimum 

order statistic estimator – the fact that it is robust to arbitrary forms of correlation in wage draws.  

Using the same wage distributions as in our baseline specifications, we assume a correlation of 

0.25 between wage draws in all locations.  As is evident from the table, taste parameter estimates 

are virtually identical to the baseline case. 
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 Table 2 describes the results of nine Monte Carlo experiments that similarly illustrate the 

properties of our unbounded support estimator.  Using the same matrix of taste parameters, we 

assume in our baseline experiment that wages are drawn from the same distributions as described 

in equation (52).  The first three experiments demonstrate the effect of increasing the number of 

individuals originating from each location (N) from 1,000 to 50,000.  MSE’s of all taste 

parameter estimates fall with an increase in the sample size.  In general, however, results are not 

as precise as under the (properly specified) minimum order statistic estimator (conditional upon 

N). 

 In the next two experiments, we show the implications of violating our key identifying 

assumption – commonality.  In particular, we allow non-migrants to receive a higher wage on 

average than individuals migrating into their birth location (i.e., a “home advantage” in the labor 

market).   
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We assume, moreover, that the researcher properly identifies this home advantage and uses only 

moments formed between pairs of migrant groups (e.g., migrants from locations #2 and #3 living 

in location #1) in forming our minimum distance objective function.  Not surprisingly, with this 

limited set of moments the model does not perform as well as in the baseline specification.  It 

does, however, do a reasonable job of estimating all parameters (even with only 10,000 

observations per origin location).  When N is set equal to 50,000, the estimates become quite 

precise, indicating that our estimation strategy is indeed valid under situations of “limited 

commonality”. 
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 The sixth and seventh experiments describe what happens when another key assumption 

used in the derivation of the unbounded support estimator – independence – is violated.  Recall 

that, in the derivation of equation (19), we assumed individuals received draws from independent 

wage distributions.  Here, we assume that wage draws exhibit a positive correlation (0.25) across 

locations.  MSE’s for all taste parameters rise dramatically, highlighting this as an important 

shortcoming of our estimation strategy.  In current research, we are exploring how correlation 

might be better handled using panel data.  With only cross-sectional data, these results highlight 

the importance of controlling for as many forms of observable heterogeneity as possible (i.e., 

wages may be systematically higher for certain groups – the estimation algorithm should be run 

separately for them).  Our final set of experiments describe the effect of measurement error on 

our unbounded support estimator.  As was the case for the minimum support estimator, we simply 

add to each wage an i.i.d. normal measurement error with mean zero and variance 0.25.  In 

contrast to the minimum order statistic estimator, however, the results of the unbounded support 

estimator are affected very little. 

 In summary, Monte Carlo simulations suggest that our minimum order statistic estimator 

performs extremely well when properly specified.  It is, moreover, robust to arbitrary forms of 

correlation in an individual’s wage draws, but it performs very poorly when wages are observed 

with error or when they are drawn from a distribution without a finite lower bound.  These 

failures motivate our derivation of the unbounded support estimator.  When properly specified, 

experiments show that it also performs well.  Moreover, its performance is not adversely affected 

by measurement error in wages or by limited commonality (if the researcher properly recognizes 

this in forming the minimum distance objective function).  In contrast to the minimum order 

statistic estimator, however, it performs poorly when wage draws are correlated across locations 

(motivating our current work with panel data). 
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6.  Empirical Application:  Measuring the Returns to College Education 

 In order to demonstrate the performance of our estimator in an empirical setting, we 

examine a question similar to that posed by Dahl (2001) – i.e., what are the returns to a college 

education (relative to graduating from high school) before and after controlling for the non-

random spatial sorting of workers across the United States?  The results of the basic Roy model 

(1951) suggest that sorting shifts the means of the (observed) conditional wage distributions up 

from their (unobserved) unconditional values.  Whether spatial sorting increases or reduces the 

estimated returns to a college education will depend upon whether this shift is proportionally 

bigger for high school or college educated individuals.  If, for example, college educated 

individuals were more mobile and, hence, more able to migrate in response to favorable 

idiosyncratic wage draws, we would expect spatial sorting to create an upward bias in the 

estimated returns to a college education.  Whether or not this is the case (and how big is the 

resulting bias) is an empirical question. 

