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Abstract

This paper proposes the notion of Polynomial Serial Correlation Common Features as a
measure of non-contemporaneous cyclical comovements in multiple time series. Statistical
inference within this modeling is easily performed by reduced rank regression. We show the
implications of the PSCCF in terms of the Beveridge-Nelson decomposition and we illustrate
their relevance for empirical analyses.
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1 DMotivation

In the empirical economic literature, business cycle regularities are often presented as comove-
ments of the deviations from a "trend” in different macroeconomic time series. Beyond this
general intuitive definition, no consensus emerges about how to measure the trend component
and how to analyze these short-run comovements. Engle and Kozicki (1993) and Vahid and
Engle (1993) proposed the Serial Correlation Common Feature (SCCF) as a measure of cyclical
comovements in a similar spirit as cointegration is used for detecting long-run relationships.!
In this context, common fluctuations describe a system with a reduced number of propagation
mechanisms for the transmission of the information contained in the past.?

However, one observes that due to technical reasons (e.g. seasonal adjustment) as well
as economic reasons (e.g. adjustment costs and habit formation), the hypothesis underlying
SCCF, namely that a linear combination of stationary variables is independent from the past,
is sometimes too strong. Consequently, different variants of the SCCF have been suggested in
order to allow for adjustment delays. Examples are the notions of Codependent Cycles (CC) by
Vahid and Engle (1997) and Weak Form Common Features by Hecq, Palm and Urbain (2000).

In this note we propose an alternative indicator of non-contemporaneous cyclical comove-
ments labelled the Polynomial Serial Correlation Common Feature (PSCCF). To illustrate this
concept, let us consider the theoretical model of consumer behavior that motivates the CC
approach in Vahid and Engle (1997). In the case where the representative agent has to choose
between two types of consumption goods, durables Dy and non-durables Cy, the standard per-
manent income hypothesis leads to the following implications for consumption components:

ADt = ’}/Et—‘rAét_l, (1)
AOI‘: = &, (2)

where A = (1 — L), L is the lag operator, &; is an innovation with respect to the information
set Iy = {D;,C;,Yd;;7 < t}, Yd; indicates disposable income, and v and A are coefficients
implied by preferences parameters.

Vahid and Engle (1997) suggest to test for these implications by looking for linear combi-
nations of AD; and AC; which are independent from I; 1. However, the statistical inference
becomes more involved than in the standard SCCF framework since VMA terms are entailed.
Instead, by lagging and multiplying by A both sides of (2) and substracting this new equation
from (1), we get

ADt — /\ACt,l = Y&, (3)

!Notice that term ”cycle” has in this framework a different meaning from spectral analysis, see Cubadda
(1999D).
2See Brillinger (1969) for this type of physical interpretation.



and hence there exists a linear combination of AD; and AC;_; which is a white noise. In partic-
ular, (1, —AL,0) is a (restricted) PSCCF vector for the trivariate process (AD;, ACy, AYd,)'.

In the sequel we formalize the notion of PSCCF and we show that statistical inference can
be performed by reduced rank regression. Then we analyze the implications of the PSCCF
for the multivariate Beveridge and Nelson (1981, BN henceforth) trend-cycle decomposition.
Finally, we estimate the model we have just sketched on post-war US data.

2 PSCCF: Definition and Statistical Inference

Consider the VAR(p) model for a n-vector of I(1) time series {y;,t =1,... T},
O(L)y = e, (4)

for fixed values of y_p41, ..., yo and where ®(L) = I,, = >°F_ &;L%, and i.i.d. N,(0,) errors &;.
For notational convenience, deterministic terms are omitted at this level of presentation.

We further assume that the process y; is cointegrated of order (1,1), namely that 1°)
rank(®(1)) = r, 0 < r < n, so that ®(1) can be expressed as ®(1) = —a3 , with a and 8 both
(n x r) matrices of full column rank r and that 2°) the matrix o/, &(1)3, has rank equal to
(n—7) where ®(1) denotes the first derivative of ®(z) at z = 1. The columns of 3 span the space
of cointegrating vectors, and the elements of « are the corresponding adjustment coefficients.
In order to rewrite the system in a VECM form we use the identity ®(L) = ®(1)L + ®*(L)A
where ®*(L) = I, — Zf:_ll QrL%, and @} = — > i1 ®@jfori=1,....,p—1. And finally we

obtain
(L) =A - A (L)L, (5)
with the notations
A (L) = aff + D (LA, and  ®*(L) = ®*(L) — I,. (6)
Alternatively, we can focus on the Wold representation of the stationary process Ay,
Ay, = C(L)ey, (7)

with 72, j|Cj| < oo, Co = I, and the associate polynomial factorization C(L) = C(1) +
AC*(L) where Cf = —3>"77, C; for i > 0. Also note that by combining (4) and (7) we obtain
the well-known equation,

C(L)®(L)y: = Ays. (8)



Definition 1 Polynomial Serial Correlation Common Features: The Series Ay, have
s PSCCF of order one iff there exists a n x s polynomial matriz §(L) = 6o + 61L such that the
matriz 8o s full column rank and §(L)'C(L) = §,.

