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ABSTRACT

Global games of regime change –  that is, coordination games of incomplete information in which

a status quo is abandoned once a sufficiently large fraction of agents attacks it – have been used to

study crises phenomena such as currency attacks, bank runs, debt crises, and political change. We

extend the static benchmark examined in the literature by allowing agents to accumulate information

over time and take actions in many periods. It is shown that dynamics may lead to multiple equilibria

under the same information assumptions that guarantee uniqueness in the static benchmark.

Multiplicity originates in the interaction between the arrival of information over time and the

endogenous change in beliefs induced by the knowledge that the regime survived past attacks. This

interaction also generates interesting equilibrium properties, such as the possibility that fundamentals

predict the eventual regime outcome but not the timing or the number of attacks, or that dynamics

alternate between crises and phases of tranquility without changes in fundamentals.
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1 Introduction

Coordination games in which a status quo is abandoned once a sufficiently large number of agents

takes an action that favors regime change have been used to study a variety of socioeconomic

phenomena. Whereas the earlier contributions in the literature focused on the existence and im-

plications of multiple equilibria when agents can perfectly coordinate with each other, recent work

on global games by Carlsson and van Damme (1993) and Morris and Shin (1998, 2000, 2001)

has emphasized the fragility of this multiplicity to perturbations of the information structure away

from common knowledge: a unique equilibrium often survives when agents observe a payoff-relevant

variable, such as the strength of the status quo, with small idiosyncratic noise.

Variants of this uniqueness result have been established in the context of currency crises, bank

runs, debt crises, and political change.1 Most of this work assumes a static coordination game, thus

abstracting from the possibility that agents may have the option to take multiple shots against the

regime. For many of the applications of interest, however, this possibility seems relevant.

In this paper, we extend the static benchmark examined in the literature by allowing agents

to take actions in multiple periods and accumulate information over time. There is a large number

of agents and two possible regimes, the status quo and an alternative. In any given period, each

agent has a binary choice: he may either “attack” the status quo (that is, take an action that favors

regime change) or “not attack”. Attacking is individually optimal if and only if the probability of

regime change in that period is sufficiently high. The status quo, in turn, is abandoned if and only

if the fraction of agents attacking exceeds a critical value θ ∈ R, which parametrizes the strength of
the status quo. θ is the component of the payoff structure — commonly referred to as the exogenous

fundamentals — which is never common knowledge among the agents. Instead, as time passes,

agents receive noisy private signals about θ.

We show that dynamics may sustain multiple equilibria under the same information assump-

tions that guarantee uniqueness in the static benchmark, namely that the precision of the agents’

private information is sufficiently high relative to the precision of the initial common prior. Multi-

plicity originates in the interaction between two elements: the knowledge that the regime survived

past attacks and the arrival of new private information over time.

In the first period, agents find it dominant to attack for sufficiently low realizations of their

private signals. This ensures that, in any equilibrium, regime change takes place in the first period

for sufficiently low θ. At any future date, the observation that the status quo is still in place makes

it common certainty that it is not too weak, for otherwise it would have collapsed under the first

attack.

1See Morris and Shin (1998) for currency crises; Goldstein and Pauzner (2000) and Rochet and Vives (2004) for

bank runs; Morris and Shin (2004) and Corsetti, Guimaraes and Roubini (2004) for debt crises; Chamley (1999) for

regime switches; Atkeson (2000) and Edmond (2004) for riots and political change.
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This effect implies that no agent is willing to attack in any subsequent period if he expects no

other agent to attack. Hence, there always exists an equilibrium in which no attack occurs after

the first period. In fact, if no new information were to arrive over time, this would be the unique

equilibrium of the game. The possibility to take multiple shots against the regime would then add

nothing to the static analysis.

However, as agents receive new private signals about θ, the impact of the knowledge that the

regime survived past attacks on posterior beliefs eventually vanishes. For the same reason, the

dependence of posterior beliefs on the initial common prior also diminishes over time. When the

prior is relatively aggressive, in the sense that it induces a large attack in the first period, the

increase in the precision of private information would induce less aggressive behavior even in the

absence of past attacks. In this case, no action after the first period remains the unique equilibrium.

In contrast, when the prior is relatively lenient, both the discounting of the prior and the discounting

of the knowledge that the regime survived past attacks contribute to making new attacks eventually

possible. Hence, there also exist equilibria where agents take multiple shots against the regime.

Indeed, we show that, unless the game ends for exogenous reasons in finite time, any arbitrary

number of attacks can be sustained in equilibrium.

In the benchmark model, we deliberately assume away the possibility that the critical size

of attack necessary for regime change varies over time. This allows us to isolate the effects of

changes in information, as opposed to changes in fundamentals, on the dynamics of coordination.

Nevertheless, we also show that the multiplicity result is robust to the introduction of shocks to

the fundamentals — in which case dominant actions may exist in every period — provided that the

volatility of these shocks is sufficiently small. In the limit, as the volatility vanishes, any equilibrium

of the benchmark model can be approximated arbitrarily closely by an equilibrium in the game

with shocks. What sustains the multiplicity of equilibria and the corresponding dynamics is again

the combination of the arrival of new information over time with the endogenous upward shift

in posterior beliefs that follows from the knowledge that the regime survived past attacks. That

this shift takes the form of a truncation in the benchmark model simplifies the construction of the

equilibrium set, but is not essential for the multiplicity result.

We also emphasize that multiplicity does not originate from the presence of exogenous public

signals or the observation of the size of past attacks. Indeed, for most of the analysis we assume

away any such source of information and concentrate on the case in which agents receive only

private signals over time. What the introduction of public news does, is to “smooth out” the

dependence of the determinacy of equilibria on the initial prior: multiple equilibria then exist

whatever the horizon of the game and for any prior mean and any relative precision of public and

private information. Finally, introducing endogenous signals about the size of past attacks — a

simple form of (noisy) social learning — does not change the equilibrium dynamics, except for the
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possibility that the endogenous information revealed by the size of an attack may substitute for

the arrival of new exogenous information and render further attacks possible immediately after an

unsuccessful one.

The existence of multiple equilibria leads to dynamics that might not have been possible with

either common knowledge or a unique equilibrium. For example, fundamentals may determine

the final regime outcome (e.g., whether a currency is eventually devalued) but not the timing and

number of attacks. Moreover, dynamics may take the form of sequences of periods in which attacks

can not occur and agents only accumulate information, followed by periods in which an attack is

possible but does not take place, eventually resulting in a new attack. An economy can thus transit

from phases of tranquility to crises without any change in the underlying economic fundamentals.

Below, we discuss the relation of the paper to the pertinent literature. Section 2 then reviews the

static benchmark and introduces the dynamic model. Section 3 characterizes the set of monotone

equilibria. Section 4 establishes the multiplicity result and discusses equilibrium dynamics. Section

5 examines robustness to the introduction of shocks in the fundamentals. Section 6 introduces

public news and signals about past attacks. Section 7 concludes. Proofs omitted in the main text

are presented in the Appendix.

Related Literature. This paper contributes to a small but growing literature on dynamic

global games. Heidhues and Melissas (2003) identify a condition of dynamic strategic complemen-

tarity that suffices for uniqueness in an investment model; this condition is also implicit in Gian-

nitsarou and Toxvaerd’s (2003) uniqueness theorem for recursive binary-action games. Dasgupta

(2002) examines the role of social learning in a two-period investment model with irreversible ac-

tions. Levin (2001) considers a global game with overlapping generations of players. Goldstein and

Pauzner (2001) and Goldstein (2002) consider models of contagion. Frankel and Pauzner (2000),

on the other hand, consider a complete-information dynamic coordination game, where uniqueness

is obtained by assuming aggregate shocks and idiosyncratic inertia. None of these papers, however,

examines the role of information dynamics in games of regime change.

Closer to our analysis, Morris and Shin (1999) consider a dynamic model whose stage game

is similar to ours, but where fundamentals follow a random walk and are commonly observed at

the end of each period. This reduces the analysis to a sequence of static games with a unique

equilibrium.

This paper departs from the above literature in that it considers dynamics as a natural source of

information. In this respect, it shares with Angeletos, Hellwig and Pavan (2003) — which considers

the signaling effects of policy in a static game — the idea that endogenous information structures

may overturn uniqueness results in global games and lead to predictions that would have not been

possible with either common knowledge or a unique equilibrium.

Finally, we share with Chari and Kehoe (2003) the motivation that understanding the dynamics
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of information may help understand the dynamics of crises. However, whereas they focus on herding,

we examine the role of information for coordination.

2 A simple game of regime change

2.1 Static benchmark

Model set-up. There is a continuum of agents of measure one, indexed by i and uniformly

distributed over [0, 1]. Agents move simultaneously, choosing between two actions: they can either

attack the status quo (i.e., take an action that favors regime change) or refrain from attacking.

The payoff structure is illustrated in Table 1. The payoff from not attacking (ai = 0) is zero,

whereas the payoff from attacking (ai = 1) is 1 − c > 0 if the status quo is abandoned (R = 1)

and −c < 0 otherwise (R = 0), where c ∈ (0, 1) parametrizes the relative cost of attacking. An
agent hence finds it optimal to attack if and only if he expects regime change with probability at

least c. The status quo is in turn abandoned if and only if the measure of agents attacking, which

we denote by A, is greater than or equal to θ ∈ R, which parametrizes the strength of the status
quo. An agent’s incentive to attack thus increases with the aggregate size of attack, implying that

agents’ actions are strategic complements.2

Regime Change (A ≥ θ) Status Quo (A < θ)

Attack (ai = 1) 1− c −c
Not Attack (ai = 0) 0 0

Table 1. Payoffs

Agents have heterogeneous information about the strength of the status quo. Nature first draws

θ from a normal distribution N (z, 1/β) , which defines the initial common prior about θ. Each

agent then receives a private signal xi = θ + ξi, where ξi ∼ N (0, 1/α) is noise, i.i.d. across agents

and independent of θ. The Normality assumptions allow to parametrize the information structure

parsimoniously with (α, β, z) , that is, the precision of private information and the precision and

mean of the common prior.

Interpretation. Although the game presented above is highly stylized, it admits a variety

of interpretations and possible applications. The most celebrated examples are self-fulfilling bank

runs, currency attacks, and debt crises. In these contexts, regime change occurs, respectively, when

a large run forces the banking system to suspend its payments, when a large speculative attack

2The role of coordination is most evident when θ is commonly known by all agents: for θ ∈ (0, 1], there exist two
pure-strategy equilibria, one in which all agents attack and the status quo is abandoned (A = 1 ≥ θ) and another in

which no agent attacks and the status quo is maintained (A = 0 < θ).
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forces the central bank to abandon the peg, or when a country/company fails to coordinate its

creditors and is forced to bankruptcy. The model can also be interpreted as one of political change,

in which a large number of citizens decide whether or not to take actions to subvert a repressive

dictator or some other political establishment.3

Equilibrium analysis. Note that the c.d.f. of an agent’s posterior about θ is decreasing in

his private signal x.Moreover, it is strictly dominant to attack for sufficiently low signals – namely

for x < x, where x solves Pr (θ ≤ 0|x) = c– and not to attack for sufficient high signals – namely

for x > x̄,where x̄ solves Pr (θ ≤ 1|x̄) = c. It is thus natural to look at monotone Bayesian Nash

equilibria in which the agents’ strategy is non-increasing in x.

Indeed, suppose there is a threshold x̂ ∈ R such that each agent attacks if and only if x ≤ x̂.

