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ABSTRACT

We used a random-assignment experiment in Los Angeles Unified School District to evaluate various
non-experimental methods for estimating teacher effects on student test scores.  Having estimated
teacher effects during a pre-experimental period, we used these estimates to predict student achievement
following random assignment of teachers to classrooms. While all of the teacher effect estimates we
considered were significant predictors of student achievement under random assignment, those that
controlled for prior student test scores yielded unbiased predictions and those that further controlled
for mean classroom characteristics yielded the best prediction accuracy. In both the experimental and
non-experimental data, we found that teacher effects faded out by roughly 50 percent per year in the
two years following teacher assignment.
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Introduction 

 For more than three decades, research in a variety of school districts and states 

has suggested considerable heterogeneity in teacher impacts on student achievement. 

However, as several recent papers remind us, the statistical assumptions required for the 

identification of causal teacher effects with observational data are extraordinarily strong-- 

and rarely tested (Andrabi, Das, Khwaja and Zajonc (2008), McCaffrey et. al. (2004) , 

Raudenbush (2004), Rothstein (2008), Rubin, Stuart and Zannutto (2004), Todd and 

Wolpin (2003)).  Teachers may be assigned classrooms of students that differ in 

unmeasured ways—such as consisting of more motivated students, or students with 

stronger unmeasured prior achievement or more engaged parents—that result in varying 

student achievement gains.  If so, rather than reflecting the talents and skills of individual 

teachers, estimates of teacher effects may reflect principals’ preferential treatment of their 

favorite colleagues, ability-tracking based on information not captured by prior test 

scores, or the advocacy of engaged parents for specific teachers. These potential biases 

are of particular concern given the growing number of states and school districts that use 

estimates of teacher effects in promotion, pay, and professional development (McCaffrey 

and Hamilton, 2007). 

 In this paper, we used data from a random-assignment experiment in the Los 

Angeles Unified School District to test the validity of various non-experimental methods 

for estimating teacher effects on student test scores.  Non-experimental estimates of 

teacher effects attempt to answer a very specific question:  If a given classroom of 

students were to have teacher A rather than teacher B, how much different would their 

average test scores be at the end of the year?  To evaluate non-experimental estimates of 
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teacher effects, therefore, we designed an experiment to answer exactly this question. In 

the experiment, 78 pairs of elementary school classrooms (156 classrooms and 3194 

students) were randomly assigned between teachers in the school years 2003-04 and 

2004-05 and student test scores were observed at the end of the experimental year (and in 

two subsequent years).   

 We then tested the extent to which the within-pair difference in pre-experimental 

teacher effect estimates (estimated without the benefit of random assignment) could 

predict differences in achievement among classrooms of students that were randomly 

assigned. To address the potential non-random assignment of teachers to classrooms in 

the pre-experimental period, we implemented several commonly used “value added” 

specifications to estimate teacher effects—using first-differences in student achievement 

(“gains”), current year achievement conditional on prior year achievement (“quasi-

gains”), unadjusted current year achievement, and current year achievement adjusted for 

student fixed effects.   To address the attenuation bias that results from using noisy pre-

experimental estimates to predict the experimental results, we used empirical Bayes (or 

“shrinkage”) techniques to adjust each of the pre-experimental estimates.  For a correctly 

specified model, these adjusted estimates are the Best Linear Unbiased Predictor of a 

teacher’s impacts on average student achievement (Goldberger, 1962; Morris, 1983; 

Robinson, 1991; Raudenbush and Bryk, 2002), and a one-unit difference in the adjusted 

estimate of a teacher effect should be associated with a one-unit difference in student 

achievement following random assignment. We test whether this is the case by regressing 

the difference in average achievement between randomized pairs of classrooms on the 
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within-pair difference in the empirical Bayes estimate of the pre-experimental teacher 

effect. 

 We report the following results. First, non-experimental estimates of teacher 

effects from a specification that controlled for prior test scores and mean peer 

characteristics performed best in predicting student achievement in the experiment, 

showing no significant bias and having the highest predictive accuracy (R-squared) 

among the measures we considered. We estimate that these non-experimental estimates 

were able to explain just over half of the teacher-level variation in average student 

achievement during the experiment. While not perfect, the non-experimental estimates 

capture much of the variation in teacher effectiveness. 

Second, for all of the non-experimental specifications that took into account prior 

year student achievement (either by taking first-differences or by including prior 

achievement as a regressor), we could not reject the hypothesis that teacher effects were 

unbiased predictors of student achievement under random assignment. Conditioning on 

prior year achievement appears to be sufficient to remove bias due to non-random 

assignment of teachers to classrooms. 

Third, all of the teacher effect estimates we considered – even those that were 

biased – were significant predictors of student achievement under random assignment. 

For instance, although our results suggest that average end-of-year test scores (unadjusted 

for student covariates) overstate teacher differences, and that differencing out student 

fixed effects in test score levels understates teacher differences, both of these measures of 

a teacher’s impact were significantly related to student achievement during the 
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experiment, and explained a substantial amount of teacher-level variation during the 

experiment. 

 Finally, in the experimental data we found that the impact of the randomly-

assigned teacher on math and reading achievement faded out at a rate of roughly 50 

percent per year in future academic years.  In other words, only 50 percent of the teacher 

effect from year t was discernible in year t+1 and 25 percent was discernible in year t+2.  

A similar pattern of fade-out was observed in the non-experimental data.  We propose an 

empirical model for estimating the fade-out of teacher effects using data from the pre-

experimental period, assuming a constant annual rate of fade-out.   We then tested the 

joint validity of the non-experimental teacher effects and the non-experimental fade-out 

parameter in predicting the experimental outcomes one, two and three years following 

random assignment. We could not reject that the non-experimental estimates (accounting 

for fadeout in later years) were unbiased predictions of what was observed in the 

experiment.  

 

Related Literature 

 Although many analysts have used non-experimental data to estimate teacher 

effects (for example, Armour (1971), Hanushek (1976), McCaffrey et. al. (2004), 

Murnane and Phillips (1981), Rockoff (2004), Hanushek, Rivkin and Kain (2005), Jacob 

and Lefgren (2005), Aaronson, Barrow and Sander (2007), Kane, Rockoff and Staiger 

(2006), Gordon, Kane and Staiger (2006)), we were able to identify only one previous 

study using random assignment to estimate the variation in teacher effects.   In that 

analysis, Nye, Konstantopoulous and Hedges (2004) re-analyzed the results of the STAR 
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experiment in Tennessee, in which teachers were randomly assigned to classrooms of 

varying sizes within grades K through 3.  After accounting for the effect of different 

classroom size groupings, their estimate of the variance in teacher effects was well within 

the range typically reported in the non-experimental literature.   

 However, the STAR experiment was not designed to provide a validation of non-

experimental methods.  The heterogeneity of the teachers in those 79 schools may have 

been non-representative or rivalrous behavior induced by the experiment itself (or simple 

coincidence) may have accounted for the similarity in the estimated variance in teacher 

effects in that experiment and the non-experimental literature.  Because they had only the 

experimental estimates for each teacher, they could not test whether non-experimental 

techniques would have identified the same individual teachers as effective or ineffective.  

Yet virtually any use of non-experimental methods for policy purposes would require 

such validity. 

 

Description of the Experiment 

The experimental portion of the study took place over two school years: 2003-04 

and 2004-05.  The initial purpose of the experiment was to study differences in student 

achievement among classrooms taught by teachers certified by The National Board for 

Professional Teaching Standards (NBPTS)—a non-profit that certifies teachers based on 

a portfolio of teacher work (Cantrell et al., 2007).    Accordingly, we began with a list of 

all National Board applicants in the Los Angeles area (identified by zip code).  LAUSD 

matched the list with their current employees, allowing the team to identify those teachers 

still employed by the District.   
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Once the National Board applicants were identified, the study team identified a 

list of comparison teachers in each school.  Comparison teachers had to teach the same 

grade and be part of the same calendar track as the National Board Applicants.1  In 

addition, the NBPTS requires that teachers have at least three years of experience before 

application.  Since prior research has suggested that teacher impacts on student 

achievement grow rapidly during the first three years of teaching, we restricted the 

comparison sample to those with at least three years of teaching experience. 