 In order to answer that question, we use data extracted from the 2000 US Census 1% 

microsample, available from the IPUMS (www.ipums.org).  Specifically, we consider a sample 

of 470,918 high school graduates taken from each of nine divisions of the United States used by 

the Census Bureau, along with a corresponding sample of 429,584 college graduates.12  We use 

only data describing male household heads.13  For each individual, we observe annual income 

from wages and salary, the individual’s region of residence, and the individual’s region of birth.14  

                                                 
12 Regional Definitions: (1) New England (CT, ME, MA, NH, RI, VT), (2) Middle Atlantic (NJ, NY, PA), 

(3) East North Central (IL, IN, MI, OH, WI), (4) West North Central (IA, KS, MN, MO,NE, SD, ND), (5) 
South Atlantic (DE, DC, FL, GA, MD, NC, SC, VA, WV), (6) East South Central (AL, KY, MS, TN), (7) 
West South Central (AR, LA, OK, TX), (8) Mountain (AZ, CO, ID, MT, NV, NM, UT), and (9) Pacific 
(AK, CA, HI, OR, WA). 
13 We use only household heads because we assume they are more likely to have made their own 
geographic location decision, and we use only individuals less than 35 years of age as they are more likely 
to have recently migrated.  Older individuals may have migrated further in the past in response to different 
wage or amenity distributions. 
14 We drop any individuals reporting zero annual income, self-employed individuals, individuals not born 
in the United States, and individuals who worked fewer than 45 weeks in the previous year.  The US 
Census describes both the individual’s birth state as well as the PUMA in which he/she was living five 
years prior.  We use birth state to define birth region, which becomes our measure of “origin location”, but 
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Tables 3 and 4 summarize the long-run migration probabilities observed in the data for high 

school and college graduates, respectively, for each of four summary birth and destination 

regions.  In particular, each row indicates the birth region while each column indicates the region 

in which the individual is observed in the 2000 Census.  Each entry describes the fraction of 

individuals originating in the row birth region who are found to be living in the column 

destination region.  80.6% of high-school graduates born in New England are found to be living 

in New England.  The fraction of high school graduate “stayers” is similarly high for other 

regions.15  For college graduates, a noticeably lower percentage remains tied to their respective 

birth regions. 

 Because Census wage data, which are derived from self-reported income and hours 

information, are quite noisy in the lower tail (see footnote 5), and because we see individuals 

from multiple birth places, we opt for our unbounded support estimator.  This estimator makes an 

independence assumption and assumes that individuals from different birth regions will receive 

wage draws from a common destination wage distribution.  Note that, with different data, the 

extreme quantile estimator (which only assumes that wage distributions have a finite lower 

bound) might be used instead.  Deleire and Timmins (2007) use this estimator, along with CPS 

wage data, to recover an estimate of the value of a statistical life (VSL) controlling for Roy 

sorting across occupations. 

 Tables 5 and 6 report the estimates of the taste parameters for high school and college 

graduates, respectively.  Results are measured in terms of the natural log of hourly wages, 

standard errors are derived from the results of 750 bootrstrap simulations, and point estimates are 

bias-corrected.  A college graduate from the mid-Atlantic, for example, faces a statistically 

significant cost of -0.622 per year in moving to the Pacific region.  Considering the mean wage 

                                                                                                                                                 
a similar analysis could be performed using location five years prior as the “origin”, leading to a short-run 
measure of mobility cost. 
15 Note that the fraction of “stayers” would be smaller if we had used a finer geographic division (e.g., 
states), but would still constitute a clear plurality. 
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amongst all college graduates ($26.22), this amounts to a compensating variation of $22.62 per 

hour.  All off-diagonal taste parameters are negative and significant, revealing the tendency for 

individuals of all levels of education to remain in their birth regions. 