The measure of agents attacking is then decreasing in θ and is given by A (θ) = Pr (x ≤ x̂|θ) =
Φ(
√
α(x̂ − θ)), where Φ is the c.d.f. of the standard Normal. It follows that the status quo is

abandoned if and only if θ ≤ θ̂, where θ̂ solves θ̂ = A(θ̂), or equivalently

θ̂ = Φ(
√
α(x̂− θ̂)). (1)

The posterior probability of regime change for an agent with signal x is then simply Pr (R = 1|x) =
Pr(θ ≤ θ̂|x). Since the latter is decreasing in x, each agent finds it optimal to attack if and only if

x ≤ x̂, where x̂ solves Pr(θ ≤ θ̂|x̂) = c, or equivalently

Φ
³p

α+ β
³
θ̂ − α

α+β x̂−
β

α+β z
´´
= c. (2)

A monotone equilibrium is thus identified by a joint solution (x̂, θ̂) to (1) and (2). Such a solution

always exists and is unique for all z if and only if α ≥ β2/ (2π) . Moreover, iterated elimination of

strictly dominated strategies implies that, when the monotone equilibrium is unique, there is no

other equilibrium. We conclude that

Proposition 1 (Static benchmark) In the static game, the equilibrium is unique if and only if

α ≥ β2/ (2π) , and is in monotone strategies.

2.2 Dynamic game

We modify the static game reviewed above in two ways: first, we allow agents to attack the status

quo repeatedly; second, we let agents accumulate information over time.

Time is discrete and indexed by t ∈ {1, 2, ...}. The game continues as long as the status quo
is in place and is over once the status quo is abandoned. We denote with Rt = 0 the event that

the status quo is still in place at the beginning of period t, with Rt = 1 the alternative event, with

ait ∈ {0, 1} the action of agent i, and with At ∈ [0, 1] the measure of agents attacking in period
3For references, see footnote 1.
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t. Conditional on the regime being in place at the beginning of period t (Rt = 0), the regime is

abandoned in that period (Rt+1 = 1) if and only if At ≥ θ, where θ again represents the strength

of the status quo. Agent i’s payoff in period t is

πit = ait (Rt+1 − c) ,

and his payoff from the entire game is Πi =
P∞

t=1 ρ
t−1(1−Rt)πit, where ρ ∈ (0, 1) is the discount

factor.

Like in the static model, θ is drawn at the beginning of the game from N (z, 1/β), which defines

the initial common prior, and never becomes common knowledge. Private information, however,

evolves over time. In each period t ≥ 1, every agent i receives a private signal x̃it = θ + ξit

about θ, where ξit ∼ N (0, 1/ηt) is i.i.d. across i, independent of θ, and serially uncorrelated. Let

x̃ti = {x̃iτ}tτ=1 denote agent i’s history of private signals up to period t. Individual actions and the

size of past attacks are not observable,4 hence the public history in period t simply consists of the

information that the regime is still in place, whereas the private history of an agent is the sequence

of own private signals x̃ti and own past actions. Finally, we let αt ≡
Pt

τ=1 ητ and assume that

∞ > αt ≥ β2/(2π) ∀t and lim
t→∞

αt =∞.

As shown in the next section, αt parametrizes the precision of private information in period t. The

restrictions above ensure equilibrium uniqueness in the static game with precision αt, and that

private information becomes infinitely precise only in the limit.

Remark. While this dynamic game is highly stylized, it captures two important dimensions

that are absent in the static benchmark: first, the possibility of multiple attacks against the status

quo; and, second, the evolution of beliefs about the probability of regime change. By assuming that

per-period payoffs do not depend on past or future actions and by ignoring specific institutional

details, the model may of course fail to capture other interesting effects introduced by dynamics,

such as, for example, the role of wealth accumulation or liquidity in currency crises. However,

abstracting from these other dimensions allows us to isolate information as the driving force for the

dynamics of coordination and crises.

Equilibrium. In what follows, we limit attention to monotone equilibria, that is, symmetric

Perfect Bayesian equilibria in which the probability an agent attacks in period t, which with a slight

abuse of notation we denote with at(x̃t), is non-increasing in his private signals x̃t and independent

of his own past actions.5 Restricting attention to this class of equilibria suffices to establish our

multiplicity results.

4The possibility that agents observe noisy signals about aggregate past activity is considered in Section 6.
5We do not restrict the set of available strategies: we look at equilibria in which these properties are satisfied.
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3 Equilibrium characterization

Since neither individual nor aggregate actions are observable, and Rt = 0 is always compatible with

any strategy profile at any t,6 no agent can detect out-of-equilibrium play as long as the status quo

is in place. It follows that beliefs are pinned down by Bayes’ rule in any relevant history of the game.

Furthermore, payoffs in one period do not depend on own or other players’ actions in any other

period and hence strategies are sequentially rational if and only if they maximize period-by-period

payoffs. Finally, define xt and αt recursively by

xt =
αt−1
αt

xt−1 +
ηt
αt
x̃t and αt = αt−1 + ηt,

with x1 = x̃1 and α1 = η1; and note that xt is a sufficient statistic for the agent’s private information

x̃t = {x̃τ}tτ=1 with respect to θ and therefore with respect to regime change as well. We conclude
that, in any monotone equilibrium,

at(x̃
t) ∈ arg max

a∈[0,1]
{(Pr [Rt+1 = 1|xt, Rt = 0]− c) a} , (3)

where Pr [·] is pinned down by Bayes’ rule using {at (·)}∞t=1 .
This also implies that, in any equilibrium of the dynamic game, agents play in period 1 exactly

as in the static game in which they can attack only in that period: an agent attacks if and only if

his private signal is sufficiently low and the status quo is maintained if and only if θ is sufficiently

high. The following lemma shows that a similar property applies to subsequent periods.7

Lemma 1 For any monotone equilibrium, there is a sequence {x∗t , θ∗t }∞t=1, where x∗t ∈ R ≡ R ∪
{±∞} and θ∗t−1 ∈ (0, 1), such that:

(i) at any t ≥ 1,an agent attacks if xt < x∗tand does not attack if xt > x∗t ;

(ii) the status quo is in place at any t ≥ 2 if and only if θ > θ∗t−1.

The fact that the status quo is in place in period t ≥ 2 makes it common certainty that

θ > θ∗t−1. Since θ∗t−1 ≥ θ∗1 > 0, this implies that there always exist equilibria in which nobody

attacks in period t ≥ 2, in which case x∗t = −∞ and θ∗t = θ∗t−1. In particular, there exists an

equilibrium in which an attack takes place in period 1 and never after. If this were always the

unique equilibrium, the possibility to take repeated actions against the regime would add nothing

to the static analysis and the equilibrium outcome in the dynamic game would coincide with that

in the static benchmark. In what follows we thus examine under what conditions there also exist

equilibria with further attacks.

6 Indeed, the regime always survives any attack for θ > 1 and no realization of the private signal rules out θ > 1.
7To simplify the notation, we allow for x∗t = −∞ and x∗t = +∞, with which we denote the case where an agent

attacks for, respectively, none or every realization of his private information.
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By Lemma 1, the size of the attack is given by At(θ) = Pr (x ≤ x∗t |θ), which is decreasing
in θ, and the probability of regime change for an agent with sufficient statistic xt is Pr(Rt+1 =

1|xt, Rt = 0) = Pr
¡
θ ≤ θ∗t |xt, θ > θ∗t−1

¢
, which is decreasing in xt if θ∗t > θ∗t−1. It follows that, in

any equilibrium in which an attack occurs in period t, θ∗t and x∗t solve

θ∗t = Φ(
√
αt (x

∗
t − θ∗t )) (4)

1−
Φ
³√

αt + β
³

α
αt+β

x∗t +
β

αt+β
z − θ∗t

´´
Φ
³√

αt + β
³

α
αt+β

x∗t +
β

αt+β
z − θ∗t−1

´´ = c. (5)

Conditions (4) and (5) are the analogs in the dynamic game of conditions (1) and (2) in the static

game: (4) states that the equilibrium size of an attack is equal to the critical size that triggers

regime change if and only if the fundamentals are θ∗t , while (5) states that an agent is indifferent

between attacking and not attacking if and only if his private information is x∗t .

Solving (4) for x∗t gives x
∗
t = X (θ∗t , αt) and substituting this into (5) gives a single equation in

θ∗t , namely

U
¡
θ∗t , θ

∗
t−1, αt, β, z

¢
= 0, (6)

where X : [0, 1]× R+ → R and U : [0, 1]× R×R2+ × R→ [−c, 1− c] are defined as follows:8

X (θ∗, α) ≡ θ∗ + 1√
α
Φ−1 (θ∗)

U (θ∗, θ−1, α, β, z) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1− c if θ∗ = 0 > θ−1

1−
Φ

µ √
α√

α+β

∙
Φ−1(θ∗)+

β√
α
(z−θ∗)

¸¶
Φ

µ √
α√

α+β

∙
Φ−1(θ∗)+

β√
α
(z−θ∗)

¸
+
√
α+β(θ∗−θ−1)

¶ − c if θ∗ > max{0, θ−1}

−c if θ∗ ≤ θ−1

The functions X and U have a simple interpretation: X (θ∗;α) is the “marginal agent” that im-

plements regime change for θ ≤ θ∗ when the precision of private information is α (that is, the

threshold x∗ such that, if agents attack if and only if x ≤ x∗, the status quo is abandoned if

and only if θ ≤ θ∗); U (θ∗, θ−1, α, β, z) is the expected net payoff of the marginal agent from at-

tacking, conditional on the knowledge that θ > θ−1. Condition (6) thus simply requires that the

marginal agent is indifferent between attacking and not attacking in period t ≥ 2. As for t = 1,

since the regime has never been challenged in the past, the corresponding indifference condition is

U (θ∗1,−∞, α1, β, z) = 0, where U (θ,−∞, α, β, z) coincides with the payoff of the marginal agent

in the static benchmark.

The next proposition then provides the complete set of necessary and sufficient conditions for

monotone equilibria.

8With a slight abuse of notation, we let Φ(+∞) = 1, Φ(−∞) = 0, Φ−1(1) =∞ and Φ−1(0) = −∞.
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Proposition 2 (Equilibrium characterization) {at (·)}∞t=1 is a monotone equilibrium if and

only if there exists a sequence {x∗t , θ∗t }∞t=1 such that:
(i) for all t, at (·) = 1 if xt < x∗t and at (·) = 0 if xt > x∗t .

(ii) for t = 1, θ∗1 solves U (θ
∗
1,−∞, α1, β, z) = 0 and x∗1 = X(θ∗1, α1).

(iii) for any t ≥ 2, either θ∗t = θ∗t−1 > 0 and x∗t = −∞, or θ∗t > θ∗t−1 is a solution to

U
¡
θ∗t , θ

∗
t−1, αt, β, z

¢
= 0 and x∗t = X(θ∗t , αt).

An equilibrium always exists.

Proposition 2 provides a simple algorithm for constructing the entire set of monotone equilibria:

start with t = 1 and let θ∗1 be the unique solution to U (θ∗1,−∞, α1, β, z) = 0; proceed to period

t = 2 and let either θ∗2 = θ∗1 or θ
∗
2 be a solution to (6); repeat the same step for all t ≥ 3; the set

of sequences {θ∗t }∞t=1 constructed this way, together with the associated sequences {x∗t }
∞
t=1 , gives

the set of monotone equilibria. Note that the above characterization is independent of whether the

horizon is finite or infinite: it is clearly valid even if the game ends exogenously at an arbitrary

period T <∞.
Existence of equilibrium follows immediately from the fact that U (θ∗1,−∞, α1, β, z) = 0 always

admits a solution and hence θ∗t = θ∗1 for all t is always an equilibrium. To understand whether there

are other equilibria, the next lemma investigates the properties of U and the existence of solutions

to (6).