The sample population was restricted to grades two through five, since students in 

these grades typically are assigned a single instructor for all subjects.  Although 

participation was voluntary, school principals were sent a letter from the District’s Chief 

of Staff requesting their participation in the study.   These letters were subsequently 

followed up with phone calls from the District’s Program Evaluation and Research 

Branch (PERB).  Once the comparison teacher was agreed upon and the principal agreed 

to participate, the principal was asked to create a class roster for each of the paired 

teachers with the condition that the principal would be equally satisfied if the teachers’ 

assignments were switched. The principal also chose a date upon which the random 

assignment of rosters to teachers would be made.  (Principals either sent PERB rosters or 

already had them entered into LAUSD’s student information system.)    On the chosen 

date, LAUSD’s PERB in conjunction with the LAUSD’s School Information Branch 

randomly chose which rosters to switch and executed the switches at the Student 

Information System at the central office.  Principals were then informed whether or not 

the roster switch had occurred.   

                                                 
1 Because of overcrowding, many schools in Los Angeles operate year round, with teachers and students 
attending the same school operating on up to four different calendars. Teachers could be reassigned to 
classrooms only within the same calendar track. 
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Ninety-seven valid pairs of teachers, each with prior non-experimental value-

added estimates, were eligible for the present analysis.2 Nineteen pairs, however, were 

excluded from the analysis (leaving an analysis sample of seventy eight pairs) because 

they were in schools whose principals withdrew from the experiment on the day of the 

roster switch. It is unclear from paper records kept by LAUSD whether principals were 

aware of any roster switches at the time they withdrew. However, withdrawal of these 

pairs was independent of whether LAUSD had switched the roster: 10 of the withdrawn 

pairs had their rosters switched, while 9 of the withdrawn pairs did not have their rosters 

switched. We suspect that these principals were somehow not fully aware of the 

commitment they had made the prior spring, and withdrew when they realized the nature 

of the experiment.  

Once the roster switches had occurred, no further contact was made with the 

school.  Some students presumably later switched between classes.  However, 85 percent 

of students remained with the assigned teacher at the end of the year.   Teacher and 

student identifiers were masked by the district to preserve anonymity. 

 

                                                 
2 We began with 151 pairs of teachers who were randomized as part of the NBPTS certification evaluation.  
However, 42 pairs were not eligible for this analysis because prior estimates of the teacher effect were 
missing for at least one of the teachers in the pair (primarily first grade teachers). Another 12 pairs were 
dropped for administrative reasons such as having their class rosters reconstructed before the date chosen 
for randomization, or having designated a randomization date that occurred after classes had begun. 
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Data 

During the 2002-03 academic year, the Los Angeles Unified School District 

(LAUSD) enrolled 746,831 students (kindergarten through grade 12) and employed 

36,721 teachers in 689 schools scattered throughout Los Angeles County.3   For this 

analysis, we use test score data from the spring of 1999 through the spring of 2007. 

Between the spring of 1999 and the spring of 2002, the Los Angeles Unified School 

District administered the Stanford 9 achievement test.  State regulations did not allow for 

exemptions for students with disabilities or poor English skills.  In the Spring of 2003, 

the district (and the state) switched from the Stanford 9 to the California Achievement 

Test.  Beginning in 2004, the district used a third test—the California Standards Test.  

For each test and each subject, we standardized by grade and year. 

 Although there was considerable mobility of students within the school district (9 

percent of students in grades 2 through 5 attended a different school than they did the 

previous year), the geographic size of LAUSD ensured that most students remained 

within the district even if they moved.  Conditional on having a baseline test score, we 

observed a follow-up test score for 90 percent of students in the following spring. 

We observed snapshots of classroom assignments in the fall and spring semesters.  

In both the experimental and non-experimental samples, our analysis focuses on 

“intention to treat” (ITT), using the characteristics of the teacher to whom a student was 

assigned in the fall.   

We also obtained administrative data on a range of other demographic 

characteristics and program participation.  These included race/ethnicity (hispanic, white, 

                                                 
 3 Student enrollment in LAUSD exceeds that of 29 states and the District of Columbia.  There were 429 
elementary schools in the district. 
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black, other or missing), indicators for those ever retained in grade, designated as Title I 

students, those eligible for Free or Reduced Price lunch, those designated as homeless, 

migrant, gifted and talented or participating in special education.  We also used 

information on tested English language Development level (level 1-5).  In many 

specifications, we included fixed effects for the school, year, calendar track and grade for 

each student.  

We dropped those students in classes where more than 20 percent of the students 

were identified as special education students.  In the non-experimental sample, we 

dropped classrooms with extraordinarily large (more than 36) or extraordinarily small 

(less than 10) enrolled students. (This restriction excluded 3 percent of students with 

valid scores).  There were no experimental classrooms with such extreme class sizes. 

 
Empirical Methods 
 
 Our empirical analysis proceeded in two steps.  In the first step, we used a variety 

of standard methods to estimate teacher value added based on observational data 

available prior to the experiment. In the second step, we evaluated whether these value-

added estimates accurately predicted differences in students’ end-of-year test scores 

between pairs of teachers who were randomly assigned to classrooms in the subsequent 

experimental data. 

 As emphasized by Rubin, Stuart and Zanutto (2004), it is important to clearly 

define the quantity we are trying to estimate in order to clarify the goal of value-added 

estimation.  Our value-added measures are trying to answer a very narrow question: If a 

given classroom of students were to have teacher A rather than teacher B, how much 
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different would their average test scores be at the end of the year?  Thus, the outcome of 

interest is end-of-year test scores, the treatment that is being applied is the teacher 

assignment, and the unit at which the treatment occurs is the classroom.  We only observe 

each classroom with its actual teacher, and do not observe the counter-factual case of 

how that classroom would have done with a different teacher. The empirical challenge is 

estimating what test scores would have been in this counter-factual case. When teachers 

are randomized to classrooms (as in our experimental data), classroom characteristics are 

independent of teacher assignment and a simple comparison of average test scores among 

each teacher’s students is an unbiased estimate of differences in teacher value added. The 

key issue that value added estimates must address is the potential non-random assignment 

of teachers to classrooms in observational data, i.e. how to identify “similar” classrooms 

that can be used to estimate what test scores would have been with the assignment of a 

different teacher. 

While there are many other questions we might like to ask – such as, “what is the 

effect of switching a single student across classrooms,” or “what is the effect of peer or 

school characteristics”, or “what is the effect on longer-run student outcomes” – these are 

not the goal of the typical value-added estimation.  Moreover, estimates of value added 

tell us nothing about why a given teacher affects student test scores. Although we are 

assuming a teacher’s impact is stable, it may reflect the teacher’s knowledge of the 

material, pedagogical approach, or the way that students and their parents respond to the 

teacher with their own time and effort. Finally, the goal of value-added estimation is not 

to estimate the underlying education production function.  Such knowledge is relevant to 

many interesting policy questions related to how we should interpret and use value added 
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estimates, but estimating the underlying production function requires extensive data and 

strong statistical assumptions (Todd and Wolpin, 2003). The goal of estimating teacher 

value added is much more modest, and can be accomplished under much weaker 

conditions. 

 

Step 1: Estimating teacher value added with prior observational data 

 To estimate the value added of the teachers in our experiment, we used four years 

of data available prior to the experiment (1999-2000 through 2002-2003 school years). 