 Next, we use these estimates to recover the unconditional income distributions for each 

region and education group with the Kaplan-Meier procedure described in Section 2.2.  Results 

are reported in Figures 1 and 2.  In every case, the unconditional wage distribution lies below the 

observed distribution.  Importantly, the correction for Roy sorting is generally larger for college 

graduates, who are more prone to migrate from their birth regions.  We record the medians and 

75th percentiles of each of these distributions in Table 7.  The median log-wage for a high-school 

graduate from the South Atlantic, for example, falls from 2.63 to 2.55.  Defining the returns to a 

college education at the median to be the difference between the median of the college and high-

school graduate log-wage distributions, we report those returns in Table 8.  Returns are 

analogously defined at the 75th percentile.  In every region, the returns to a college education fall 

once we control for Roy sorting.  On average, they fall from 42% to 18% at the median, and from 

45% to 34% at the 75th percentile.  These results suggest that observed wage distributions, which 

are distorted by Roy sorting, seriously overstate the true returns to a college education, 

particularly for those in the heart of the wage distribution. 

 

7.  Conclusion 

This paper considers nonparametric identification and estimation of a generalized multi-

sector Roy model which includes a non-pecuniary component of utility associated with each 

alternative. Two identification results are established – one under a support condition and the 

other under a commonality/independence assumption. Estimation procedures based on both 

identification results are proposed, and their asymptotic properties are derived.  The latter 

estimator is used to recover an estimate of the returns to a college education, controlling for 

different migration rates of high-school and college graduates.  The results suggest that an 
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estimate based on conditional distributions may overstate returns by more than a factor of two at 

the median.  An application of our extreme quantile estimator to sorting across occupations, 

where individuals care about pecuniary returns and other job attributes (including fatality risk) 

yields similarly stark results.  The wage-hedonic estimate of the value of a statistical life rises by 

a factor of three and becomes statistically significant. (Deleire and Timmins, 2007) 

Our work here leaves many import areas for extensions and future research. In particular, 

it would be useful to explore how the presence of covariates would aide in achieving 

identification of our generalized Roy model, as has proven to be the case in the standard Roy 

model (i.e., might they enable us to relax the independence assumption in the unbounded support 

estimator). Furthermore, it would be useful to derive efficiency bounds for the non-pecuniary 

parameters to see if more efficient estimators than those proposed here can be constructed. 
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Table 1:  Monte Carlo Simulations 
Minimum Order Statistic Estimator 

 

  1

2τ  1

3τ  2

1τ  2

3τ  3

1τ  3

2τ  

  -0.5 -0.2 -0.4 -0.6 -0.3 -0.1 

Baseline (N = 1,000) 

Mean -0.542 -0.203 -0.408 -0.610 -0.316 -0.113 

Std Dev 0.031 0.002 0.006 0.007 0.011 0.009 
1 

MSE 0.003 1.28 x 10-5 1.03 x 10-4 1.53 x 10-4 3.63 x 10-4 2.50 x 10-4 

Baseline (N = 10,000) 

Mean -0.510 -0.201 -0.402 -0.602 -0.303 -0.103 

Std Dev 0.007 4.06 x 10-4 0.001 0.001 0.002 0.002 
2 

MSE 1.40 x 10-4 5.36 x 10-7 4.68 x 10-6 7.26 x 10-6 1.71 x 10-5 1.23 x 10-5 

Baseline (N = 50,000) 

Mean -0.503 -0.200 -0.400 -0.600 -0.301 -0.101 

Std Dev 0.002 1.45 x 10-4 4.19 x 10-4 5.00 x 10-4 7.70 x 10-4 6.51 x 10-4 
3 

MSE 1.79 x 10-5 6.63 x 10-8 5.54 x 10-7 8.12 x 10-7 2.02 x 10-6 1.33 x 10-6 

Unbounded Support (N = 10,000) 