Notice that the above definition can be easily extended to polynomial matrices of higher
orders. In the Appendix, we provide the main results for the more general case.

Some implications of the PSCCF are worth considering. Premultiplying by §(L)" both sides
of equation (8) and using Definition 1, we obtain

So®(L)yr = 6(L) Ayt. (9)
Hence, combining (5) and (9) we get
—80 A" (L)ye = 612y (10)

Note that the converse implication holds as well, i.e. equation (10) implies that the series
Ay; have the PSCCF. In view of equations (6) and (10), we can thus formulate the following

proposition:

Proposition 2 The Series Ay, have the PSCCF iff the following relations on the VECM co-

efficient matrices hold:

Assumption 1. ba=0
-8 ifi=1

Assumption 2. 6hdF =
b 0 { 0 ifi>1

Proposition 2 suggests a simple strategy for statistical inference. Indeed, since under PSCCF
the matrix &; lies in the left null space of all the VECM coefficient matrices but ®%, a ML
approach requires to solve one of the following equivalent canonical correlation programs,

r ~/
5/3/1&—1 i Yt—1
Ayi_s A Yt—1
CanCor{ Ay, _ | fi,Ayi—1 p, or CanCor ( Yt ) , Ay_o | fi
: Ayt—l R
Ag :
i Ayt—p-H

(11)

where CanCor(Y, X | Z) denotes the partial canonical correlations between the elements of ¥
and X conditional on Z, B is a superconsistent estimate of the cointegrating vectors, and f;
is a vector of fixed elements such a constant, a linear trend, and seasonal dummies. Notice
that the only difference of the second program is the presence of n additional unit eigenvalues

while the remaining n ones are identical. But the advantage of the second expression is that



the eigenvectors associated with the s smallest eigenvalues give estimates for both §y and
matrices.

One can test for the null hypothesis that there exist at least s PSCCF vectors through the
LR statistic (see inter alia Anderson, 1984, Velu et al., 1986)

Cpscor =—T» IW(1—-X), s=1...n, (12)
=1

where 0 < ... ;... < 1, are the (ordered) smallest squared canonical correlation coming from
the solution of (11), with s, the potential number of zero eigenvalues. The test statistic (12),
which is appropriate to test for PSCCF, follows asymptotically a X%v) distribution under the
null where v = s x (n(p—1—1)4+7r) — s x (n — s). In the empirical section we also use a
small sample correction proposed in Hecq (2000) similar to the one often used for cointegration
analysis, namely one applies to (12) the scaling factor® (T —n(p — 2) —r)/T.

Alternatively, an efficient estimation of elements of §(L), including the standard errors, is
obtained, for given s, by FIML in a model with s pseudo structural equations where the RHS

variables is given only by the Ay, and additional (n — s) unrestricted equations such that

~t
B Yyi—1
*/ ! Ayt—l
I 0,sXxn—s A Osxr 1.8Xn Osxnn ---  Osxn A
7 Yyt = ~ = =" = Yt—2 + U,
O(’I’L*S)XS Infs (0] @1 @2 e p—l .
AYi—pt1

(13)

*/

where the contemporaneous cofeature matrix 6y = (I, 80.sxn—s

) has been normalized and just-
identified with an identity matrix on the first s elements and where & and &Dj stands for the
remaining n — s coefficient matrices in the VECM. In (13) we have assumed that the first block
of ég is full rank. Otherwise, a rotation of the co-feature matrix is necessary. Interestingly,
the PSCCF modeling given by equations (13) may be used to test for additional restrictions

coming from the economic theory such as those in (3).

Remark 3 Notice that the constraints given in Proposition 2 are always true in o cointegrated
VAR(2) with 60 = «) . This is simply an extension of the property put forward by Vahid and
Engle (1993) that the SCCF vector is trivially ) in a cointegrated VAR(1). Consequently,
VAR(p) with p > 2 are worth considering in empirical analyses.