Data on each student’s teacher, background characteristics, end of year tests, and prior 

year tests were available for students in grades 2 through 5.  To make our observational 

sample comparable to our experimental sample, we limited our sample to the schools that 

participated in the experiment.  To assure that our observational sample was independent 

of our experimental sample, we excluded all students who were subsequently in any of 

our experimental classrooms (e.g., 2nd graders who we randomly assigned a teacher in a 

later grade). We also excluded students in classrooms with fewer than five students in a 

tested grade, as these classrooms provided too few students to accurately estimate teacher 

value added (and were often a mixed classroom with primarily 1st graders). After these 

exclusions, our analysis sample included data on the students of 1950 teachers in the 

experimental schools, including 140 teachers who were later part of the experimental 

analysis.   

 Teacher value added was estimated as the teacher effect (μ) from a student-level 

estimating equation of the general form: 

(1) ijtjtjijtijtijtijt whereXA εθμννβ ++=+= ,  
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The dependent variable (Aijt) was either the end-of-year test score (standardized by grade 

and year) or the test score gain since the prior spring for student i taught by teacher j in 

year t. The control variables (Xijt) included student and classroom characteristics, and are 

discussed in more detail below. The residual (υijt) was assumed to be composed of a 

teacher’s value added (μj) that was constant for a teacher over time, an idiosyncratic 

classroom effect (to capture peer effects and classroom dynamics) that varied from year 

to year for each teacher (θjt), and an idiosyncratic student effect that varied across 

students and over time (εijt).  

 A variety of methods have been used in the literature to estimate the coefficients 

(β) and teacher effects (μ) in equation 1 (see McCaffrey, 2003, for a recent survey). We 

estimated equation (1) by OLS, and used the student residuals (υ) to form empirical 

Bayes estimates of each teacher’s value added as described in greater detail below 

(Morris, 1983). If the teacher and classroom components are random effects 

(uncorrelated with X), OLS estimation yields consistent but inefficient estimates of β. 

Hierarchical Linear Models (HLM) were designed to estimate models such as equation 1 

with nested random effects, and are a commonly used alternative estimation method that 

yields efficient maximum likelihood estimates of β at the cost of greater computational 

complexity (Raudenbush and Bryk, 2002). Because of our large sample sizes, HLM and 

OLS yield very similar coefficients and the resulting estimates of teacher value added are 

virtually identical (correlation>.99). Another common estimation approach is to treat the 

teacher and classroom effects in equation 1 as fixed effects (or correlated random 

effects), allowing for potential correlation between the control variables (X) and the 

teacher and classroom effects (Gordon, Kane, and Staiger, 2006; Kane, Rockoff and 
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Staiger, forthcoming; Rockoff, 2004; Rothstein, 2008). Because both methods rely 

heavily on the within-classroom variation to identify the coefficients on X, fixed effect 

and OLS also yield very similar coefficients and the resulting estimates of teacher value 

added are therefore also very similar in our data. 

 While estimates of teacher value added were fairly robust to how equation (1) was 

estimated, they were less robust to the choice of the dependent and independent variables. 

Therefore, we estimated a number of alternative specifications that, while not exhaustive, 

were representative of the most commonly used specifications (McCaffrey, 2003).  Our 

first set of specifications used the end-of-year test score as the dependent variable.  The 

simplest specification included no control variables at all, essentially estimating value 

added based on the average student test scores in each teacher’s classes. The second 

specification added controls for student baseline scores from the previous spring (math, 

reading and language arts) interacted with grade, indicators for student demographics 

(race/ethnicity, migrant, homeless, participation in gifted and talented programs or 

special education, participation in the free/reduced price lunch program, Title I status, 

and grade indicators for each year), and the means of all of these variables at the 

classroom level (to capture peer effects).  The third specification added indicators for 

each school to the control variables.  The fourth specification replaced the student-level 

variables (both demographics and baseline scores) with student fixed effects. Finally, we 

repeated all of these specifications using test score gains (the difference between end-of-

year scores and the baseline score from the previous spring) as the dependent variable.  

For the specifications using first-differences in achievement, we excluded baseline scores 

from the list of control variables, which is equivalent to imposing a coefficient of one on 
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the baseline score in the levels specification. Student fixed effects were highly 

insignificant in the gains specification, so we do not report value added estimates for this 

specification. Each of the specifications was estimated separately by subject, yielding 

seven separate value-added measures (four using test levels, three using test gains) for 

each teacher in math and language arts. 

 For each specification, we used the student residuals (υ) from equation 1 to form 

empirical Bayes estimates of each teacher’s value added (Raudenbush and Bryk, 2002). 

This is the approach we have used successfully in our prior work (Gordon, Kane, and 

Staiger, 2006; Kane, Rockoff and Staiger, forthcoming; Rockoff, 2004). The empirical 

Bayes estimate is a best linear predictor of the random teacher effect in equation 1 

(minimizing the mean squared prediction error), and under normality assumptions is an 

estimate of the posterior mean (Morris, 1983). The basic idea of the empirical Bayes 

approach is to multiply a noisy estimate of teacher value added (e.g., the mean residual 

over all of a teacher’s students from a value added regression) by an estimate of its 

reliability, where the reliability of a noisy estimate is the ratio of signal variance to signal 

plus noise variance. Thus, less reliable estimates are shrunk back toward the mean (zero, 

since the teacher estimates are normalized to be mean zero). Nearly all recent 

applications have used a similar approach to estimate teacher value added (McCaffrey et 

al., 2003). 

 We constructed the empirical Bayes estimate of teacher value added in three 

steps.  

1) First, we estimated the variance of the teacher (μj), classroom (θjt) and student (εijt) 

components of the residual (υijt) from equation 1. The within-classroom variance in 
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υijt was used as an estimate of the variance of the student component: 

(2)  ( )jtijtVar ννσ ε −=2ˆ .  

The covariance between the average residual in a teacher’s class in year t and year t-1 

was used as an estimate of the variance in the teacher component:5 

(3)  ( )1
2 ,ˆ −= jtjtCov ννσ μ .  

The covariance calculation was weighted by the number of students in each 

classroom (njt).  Finally, we estimated the variance of the classroom component as the 

remainder:  

(4)  ( ) 222 ˆˆˆ εμθ σσνσ −−= ijtVar . 

2) Second, we formed a weighted average of the average classroom residuals for each 

teacher ( )jtν  that was a minimum variance unbiased estimate of μj for each teacher 

(so that weighted average had maximum reliability).  Data from each classroom was 

weighted by its precision (the inverse of the variance), with larger classrooms having 

less variance and receiving more weight: 
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3) Finally, we constructed an empirical Bayes estimator of each teacher’s value added 

by multiplying the weighted average of classroom residuals ( )jν  by an estimate of its 

                                                 
5 This assumes that the student residuals are independent across a teacher’s classrooms.  Occasionally, 
students will have the same teacher in two subsequent years – either because of repeating a grade, or 
because of looping (where the teacher stays with the class through multiple grades). We deleted all but the 
first year of data with a given teacher for such students. 
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reliability: 
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The quantity in parenthesis represents the shrinkage factor, and reflects the reliability 

of jν  as an estimate of μj, where the reliability is the ratio of signal variance to total 

variance. Note that the total variance is the sum of signal variance and estimation 

error variance, and the estimation variance for jν  can be shown to be
1−
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Step 2: Experimental validation of non-experimental value-added estimates 

 In the experimental data, we evaluated both the bias and predictive accuracy of 

the value-added estimates generated by each of our specifications. If teachers were 

randomly assigned to classrooms in the non-experimental data, then specifications with 

additional controls could improve the precision of the value-added estimates but would 

not affect bias. If teachers were not randomly assigned to classrooms in the non-

experimental data, then additional controls could also reduce bias.  Thus, both bias and 

predictive accuracy are questions of interest.  

 The experimental data consisted of information on all students originally assigned 

to 78 pairs of classrooms. As discussed below, some students and teachers changed 

classrooms subsequent to randomization. All of our analyses were based on the initial 

teacher assignment of students at the time of randomization, and therefore represent an 

intention-to-treat analysis.  
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Since randomization was done at the classroom-pair level, the unit of our analysis 

was the classroom-pair (with only secondary analyses done at the student level) which 

provides 78 observations. For our main analyses, we averaged student-level data for each 

classroom, and estimated the association between these classroom-level outcomes and 

teacher value added. Teachers were randomized within but not across pairs, so our 

analysis focused on within-pair differences, and estimated models of the form: 

(7) jpjppjp VAY εβα ++= ,  for j=1,2  and p=1,..,78. 