Mean -0.595 -0.173 -0.389 -0.564 -0.350 -0.184 

Std Dev 0.202 0.212 0.204 0.198 0.215 0.208 
4 

MSE 0.050 0.046 0.042 0.040 0.048 0.050 

Unbounded Support (N = 50,000) 

Mean -0.569 -0.177 -0.383 -0.572 -0.354 -0.161 

Std Dev 0.193 0.189 0.202 0.187 0.183 0.199 
5 

MSE 0.042 0.036 0.041 0.036 0.036 0.043 

Measurement Error (N = 10,000) 

Mean -0.668 -0.248 -0.502 -0.711 -0.439 -0.228 

Std Dev 0.062 0.048 0.050 0.055 0.057 0.056 
6 

MSE 0.032 0.005 0.013 0.015 0.023 0.020 

Measurement Error (N = 50,000) 

Mean -0.660 -0.248 -0.491 -0.697 -0.430 -0.223 

Std Dev 0.050 0.043 0.044 0.044 0.046 0.047 
7 

MSE 0.028 0.004 0.010 0.011 0.019 0.017 

Correlated Wage Draws (N = 10,000) 

Mean -0.516 -0.201 -0.402 -0.603 -0.305 -0.104 

Std Dev 0.011 3.89 x 10-4 0.001 0.002 0.003 0.002 
8 

MSE 3.78 x 10-4 4.61 x 10-7 5.38 x 10-6 9.76 x 10-6 2.96 x 10-5 1.97 x 10-5 

Correlated Wage Draws (N = 50,000) 

Mean -0.506 -0.200 -0.401 -0.601 -0.302 -0.101 

Std Dev 0.004 1.40 x 10-4 4.68 x 10-4 5.76 x 10-4 0.001 7.84 x 10-4 
9 

MSE 4.83 x 10-5 5.54 x 10-8 6.87 x 10-7 1.02 x 10-6 3.41 x 10-6 2.12 x 10-6 
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Table 2:  Monte Carlo Simulations 
Unbounded Support Estimator 

 

  1

2τ  1

3τ  2

1τ  2

3τ  3

1τ  3

2τ  

  -0.5 -0.2 -0.4 -0.6 -0.3 -0.1 

Baseline (N = 1,000) 

Mean -0.731 -0.230 -0.441 -0.652 -0.404 -0.173 

Std Dev 0.444 0.332 0.422 0.544 0.323 0.156 
1 

MSE 0.250 0.111 0.180 0.298 0.115 0.029 

Baseline (N = 10,000) 

Mean -0.620 -0.199 -0.390 -0.584 -0.373 -0.171 

Std Dev 0.079 0.066 0.081 0.063 0.053 0.057 
2 

MSE 0.021 0.004 0.007 0.004 0.008 0.008 

Baseline (N = 50,000) 

Mean -0.614 -0.197 -0.381 -0.573 -0.375 -0.181 

Std Dev 0.047 0.033 0.043 0.032 0.029 0.042 
3 

MSE 0.015 0.001 0.002 0.002 0.006 0.008 

Home Advantage (N = 10,000) 

Mean -0.576 0.175 -0.103 -0.218 -0.290 -0.303 

Std Dev 0.163 0.415 0.347 0.460 0.133 0.269 
4 

MSE 0.032 0.313 0.208 0.358 0.018 0.114 

Home Advantage (N = 50,000) 

Mean -0.510 -0.101 -0.309 -0.426 -0.354 -0.193 

Std Dev 0.073 0.204 0.156 0.157 0.112 0.128 
5 

MSE 0.005 0.078 0.032 0.055 0.015 0.025 

Correlated Wage Draws (N = 10,000) 

Mean -1.362 -0.441 -0.959 -1.367 -0.814 -0.356 

Std Dev 0.487 0.322 0.625 1.032 0.657 0.176 
6 

MSE 0.980 0.162 0.702 1.652 0.696 0.096 

Correlated Wage Draws (N = 50,000) 