Lemma 2 (i) U (θ∗, θ−1, α, β, z) is continuous in all its arguments, non-monotonic and single-

peaked in θ∗ when θ−1 ∈ (0, 1), and strictly decreasing in θ−1 and z for θ−1 < θ∗. Furthermore, for

all θ−1 < 1 and θ∗ > θ−1, limα→∞ U (θ∗, θ−1, ·) = θ∞ − θ∗, where θ∞ ≡ 1− c.

(ii) Let θ̂t be the unique solution to U(θ̂t,−∞, αt, β, z) = 0. A solution to (6) exists only if

θ∗t−1 < θ̂t and is necessarily bounded from above by θ̂t.

(iii) If θ∗t−1 > θ∞, a solution to (6) does not exist for αt sufficiently high.

(iv) If θ∗t−1 < θ∞, a solution to (6) necessarily exists for αt sufficiently high.

(v) If θ∗t−1 is the highest solution to (6) for period t − 1, there exists α > αt−1 such that (6)

admits no solution for any period τ ≥ t such that ατ < α.

The non-monotonicity of U
¡
θ∗, θ∗t−1, αt, β, z

¢
with respect to θ∗ in any period t ≥ 2 (where

0 < θ∗t−1 < 1) is a direct consequence of the fact that, for θ∗ < θ∗t−1, the marginal agent attaches

probability zero to regime change. For θ∗ > θ∗t−1, on the other hand, his belief about regime change

is necessarily positive, but converges to zero as θ∗ → 1, for then X (θ∗, αt) → ∞ and hence he

attaches probability one to θ > 1. His payoff is thus initially increasing and then decreasing, as

illustrated by the solid line in Figure 1. Any intersection with the horizontal axis corresponds to

a solution to (6). The dashed line instead represents the payoff of the marginal agent in the static
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Figure 1: The payoff of the marginal agent.

game. Whereas the monotonicity of the latter ensures uniqueness, the non-monotonicity in the

dynamic game leaves open the possibility for multiple equilibria.

The other properties identified in Lemma 2 are also quite intuitive. An increase in the mean of

the common prior implies a first-order stochastic-dominance change in the posterior beliefs about

θ, which explains why U decreases with z. To understand why U is also decreasing in θ−1, note

that the more aggressive the attacks in the past, the stronger the regime must have been in order

to have survived these attacks, and therefore the lower the expected payoff from attacking in the

current period.

For the same reason, at any t ≥ 2, the payoff of the marginal agent is always lower than

U (θ∗,−∞, αt, β, z) , that is, the payoff in the static game where the precision of private information

is αt. This explains why the static-game threshold θ̂t (which corresponds to the intersection of

the dashed line with the horizontal axis in Figure 1) is an upper bound for any solution to (6).

Nevertheless, the impact of the information that θ > θ∗t−1 on posterior beliefs vanishes for any

xt > θ∗t−1 as αt → ∞, and hence, for any θ∗ > θ∗t−1, the difference between U
¡
θ∗, θ∗t−1, αt, β, z

¢
and U(θ∗,−∞, αt, β, z) also vanishes. Combined with the fact that U(θ∗,−∞, αt, β, z)→ θ∞ − θ∗

as αt → ∞, this in turn implies that, for αt sufficiently high, (6) admits a solution if and only if

θ∗t−1 < θ∞, where θ∞ is the limit of the equilibrium threshold of the static game as the precision of

private information becomes infinite (i.e., θ∞ = limt→∞ θ̂t).

Finally, to understand (v), note that any unsuccessful attack causes an upward shift (a first-

order stochastic-dominance change) in the posterior beliefs about the strength of the regime, which

other things equal reduces the expected payoff from attacking. It follows that, if the largest possible

attack (that is, the highest solution of (6)) is played in one period and no new information arrives

thereafter, no attack is possible in any subsequent period. By continuity then, further attacks

remain impossible as long as the change in the precision of private information is not large enough.
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Figure 2: Equilibria with multiple attacks.

4 Multiplicity and dynamics

Part (v) of Lemma 2 highlights that the arrival of new private information is necessary for further

attacks to become possible after period 1. Whether this is also sufficient depends on the initial

prior. This is because an increase in the precision of private information leads agents to discount,

not only the information conveyed by the fact that the regime survived past attacks, but also their

initial prior beliefs.

When z is low (“aggressive prior”), an increase in the precision of private information makes

the marginal agent less aggressive in the static game (that is, θ̂t decreases with αt). The knowledge

that the regime survived past attacks then only reinforces this effect. Therefore, for z sufficiently

low, there exists a unique equilibrium and is such that no attack ever occurs after the first period.

When instead z is high (“lenient prior”), the arrival of new private information makes the

marginal agent more aggressive, and may eventually offset the incentive not to attack induced by

the knowledge that the regime survived past attacks. Indeed, if z is high enough so that θ∗1 < θ∞,

Lemma 2 ensures that a second attack necessarily becomes possible once αt is sufficiently high.

Such an example is illustrated in Figure 2. The dashed line represents the payoff of the marginal

agent in period 1. Its intersection with the horizontal axis defines θ∗1 < θ∞. The payoff of the

marginal agent in period 2 is represented by the dotted line, and that in period 3 by the solid line.

Clearly, α2 is low enough that no attack is possible in period 2. In contrast, α3 is high enough that

a new attack is possible. There thus exist at least three equilibria in this example: one in which

θ∗t = θ∗1 for all t, another in which θ∗2 = θ∗1 and θ∗t = θ03 for all t ≥ 3, and a third in which θ∗2 = θ∗1

and θ∗t = θ003 for all t ≥ 3, where θ03 and θ003 correspond to the two intersections of the solid line with
the horizontal axis.
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In the example of Figure 2, both θ03 and θ
00
3 are lower than θ∞. By Lemma 2, then, a third attack

also becomes possible at some future date. More generally, if z is sufficiently high, any solution

to (6) is bounded from above by θ∞ in all periods, which ensures that a new attack eventually

becomes possible after any unsuccessful one. Hence, for z sufficiently high, not only there are

multiple equilibria, but any arbitrary number of attacks can be sustained in equilibrium.

Theorem 1 (Multiplicity) There exist thresholds z ≤ z ≤ z such that:

(i) If z ≤ z, there is a unique monotone equilibrium and an attack occurs only in period one.

(ii) If z ∈ (z, z), there are at most finitely many monotone equilibria and there exists t̄ < ∞
such that no attack occurs after period t̄.

(iii) If z > z, there are infinitely many equilibria; if in addition z > z, for any t and N, there

is an equilibrium in which N attacks occur after period t.

Finally, z = z = z when c ≤ 1/2, whereas z ≤ z < z when c > 1/2.

Proof. Recall that θ∗1 = θ̂1 and, for all t ≥ 2, θ∗t < θ̂t, where θ̂t = θ̂ (αt, β, z) is the unique

solution to U(θ̂,−∞, αt, β, z) = 0. As we show in Lemma A1 in the Appendix, there exist thresholds

z ≤ z ≤ z (possibly functions of α1 and β) with the following properties: θ̂t ≤ θ̂1 for all t if z ≤ z;

θ̂1 ≤ (≥) θ∞ if and only z ≥ (≤) z; and θ̂t < θ∞ for all t if and only if z > z.

(i) Consider first z ≤ z. Then, θ̂t ≤ θ̂1 = θ∗1 for all t, and hence, by part (ii) of Lemma 2, (6)

admits no solution at any t ≥ 2. The unique monotone equilibrium is thus θ∗t = θ∗1 for all t.

(ii) Next, consider z ∈ (z, z), in which case θ̂1 = θ∗1 > θ∞, but we can not rule out the

possibility that there exists a period t ≥ 2 such that θ̂t > θ̂1 and U (θ∗, θ∗1, αt, β, z) = 0 admits a

solution. Nevertheless, since θ∗t−1 ≥ θ∗1 > θ∞ for all t, by part (iii) of Lemma 2 and the fact that

αt →∞ as t→∞, there exists t̄ <∞ such that (6) admits no solution for t ≥ t̄. Moreover, since

U is single-peaked, (6) has at most two solutions for t < t̄. Hence, there are at most finitely many

monotone equilibria, and in any equilibrium no attack occurs after period t̄.

(iii) Finally, consider z > z, in which case θ∗1 < θ∞. Then, by part (iv) of Lemma 2, there exists

a t0 < ∞ such that U (θ∗, θ∗1, αt, β, z) = 0 admits a solution for all t ≥ t0. Hence, for any t ≥ t0,

there is an equilibrium in which θ∗τ = θ∗1 for τ < t, θ∗t solves U (θ
∗
t , θ

∗
1, αt, β, z) = 0, and θ∗τ = θ∗t for

all τ > t. That is, there exist (countably) infinitely many equilibria, indexed by the time at which

the second attack occurs.

When z ∈ (z, z), the second attack may lead to a threshold θ∗t > θ∞, in which case a third

attack might be impossible. If however z > z, then θ̂t < θ∞ for all t, and hence by part (ii) of

Lemma 2, θ∗t < θ∞, for all t. But then by part (iv), a new attack eventually becomes possible after

any unsuccessful one. It follows that, for any t ≥ 1 and any N ≥ 1, there exist increasing sequences
{t2, ..., tN} and {θ2, ..., θN}, with t2 ≥ t, such that U (θ2, θ∗1, αt2 , β, z) = 0, U (θ3, θ2, αt3 , β, z) = 0,

and so on. The following is then an equilibrium: θ∗τ = θ∗1 for τ < t2, θ
∗
τ = θj for τ ∈ {tj , ..., tj+1−1}
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and j ∈ {2, ..., N − 1}, and θ∗τ = θN for τ ≥ tN . That is, for any t ≥ 1 and any N ≥ 1, there exists
an equilibrium in which N attacks occur after date t.

The existence of infinitely many equilibria in the case z > z relies on the assumption that the

game continues forever as long as the status quo is in place: if the game ended for exogenous reasons

at a finite date, there would exist only finitely many equilibria. Nevertheless, as long as z > z and

αt →∞ as t→∞, then, for any M, there exists a finite T such that the game would have at least

M equilibria if it ended at date T . Moreover, even if T = 2, α2 high enough suffices for the game to

have multiple equilibria when z > z. Finally, as we show in Section 6.1, the introduction of public

signals ensures the existence of multiple equilibria for any T ≥ 2 and any z.
In the remainder of this section, we identify equilibrium properties that may turn useful in

understanding crises phenomena.

Corollary 1 Suppose θ > θ∞ and z > z. The status quo survives in any equilibrium. Neverthe-

less, there exists t < ∞ such that, at any t ≥ t, an attack is possible, yet need not take place.

Furthermore, any arbitrary number of attacks can occur.

This seems to square well with the common view that economic fundamentals may help predict

eventual outcomes (e.g., whether a currency is eventually devalued) but not when a crisis will occur

or whether attacks will cease. On the contrary, this view is inconsistent with the common-knowledge

version of the model, in which case fundamentals fail to predict both the timing of attacks and the

eventual regime outcome,9 as well as with unique-equilibrium models like Morris and Shin (1999),

in which both the timing of attacks and the ultimate fate of the regime are uniquely pinned down

by fundamentals.

Consider now how the dynamics of attacks depend on the dynamics of information.

Corollary 2 After the most aggressive attack for a given period occurs, the game enters a phase

of tranquillity, during which no attack is possible. This phase is longer the slower the arrival of

private information.

Along with the property that for θ > θ∞ and z > z a new attack eventually becomes possible

after any unsuccessful one, the above result implies that dynamics may take the form of cycles in

which the economy alternates from phases of tranquillity to periods of crisis, eventually resulting

into a new attack, without any change in the underlying fundamentals. Once again, this would not

be possible either under common knowledge or with a unique equilibrium.