The dependent variable is an average outcome for students assigned to the classroom, the 

independent variable is the assigned teacher’s value-added estimate, and we control for 

pair fixed effects.  Since there are two classrooms per randomized group, we estimated 

the model in first differences (which eliminates the constant, since the order of the 

teachers is arbitrary): 

(8) ( ) ppppp VAVAYY εβ ~
2212 +−=− , for p=1,..,78. 

These bivariate regressions were run un-weighted, and robust standard errors were used 

to allow for heteroskedasticity across the classroom pairs.  In secondary analyses we 

estimated equation 7 at the student level (which implicitly weights each class by the 

number of students) and clustered the standard errors at the pair level. 

 To validate the non-experimental value-added estimates, we estimated equation 8 

using the within-pair difference in end-of-year test scores (math or language arts) as the 

dependent variable. A coefficient of one on the difference in teacher value added would 

indicate that the value added measure being evaluated was unbiased – that is, the 

expected difference between classrooms in end-of-year tests scores is equal to the 

difference between the teachers’ value added. In fact, we might expect a coefficient 
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somewhat below one because our intention-to-treat analysis is based on initial 

assignment, while about 15 percent of students have a different teacher by the time of the 

spring test. We use the R-squared from these regressions to evaluate the predictive 

accuracy of each of our value-added measures. 

 We also explore the persistence of teacher effects on test scores by estimating 

equation 8 using differences in student achievement one and two years after the 

experimental assignment to a particular teacher. McCaffrey et al. (2004) found that 

teacher effects on math scores faded out in a small sample of students from five 

elementary schools. In our experimental setting, the effect of teacher value added on 

student achievement one or two years later could be the result of this type of fade out or 

could be the result of systematic teacher assignment in the years subsequent to the 

experiment. We report some student-level analyses that control for subsequent teacher 

assignment (comparing students randomly assigned to different teachers who 

subsequently had the same teacher), but these results are no longer purely experimental 

since they condition on actions taken subsequent to the experiment. 

 Finally, we estimate parallel regressions based on equation 8 to test whether 

baseline classroom characteristics or student attrition are related to teacher assignment. 

Using average baseline characteristics of students in each class as the dependent variable, 

we test whether teacher assignment was independent of classroom and student 

characteristics. Similarly, using the proportion of students in each class who were missing 

the end-of-year test score as the dependent variable, we test whether student attrition was 

related to teacher assignment.  We expect a coefficient of zero on the difference in 

teacher value added in these regressions, implying that classroom characteristics and 
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student attrition were not related to teacher assignment. While only 10% of students are 

missing end-of-year test scores, selective attrition related to teacher assignment is a 

potential threat to the validity of our experiment.  

 

Sample Comparisons 
 
 Table 1 reports the characteristics of three different samples.   An “experimental 

school” is any school which contained a pair of classrooms that was included in the 

random assignment experiment.  Within the experimental schools, we have reported 

separately the characteristics of teachers in the experimental sample and those that were 

not.6  The teachers in the experimental sample were somewhat less likely to be Hispanic 

than the other teachers in the experimental schools (23 percent versus 31 percent) and 

somewhat more likely to be African American (17 percent versus 14 percent).   The 

average experimental teacher also had considerably more teaching experience, 15.6 years 

versus 10.5 years.  Both of these differences were largely due to the sample design, which 

focused on applicants to the National Board for Professional Teaching Standards. 

 We also used the full sample of students, in experimental and non-experimental 

schools, to estimate non-experimental teacher effects conditioning on student/peer 

characteristics and baseline scores.   Although the teachers in the experimental sample 

differed from those in the non-experimental sample in some observable characteristics, 

the mean and standard deviation of the non-experimental teacher effects were very 

similar across the three samples. 

                                                 
6 There were only 140 unique teachers in our experimental sample because sixteen of our sample teachers 
participated in both years. 
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 In Table 2, we compare student characteristics across the same three groups, 

including mean student scores in 2004 through 2007 for students in the experimental 

schools and non-experimental schools.   Although the racial/ethnic distributions are 

similar, three differences are evident.  First, within the experimental schools, the students 

assigned to the experimental sample of teachers had somewhat higher test scores, .027 

standard deviations above the average for their grade and year in math, while the non-

experimental sample had baseline scores .11 standard deviations below the average.   We 

believe this too is a result of the focus on National Board applicants in the sample design, 

since more experienced teachers tend to be assigned students with higher baseline scores.  

Second, the student baseline scores in the non-experimental schools are about .024 

standard deviations higher than average.   Third, the students in the experimental sample 

are more likely to be in 2nd and 3rd grade, rather than 4th and 5th grade.   Again, this is a 

result of the sample design: in Los Angeles, more experienced teachers tend to 

concentrate in grades K-3, which have small class sizes (20 or fewer students) as a result 

of the California class size reduction legislation. 

 

Estimates of Variance Components of Teacher Effects 

 Table 3 reports the various estimates that were required for generating our 

empirical Bayes estimates of teacher effects.   The first column reports the estimate of the 

standard deviation in “true” teacher impacts.  Given that students during the pre-

experimental period were generally not randomly assigned to classrooms, our estimate of 

the standard deviation in true teacher effects is highly sensitive to the student-level 

covariates we use.  For instance, if we include no student-level or classroom-level mean 
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baseline characteristics as covariates, we would infer that the standard deviation in 

teacher impacts was .448 in math and .453 in English language arts.  However, after 

including covariates for student and peer baseline performance and characteristics, the 

implied s.d. in teacher effects is essentially cut in half, to .231 in math and .184 in 

English language arts.   Adding controls for school effects has little impact, lowering the 

estimated s.d. in teacher impacts to .219 in math and .175 in English language arts.  

(Consistent with earlier findings, this reflects the fact that the bulk of the variation in 

estimated teacher effects is among teachers working in the same school, as opposed to 

differences in mean estimated impact across schools.)   However, adding student by 

school fixed effects, substantially lowers the estimated s.d. in teacher impact to .101 and 

.084.    

 A standard deviation in teacher impact in the range of .18 to .20 is quite large.  

Since the underlying data are standardized at the student and grade level, an estimate of 

that magnitude would imply that the difference between being assigned a 25th or a 75th 

percentile teacher would imply that the average student would improve about one-quarter 

of a standard deviation relative to similar students in a single year.   

 The second column reports our estimate of the standard deviation of the 

classroom by year error term.   These errors—which represent classroom-level 

disturbances such as a dog barking on the day of the test or a coincidental match between 

a teacher’s examples and the specific questions that appeared on the test that year-- are 

assumed to be i.i.d. for each teacher for each year.   Rather than being trivial, this source 

of error is estimated to be quite substantial and nearly equal to the standard deviation in 

the signal (e.g. a standard deviation of .179 for the classroom by year error term in math 
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versus .219 for the estimated teacher impact on math after including student and peer-

level covariates). In English language arts, the estimated standard deviation in the teacher 

signal is essentially equal to the standard deviation in the classroom by year error. 

 The third column in the table reports the mean number of observations we had for 

each teacher (summed across years) for estimating their effect.   Across the 4 school 

years (spring 2000 through spring 2003), we observed an average of 42 to 47 student 

scores per teacher for estimating teacher effects. 