Mean -1.368 -0.419 -0.950 -1.268 -0.706 -0.421 

Std Dev 0.290 0.057 0.155 0.107 0.171 0.135 
7 

MSE 0.838 0.051 0.327 0.458 0.194 0.121 

Measurement Error (N = 10,000) 

Mean -0.643 -0.206 -0.401 -0.601 -0.382 -0.176 

Std Dev 0.077 0.068 0.083 0.066 0.055 0.060 
8 

MSE 0.026 0.005 0.007 0.004 0.010 0.009 

Measurement Error (N = 50,000) 

Mean -0.632 -0.202 -0.395 -0.592 -0.385 -0.187 

Std Dev 0.052 0.035 0.046 0.034 0.029 0.042 
9 

MSE 0.020 0.001 0.002 0.001 0.008 0.009 
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Table 3:  Mobility Matrix, High School Graduates 
2000 US Census, 5% IPUMS Random Sample 

 
 

  
Destination Region 

 

 New 
England 

Mid- 
Atlantic 

E North 
Central 

W North 
Central 

South 
Atlantic 

E South 
Central 

W South 
Central 

Mountain Pacific 

New 
England 

0.806 0.035 0.011 0.005 0.083 0.008 0.012 0.017 0.024 

Mid-
Atlantic 

0.016 0.809 0.011 0.005 0.100 0.008 0.012 0.019 0.020 

E North 
Central 

0.004 0.013 0.766 0.024 0.072 0.034 0.026 0.031 0.031 

W North 
Central 

0.002 0.006 0.053 0.770 0.028 0.011 0.034 0.053 0.043 

South 
Atlantic 

0.008 0.036 0.016 0.007 0.863 0.029 0.017 0.010 0.015 

E South 
Central 

0.003 0.009 0.065 0.009 0.082 0.776 0.032 0.008 0.015 

W South 
Central 

0.002 0.007 0.022 0.025 0.035 0.022 0.814 0.030 0.043 

Mountain 
 

0.004 0.009 0.017 0.032 0.027 0.010 0.049 0.747 0.105 

 
 
 
 
 
 
 

Birth 
Region 

Pacific 
 

0.006 0.011 0.021 0.027 0.035 0.012 0.040 0.097 0.750 
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Table 4:  Mobility Matrix, College Graduates 
2000 US Census, 5% IPUMS Random Sample 

 
 

  
Destination Region 

 

 New 
England 

Mid- 
Atlantic 

E North 
Central 

W North 
Central 

South 
Atlantic 

E South 
Central 

W South 
Central 

Mountain Pacific 

New 
England 

0.619 0.073 0.033 0.012 0.129 0.012 0.024 0.029 0.070 

Mid-
Atlantic 

0.060 0.546 0.053 0.012 0.182 0.014 0.030 0.035 0.070 

E North 
Central 

0.017 0.033 0.600 0.040 0.112 0.028 0.043 0.051 0.077 

W North 
Central 

0.010 0.020 0.091 0.537 0.074 0.018 0.075 0.085 0.090 

South 
Atlantic 

0.020 0.049 0.046 0.014 0.709 0.043 0.043 0.028 0.049 

E South 
Central 

0.009 0.019 0.068 0.017 0.189 0.560 0.076 0.024 0.038 

W South 
Central 

0.008 0.016 0.032 0.028 0.078 0.032 0.696 0.047 0.064 

Mountain 
 

0.012 0.021 0.037 0.040 0.062 0.014 0.074 0.562 0.179 

 
 
 
 
 
 
 

Birth 
Region 

Pacific 
 

0.014 0.021 0.032 0.022 0.061 0.012 0.042 0.091 0.706 
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Table 5 
Taste Parameter Estimates 

High School Graduates 
 
 

  
Destination Region 

 

 New 
England 

Mid- 
Atlantic 

E North 
Central 

W North 
Central 

South 
Atlantic 

E South 
Central 

W South 
Central 

Mountain Pacific 

New 
England 

0 
 

-0.863 
(0.05) 