9Of course, this is true provided θ ∈ [0, 1]. If instead θ /∈ [0, 1], fundamentals predict both the timing and the final
outcome, as for θ < 0 it is dominant to attack immediately and for θ > 1 it is dominant never to attack.
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5 Unobservable shocks

In this section, we examine the possibility that the critical size of attack that triggers regime change

varies stochastically over time due to unobservable shocks. This is not only a realistic scenario,

but also an appropriate perturbation. In the model without shocks, the knowledge that the regime

is in place at t ≥ 2 makes it common certainty that θ > 0, which explains why there always exist

equilibria in which nobody attacks at t ≥ 2. In contrast, shocks may guarantee that a positive

measure of agents attack in every period by “smoothing out” the information generated by the

knowledge that the regime survived past attacks and ensuring the existence of a lower dominance

region in every period.

We modify the game as follows. Agents continue to receive private signals about θ as in the

benchmark model, but the regime is now abandoned in period t if and only if At ≥ θ + δωt, where

δ ≥ 0 and ωt is a real random variable with continuous c.d.f. F, independent of θ and the noise in

the agents’ signals. ωt can be interpreted as a shock to the fundamentals (i.e., the strength of the

regime) and δ as the volatility of these shocks. Denoting with Γ (δ) the game in which the volatility

is δ, the baseline model can be nested as δ = 0.

Equilibrium characterization with δ > 0. In the presence of shocks, the regime outcome

depends, not only on θ, but also on ωt. As a result, we loose the ability to characterize the set of

monotone equilibria in terms of a sequence of truncation points for θ. Nevertheless, we can still

characterize strategies as sequences of thresholds {x̄t}∞t=1 such that an agent attacks in period t if

and only if xt ≤ x̄t, where x̄t ∈ R.
Consider first the regime outcomes induced by a given {x̄t}∞t=1. The size of the attack in

period t is At (θ) = Φ
¡√

αt (x̄t − θ)
¢
and hence the status quo is abandoned if and only if ωt ≤

ω̄t (θ; x̄t, δ) ≡
£
Φ
¡√

αt (x̄t − θ)
¢
− θ
¤
/δ. It follows that the probability of regime change in period t

conditional on θ and given that agents use monotone strategies with threshold x̄t, is

pt (θ; x̄t, δ) = F (ω̄t (θ; x̄t, δ)) .

Next, for any t ≥ 2, let ψt
¡
θ; x̄t−1, δ

¢
denote the density of the common posterior about θ,

when in previous periods agents followed monotone strategies with thresholds x̄t−1 = {x̄1, ..., x̄t−1}.
By Bayes’ rule,

ψt
¡
θ; x̄t−1, δ

¢
=

[1− pt−1 (θ; x̄t−1, δ)]ψt−1
¡
θ; x̄t−2, δ

¢R +∞
−∞ [1− pt−1 (θ0; x̄t−1, δ)]ψt−1 (θ0; x̄t−2, δ) dθ0

=
Πt−1s=1 [1− ps (θ; x̄s, δ)]ψ1 (θ)R +∞

−∞ Π
t−1
s=1 [1− ps (θ0; x̄s, δ)]ψ1 (θ0) dθ0

where ψ1 (θ) =
√
βφ(
√
β (θ − z)) is the density of the initial prior. We similarly denote the density

of the corresponding private posteriors with ψt
¡
θ|x; x̄t−1, δ

¢
for t ≥ 2 and ψ1 (θ|x) for t = 1.

Finally, consider payoffs. For any t ≥ 1, x ∈ R, and x̄t ∈ Rt
, define vt

¡
x; x̄t, δ

¢
as the net

expected payoff from attacking in period t for an agent with sufficient statistic x when all other
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agents attack in period τ ≤ t if and only if their sufficient statistic in τ is less than or equal to x̄τ :

vt
¡
x; x̄t, δ

¢
=

Z +∞

−∞
pt (θ; x̄t, δ)ψt

¡
θ|x; x̄t−1, δ

¢
dθ − c.

Note that vt
¡
x; x̄t, δ

¢
depends on both the contemporaneous threshold x̄t and the sequence of past

thresholds x̄t−1; the former determines the probability of regime change conditional on θ, whereas

the latter determines the posterior beliefs about θ. Next, for any t ≥ 1 and x̄t ∈ Rt
, let

Vt
¡
x̄t; δ

¢
≡

⎧⎪⎪⎨⎪⎪⎩
limx→+∞ vt

¡
x; x̄t, δ

¢
if x̄t = +∞

vt
¡
x̄t; x̄

t, δ
¢

if x̄t ∈ R
limx→−∞ vt

¡
x; x̄t, δ

¢
if x̄t = −∞

Vt is the analogue of the function U in the benchmark model: it represents the net payoff from

attacking in period t for the marginal agent with threshold x̄t.10

In Lemma A2 in the Appendix, we prove that, for any δ > 0, Vt
¡
x̄t; δ

¢
is continuous in x̄t for

any x̄t ∈ Rt−1 × R, which we use to establish the existence, and complete the characterization, of
monotone equilibria.

Proposition 3 For any δ > 0, {at (·)}∞t=1 is a monotone equilibrium for Γ (δ) if and only if there

exists a sequence {x̄t}∞t=1 such that:
(i) for all t, at (·) = 1 if xt < x̄t and at (·) = 0 if xt > x̄t;

(ii) for t = 1, x̄1 ∈ R and V1 (x̄1; δ) = 0;

(iii) for any t ≥ 2, either x̄t = −∞ and Vt
¡
x̄t; δ

¢
≤ 0, or x̄t ∈ R and Vt

¡
x̄t; δ

¢
= 0.

An equilibrium exists for any δ > 0.

Convergence to benchmark game. We next consider the properties of the equilibrium

set as δ → 0. Let θt (x̄t) be the unique solution to θ = Φ
¡√

αt (x̄t − θ)
¢
, with θt (−∞) = 0 and

θt(+∞) = 1, and θt
¡
x̄t
¢
= maxτ≤t{θτ (x̄t)}. As δ → 0, the dependence of the regime outcome on

the shock ωt vanishes: for any x̄t and any θ 6= θt (x̄t) ,

pt (θ; x̄t, δ)→ pt (θ; x̄t, 0) ≡
(
1 if θ ≤ θt (x̄t)

0 if θ > θt (x̄t)
(7)

It follows that the common posterior in any period t ≥ 2 converges pointwise to the truncated

Normal generated by the knowledge that θ > θt−1
¡
x̄t−1

¢
: for any x̄t−1 and any θ,

ψt
¡
θ; x̄t−1, δ

¢
→ ψt

¡
θ; x̄t−1, 0

¢
≡

⎧⎨⎩ 0 if θ ≤ θt−1
¡
x̄t−1

¢
√
βφ(

√
β(θ−z))

1−Φ(
√
β(θt−1(x̄t−1)−z))

otherwise
(8)

10Since the distribution of x given θ satisfies the MLRP and pt (θ; x̄t, δ) is decreasing in θ, by standard representation

theorems (Milgrom, 1981), vt
¡
x; x̄t, δ

¢
is decreasing in x. Since vt is also bounded in [−c, 1 − c], it follows that

limx→±∞ vt
¡
x; x̄t, δ

¢
exist for any x̄t ∈ Rt and therefore Vt

¡
x̄t, δ

¢
is well-defined at x̄t = ±∞.
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Similarly, for the private posteriors, ψt
¡
θ|x; x̄t−1, δ

¢
→ ψt

¡
θ|x; x̄t−1, 0

¢
for any x.

The pointwise convergence of pt and ψt in turn implies pointwise convergence of the payoff

of the marginal agent except when t ≥ 2 and x̄t = −∞. In particular, for t = 1 and any x̄1,

V1 (x̄1; δ)→ V1 (x̄1; 0) ≡ U (θ1 (x̄1) ,−∞, α1, β, z) ; and, for any t ≥ 2, any x̄t−1 and any x̄t > −∞,

Vt
¡
x̄t; δ

¢
→ Vt

¡
x̄t; 0

¢
≡ U

¡
θt (x̄t) , θt−1

¡
x̄t−1

¢
, αt, β, z

¢
.

To understand why Vt
¡
x̄t; δ

¢
need not converge to Vt

¡
x̄t; 0

¢
= −c when t ≥ 2 and x̄t = −∞, note

that, in the presence of shocks, an agent with sufficiently low xt may attach probability higher

than c to regime change in period t ≥ 2 even if he expects no other agent to attack in that period.
When this is the case, a positive measure of agents may attack in every period in the perturbed

game, unlike the benchmark model. Nevertheless, the pointwise convergence of Vt for any x̄t > −∞
ensures that this dominance region vanishes as δ → 0.

More generally, we can prove that “essentially” all equilibria {x∗t }∞t=1 in the benchmark game
Γ(0) can be approximated by equilibria {x̄t (δ)}∞t=1 in the perturbed game Γ (δ) for δ > 0 small

enough.11 The qualification “essentially” is needed because convergence may fail in the knife-edge

case where Vt
¡
x∗t; 0

¢
reaches its maximum at x∗t (or equivalently U

¡
θ∗t , θ

∗
t−1, αt, β, z

¢
reaches its

maximum at θ∗t ).

Theorem 2 (Shocks in fundamentals) For any ε > 0, and any T ≥ 1, there exists δ (ε, T ) > 0
such that, for all δ < δ (ε, T ) , the following is true:

For any equilibrium {x∗t}∞t=1 of Γ (0) such that x∗t /∈ argmaxx Vt
¡
x∗t−1, x; 0

¢
for all t ∈ {2, ..., T},

there exists an equilibrium {x̄t (δ)}∞t=1 of Γ (δ) such that, for all t ≤ T, either |x∗t − x̄t(δ)| < ε, or

x∗t = −∞ and x̄t (δ) < −1/ε.

The above establishes convergence of equilibrium play in the first T periods of the infinite-

horizon game, for any finite T . Since δ (ε, T ) may converge to 0 as T → ∞, the result need not

hold for an infinite number of periods. Of course, if the game ended for exogenous reasons at T,

the above would immediately imply convergence in all periods of the finite-horizon game.

The result is illustrated in Figures 3 and 4 for T = 2. The solid line in Figure 3 repre-

sents the p.d.f. of the common posterior in period 2 generated by equilibrium play in period 1

in the game without shocks (δ = 0). This is simply the initial prior truncated at θ∗1 = θ1 (x
∗
1),

where x∗1 is the unique solution to V1 (x
∗
1; 0) = 0 (or equivalently where θ∗1 is the unique solu-

tion to U (θ∗1,−∞, α1, β, z) = 0). The other two lines represent the equilibrium common poste-

riors ψ2 (θ; x̄1 (δ) , δ) for the game with shocks (δ > 0), where x̄1 (δ) is the unique solution to

V1 (x̄1 (δ) ; δ) = 0; the dotted line corresponds to a relatively high δ and the dashed one to a low

11Clearly, Proposition 3 applies also to the unperturbed game: {x∗t }∞t=1 is a monotone equilibrium of Γ (0) if and

only it satisfies (ii)− (iii) for δ = 0.
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Figure 3: Common posteriors with and without shocks.
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Figure 4: Payoff of the marginal agent with and without shocks.

δ. Since the support of ωt is the entire real line, the probability of regime change is less than 1 for

any θ and therefore ψ2 assigns positive probability to all θ. However, as δ becomes smaller, x̄1 (δ)

converges to x∗1 and the probability of regime change converges to 1 for θ < θ∗1 and to 0 for θ > θ∗1.