 

Relationship between Pre-experimental Estimates and Baseline Characteristics 

 To the extent that classrooms were randomly assigned to teachers, we would not 

expect a relationship between teacher’s non-experimental value-added estimates and the 

characteristics of their students during the experiment.   Indeed, as reported in Table 4, 

there is no significant relationship between the within-pair difference in pre-experimental 

estimates of teacher effects and baseline differences in student performance or 

characteristics (baseline math and reading, participation in the gifted and talented 

program, Title I, the free or reduced price lunch program or special education, 

race/ethnicity, an indicator for those students retained in a prior grade, and a students’ 

LEP status).7    

 

Attrition and Teacher Switching 

                                                 
7 Since random assignment occurred at the classroom level (not the student level), we take the first-
difference within each pair and estimate each of these relationships with one observation per pair.   In 
results not reported here, we also explored the relationship using student-level regressions, including fixed 
effects for each pair and clustering at the pair level.  None of those relationships were statistically 
significant either. 
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 In Table 5, we report relationships between the within-pair difference in pre-

experimental estimates of teacher effects and the difference in proportion of students 

missing test scores at the first, second or third year following random assignment.  For 

the entry in the first row of column (1), we estimated the relationship between the within-

pair difference in pre-experimental teacher math effects and the difference in the 

proportion of students missing math scores at the end of the first year.  Analogously, the 

second row reports the relationship between within-pair differences in pre-experimental 

ELA effects and the proportion missing ELA scores. There is no statistically significant 

relationship between pre-experimental teacher effect estimates and the proportion 

missing test scores in the first, second or third year. Thus, systematic attrition does not 

appear to be a problem. 

 The last column reports the relationship between pre-experimental value-added 

estimates for teachers and the proportion of students switching teachers during the year.   

Although about 15 percent of students had a different teacher at the time of testing than 

they did in the fall semester, there was no relationship between teacher switching and 

pre-experimental value-added estimates. 

 

Experimental Outcomes 

 Table 6 reports the relationship between within-pair differences in mean test 

scores for students at the end of the experimental year (as well as for the subsequent two 

years when students are dispersed to other teachers’ classes) and the within-pair 

differences in pre-experimental teacher effects.  As described above, the pre-experimental 

teacher effects were estimated using a variety of specifications.   
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 The coefficients on the within-pair difference in each of these pre-experimental 

measures of teacher effects in predicting the within-pair difference in the mean of the 

corresponding end of year test score (whether math or English language arts) are reported 

in Table 6.  Each of these was estimated with a separate bivariate regression with no 

constant term.   

 Several findings are worth noting.   

First, all of the coefficients on the pre-experimental estimates in column (1) are 

statistically different from zero.   Whether using test score levels or gains, or math or 

English language arts, those classrooms assigned to teachers with higher non-

experimental estimates of effectiveness scored higher on both math and English language 

arts at the end of the first school year following random assignment. 

 Second, those pre-experimental teacher effects that fail to control for any student 

or peer-level covariates are biased—the predicted difference in student achievement 

overstates the actual difference (as reflected in a coefficient less than unity).   Recall from 

the discussion in the empirical methods section,  each of the estimated teacher effects 

have been “shrunk” to account for random sources of measurement error—both non-

persistent variation in classroom performance and student-level errors.  If there were no 

bias, we would expect the coefficients on the adjusted pre-experimental estimate of 

teacher effects to be equal to one.  Although we could reject the hypothesis that mean 

student scores in years prior to the experiment had a coefficient of zero, we could also 

reject the hypothesis that the coefficients were equal to one:  in math, the 95 percent 

confidence interval was .511±1.96*.108, while the confidence interval in ELA was 

.418±1.96*.155.   The fact that the coefficient is less than one implies that a 1-point 
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difference in prior estimated value-added is associated with less than 1 point (in fact, 

about half that) difference in student achievement at the end of the year.  To the extent 

that students were not randomly assigned to teachers during the pre-experimental period, 

we would have expected the pre-experimental estimates using test score levels to have 

been biased upward in this way if better teachers were being assigned students with 

higher baseline achievement or if much of the observed variation in teacher effects was 

due to student tracking. 

 Third, the coefficients on the pre-experimental teacher effects which used student-

level fixed effects were close to 2 (1.859 in math, 2.144 in English language arts) and the 

90 percent confidence intervals do not include one.  Apparently, such estimates tend to 

understate true variation in teacher effects.  With the growing availability of longitudinal 

data on students and teachers, many authors in the “value-added” literature have begun 

estimating teacher effects with student fixed effects included.  However, as Rothstein 

(2008) has argued, the student fixed effect model is biased whenever a given student is 

observed a finite number of times and students are assigned to teachers based on time-

varying characteristics—even tracking on observable characteristics such as their most 

recent test score.  The student fixed effect model requires that students are subject only to 

“static” tracking—tracking based on a fixed trait known at the time of school entry.   

 Fourth, note that the coefficients on the estimated teacher effects in the remaining 

specifications (test score levels with student and peer controls, or test score gains with or 

without including other student and peer controls) were all close to 1, significantly 

greater than zero, and not statistically different from one.   In other words, we could 

reject the hypothesis that they had no relationship to student performance, but we could 
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not reject the hypothesis that the pre-experimental estimates of teacher effects were 

unbiased. Thus, all of the specifications that conditioned on prior student test score in 

some manner yielded unbiased estimates of teacher effects. 

 Fifth, in terms of being able to predict differences in student achievement at the 

end of the experimental year, the specifications using pre-experimental estimates based 

on student/peer controls and school fixed effects had the highest R2 – .226 for math and 

.169 in English language arts – while similar specifications without the school fixed 

effect were a close second.   In other words, of the several specifications which we could 

not reject as being unbiased, the specifications with the lowest mean squared error in 

terms of predicting differences in student achievement were those which included 

student/peer controls.  (Recall that the experimental design is also focused on measuring 

differences in student achievement within schools, so those too implicitly include school 

fixed effects.)  

 To illustrate the predictive power of the pre-experimental estimates, we plotted 

the difference in student achievement within teacher pairs against the difference in pre-

experimental teacher effects for these preferred specifications in Figure 1 (math on the 

left, English language arts on the right), along with the estimated regression line and the 

prediction from a lowess regression.  Teachers were ordered within the randomized pair 

so that the values on the x-axis are positive, representing the difference between the 

higher and lower value-added teacher.  Thus, we expect the difference in achievement 

between the two classrooms to be positive, and more positive as the difference in value-

added increases between the two teachers. This pattern is quite apparent in the data, and 
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both the regression line and the lowess predictions lie near to the 45 degree line as 

expected. 

 How much of the systematic variation in teacher effects are the imperfect 

measures capturing?   Given that the experimental estimates themselves are based on a 

sample of students, one would not expect an R2 of 1 in Table 6 even if the value-added 

estimates were picking up 100 percent of the “true” variation in teacher effects.   A quick 

back of the envelope calculation suggests that the estimates are picking up about half the 

variation in teacher effects.   The total sum of squared differences (within each pair) in 

mean classroom performance in math was 17.6.    Assuming that the teacher effects 

within each pair were uncorrelated, the total variation that we would have expected, even 

if we had teachers actual effects, μ1p0  and μ2p , would have been 7.48 (= 78 * 2 * .2192, 

where .219 is the s.d. of actual teacher effects from table 3).  As a result, the maximum 

R2 we could have expected in a regression such as those in Table 6 would have been 

7.48/17.6=.425.  Thus, the variation in math teacher effects within pairs that we were able 

to explain with the value added estimates accounted for about 53 percent of the maximum 

(.226/.425). A similar calculation shows that value added estimates in English Language 

Arts also explained about 53 percent of the teacher level variation. 

 Finally, the remaining columns of Table 6 report differences in student 

achievement one and two years after the experimental assignment to a particular teacher.  

After students have dispersed into other teachers’ classrooms in the year following the 

experiment, about half of the math impact had faded.  (Each of the coefficients declines 

by roughly 50 percent.)  In the second year after the experimental year, the coefficients 

on the teacher effects on math had declined further and were not statistically different 
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from zero.   In other words, while the mean student assigned to a high “value-added” 

teacher seems to outperform similar students at the end of the year, the effects fade over 

the subsequent two years.   As discussed in the conclusion, this has potentially important 

implications for calculating the cumulative impact of teacher quality on achievement. 