3In a Monte Carlo investigation (not reported here to save space but available upon request), it emerges that
the test statistic (12) has good finite sample properties. However, size distortions increase with the number
of variables n and the lag length p as expected according to the results by Abadir et al. (1999). Testing
becomes more difficult when the number s of cofeature vectors is large, and the cointegration rank and vectors
are estimated. In most cases, the small sample correction works quite well.



3 PSCCF and Non-Contemporaneous Cycles

In this section we focus on the properties of PSCCF in terms of the multivariate BN represen-
tation of the series y;. In particular, we can decompose y; in a trend and a cyclical component

as follows

Yy =T + &4, (14)

where A1y = C(1)e; and & = C*(L)e; (see e.g. Vahid and Engle, 1993). Since it holds

C(l) =—-p, (al@(l)ﬁj_) o o (see e.g. Johansen, 1995), we know that under cointegration
the series y; have (n — r) common stochastic trends.

Let us now see if the PSCCF has any implication for the cyclical components &,. If we
combine the equation

S(LYC(L) = &)+ ) _(81Ci—1 + & Ci) L, (15)

i>1
with the definition of the PSCCF we obtain
8C; = 64Ci41, for i > 0. (16)
By construction of C*(L) and in view of equation (16) we see that
S(L)'CH(L) = 605 =Y > (61Ci1 + 6Ci) L7 = 8y(I — C(1)) = 810(1), (17)
g2l i>j

where the last equality follows from the relation §(1)’'C(1) = §,. Equation (17) indicates that
8(L)'E, is an innovation. We summarize this result in the following proposition:

Proposition 4 If the series Ay; have the PSCCF then the BN cycles of y; have the same
PSCCF.

Interestingly enough, the converse implication of Proposition 4 generally fails. Indeed,
from the relation Cyy1 = Cf  — Cf, for i > 0, it can be easily shown that if there exists a
n x s polynomial matrix 6*(L) = 65 + 67L such that the matrix 45 is full column rank and
8*(LY'C*(L) = 65 C{ then it holds that

8" (L)'C(L) = &5 + (87C(1) = 65)L, (18)

Hence, the polynomial linear combination 6*(L)’ Ay, will be a VMA(1) process.
Notice that the presence of PSCCF have similar implications on the BN cycles as the

notion of CC.* However, there are two main differences between these approaches. First, the

“Indeed, Vahid and Engle (1997) proved that the same linear combination that renders the series Ay: a



CC relation involves only contemporaneous elements of the vector series and hence it is not
informative on the lead-lag structure of the cyclical components. Secondly, the presence of CC
is associated to linear combinations of the series Ay, with a VMA structure thus rendering

optimal statistical inference more involved.

4 Durable and Non-durable Expenditures

We finally illustrate the use of a PSCCF approach for modeling the relationship between durable
and non-durable consumption expenditures. We use US data on real per capita durable con-
sumption expenditures (D), non-durable plus services consumption expenditures (Cy), and
disposal personal income (Yd;).> In order to avoid the observations occurring during the Ko-
rean War, during the period of price control (extreme inflation variability) and Treasury-Fed
accord, our analysis runs over 1954:Q1-2000:Q1. The first eight observations are used as pre-
sample values for relationships containing lags. We determine the lag structure both using
information criteria and LR test statistics from 1 to 8, that means that T' = 177. In the light
of the debate in the literature about transforming the variables in logarithms or not, we con-
sider both linear and log-linear versions. In both cases, the model which best summarizes the
covariation of the data is a VAR(6) with an unrestricted constant.

Using Johansen trace test we reject at the 5% significance level the null hypothesis of zero
cointegrating vectors: Hp ,—o = 45.87 for the log-linear version and Hp ,—o = 31.26 for the linear
one. Moreover the hypothesis of more than one cointegrating vector is rejected in bot cases:
Hpr<1 = 4.24 for the log version and Hp,<1; = 8.82 otherwise. Fixing the first cointegrating
vector to its estimated value, Table 1 reports PSCCF test statistics. It emerges that we cannot
reject the null hypothesis of one PSCCF vector for both versions. Note that the hypothesis that
there exists a SCCF structure is rejected with a p-values of 0.009 and 0.016 for respectively the

log-linear and the linear models.
INSERT TABLES 1 & 2

Normalizing the PSCCF vectors by the coefficient of durable expenditures we have the
following estimates for Ay, = (ADy, ACy, AYdy) or (Ady, Acy, Aydy)',

linear version : &y = (1,—0.225,—0.155) and &1 = (—0.291,0.125,0.035)’

(0.123)  (0.067) (0.086)” (0.085) (0.032)
log-linear version : &g = (1,2.550,—6.715)" and & = (—0.323,—-1.623,1.646)
(2.491)"  (1.950) (0.141)"  (1.482) (0.695)

VMA(1) process is a SCCF relationship for the BN cycles of y:.