By implication, the smooth common posterior of the perturbed game in period 2 converges to the

truncated one of the benchmark model.

In Figure 4, the solid line represents the payoff V2 (x
∗
1, x2; 0) of the marginal agent in period

2 for δ = 0, whereas the other two lines represent V2 (x̄1 (δ) , x2; δ) for δ > 0.12 Note that, for

x2 small enough, V2 is negative when δ = 0 but positive when δ > 0, which implies that nobody

attacking in period 2 is part of an equilibrium in the benchmark model but not in the game with

12 In order to illustrate V2 over its entire domain, the figure depicts V2 (x̄1 (δ) , x2; δ) against Φ (x2) rather than x2.
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shocks.13 Moreover, when δ is high (dotted line), V2 is monotonic in x2 and therefore has a single

intersection with the horizontal line, in which case the equilibrium would be unique if the game

ended in period 2. When, instead, δ is sufficiently small (dashed line), V2 is non-monotonic and

has three intersections, which correspond to three different equilibria for the two-period game with

shocks. Finally, the middle and the highest intersections approximate the two intersections of the

solid line, while the lowest intersection is arbitrarily small, thus approximating x∗2 = −∞. Along
with the fact that x̄1 (δ) converges to x∗1, this implies that any equilibrium of the two-period game

without shocks can be approximated by an equilibrium in the perturbed game.

In conclusion, what sustains multiplicity in the dynamic game is the non-monotonicity of the

payoff of the marginal agent generated by the knowledge that the regime survived past attacks.

That this knowledge resulted in posterior beliefs that assign zero measure to sufficiently low θ in

the benchmark model, is not essential.

6 Public news and signals about past attacks

In this section, we consider two extensions of the information structure assumed in the benchmark

model.

6.1 Exogenous public signals

To capture the effect of public news, we now modify the game as follows. In addition to their private

signals, agents observe in each period t ≥ 1 a public signal z̃t = θ + εt, where εt is common noise,

normally distributed with zero mean and precision ηzt > 0, serially uncorrelated, and independent

of θ and the agent’s private noise. These signals may represent, for example, the information

generated by news analysis in the media, publication of government statistics, or announcements

by policy makers. We also allow for the possibility that the game ends for exogenous reasons at a

finite date and denote the horizon of the game with T, where T ∈ {2, 3, ...} or T =∞.
The common posterior about θ conditional on z̃t ≡ {z̃τ}tτ=1 is Normal with mean zt and

precision βt, where

zt =
βt−1
βt

zt−1 +
ηzt
βt
z̃t, βt = βt−1 + ηzt ,

with (z0, β0) = (z, β). However, since equilibrium play in past periods now depends on the realiza-

tions of past public signals, zt is not a sufficient statistic conditional on Rt = 0. We thus allow

agents to condition their actions on the entire sequence z̃t, or equivalently on zt ≡ {zτ}tτ=1. Apart

13 In the examples in Figures 3 and 4, an agent finds it optimal to attack in period 2 for sufficiently low x2, even

if he expects no other agent to attack. However, this need not be the case if ωt had a bounded support and δ were

small enough.
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from this modification, the set of monotone equilibria can be constructed in a similar way as in the

benchmark model.

Proposition 4 {at (·)}Tt=0 is a monotone equilibrium if and only if there exists a sequence of func-

tions {x∗t , θ∗t }Tt=1 , with x∗t : Rt → R and θ∗t : Rt → (0, 1) , such that:

(i) for all t, at (·) = 1 if xt < x∗t
¡
zt
¢
and at (·) = 0 if xt > x∗t

¡
zt
¢
;

(ii) at t = 1, θ∗1 (z1) solves U (θ
∗
1,−∞, α1, β1, z1) = 0 and x∗1 (z1) = X(θ∗1 (z1) , α1)

(iii) at t ≥ 2, either θ∗t
¡
zt
¢
solves

U
¡
θ∗t , θ

∗
t−1, αt, βt, zt

¢
= 0 (9)

and x∗t
¡
zt
¢
= X(θ∗t

¡
zt
¢
, αt), or θ∗t

¡
zt
¢
= θ∗t−1

¡
zt−1

¢
and x∗t

¡
zt
¢
= −∞.

Like in the benchmark model without public news, there always exist equilibria in which attacks

cease after any arbitrary period. However, for any
¡
θ∗t−1, αt, βt

¢
, (9) admits a solution if and only

if zt ≤ z̄t, where z̄t = z̄
¡
θ∗t−1, αt, βt

¢
is always finite. Hence, there also exist equilibria in which

an attack occurs in period t for sufficiently low realizations of zt. The following then extends and

reinforces the multiplicity result of Theorem 1.

Theorem 3 (Public news) In the game with public news, there always exist multiple equilibria,

no matter the mean z of the prior, the precisions {αt, βt}Tt=1 of private and public information, and
the horizon T of the game.

Consider now how the introduction of public news affects the ability of an “econometrician”

to predict the regime outcome and/or the occurrence of an attack in any given period. For any

t, any θ ∈ (0, 1), and any θ∗t−1 < θ, (9) admits a solution higher than θ if and only if zt is low

enough, implying that, conditional on θ, the probability that the status quo is abandoned in any

given period is strictly between 0 and 1. It follows that an econometrician who can observe θ but

can not observe zt, necessarily faces uncertainty about the event of regime change. On the other

hand, if he also knows zt, he may be able to perfectly predict the regime outcome in a given period

for some combinations of θ and zt, without, however, being able to predict whether an attack will

take place. For example, at any t ≥ 2, if θ > θ̄t
¡
zt
¢
> θ1 (z1), where θ1 (z1) is the lowest solution

to U (θ∗,−∞, α1, β1, z1) = 0 and θ̄t
¡
zt
¢
the highest solution to U (θ∗, θ1 (z1) , αt, βt, zt) ,

14 there is

no equilibrium in which the status is abandoned in period t, but there are both an equilibrium in

which an attack occurs and one in which no attack takes place in that period. The combination of

fundamentals and public information may help predict regime outcomes but not the occurrence of

attacks, like in the benchmark model.

14Since θ∗t−1
¡
zt−1

¢
≥ θ1 (z1) in any equilibrium, θ̄t

¡
zt
¢
is an upper bound for θ∗t

¡
zt
¢
.
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Finally, note that the threshold z̄t, below which (9) admits a solution, decreases with θ∗t−1.

Hence, an unsuccessful attack, other things equal, causes a discrete increase in the probability the

game enters a phase of inaction during which no attack is possible. In this sense, the prediction of

the benchmark model that equilibrium dynamics are characterized by the alternation of phases of

tranquility and phases of crises, survives the introduction of public news, but the transition from

one phase to another is now stochastic, as it depends on the realization of zt.

6.2 Signals about past attacks

We now introduce an additional source of information by allowing agents to receive private and

public signals about the size of past attacks. These signals are, respectively,

X̃it = S (At−1, uit) and Z̃t = S (At−1, υt) ,

for t ≥ 2, where uit is idiosyncratic noise, υt is common noise, and S : [0, 1] × R → R. To

preserve Normality of the information structure, we adopt a similar specification as Dasgupta

(2002): S (A,u) = Φ−1 (A) + u, uit ∼ N (0, 1/γxt ) , and υt ∼ N (0, 1/γzt ) .

Using the property that in any monotone equilibrium At−1 = Φ(
√
αt−1

¡
x∗t−1 − θ

¢
) — where x∗t−1

may depend on exogenous/endogenous public signals — and following similar steps as in Section 3,

we can again construct sufficient statistics xt and zt with precisions αt and βt such that

θ|(x̃t, z̃t, X̃t, Z̃t) ∼ N
³

αt
αt+βt

xt +
βt

αt+βt
zt,

1
αt+βt

´
.

The only difference is that these statistics are now defined by

xt =
αt−1
αt

xt−1 +
ηxt
αt
x̃t +

1t−1αt−1γxt
αt

n
x∗t−1 − 1√

αt−1
X̃t

o
,

zt =
βt−1
βt

zt−1 +
ηzt
βt
z̃t +

1t−1αt−1γzt
βt

n
x∗t−1 − 1√

αt−1
Z̃t

o
,

αt = αt−1 + ηxt + 1t−1αt−1γ
x
t and βt = βt−1 + ηzt + 1t−1αt−1γ

z
t ,

where 1t is an indicator variable that takes value 1 if an attack occurrs at t (At > 0) and 0 otherwise.

Although the realizations of (xt, zt) and similarly the dynamics of (αt, βt) are now partly

endogenous, the equilibrium characterization is otherwise the same as in the model with only

exogenous signals. By implication, the multiplicity results extend to the game with signals about

past attacks. Similarly, the structure of equilibrium dynamics remains as in the benchmark model,

except for the property that an unsuccessful attack does not necessarily reduce the incentives for

further attacks. This is because an unsuccessful attack now also generates new private and public

signals, which in some cases may offset the impact of the knowledge that the status quo is still in

place.

To see this, consider the case where all signals are private (γxt > 0, ηxt ≥ 0, γzt = ηzt = 0) , in

which case the only novel effect is that an unsuccessful attack leads to an endogenous increase in
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αt. A further attack is then possible only if this increase is large enough, like in the benchmark

game. On the other hand, when the endogenous signal is public (γzt > 0 = γxt ), a new attack

becomes possible if this signal is low enough, like in the case with exogenous public news.

We conclude that signals about the size of past attacks may substitute for the exogenous arrival

of private and/or public information, but do not otherwise affect the analysis.

7 Conclusion

This paper examined how the dynamics of information influences the dynamics of coordination in

a global game of regime change. We found that dynamics may sustain multiple equilibria under

the same informational assumptions that guarantee uniqueness in the static benchmark examined

in the literature.

Although the model is highly stylized and abstracts from all sorts of institutional details and

intertemporal payoff linkages, it generates a few distinctive predictions for equilibrium dynamics,

such as the possibility that fundamentals predict regime outcomes but not the timing and number

of attacks, or the succession of phases of tranquility, during which agents accumulate information

and no attacks are possible, and periods of crises, during which attacks may occur but do no

necessarily take place. These predictions may help understand the dynamics of crises phenomena

such as currency attacks, financial crashes, or political change. Extending the analysis to these

applications is a promising line for future research.

Appendix

Proof of Proposition 1. Solving (1) for x̂ gives x̂ = θ̂ + α−1/2Φ−1(θ̂). Substituting this into

(2) gives a single equation in θ̂ :

Ust
³
θ̂;α, β, z

´
= 0, (10)

where

Ust (θ;α, β, z) ≡ 1− Φ
³ √

α√
α+β

h
Φ−1 (θ) + β√

α
(z − θ)

i´
− c. (11)

Note that Ust (θ; ·) is continuous and differentiable in θ ∈ (0, 1), with limθ→0 Ust (θ) = 1 − c > 0

and limθ→1 Ust (θ) = −c < 0. A solution to (10) therefore always exists. Next, note that
∂Ust (θ; .)

∂θ
= −

√
α√

α+β
φ
³ √

α√
α+β

h
Φ−1 (θ) + β√

α
(z − θ)

i´ h
1

φ(Φ−1(θ)) −
β√
α

i
.

Since minθ∈(0,1)
£
1/φ

¡
Φ−1 (θ)

¢¤
=
√
2π, the condition α ≥ β2/ (2π) is both necessary and sufficient

for Ust to be monotonic in θ, in which case the monotone equilibrium is unique. Finally, for
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the proof that only this equilibrium survives iterated deletion of strictly dominated strategies, see

Morris and Shin (2000, 2001).

Proof of Lemma 1. We prove the claim by induction. At t = 1, the result necessarily holds

since in any equilibrium, the agents’ strategy for t = 1 is the same as in the static benchmark.