 

Testing for Compensatory Teacher Assignment   

 If principals were to compensate a student for having been assigned a high- (or 

low-) value-added teacher one year with a low (or high-) value-added teacher the next 

year, we would be overstating the degree of fade-out in the specifications above. That is, 

a student randomly assigned a high-impact teacher during the experiment might have 

been assigned a low-impact teacher the year after. However, the (non-experimental) 

value-added estimates for the teacher a student was assigned in the experimental year and 

the teacher they were assigned the following year were essentially uncorrelated (-0.01 for 

both math and English language arts), suggesting this was not the mechanism.   

Another way to test this hypothesis is to re-estimate the relationships using 

student-level data and include fixed effects for teacher assignments in subsequent years 

(note that this strategy conditions on outcomes that occurred after random assignment, 

and therefore no longer relies solely on experimental identification due to random 

assignment). As reported in Table 7, there is little reason to believe that compensatory 

teacher assignments accounts for the fade-out.   The first two columns report results from 

student-level regressions that were similar to the pair-level regression reported for first 

and second year scores in the previous table.  The only difference from the corresponding 

estimates in Table 6 is that these estimates are estimated at the student level and, 
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therefore, place larger weight on classrooms with more students. As we would have 

expected, this reweighting resulted in estimates that were very similar to those reported in 

Table 6. The third column of Table 7 reports the coefficient on one’s experimental year 

teacher in predicting one’s subsequent performance, including fixed effects for one’s 

teacher in the subsequent year. Sample size falls somewhat in these regressions because 

we do not have reliable teacher assignments for a few students.  If principals were 

assigning teachers in successive years to compensate (or to ensure that students have 

similar mean teacher quality over their stay in school), one would expect the coefficient 

on the experimental year teacher’s effect to rise once the teacher effects are added.  The 

coefficient is little changed.  The same is true in the second year after the experimental 

year. 

A Model for Estimating Fade-Out in the Non-Experimental Sample 

 In the model for estimating teacher effects in equation (1), we attached no 

interpretation to the coefficient on baseline student performance.   The empirical value of 

the coefficient could reflect a range of factors, such as the quality or prior educational 

inputs, student sorting among classrooms based on their most recent performance, etc.  

However, in order to be able to compare the degree of fade-out observed following 

random assignment with that during the pre-experimental period, we need to introduce 

some additional structure. 

 Suppose a student’s achievement were a sum of prior educational inputs, decaying 

at a constant annual rate, plus an effect for their current year teacher.  We could then 

substitute the following equation for equation (1): 

  jtjtijtijtijtijtijt whereA θμδφφεφ ++=+= −1,
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 In the above equation, ijtφ  represents a cumulative school/teacher effect and δ 

represents the annual rate of persistence (or 1- annual rate of decay).   As before, jtμ  

represents the effect of one’s current year teacher and jtθ a non-persistent classroom by 

year error term. 

 By taking differences and re-arranging terms, we could rewrite the above as: 

 

 OLS will yield biased estimates of δ, since 1−ijtA  and 1−ijtε will be correlated.   As 

a result, we use a vector of indicators for teacher assignment in year t-1 as an instrument 

for 1−ijtA , in generating an IV estimator for δ.8  Table 8 reports the resulting estimates of δ 

using three different specifications, using fixed effects for the current-year teacher, 

including fixed effects for the current year classroom, and including controls for other 

student-level traits.   Each of the estimates in the table suggest a large degree of fade-out 

of teacher effects in the non-experimental data, with between 50 and 60 percent of 

teacher and school impacts fading each year.    

 Using the non-experimental estimate of δ, we constructed a test of the joint 

validity of our estimates of δ and of the teacher effects, jμ .  To do so, we again studied 

differences in student achievement for randomly assigned classrooms of students, pre-

multiplying our empirical Bayes estimate of the teacher effect by the fade-out parameter: 

 

 The results for t=0, 1 and 2 are reported in Table 9.  The estimates for years t=1 

and 2 are quite imprecise.  However, when pooling all three years, we could not reject the 

                                                 
8 In contemporaneous work, Jacob et al. (2008) has proposed a similar estimation method. 
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hypothesis that a one unit difference in pre-experimental impact estimates, adjusted for 

the degree of fade out between year 0 and year t, was associated with a comparable 

difference in student achievement following random assignment. In other words, non-

experimental estimates of teacher effects, combined with a non-experimental estimate of 

the amount of fadeout per year, are consistent with student achievement in both the year 

of the experiment and the two years following.  

 

External Validity:   Is Teacher-Student Sorting Different in Los Angeles? 

 Given the ubiquity of non-experimental impact evaluation in education, there is a 

desperate need to validate the implied causal effects with experimental data.  In this 

paper, we have focused on measuring the extent of bias in non-experimental estimates of 

teacher effects in Los Angeles.  However, there may be something idiosyncratic about the 

process by which students and teachers are matched in Los Angeles.  For instance, given 

the large number of immigrant families in Los Angeles, parents may be less involved in 

advocating for specific teachers for their children than in other districts.  Weaker parental 

involvement may result in less sorting on both observables and unobservables. 

 To test whether the nature and extent of tracking of students to teachers in Los 

Angeles are different than in other districts, we calculated two different measures of 

sorting on observables in Los Angeles:  the standard deviation in the mean baseline 

expected achievement (the prediction of end-of-year scores based on all of the student 

baseline characteristics) of students typically assigned to different teachers and the 

correlation between the estimated teacher effect and the baseline expected achievement 

of students. We estimated both of these statistics in a manner analogous to how we 
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estimate the variance in teacher effects in table 3, using the covariance between one year 

and the next to estimate the signal variance and covariance. This way, we are estimating 

the variance and correlation in the persistent component, in the same way that we 

estimate the variance of the persistent component in the teacher effect. We calculated 

these measures in three districts for which we were able to obtain data:  New York City, 

Boston and Los Angeles. We further split out the experimental schools in Los Angeles to 

investigate whether teacher-student sorting in our experimental schools differed from Los 

Angeles in general.  To achieve some comparability, we standardized the test scores in all 

three districts by grade and year and used similar sets of regressors to estimate the teacher 

effects.   

 There are three striking findings reported in Table 10.  First, the standard 

deviation in teacher effects is very similar in the three cities, ranging from .16 to .19 in 

math and .13 to .16 in English Language arts.  Second the degree of sorting of students 

based on baseline expected achievement was similar in Los Angeles, NYC and Boston 

with a standard deviation in mean student baseline expected achievement of about .5.  

Third, the correlation between the teacher effect and the baseline expected achievement 

was similar in all three cities, but small: between .04 and .12.   In other words, in all three 

cities, there is strong evidence of tracking of students based on baseline expected 

performance into different teachers’ classrooms.  However, there is little correlation 

between students’ baseline achievement and the effectiveness of the teachers they were 

assigned.    Nevertheless, when it comes to both types of sorting measured in Table 10, 

Los Angeles is not markedly different from Boston or NYC.  Finally, on all of the 
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measures reported in Table 10, the schools participating in the experiment are similar to 

the other Los Angeles schools. 

 The low correlation between students’ baseline achievement and the current year 

“teacher effect” has important implications, in light of the fade-out in teacher effects 

noted above.  In the presence of such fade-out, a students’ teacher assignment in prior 

school years would play a role in current achievement gains – conditional on baseline 

performance, a student who had a particularly effective teacher during the prior year 

would under-perform relative to a student with a particularly ineffective teacher during 

the prior year.  Indeed, Rothstein (2008) presents evidence of such a phenomenon using 

North Carolina data.  However, to the extent that the prior teacher effect is only weakly 

correlated with the quality of one’s current teacher, excluding prior teacher assignments 

would result in little bias when estimating current teacher effects. 