-0.562 
(0.05) 

-0.899 
(0.15) 

-0.967 
(0.06) 

-0.972 
(0.10) 

-0.865 
(0.08) 

-0.686 
(0.05) 

-0.948 
(0.08) 

Mid-
Atlantic 

-0.803 
(0.06) 

0 -0.877 
(0.08) 

-1.092 
(0.13) 

-0.902 
(0.05) 

-0.988 
(0.09) 

-0.921 
(0.08) 

-0.324 
(0.03) 

-0.976 
(0.09) 

E North 
Central 

-1.036 
(0.17) 

-0.895 
(0.18) 

0 -0.960 
(0.12) 

-1.203 
(0.08) 

-1.055 
(0.08) 

-1.011 
(0.07) 

-0.685 
(0.06) 

-1.211 
(0.10) 

W North 
Central 

-0.390 
(0.05) 

-0.823 
(0.07) 

-0.631 
(0.06) 

0 -1.119 
(0.11) 

-0.830 
(0.13) 

-0.815 
(0.10) 

-0.788 
(0.05) 

-0.899 
(0.09) 

South 
Atlantic 

-0.847 
(0.08) 

-0.742 
(0.08) 

-0.727 
(0.05) 

-1.069 
(0.09) 

0 -0.704 
(0.06) 

-0.808 
(0.06) 

-0.801 
(0.07) 

-0.528 
(0.08) 

E South 
Central 

-0.405 
(0.04) 

-0.585 
(0.04) 

-0.445 
(0.06) 

-0.433 
(0.03) 

-0.874 
(0.07) 

0 -0.816 
(0.06) 

-0.995 
(0.09) 

-0.932 
(0.17) 

W South 
Central 

-0.763 
(0.08) 

-1.231 
(0.15) 

-0.682 
(0.09) 

-1.009 
(0.09) 

-1.108 
(0.09) 

-0.969 
(0.08) 

0 -0.699 
(0.07) 

-1.075 
(0.08) 

Mountain -0.878 
(0.15) 

-0.555 
(0.05) 

-0.644 
(0.05) 

-0.774 
(0.10) 

-0.952 
(0.07) 

-0.774 
(0.11) 

-0.859 
(0.06) 

0 -0.784 
(0.05) 

 
 
 
 
 
 
 

Birth 
Region 

Pacific -0.710 
(0.18) 

-0.804 
(0.07) 

-0.550 
(0.05) 

-0.806 
(0.06) 

-0.775 
(0.06) 

-0.994 
(0.10) 

-0.648 
(0.05) 

-0.305 
(0.03) 

0 
 

 



 38 

 
 
 

Table 6 
Taste Parameter Estimates 

College Graduates 
 
 

  
Destination Region 

 

 New 
England 

Mid- 
Atlantic 

E North 
Central 

W North 
Central 

South 
Atlantic 

E South 
Central 

W South 
Central 

Mountain Pacific 

New 
England 

0 -0.745 
(0.02) 

-0.578 
(0.01) 

-1.361 
(0.03) 

-0.540 
(0.01) 

-1.068 
(0.03) 

-0.492 
(0.01) 

-0.435 
(0.01) 

-0.448 
(0.01) 

Mid-
Atlantic 

-0.614 
(0.01) 

0 -0.602 
(0.01) 

-0.351 
(0.01) 

-0.347 
(0.01) 

-1.004 
(0.04) 

-0.700 
(0.02) 

-0.294 
(0.01) 

-0.622 
(0.01) 

E North 
Central 

-0.562 
(0.02) 

-1.087 
(0.03) 

0 -0.798 
(0.03) 

-0.515 
(0.01) 

-0.932 
(0.02) 

-0.647 
(0.02) 

-0.679 
(0.02) 

-0.341 
(0.01) 

W North 
Central 

-0.475 
(0.01) 

-0.672 
(0.02) 

-0.420 
(0.01) 

0 -0.908 
(0.02) 

-1.238 
(0.05) 