Consider next any t ≥ 2 and suppose that the result holds for any τ ≤ t − 1. Since at (·) is
non-increasing in x̃t, At (θ) is non-increasing in θ, implying that either At (θ) < θ (and therefore

Rt+1 = 0) for all θ > θ∗t−1, in which case θ
∗
t = θ∗t−1, or there exists θ

∗
t > θ∗t−1 such that At(θ) < θ if

and only if θ > θ∗t . In the former case, Pr(Rt+1 = 1|xt, Rt = 0) = 0 for all xt and hence x∗t = −∞.

In the latter,

Pr(Rt+1 = 1|xt, Rt = 0) = Pr
¡
θ ≤ θ∗t |xt, θ > θ∗t−1

¢
= 1−

Φ
³√

αt + β
h
αtxt+βz
αt+β

− θ∗t

i´
Φ
³√

αt + β
h
αtxt+βz
αt+β

− θ∗t−1

i´ ,
which is strictly decreasing in xt and converges to 1 as xt → −∞ and to 0 as xt → +∞, implying

that there exists x∗t ∈ R such that Pr(θ ≤ θ∗t |xt, θ > θ∗t−1) ≥ (≤)c if and only if xt ≤ (≥)x∗t . In
either case, At (θ) < 1 for all θ and hence θ∗t < 1, which together with θ∗t ≥ θ∗1 > 0, implies that

θ∗t ∈ (0, 1) for all t, which completes the proof.

Proof of Proposition 2. Necessity follows from the arguments in the main text. For suffi-

ciency, take any sequence {x∗t , θ∗t }∞t=1that satisfies conditions (ii) and (iii); let θ∗0 = −∞; suppose
all other agents follow strategies as in (i), in which case Rt = 0 if and only if θ > θ∗t−1, for all t ≥ 1;
and consider the best response for an individual agent. If θ∗t = θ∗t−1, in which case t ≥ 2, θ∗t−1 > 0
and x∗t = −∞, then Pr (Rt+1 = 1|xt, Rt = 0) = Pr

¡
θ ≤ θ∗t |xt, θ > θ∗t−1

¢
= 0 for all xt and therefore

not attacking is indeed optimal. If instead θ∗t > θ∗t−1, in which case U
¡
θ∗t , θ

∗
t−1, αt, β, z

¢
= 0 and

x∗t = X (θ∗t , αt) , then, by the monotonicity of the private posterior and the definitions of X(·) and
U(·), Pr

¡
θ ≤ θ∗t |xt, θ > θ∗t−1

¢
− c ≥ (≤)U

¡
θ∗t , θ

∗
t−1, αt, β, z

¢
if and only if xt ≤ (≥)X (θ∗t , αt) and

therefore it is indeed optimal to attack for xt < x∗t and not to attack for xt > x∗t .

Proof of Lemma 2. Part (i) follows directly by inspecting U.

For (ii), note that U
¡
θ∗, θ∗t−1, αt, β, z

¢
< U (θ∗,−∞, αt, β, z) for all θ∗ (since θ∗t−1 > −∞) and

that U (θ∗,−∞, αt, β, z) = Ust (θ∗, αt, β, z) is strictly decreasing in θ∗ (since αt ≥ β2/ (2π)). It

follows that U
¡
θ∗, θ∗t−1, αt, β, z

¢
< 0 for all θ∗ ≥ bθt, which gives the result.

For (iii), take any θ∗t−1 > θ∞. Note that for all θ∗ ∈ [θ∗t−1, 1], limα→∞ U (θ∗,−∞, α, β, z) =

θ∞ − θ∗ < 0. Since U (θ∗,−∞, α, β, z) is continuous in θ∗ and [θ∗t−1, 1] is compact, it follows that

there exists α such that, for any α > α, U (θ∗,−∞, α, β, z) < 0 for all θ∗ ∈ [θ∗t−1, 1]. Moreover, for
all α, U

¡
θ∗, θ∗t−1, α, β, z

¢
= −c < 0 for θ ≤ θ∗t−1 and U

¡
θ∗, θ∗t−1, α, β, z

¢
< U (θ∗,−∞, α, β, z) for

θ∗ > θ∗t−1. It follows that, for any α > α, U
¡
θ∗, θ∗t−1, α, β, z

¢
< 0 for all θ∗ and therefore (6) admits

no solution.
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For (iv), take any θ∗t−1 < θ∞. Since limα→∞ U
¡
θ∗, θ∗t−1, α, β, z

¢
= θ∞ − θ∗ > 0 for any θ∗ ∈

(θ∗t−1, θ∞), there exist θ
0 ∈

¡
θ∗t−1, θ∞

¢
and α such that, for any α > α, U

¡
θ0, θ∗t−1, α, β, z

¢
> 0. By

the continuity of U
¡
θ∗, θ∗t−1, α, β, z

¢
in θ∗ and the fact that limθ∗→1 U

¡
θ∗, θ∗t−1, α, β, z

¢
= −c, it

follows then that (6) admits a solution for αt > α.

Finally, consider (v). Fix t ≥ 2, θ∗t−2, αt−1, β, and z (where we use the convention θ∗0 =

−∞) and suppose that θ∗t−1 is the highest solution to (6) for period t − 1, which means that
U
¡
θ∗, θ∗t−2, αt−1, β, z

¢
< 0 for all θ∗ > θ∗t−1. This, together with the properties that U (θ

∗, θ−1, α, β, z)

is non-increasing in θ−1, continuous in θ∗, and equal to −c for θ∗ ≤ θ−1, implies that there ex-

ists ∆ > 0 such that U
¡
θ∗, θ∗t−1, αt−1, β, z

¢
< −∆ for all θ∗ ∈ [0, 1]. Furthermore, by continu-

ity of U in (θ∗, α) , there exists α > αt−1 such that U (θ∗, ·, α, ·) is uniformly continuous over
[0, 1]× [αt−1, α]. This also implies that there exists α ∈ (αt−1, α) such that U

¡
θ∗, θ∗t−1, α, β, z

¢
< 0

for all α ∈ [αt−1, α) and all θ∗ ∈ [0, 1], which proves that (6) admits no solution in any period τ > t

for which ατ < α.

Lemma A1 There exist thresholds z ≤ z ≤ z such that: θ̂t ≤ θ̂1 for all t if z ≤ z; θ̂1 ≤ (≥) θ∞ if

and only z ≥ (≤) z; and θ̂t < θ∞ for all t if and only if z > z. These thresholds satisfy z = z = z

when c ≤ 1/2 and z ≤ z < z when c > 1/2.

Proof. For any α ≥ α1
¡
≥ β2/ (2π)

¢
, let θ̂ = θ̂ (α, β, z) be the unique solution to U(θ̂,−∞, α, β, z) =

0 (i.e., the static equilibrium threshold) and

z̃ (α, β) ≡ θ∞ +
√
α+β−√α

β Φ−1 (θ∞) ,

ẑ (α, β) ≡ Φ
³ √

α√
α+β
Φ−1 (θ∞)

´
+ 1√

α+β
Φ−1 (θ∞) .

The threshold z̃ (α, β) is defined by U(θ∞,−∞, α, β, z̃ (α, β)) = 0 and is such that θ̂ ≥ (≤) θ∞ if

and only if z ≤ (≥) z̃. The threshold ẑ (α, β) , on the other hand, is defined so that ∂θ̂/∂α ≥ (≤) 0
if and only if z ≥ (≤) ẑ. To simplify notation, we henceforth suppress the dependence of θ̂ on (β, z)
and of z̃ and ẑ on β.

First, consider c = 1/2, in which case ẑ (α) = z̃ (α) = 1/2 for all α. When z < 1/2, θ̂ (α) > θ∞

and ∂θ̂/∂α < 0 for all α ≥ α1 and therefore θ̂1 ≥ θ̂t > θ∞ for all t. When instead z = 1/2,

θ̂ (α) = θ∞ for any α ≥ α1, and therefore θ̂1 = θ̂t = θ∞ for all t. Finally, when z > 1/2, for any

α ≥ α1, θ̂ (α) < θ∞ and ∂θ̂/∂α > 0, and hence θ̂1 ≤ θ̂t < θ∞ for all t. The result thus holds with

z = z = z = 1/2.

Next, consider c < 1/2, in which case z̃ (α) and ẑ (α) are both decreasing in α, satisfy ẑ (α) >

z̃ (α) > θ∞ for all α, and converge to θ∞ as α→∞. When z ≤ θ∞, then clearly z < z̃ (α) < ẑ (α)

for all α and therefore θ̂ (α) is always higher than θ∞ and decreasing in α, which implies that

θ̂1 ≥ θ̂t > θ∞ for all t.When z ∈ (θ∞, z̃ (α1)), there are α00 > α0 > α1 such that z̃ (α0) = ẑ (α00) = z.

For α ∈ [α1, α0), θ̂ (α) is higher than θ∞ and decreases with α. As soon as α ∈ (α0, α00), θ̂ (α)
becomes lower than θ∞ and continues to decrease with α. Once α ≥ α00, θ̂ (α) starts increasing with
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α, but never exceeds θ∞. Hence, θ̂1 > θ∞ and θ̂1 ≥ θ̂t for all t. When z = z̃ (α1) , θ̂1 = θ∞ ≥ θ̂t for

all t. Finally, when z > z̃ (α1) , θ̂ (α) < θ∞ for all α, and therefore θ̂t < θ∞ for all t. We conclude

that the result holds for c < 1/2 with z = z = z = z̃ (α1) .

Finally, consider c > 1/2, in which case ẑ (α) and z̃ (α) are both increasing in α, satisfy

ẑ (α) < z̃ (α) < θ∞, and converge to θ∞ as α→∞.When z ≤ ẑ (α1) , then clearly z < ẑ (α) < z̃ (α)

for all α > α1 and therefore θ̂ (α) is always higher than θ∞ and decreasing in α, which implies

that θ̂1 ≥ θ̂t > θ∞ for all t. When z ∈ (ẑ (α1) , z̃ (α1)), there is α0 > α1 such ẑ (α0) = z. For

α ∈ (α1, α0), θ̂ (α) is higher than θ∞ and increasing in α, whereas for α > α0, θ̂ (α) decreases

with α, converging to θ∞ from above. It follows that maxt≥1 θ̂t ≥ θ̂1 > θ∞. When z = z̃ (α1) ,

maxt≥1 θ̂t ≥ θ̂1 = θ∞.When z ∈ (z̃ (α1) , θ∞), there are α00 > α0 > α1 such that z̃ (α0) = ẑ (α00) = z.

For α ∈ (α1, α0), θ̂ (α) is lower than θ∞ and increasing in α. For α ∈ (α0, α00), θ̂ (α) is higher than
θ∞ and increases with α. And for α > α00, θ̂ (α) decreases with α and asymptotes to θ∞ from above.

Hence, maxt≥1 θ̂t > θ∞ > θ̂1. Finally, when z ≥ θ∞, then clearly z > z̃ (α) > ẑ (α) for all α and

therefore θ̂ (α) is always lower than θ∞, increases with α, and asymptotes θ∞ from below. Hence,

θ̂1 ≤ θ̂t < θ∞ for all t. We conclude that the result holds for c > 1/2 with z = ẑ (α1), z = z̃ (α1) ,

and z = θ∞.