 

Conclusion 
 
 Our analysis suggests that standard teacher value-added models are able to 

generate unbiased and reasonably accurate predictions of the causal short-term impact of 

a teacher on student test scores. Teacher effects from models that controlled both for 

prior test scores and mean peer characteristics performed best, explaining over half of the 

variation in teacher impacts in the experiment.  Since we only considered relatively 

simple specifications, this may be a lower bound in terms of the predictive power that 

could be achieved using a more complex specification (for example, controlling for prior 

teacher assignment or available test scores from earlier years). Although such additional 

controls may improve the precision of the estimates, we did not find that they were 
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needed to remove bias.9  While our results need to be replicated elsewhere, these findings 

from Los Angeles schools suggest that recent concerns about bias in teacher value added 

estimates may be overstated in practice. 

 However, both our experimental and non-experimental analyses find significant 

fade-out of teacher effects from one year to the next, raising important concerns about 

whether unbiased estimates of the short-term teacher impact are misleading in terms of 

the long-term impacts of a teacher. Interestingly, it has become commonplace in the 

experimental literature to report fade-out of test score impacts, across a range of different 

types of educational interventions and contexts.  For instance, experiments involving the 

random assignment of tutors in India (Banerjee et al., 2007) and recent experimental 

evaluations of incentive programs for teachers and students  in developing countries 

(Glewwe, Ilias and Kremer, 2003) showed substantial rates of fade out in the first few 

years after treatment.  In their review of the evidence emerging from the Tennessee class 

size experiment, Krueger and Whitmore (2001) conclude achievement gains one year 

after the program fell to between a quarter and a half of their original levels.  In a recent 

re-analysis of teacher effects in the Tennessee experiment, Konstantopoulos (2007, 2008) 

reports a level of fade-out similar to that which we observed. McCaffrey et al. (2004), 

Jacob et al.  (2008) and Rothstein (2008) also report considerable fade-out of estimated 

teacher effects in non-experimental data.   

However, it is not clear what should be made of such “fade out” effects.  

Obviously, it would be troubling if students are simply forgetting what they have learned, 

or if value-added measured something transitory (like teaching to the test) rather than true 

                                                 
9 Rothstein (2008) also found this to be the case, with the effect of one’s current teacher controlling for 
prior teacher or for earlier test scores being highly correlated (after adjusting for sampling variance) with 
the effect when those controls were dropped.  
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learning. This would imply that value added overstates long-term teacher effectiveness. 

However, this “fade out” evidence could also reflect changing content of the tests in later 

grades (students do not forget the content that they learned in prior years, it is no longer 

tested).  Alternatively, the impact of a good teacher could spill over to other students in 

future years through peer effects making relative differences in test scores appear to 

shrink. These types of mechanisms could imply that short term value added measures are 

indeed accurate indicators of long-term teacher effectiveness, despite apparent fade out.  

Better understanding of the mechanism generating fade out is critically needed before 

concluding that teacher effects on student achievement are ephemeral.
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Non-experimental 
School

Experimental Sample
Non-experimental 

Sample
Non-experimental 

Sample

Mean Teacher Effect in Math -0.005 -0.002 0.005
     S.D. 0.193 0.199 0.200
Mean Teacher Effect in ELA -0.007 0.004 0.003
     S.D. 0.150 0.150 0.150

Black, Non-Hispanic 0.174 0.138 0.123
Hispanic 0.225 0.311 0.325
White, Non-Hispanic 0.486 0.447 0.425
Other, Non-Hispanic 0.116 0.102 0.123
Teacher Race/Ethnicity Missing 0.000 0.003 0.003

Years of Experience 15.648 10.542 10.758

N: 140 1,785 11,352

Experimental School

Table 1: Sample Comparison - Teachers

Note: Descriptive statistics based on the experimental years (2003-04 and 2004-05).  The mean teacher 
effect in math and ELA were estimated using the full sample of schools and teachers, controlling for baseline 
scores, student characteristics, and peer controls.



Non-experimental 
School

Experimental Sample
Non-experimental 

Sample
Non-experimental 

Sample

Math Scores
   2004 Mean 0.027 -0.110 0.024
           S.D. 0.931 0.941 1.008
   2005 Mean -0.008 -0.113 0.028
           S.D. 0.936 0.940 1.007
   2006 Mean 0.001 -0.100 0.037
           S.D. 0.960 0.941 1.006
   2007 Mean -0.016 -0.092 0.030
           S.D. 0.956 0.941 1.006

ELA Scores
   2004 Mean 0.038 -0.113 0.023
           S.D. 0.913 0.936 1.008
   2005 Mean 0.009 -0.117 0.027
           S.D. 0.920 0.930 1.009
   2006 Mean 0.039 -0.096 0.037
           S.D. 0.923 0.928 1.001
   2007 Mean 0.018 -0.095 0.037
           S.D. 0.940 0.936 1.000

Black, Non-Hispanic 0.112 0.115 0.113
Hispanic 0.768 0.779 0.734
White, Non-Hispanic 0.077 0.060 0.088
Other, Non-Hispanic 0.044 0.046 0.066

Grade 2 0.377 0.280 0.288
Grade 3 0.336 0.201 0.207
Grade 4 0.113 0.215 0.211
Grade 5 0.131 0.305 0.294

N: 3,554 43,766 273,525

Table 2: Sample Comparison - Students

Experimental School

Note: Descriptive statistics based on the experimental years (2003-04 and 2004-05). Students present 
both years are counted only once.



Teacher 
Effects

Teacher by 
Year Random 

Effect

Mean Sample 
Size per 
Teacher

Math Levels with...
No Controls 0.448 0.229 47.255
Student/Peer Controls (incl. prior scores) 0.231 0.179 41.611
Student/Peer Controls (incl. prior scores) & School F.E. 0.219 0.177 41.611
Student Fixed Effects 0.101 0.061 47.255

Math Gains with...
No Controls 0.236 0.219 43.888
Student/Peer Controls 0.234 0.219 43.888
Student/Peer Controls & School F.E. 0.225 0.219 43.888

English Language Arts Levels with...
No Controls 0.453 0.224 47.040
Student/Peer Controls (incl. prior scores) 0.184 0.171 41.504
Student/Peer Controls (incl. prior scores) & School F.E. 0.175 0.170 41.504
Student Fixed Effects 0.084 0.027 47.040

English Language Arts Gains with...
No Controls 0.192 0.203 43.103
Student/Peer Controls 0.183 0.203 43.103
Student/Peer Controls & School F.E. 0.177 0.203 43.103

Specification Used for Non-experimental Teacher Effect

Note: The above estimates are based on the total variance in estimated teacher fixed effects using 
observations from the pre-experimental data (years 1999-2000 through 2002-03). See the text for discussion 
of the estimation of the decomposition into teacher by year random effects, student-level error, and "actual" 
teacher effects.  The sample was limited to schools with teachers in the experimental sample.  Any individual 
students who were in the experiment were dropped from the pre-experimental estimation, to avoid any 
spurious relationship due to regression to the mean, etc.

Table 3: Non-experimental Estimates of Teacher Effect Variance Components

Standard Deviation of Each 
Component (in Student-level 

Standard Deviation Units)



English 
Language 

Status

Math 
Score

Language 
Score

Gifted 
and 

Talented
Ever 

Retained
Special 

Education Hispanic Black Title I
Free 

Lunch
Level     
1 to 3

Math Levels with Student/Peer Controls -0.109 0.027 -0.013 -0.048 -0.042 -0.043 -0.002 0.041 0.032 -0.021
(0.225) (0.267) (0.022) (0.038) (0.033) (0.043) (0.041) (0.052) (0.061) (0.070)

N: 44 44 78 78 78 78 78 78 78 78

ELA Levels with Student/Peer Controls 0.043 0.282 0.021 -0.049 -0.053 -0.021 -0.018 0.106 0.082 -0.071
(0.340) (0.381) (0.031) (0.049) (0.053) (0.097) (0.058) (0.082) (0.084) (0.123)

N: 44 44 78 78 78 78 78 78 78 78

Table 4.  Regression of Experimental Difference in Student Baseline Characteristics 

Note: Each baseline characteristic listed in the columns was used as a dependent variable, regressing the within-pair difference in mean baseline 
characteristic on different non-experimental estimates of teacher effects.  The coefficients were estimated in separate  bivariate regressions with no 
constant.  Robust standard errors are reported in parentheses.  Baseline math and language arts scores were missing for the pairs that were in second 
grade.