-0.861 
(0.02) 

-0.573 
(0.01) 

-0.647 
(0.02) 

South 
Atlantic 

-1.097 
(0.02) 

-0.975 
(0.03) 

-0.821 
(0.02) 

-1.303 
(0.03) 

0 -0.958 
(0.02) 

-0.890 
(0.02) 

-0.858 
(0.02) 

-0.835 
(0.02) 

E South 
Central 

-1.129 
(0.04) 

-1.063 
(0.03) 

-0.631 
(0.01) 

-0.450 
(0.01) 

-0.513 
(0.01) 

0 -0.646 
(0.02) 

-0.924 
(0.02) 

-0.803 
(0.02) 

W South 
Central 

-0.781 
(0.02) 

-1.330 
(0.04) 

-0.972 
(0.03) 

-0.632 
(0.02) 

-0.630 
(0.01) 

-0.136 
(0.00) 

0 -0.823 
(0.02) 

-0.693 
(0.02) 

Mountain -1.106 
(0.03) 

-1.186 
(0.04) 

-0.663 
(0.01) 

-0.840 
(0.02) 

-0.542 
(0.01) 

-0.898 
(0.02) 

-0.666 
(0.02) 

0 -0.442 
(0.01) 

 
 
 
 
 
 
 

Birth 
Region 

Pacific -1.253 
(0.05) 

-1.125 
(0.08) 

-0.861 
(0.02) 

-0.809 
(0.02) 

-0.654 
(0.02) 

-0.499 
(0.01) 

-0.761 
(0.02) 

-0.443 
(0.01) 

0 
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Table 7 
Log Wages by Education and Region 

2000 US Census, 5% IPUMS Random Sample 
Raw Data and Corrected for Spatial Selection 

 
 

 High School College 

 Median 75th Percentile Median 75th Percentile 

 Raw 
Data 

Selection 
Corrected 

Raw 
Data 

Selection 
Corrected 

Raw 
Data 

Selection 
Corrected 

Raw 
Data 

Selection 
Corrected 

New England 2.77 2.67 3.03 2.97 3.20 2.87 3.51 3.32 

Mid-Atlantic 2.76 2.65 3.04 2.97 3.24 2.76 3.56 3.32 

E. North Central 2.74 2.61 3.03 2.96 3.14 2.76 3.44 3.25 

W. North Central 2.63 2.50 2.92 2.83 2.98 2.53 3.31 3.05 

South Atlantic 2.63 2.55 2.93 2.87 3.09 2.83 3.43 3.3 

E. South Central 2.60 2.48 2.91 2.82 3.01 2.59 3.36 3.11 

W. South Central 2.60 2.48 2.92 2.84 3.04 2.78 3.39 3.24 

Mountain 2.67 2.49 2.96 2.86 3.04 2.63 3.36 3.14 

Pacific 2.79 2.63 3.07 2.97 3.22 2.97 3.52 3.4 

Average 2.69 2.56 2.98 2.90 3.11 2.75 3.43 3.24 
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Table 8 
Percentage Returns to College Education 

 
 
 Median 75th Percentile  

Raw Data Selection 
Corrected 

Raw Data Selection 
Corrected 

New England 0.43 0.20 0.48 0.35 

Mid-Atlantic 0.48 0.11 0.52 0.35 

E. North Central 0.40 0.15 0.41 0.29 

W. North Central 0.35 0.03 0.39 0.22 

South Atlantic 0.46 0.28 0.50 0.43 

E. South Central 0.41 0.11 0.45 0.29 

W. South Central 0.44 0.30 0.47 0.40 

Mountain  0.37 0.14 0.40 0.28 

Pacific 0.43 0.34 0.45 0.43 

Average 0.42 0.18 0.45 0.34 
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Figure 1:  High School Graduates 
Conditional and Unconditional Log Wage Distributions by Destination Region 
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Figure 2:  College Graduates 
Conditional and Unconditional Log Wage Distributions by Destination Region 
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