®The data come from historical national income and product accounts series and are available from the BEA
website at www.bea.doc.gov (also on the homepage www.personeel.unimaas.nl/a.hecq). They reflect the latest
annual revision of the NIPA’s, released on July 28, 2000 and reported in the August 2000 Survey of Current
Business. More precisely the variable we consider are from NIPA Table 8.7. Selected Per Capita Product and
Income Series in Current and Chained Dollars.



where the FIML asymptotic standard errors are in brackets. Table 2 reports additional exclusion
restrictions implied by the theoretical model. Tt emerges that only for the linear model exclusion
restrictions of the growth of disposal income are not rejected.

The PSCCF approach is very interesting especially when additional exclusion restrictions
are tested on the common feature space. In this application, we cannot reject the presence
of one PSCCF relationship between disposal income, durable and non-durable expenditures.
However the exclusion restrictions put forward by the theoretical model are rejected. Several
reasons can be given such as the misclassification of some durable goods as non-durables, the use
of seasonally adjusted series (Cubadda, 1999a) or some kind of misspecification of the empirical
model. Notice that a similar kind of exclusion restrictions may be used in business cycle analyses
for the extraction of a composite leading indicator (CLI). For instance, suppose that the vector
series Ay, = (Agdpg, Az;)’ has the PSCCF and there exist a polynomial matrix 6(L) with

b = (1,0") and 87 = (0,6})" where 87 # 0. In this case, a CLI with desirable properties is
given by the combination 6§} Ax;, see Cubadda and Hecq (2001) for further details.

5 Appendix

This Appendix generalizes the results for a Polynomial Serial Correlation Common Feature of
order m.

Definition 5 PSCCF(m): The Series Ay, have s polynomial serial correlation common fea-
tures of order m, henceforth PSCCF(m), iff there exists a n x s polynomial matriz 6(L) =
S0t 6; L such that the matriz 8 is full column rank and §(L)'C(L) = &,

—800AY(L)ys-—1 = 25;Ayt—z’- (A1)
i=1

Proposition 2 can be easily generalized as follows,

Proposition 6 The Series Ay: have the PSCCF(m) iff the following relations on the VECM
coefficient matrices hold:

Assumption 1. b = 0

-6 ifi=1,..
Assumption 2. 50®F = { ! Zf Z e M
0 ifi>m

Let us now see the implications of the PSCCF(m) for the BN cyclical components ;. If
we premultiply by §(L)" both sides of the equation C(L) = C(1) + AC*(L) and in view of
Definition 5 we get

8 = 8(LYC(1) + AS(LYC*(L). (A2)



Combining equation (A2) with the equation §(1)'C(1) = §;, we see that

AS(L)C*(L) = iu — IH8C(1). (A3)

i=1
Finally, since (1 — L') = AY 5! L7, we can rewrite equation (A3) as follows

m  i—1

8(LYCH(L) =) (Y _L)e0(1). (A4)

i=1 j=0
Equation (A4) allows us to formulate the following proposition:

Proposition 7 When the series Ay, have the PSCCF(m) then §(L)'¢, is a VMA(m — 1)

process.

However, the converse implication of Proposition 7 generally fails. Indeed, it is easy to see
that if there exists a n x s polynomial matrix ¢*(L) of order m such that the matrix & is full
column rank and 6*(L)'C*(L) is a polynomial matrix of order (m — 1) then 6*(L)’ Ay, will be
a VMA(m) process.
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Hy A Test  Test*™¥  \2df p-value p-value®™

log-linear s>1 0.087 16.20 15.00 11 134 182
s>2 0.186 52.71 48.84 24 <.001 .002
s = 0.291 113.67 105.32 39 <.001 <.001
linear s>1 0.065 11.83 10.96 11 376 .445
s>2 0.184 47.92 44.40 24 .002 .007
s=3 0.305 112.37 104.12 39 <.001 <.001

Table 1: PSCCF Tests Statistics (1956:Q1-2000:Q1)

Hy Test x2df p-value
linear model H} { g? z Ei:::gg; 4.59 2 101
H}: { g? _ Eig ggi 1079 3 013
H { g? _ E(l):ggi 1405 3 .003
HY { g? _ Eé:g: ggi 1534 4 004
log-linear model ~ H} : { g(l] z Ei:::ggi 20.67 2 <.001
HE { g? _ Eég 83: 2096 4 <.001

Table 2: PSCCF Exclusion Test Statistics
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