Specification Used for                                
Non-experimental Teacher Effect

Baseline Demographics & Program ParticipationBaseline Scores

 on Non-Experimental Estimates of Differences in Teacher Effect



First Year Second Year Third Year

Math Levels with Student/Peer Controls -0.008 0.019 -0.021 -0.036
(0.048) (0.057) (0.058) (0.132)

N: 78 78 78 78

ELA Levels with Student/Peer Controls -0.054 -0.015 0.034 -0.153
(0.072) (0.081) (0.098) (0.164)

N: 78 78 78 78

 on Non-Experimental Estimates of Differences in Teacher Effect
Table 5.  Regression of Experimental Difference in Rates of Attrition and Classroom Switching 

Missing Test Score

Note: Each baseline characteristic listed in the columns was used as a dependent variable, regressing the within-pair difference in 
rates of missing test score or switching on different non-experimental estimates of teacher effects.  The coefficients were 
estimated in separate bivariate regressions with no constant.  Robust standard errors are reported in parentheses.

Specification Used for                          
Non-experimental Teacher Effect Switched Teacher



Test Score 
Second Year

Test Score 
Third Year

Coefficient R2 Coefficient Coefficient

Math Levels with...
No Controls     0.511*** 0.185     0.282** 0.124

(0.108) (0.107) (0.101)
Student/Peer Controls (incl. prior scores)     0.852*** 0.210     0.359* 0.034

(0.177) (0.172) (0.133)
Student/Peer Controls (incl. prior scores) & School F.E.     0.905*** 0.226     0.390* 0.07

(0.180) (0.176) (0.136)
Student Fixed Effects     1.859*** 0.153 0.822 0.304

(0.470) (0.445) (0.408)

Math Gains with...
No Controls     0.794*** 0.162 0.342 0.007

(0.201) (0.185) (0.146)
Student/Peer Controls     0.828*** 0.171 0.356 0.01

(0.207) (0.191) (0.151)
Student/Peer Controls & School F.E.     0.865*** 0.177 0.382 0.025

(0.213) (0.200) (0.157)

English Language Arts Levels with...
No Controls     0.418** 0.103 0.323 0.255

(0.155) (0.173) (0.157)
Student/Peer Controls (incl. prior scores)     0.987*** 0.150 0.477 0.476

(0.277) (0.284) (0.248)
Student/Peer Controls (incl. prior scores) & School F.E.     1.089*** 0.169 0.569     0.541*

(0.289) (0.307) (0.264)
Student Fixed Effects     2.144*** 0.116 1.306     1.291*

(0.635) (0.784) (0.642)

English Language Arts Gains with...
No Controls     0.765** 0.100 0.198 0.258

(0.242) (0.243) (0.228)
Student/Peer Controls     0.826** 0.108 0.276 0.321

(0.262) (0.261) (0.241)
Student/Peer Controls & School F.E.     0.886** 0.115 0.311 0.346

(0.274) (0.278) (0.253)

N: 78 78 78

Note: Each baseline characteristic listed in the columns was used as a dependent variable (math or ELA 
scores, corresponding to the teacher effect), regressing the within-pair difference in mean test scores on 
different non-experimental estimates of teacher effects.  The coefficients were estimated in separate bivariate 
regressions with no constant.  Robust standard errors are reported in parentheses.

Specification Used for Non-experimental Teacher Effect

Test Score         
First Year

Table 6.  Regression of Experimental Difference in Average Test Scores 
 on Non-Experimental Estimates of Differences in Teacher Effect



Specification Used for                                
Non-experimental Teacher Effect First Year Score

Math Levels with Student/Peer Controls     0.830***     0.401*     0.391* 0.047 0.016
(0.180) (0.177) (0.189) (0.142) (0.294)

N: 2,905 2,685 2,656 2,504 2,489

ELA Levels with Student/Peer Controls     1.064***     0.565*     0.681*     0.554* 0.606
(0.289) (0.287) (0.282) (0.255) (0.372)

N: 2,903 2,691 2,665 2,503 2,488

Student-Level Controls No No No No No
Second Year Teacher F.E. Yes
Second x Third Year Teacher F.E. Yes

Table 7: Student-Level Regressions of Student Test Scores 

Note: The above were estimated with student-level regressions using fixed effects for each experimental teacher pair. The 
dependent variable was the student's math score for the first row of estimates, and the student's ELA score for the second row of 
estimates. Robust standard errors (in parentheses) allow for clustering at the teacher-pair level. 

Second Year Score Third Year Score

 On Non-Experimental Estimates of Teacher Effect



A B C

Math     0.489***     0.478***     0.401***
(0.006) (0.006) (0.007)

N: 89,277 89,277 89,277

English Language Arts     0.533***     0.514***     0.413***
(0.007) (0.007) (0.009)

N: 87,798 87,798 87,798

Current Teacher F.E. Yes No No
Current Classroom F.E. No Yes Yes
Student Controls No No Yes

Table 8: IV Estimates of Teacher Effect Fade-out Coefficient

Note: The table reports coefficients on baseline score, estimated using separate 2SLS regressions 
with student test score as the dependent variable. Each specification included controls as 
indicated and grade-by-year fixed effects. Baseline test score is instrumented using a teacher 
dummy variable for the teacher associated with the baseline test.



Year 0 Year 1 Year 2
Years 0, 1, and 

2 Pooled

P-value for Test 
of Coefficients 

Equivalent Across 
Years

Math Levels with Student/Peer Controls     0.852***     0.894* 0.209     0.843*** 0.311
(0.177) (0.429) (0.826) (0.207)

Math Gains with Student/Peer Controls     0.828*** 0.889 0.060     0.819*** 0.289
(0.207) (0.477) (0.941) (0.239)

ELA Levels with Student/Peer Controls     0.987*** 1.155 2.788     1.054** 0.144
(0.277) (0.689) (1.454) (0.343)

ELA Gains with Student/Peer Controls     0.826** 0.668 1.880     0.829** 0.170
(0.262) (0.631) (1.413) (0.319)

N: 78 78 78 234

Specification Used for Non-experimental 
Teacher Effect

Note: Each year's classroom average test score was used as the dependent variable, regressing the within-pair difference in 
average test score on different non-experimental estimates of teacher effects discounted in year 1 by the coefficients in 
column "C" of Table 8 and in year 2 by the square of those same coefficients.  The coefficients were estimated in separate 
regressions with no constant.  Robust standard errors are reported in parentheses.

Table 9.  Regression of Experimental Difference in Average Test Scores 
 on Non-Experimental Estimates of Differences in Teacher Effect
 Adjusted for Fade Out in Years 1 and 2



Math ELA Math ELA Math ELA Math ELA

Standard Deviation in Teacher Effect 0.184 0.135 0.189 0.139 0.157 0.121 0.191 0.162

Standard Deviation in Baseline Expected 
Achievement in Teacher's Classroom                   

0.400 0.408 0.493 0.487 0.512 0.513 0.528 0.539

Correlation between Teacher Effect and 
Baseline Expected Achievement in Teacher's 
Classroom

0.120 0.118 0.091 0.085 0.041 0.083 0.114 0.103

Note: Estimated using non-experimental samples of 4th and 5th graders in years 2000-2003 for Los Angeles, 2000-2006 for New York City, and 
2006-2007 for Boston. Teacher value-added and baseline achievement estimated including student-level controls for baseline test scores, 
race/ethnicity, special ed, ELL, and free lunch status; classroom peer means of the student-level characteristics; and grade-by-year F.E.

Table 10: Comparing Assortive Matching in Los Angeles to Other Urban Districts

Experimental Schools in 
Los Angeles 

All Schools in      New 
York City

All Schools in      
Boston

All Schools in       Los 
Angeles 