Lemma A2 For any δ ≥ 0 and any t ≥ 2, Vt
¡
x̄t; δ

¢
is continuous in x̄t for any x̄t ∈ Rt−1 × R,

and similarly V1 (x̄1; δ) is continuous in x̄1 for any x̄1 ∈ R.15

Proof. Consider first δ = 0, in which case V1 (x̄; 0) ≡ U (θ1 (x̄) ,−∞, α1, β, z) and Vt
¡
x̄t; 0

¢
≡

U
¡
θt (x̄t) , θt−1

¡
x̄t−1

¢
, αt, β, z

¢
for t ≥ 2. Note that, for all t, θt (x̄t) is continuous in x̄t ∈ R and

takes values in [0, 1]. Since the max operator is continuous, it follows that θt
¡
x̄t
¢
≡ maxτ≤t{θτ (x̄τ )}

is also continuous in x̄t ∈ Rt
and takes values in [0, 1]. Furthermore, U (θ,−∞, α, β, z) is continuous

in θ ∈ [0, 1] and U (θ, θ−1, α, β, z) is continuous in (θ, θ−1) ∈ [0, 1]2. It follows that, for all t, Vt
¡
x̄t; 0

¢
is continuous in Rt

.

Consider next δ > 0. To simplify notation, we henceforth suppress the dependence of pt,

vt and Vt on δ whenever there is no risk of confusion. For all t ≥ 1, the function pt (θ; x̄t) =

15Continuity can be extended in Rt as follows. For any function f : A→ R, where A ⊆ Rt and t ≥ 1, we say that
f is continuous over A if and only if, for any xt ∈ A and any ε > 0, there exists η > 0 such that, for any x̃t ∈ A such

that for all τ ≤ t: (a) |x̃τ − xτ | < η if xτ ∈ R; (b) x̃τ < −1/η if xτ = −∞; (c) x̃τ > 1/η, if xτ = +∞, the following

is true: (a’) if f
¡
xt
¢
∈ R, then |f

¡
x̃t
¢
− f

¡
xt
¢
| < ε; (b’) if f

¡
xt
¢
= −∞, then f

¡
x̃t
¢
< −1/ε; (c’) if f

¡
xt
¢
= +∞,

then f
¡
x̃t
¢
> 1/ε.

Note that, if f : A → R, g : B → R, and q : C → R are continuous, respectively, in A, B and C, where A ⊆ Rt,
B ⊆ Rk, and f (A)× g (B) ⊆ C ⊆ R2, then the function w : A×B → R defined by w

¡
xt, xk

¢
= q

¡
f
¡
xt
¢
, g
¡
xk
¢¢
is

continuous in A×B.
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F
¡£
Φ
¡√

αt (x̄t − θ)
¢
− θ
¤
/δ
¢
is continuous in (θ, x̄t) ∈ R2 and strictly decreasing in θ. For t ≥ 2,

ψt
¡
θ|x; x̄t−1, δ

¢
=

φ
¡√

αt (x− θ)
¢
ψt
¡
θ; x̄t−1, δ

¢R +∞
−∞ φ

¡√
αt (x− θ0)

¢
ψt (θ0; x̄t−1, δ) dθ0

=
Πt−1s=1 [1− ps (θ; x̄s)]φ

³√
αt + β

³
θ − αtx+βz

αt+β

´´
R +∞
−∞ Π

t−1
s=1 [1− ps (θ0; x̄s)]φ

³√
αt + β

³
θ0 − αtx+βz

αt+β

´´
dθ0

.

The p.d.f. ψt — and similarly the c.d.f. Ψt — is thus continuous in θ ∈ R and (x, x̄t−1) ∈ R×R
t−1

. It

follows that vt
¡
x; x̄t−1, x̄t

¢
=
R +∞
−∞ pt (θ; x̄t) dΨt

¡
θ|x; x̄t−1, δ

¢
− c is continuous in (x, x̄t−1, x̄t) ∈

R×Rt−1×R.16 It is then immediate that Vt
¡
x̄t−1, x̄t

¢
= vt

¡
x̄t; x̄

t−1, x̄t
¢
is also continuous in

(x̄t−1, x̄t) ∈ R
t−1×R. Similarly, for t = 1, v1 (x; x̄1) is continuous in (x, x̄1) ∈ R2 and therefore

V1 (x̄1) is continuous in x̄1 ∈ R.

Proof of Proposition 3. (To simplify notation, we again suppress the dependence of pt, vt
and Vt on δ whenever this does not create confusion.)

Sufficiency. Consider a sequence {x̄t (δ)}∞t=1 that satisfies conditions (ii) and (iii) in the
proposition. The monotonicity of vt

¡
x; x̄t

¢
with respect to x (see proof of Lemma A2 above)

guarantees that, for any x ∈ R and any x̄t ∈ Rt
, vt

¡
x; x̄t

¢
≥ (≤)Vt

¡
x̄t
¢
if and only if x ≤ (≥) x̄t.

It follows that the strategies defined by (i)− (iii) constitute a monotone equilibrium.
Necessity. Conversely, suppose that {at(·)}∞t=1 is a monotone equilibrium. Since in any such

equilibrium the measure of agents attacking in every period is decreasing in θ, the probability

of regime change is also decreasing in θ. Then, by standard representation theorems (Milgrom,

1981), the expected payoff from attacking is decreasing in xt, implying that agents must follow

cut-off strategies. For {x̄t}∞t=1 to be equilibrium cutoffs, it must be that, for all t, Vt
¡
x̄t
¢
= 0 if

−∞ < x̄t < +∞, Vt
¡
x̄t
¢
≤ 0 if x̄t = −∞, and Vt

¡
x̄t
¢
≥ 0 if x̄t = +∞.

We next show that, in any equilibrium, x̄t < +∞ for all t ≥ 1 and x̄1 > −∞. Indeed, if

x̄t = +∞, in which case pt (θ; +∞) = F
¡
1
δ (1− θ)

¢
, then, for any t ≥ 2, (x, x̄t−1) ∈ R× Rt−1

, and

θ0 ∈ R,

vt
¡
x; x̄t−1,+∞

¢
=

Z +∞

−∞
F
¡
1
δ (1− θ)

¢
ψt
¡
θ|x; x̄t−1, δ

¢
dθ − c

=

Z θ0

−∞
F
¡
1
δ (1− θ)

¢
ψt
¡
θ|x; x̄t−1, δ

¢
dθ +

Z +∞

θ0
F
¡
1
δ (1− θ)

¢
ψt
¡
θ|x; x̄t−1, δ

¢
dθ − c

≤ Ψt

¡
θ0|x; x̄t−1, δ

¢
+ F

¡
1
δ

¡
1− θ0

¢¢ £
1−Ψt

¡
θ0|x; x̄t−1, δ

¢¤
− c,

16Note that vt
¡
x; x̄t

¢
can also be written as

R 1
0
Fp(y;x, x̄

t)dy, where Fp(y;x, x̄t) is the (probability) measure of θ

for which p(θ; x̄t) > y, that is, Fp(y;x, x̄t) = 0 if y = 1 and Fp(y;x, x̄t) = Ψt

¡
p−1 (y; x̄t) |x; x̄t−1, δ

¢
if y ∈ [0, 1), where

p−1 (y; x̄t) denotes the inverse of p(θ; x̄t) with respect to θ. The continuities of p and Ψt then imply that Fp(y;x, x̄t)

is continuous in (x, x̄t) ∈ R × Rt−1 × R, for any y ∈ [0, 1]. Since Fp(y; ·) is also bounded from above by 1, from the

Dominated Convergence Theorem, it follows that
R 1
0
Fp(y;x, x̄

t)dy is also continuous in (x, x̄t).
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where Ψt

¡
θ0|x; x̄t−1, δ

¢
=
R θ0
−∞ ψt

¡
θ|x; x̄t−1, δ

¢
dθ. Furthermore, since the knowledge that the sta-

tus quo survived past attacks causes a first-order-stochastic-dominance change in posterior beliefs,17

Ψt

¡
θ0|x; x̄t−1, δ

¢
≤ Φ

³√
αt + β

³
θ0 − αtx+βz

αt+β

´´
. Along with limx→+∞Φ

³√
αt + β

³
θ0 − αtx+βz

αt+β

´´
=

0, this implies that limx→+∞ vt
¡
x; x̄t−1,+∞

¢
≤ F

¡
1
δ (1− θ0)

¢
− c. Since the latter is true for any

θ0 ∈ R, it is also true for θ0 → +∞, in which case F
¡
1
δ (1− θ0)

¢
→ 0. Together with the fact that vt is

bounded from below by −c, this implies that V
¡
x̄t−1,+∞

¢
= limx→+∞ vt

¡
x; x̄t−1,+∞

¢
= −c < 0

and hence x̄t = +∞ can not be part of any equilibrium. A similar argument rules out x̄1 = +∞.
Finally, suppose x̄1 = −∞. Then, for any x ∈ R and any θ0 ∈ R,

v1 (x;−∞) =
Z +∞

−∞
F
¡
1
δ (−θ)

¢
ψ1 (θ|x) dθ − c ≥ Ψ1

¡
θ0|x

¢
F
¡
1
δ

¡
−θ0

¢¢
− c,

where Ψ1 (θ0|x) =
R θ0
−∞ ψ1 (θ|x) dθ, and therefore limx→−∞ v1 (x;−∞) ≥ F

¡
1
δ (−θ0)

¢
− c. Since this

is true also for θ0 → −∞, and since v1 is bounded from above by 1 − c, we have that V1 (−∞) =
limx→−∞ v1 (x;−∞) = 1− c > 0, implying that x̄1 = −∞ can not be part of an equilibrium.

We conclude that (i)− (iii) necessarily hold in any monotone equilibrium.
Existence. For any δ > 0, the monotonicity of v1 (x; x̄1) in x̄1 along with its continuity in

x for any x̄1 and the fact that limx→−∞ v1 (x,−∞) > 0 > limx→+∞ v1 (x,+∞), implies that there
exist x0, x00 ∈ R such that V1 (x0) ≥ v1 (x

0,−∞) > 0 > v1 (x
00,+∞) ≥ V1 (x

00) . The continuity of

V1 (x̄1) in x̄1 then ensures existence of a solution x̄1 (δ) ∈ (x0, x00) to V1 (x̄1; δ) = 0.
Next, consider t ≥ 2. For any given x̄t−1, a similar argument as above ensures the existence

of x00 ∈ R such that Vt
¡
x̄t−1, x00

¢
≤ vt

¡
x00, x̄t−1,+∞

¢
< 0. Moreover, either there also exists

x0 ∈ R such that Vt
¡
x̄t−1, x0

¢
≥ 0, or Vt

¡
x̄t−1, x̄t

¢
< 0 for all x̄t ∈ R. In the former case, the

continuity of Vt
¡
x̄t−1, x̄t

¢
in x̄t ensures the existence of x̄t ∈ (x0, x00) such that Vt

¡
x̄t−1, x̄t

¢
= 0.

In the latter case, vt
¡
x; x̄t−1,−∞

¢
≤ vt

¡
x; x̄t−1, x

¢
= Vt

¡
x̄t−1, x

¢
< 0 for any x ∈ R and therefore

at x̄t = −∞, Vt
¡
x̄t−1,−∞

¢
≡ limx→−∞ vt

¡
x; x̄t−1,−∞

¢
≤ 0. We conclude that there exists a

sequence {x̄t (δ)}∞t=0 that satisfies conditions (ii) and (iii) in the proposition.

Proof of Theorem 2. We start by establishing pointwise convergence of Vt as δ → 0. For

any t ≥ 2 and any
¡
x̄t−1, x̄t

¢
∈ Rt−1 × R, by (7) and (8), we have that18

lim
δ→0

Vt
¡
x̄t−1, x̄t; δ

¢
= lim

δ→0

Z +∞

−∞
pt (θ; x̄t, δ) dΨt

¡
θ|x̄t; x̄t−1, δ

¢
− c = Ψt

¡
θt (x̄t) |x̄t; x̄t−1, 0

¢
− c

= U
¡
θt (x̄t) ; θt−1

¡
x̄t−1

¢
, αt, β, z

¢
≡ Vt

¡
x̄t−1, x̄t; 0

¢
.

17This can be seen by noting that the ratio of the densities ψt
¡
θ|x; x̄t−1, δ

¢
/
√
αt + βφ

³√
αt + β

³
θ − αtx+βz

αt+β

´´
is

increasing in θ.
18For δ > 0, let Fp(y; x̄t, δ) be as in footnote 16. Similarly, for δ = 0, Fp(y; x̄t, 0) = Ψt

¡
θt (x̄t) |x̄t; x̄t−1, 0

¢
if y ∈ [0, 1)

and Fp(y; x̄
t, 0) = 0 if y = 1. Since Fp is bounded from above by 1 and, for any y ∈ [0, 1] and any x̄t ∈ Rt−1 × R,

Fp(y; x̄
t, δ) → Fp(y; x̄

t, 0) as δ → 0, from standard Dominated Convergence Theorems, limδ→0

R +∞
0

Fp(y; x̄
t, δ)dy =R +∞

0
limδ→0 Fp(y; x̄

t, δ)dy =
R +∞
0

Fp(y; x̄
t, 0)dy, which gives the result.
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Similarly, for any x̄1 ∈ R, by (7),

lim
δ→0

V1 (x̄1; δ) = Ψ1 (θ1 (x̄1) |x̄1)− c = U (θ1 (x̄1) ;−∞, α1, β, z) ≡ V1 (x̄1; 0) .

We now prove the result by induction. To simplify the notation, for all t ≥ 1,we henceforth let
Ut

¡
x̄t
¢
≡ Vt

¡
x̄t; 0

¢
for the unperturbed game (δ = 0) and reserve the use of Vt for the perturbed

games (δ > 0).

Consider first T = 1 and fix an arbitrary ε > 0. From the strict monotonicity of U1(x̄1),19

U1 (x
∗
1 − ε) > 0 > U1 (x

∗
1 + ε) .

By the convergence of V1 to U1 as δ → 0, we can find δ1(ε) > 0 such that, for any δ < δ1 (ε) ,

V1 (x
∗
1 − ε; δ) > 0 > V1 (x

∗
1 + ε; δ) .

From the continuity of V1 (x̄1; δ) in x̄1 for any δ > 0, it follows that there exists a solution x̄1 (δ)

to V1 (x1; δ) = 0 such that x∗1 − ε < x̄1 (δ) < x∗1 + ε. Following the same steps as in the proof of

existence in Proposition 3, we can then construct an equilibrium {x̄t (δ)}∞t=1 for Γ (δ) such that
|x̄1 (δ)− x∗1| < ε. This proves the result for T = 1.

Consider next an arbitrary T ≥ 2, fix ε > 0, and suppose the result holds for T − 1.
Take first any equilibrium of Γ(0) such that x∗T > −∞. By the (local) strict monotonicity of UT

around x∗T implied by the assumption that x
∗
T /∈ argmaxx UT

¡
x∗T−1, x

¢
, there exists εT < ε such

that either

UT

¡
x∗T−1, x∗T − εT

¢
> 0 > UT

¡
x∗T−1, x∗T + εT

¢
,

or UT

¡
x∗T−1, x∗T − εT

¢
< 0 < UT

¡
x∗T−1, x∗T + εT

¢
. Without loss of generality, assume the first

case — the argument for the other case is identical. From the continuity of UT

¡
xT−1, xT

¢
in

xT−1 ∈ RT−1
and the fact that the result holds for T − 1, there exists some ε0T ∈ (0, εT ) such that,

for any δ < δ (ε0T , T − 1), there is a sequence x̄T−1(δ) satisfying the following three conditions:20

[C1] for all t ≤ T − 1, either x̄t (δ) = −∞ and Vt (x̄
τ (δ)) ≤ 0, or x̄t ∈ R and Vτ (x̄

τ (δ) ; δ) = 0;

[C2] for all t ≤ T − 1, |x∗t − x̄t(δ)| < ε0T < ε if x∗t ∈ R, and x̄t (δ) < −1/ε0T < −1/ε if x∗t = −∞;
[C3] in period T, UT

¡
x̄T−1(δ), x∗T − εT

¢
> 0 > UT

¡
x̄T−1 (δ) , x∗T + εT

¢
.

Next, by the convergence of VT
¡
xT−1, xT

¢
to UT

¡
xT−1, xT

¢
for any

¡
xT−1, xT

¢
∈ RT−1 ×R, there

exists δT ∈ (0, δ (ε0T , T − 1)) such that, for any δ < δT , there is x̄T−1(δ) that satisfies [C1]-[C2] and

such that:
19This follows from the the monotonicity of U(θ;−∞, α1, β, z) in θ — which in turn is implied by α1 ≥ β2/

√
2π —

and the monotonicity of θ1 (x̄1) in x̄1.
20Continuity of U implies existence of ε0T such that that [C3] holds for any x̄T−1(δ) that satisfies [C2]; that the

result holds for T − 1 then ensures that, for any δ < δ (ε0T , T − 1) , there exists x̄T−1(δ) that satisfies both [C1] and
[C2].
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[C30] in period T, VT
¡
x̄T−1(δ), x∗T − εT ; δ

¢
> 0 > VT

¡
x̄T−1 (δ) , x∗T + εT ; δ

¢
.

But then, by the continuity of VT
¡
xT−1, xT

¢
in xT , for the same x̄T−1(δ), there exists an x̄T (δ) ∈ R,

with |x∗T − x̄T (δ)| < εT < ε, that solves VT
¡
x̄T−1(δ), x̄T (δ); δ

¢
= 0.

Next, take any equilibrium of Γ(0) such that x∗T = −∞.Recall that, for any t ≥ 2, Ut

¡
x∗t−1, xt

¢
=

−c < 0 for all xt < x̃t, where x̃t > −∞ solves θt (x̃t) = θt−1
¡
x∗t−1

¢
≡ maxτ≤t−1 θτ (x∗τ ) . Pick some

x0T ∈ (−∞,min{−1/ε, x̃T}). From the continuity of UT

¡
xT−1, xT

¢
in xT−1 and the fact that the

result holds for T − 1, there exists some ε0 ∈ (0, ε) such that, for any δ < δ (ε0, T − 1)), there is a
sequence x̄T−1(δ) which satisfies conditions [C1]-[C2] above (replacing ε0T with ε0) and such that:

[C4] UT

¡
x̄T−1 (δ) , x0T

¢
< 0.

By the pointwise convergence of VT to UT , there also exists a δT ∈ (0, δ (ε0, T − 1))) such that, for
any δ < δT , there is x̄T−1 (δ) that satisfies [C1]-[C2] and such that:

[C40] VT
¡
x̄T−1 (δ) , x0T ; δ

¢
< 0.

If, for the same x̄T−1(δ), there exists an x00T ∈ (−∞, x0T ) such that VT
¡
x̄T−1(δ), x00T ; δ

¢
≥ 0, then,

by the continuity of VT
¡
xT−1, xT

¢
in xT ∈ R, there is also an x̄T (δ) ∈ R, with x00T < x̄T (δ) <

x0T < −1/ε, such that VT
¡
x̄T−1(δ), x̄T (δ) ; δ

¢
= 0. If instead VT

¡
x̄T−1(δ), xT ; δ

¢
< 0 for all xT ∈

(−∞, x0T ), then x̄T (δ) = −∞ satisfies VT
¡
x̄T−1(δ),−∞

¢
≤ 0.21

Finally, recall that (6) admits at most two solutions in every t and therefore the set of xT∗ that

can be part of an equilibrium of Γ (0) is finite. Hence, there is δ (ε, T ) ∈ (0, δ (ε, T − 1)) such that,
for any δ < δ (ε, T ) and every equilibrium {x∗t }∞t=1 of Γ (0) for which x∗t /∈ argmaxx Ut

¡
xt−1∗, x

¢
for all t ≤ T, there exists x̄T (δ) such that, for all t ≤ T : if x∗t ∈ R, then |x̄t (δ) − x∗t | < ε

and Vt
¡
x̄t (δ) ; δ

¢
= 0; and if x∗t = −∞, then x̄t (δ) < −1/ε and Vt

¡
x̄t (δ)

¢
≤ 0. Using the same

arguments as for the proof of existence in Proposition 3, x̄T (δ) is part of an equilibrium {x̄t (δ)}∞t=1
for Γ (δ) , which completes the proof.

Proof of Proposition 4. Apart from a notational adjustment — namely the dependence of

U in period t on (βt, zt) and of (x∗t , θ
∗
t ) on zt — the proof follows exactly the same steps as in the

model with only private information, and is thus omitted for brevity.

Proof of Theorem 3. Consider first t = 1. For any (α1, β1, z1) , U (θ∗,−∞, α1, β1, z1) is

continuous in θ∗ ∈ [0, 1] with U (0,−∞, ·) = 1 − c and U (1,−∞, ·) = −c. Hence a solution
θ∗1(z1) to U (θ∗1,−∞, α1, β1, z1) = 0 always exists.22 Next, consider any t ≥ 2 and note that,

for any (θ∗t−1, αt, βt) and any θ∗ ∈ (θ∗t−1, 1), U
¡
θ∗, θ∗t−1, αt, βt, zt

¢
is strictly decreasing in zt and

U (θ∗, ·, zt) → 1 − c > 0 as zt → −∞, implying that necessarily maxθ∗∈[θ−1,1] U (θ
∗, ·, zt) > 0

for zt sufficiently low. Furthermore, since U (θ∗, ·, zt) is continuous in θ∗ ∈ [θ∗t−1, 1] for any zt,

and since U
¡
θ∗, θ∗t−1, ·

¢
→ −c monotonically for any θ∗ ∈ [θ∗t−1, 1] as zt → +∞, from stan-

21This follows from the same argument used in the proof of Proposition 3.
22Note that the function θ∗1(·) is unique if and only if α1 ≥ β21/2π. Hence for α1 < β21/2π, the game trivially admits

multiple equilibria even if T = 1.

28



dard Monotone Convergence Theorems, the function U
¡
θ∗, θ∗t−1, ·, zt

¢
converges uniformly to −c

as zt → +∞, implying that maxθ∗∈[θ−1,1] U
¡
θ∗, θ∗t−1, αt, βt, zt

¢
< 0 for zt sufficiently high. The

strict monotonicity of U in zt then guarantees that there exists a finite z
¡
θ∗t−1, αt, βt

¢
such that

maxθ∗∈[θ−1,1] U
¡
θ∗, θ∗t−1, αt, βt, zt

¢
≥ (≤) 0 if and only if z ≤ (≥) z

¡
θ∗t−1, αt, βt

¢
, which also implies

that (9) admits a solution θ∗t (z
t) > θ∗t−1(z

t−1) if and only if zt ≤ z
¡
θ∗t−1, αt, βt

¢
. The following

is then an equilibrium: for t = 1, θ∗1(z1) is any solution to U (θ∗1,−∞, α1, β1, z1) = 0; for all

t ∈ {2, ..., T}, θ∗t (zt) = max({θ∗t−1(zt−1)}∪{θ∗ : U
¡
θ∗, θ∗t−1(z

t−1), αt, βt, zt
¢
= 0}. Note that, in this

equilibrium, at any t ≥ 2, θ∗t (zt) > θ∗t−1(z
t−1) for all zt ≤ z

¡
θ∗t−1, αt, βt

¢
. Since θ∗t

¡
zt
¢
= θ∗1(z1) for

all zt and all t is also an equilibrium, we conclude that the game admits multiple equilibria for any

{αt, βt}Tt=1 and any T ≥ 2.
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