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In this paper a selection theory for stochastic games is developed. The theory itself is
based on the ideas of Harsanyi and Selten to select equilibria for games in standard

form. We introduce several possible definitions for the stochastic tracing procedure, an
extension of the linear tracing procedure to the class of stochastic games. We analyze
the properties of these alternative definitions. We show that exactly one of the proposed
extensions is consistent with the formulation of Harsanyi–Selten for games in standard
form and captures stationarity.
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1. Introduction

Stochastic games were introduced by Shapley (1953). He considered both finite and

infinite horizon two-person zero-sum stochastic games with finite state space and

finite action spaces. Shapley proved that such games have a value and that both

players possess optimal stationary strategies with respect to the discounted pay-

off criterion. Fink (1964), Takahashi (1964), and Sobel (1971) extended Shapley’s

model to n-person non-zero-sum stochastic games. For the model with finite state

space and finite action spaces they showed the existence of a stationary equilibrium.

A stochastic game is played in stages. At each stage, the game is in one of finitely

many states and every player observes the current state. In each stage the players

have to make a choice (simultaneously and independently) out of the action sets

which depend on the state. These choices result not only in a payoff (each state

is coupled with a normal form game), but also in an action dependent probability

measure on the set of states. Next, according to this probability measure, a chance

experiment is carried out to determine the state of the next stage.

For many normal form games there is a vast multiplicity of equilibria (see

McLennan (1999)). The situation is not better for the multiplicity of equilibria

in stochastic games, even when one restricts attention to stationary equilibria. It
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can be shown that there is typically a finite number of equilibria (see Haller and

Lagunoff (2000)), or even that there is an odd number of equilibria (see Herings

and Peeters (2000)). However, the results of McLennan (1999) indicate that one

should expect that the number of stationary equilibria is extremely large for an

average stochastic game. It is therefore important to develop and analyze selection

theories that select a particular stationary equilibrium. The aim of this paper is to

extend the linear tracing procedure, which is proposed by Harsanyi and Selten to

select equilibria in standard form games, in order to achieve equilibrium selection

within the class of stationary equilibria in stochastic games.

In this paper four ways to extend the linear tracing procedure of Harsanyi and

Selten (1988) to the setting of stochastic games are presented. The four alternatives

originate from two choices of modeling beliefs in stochastic games. First, there is

the assumption about beliefs within states. Second, there is the assumption about

beliefs across time (stages). Both belief-types might be assumed to be correlated

or not. After properly defining the four alternatives, they are analyzed. Only one

of the extensions turns out to be consistent with the linear tracing procedure while

capturing stationarity. We label this extension of the linear tracing procedure to

the class of stochastic games as the stochastic tracing procedure.

The paper is organized as follows. In Sec. 2 we introduce the notation for stochas-

tic games, we make the restriction to stationary strategies, and we define the concept

of stationary equilibrium. Section 3 is an introduction to the linear tracing proce-

dure. In Sec. 4, the four extensions of the linear tracing procedure to the class of

stochastic games are proposed and defined. Section 5 analyzes the four alternatives.

The last section, Sec. 6, summarizes comprehensively.

2. Notations

We study finite discounted stochastic games. A finite discounted stochastic game is

given by an ordered sextuple

Γ = 〈N, Ω, {Si
ω}(i,ω)∈N×Ω, {ui}i∈N , π, δ〉 .

Here, N is the finite set of players, Ω is the state space containing a finite number

of states, and the set Si
ω is the finite action set of player i ∈ N in state ω ∈ Ω.

Further, ui : H → R is the payoff function of player i and π is the transition

map π : H → ∆(Ω), where H = {(ω, sω) |ω ∈ Ω, sω ∈ Sω} and Sω = Xi∈N
Si

ω.

If in state ω ∈ Ω the players action choices are sω ∈ Sω, then player i gets an

instantaneous payoff of ui(ω, sω) and the probability that the system jumps to

state ω̄ is π(ω̄ |ω, sω). Finally, δ ∈ [0, 1) is a discount factor that is used to discount

future payoffs.

Such a stochastic game corresponds to a dynamic system which can be in dif-

ferent states and where at certain stages the players can influence the course of the

play. We consider the infinite horizon model and the set of stages is assumed to be

identical with the set N = {0, 1, . . .}. Players know the game itself and that this
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knowledge is common knowledge among all the players. Moreover, the initial state

ω0 at stage k = 0 is common knowledge to the players.

The game proceeds as follows. All players i select at the initial state, simul-

taneously and independently of each other, an action si
ω0 ∈ Si

ω0 . Now two things

happen, both depending on the current state ω0 and the action choices sω0 . (1)

Player i earns ui(ω0, sω0) for all i ∈ N . (2) The system jumps to the next state

ω1 according to the outcome of a chance experiment; the probability that the next

state will be ω̄ equals π(ω̄ |ω0, sω0). Subsequently, prior to the next stage k = 1, all

players are informed about the previous actions chosen by the players, and of the

new state ω1. At stage k = 1, the above procedure repeats itself, etc.

We assume that the game is of perfect recall, i.e. at each stage each player

remembers all past actions chosen by all players and all past states that have

occurred.

Note that for finite stochastic games, each stage game resembles a normal form

game Γω. However, contrary to the situation for normal form games, the game

does not exist of a single play, but jumps according to the probability measure

π(· |ω, sω) to the next state and continues dynamically. In choosing an action in a

certain state, a player not only takes into account the immediate payoff, but also

his opportunities in the future states.

Like in normal form games, the players are allowed to randomize their pure

actions. A mixed strategy of player i in state ω is a probability distribution on S i
ω.

We identify the set of all probability distributions on Si
ω with Σi

ω. The strategy

space of the normal form game in state ω is therefore equal to Σω = Xi∈N
Σi

ω.

Given a mixed strategy combination σω ∈ Σω and a strategy σ̄i
ω ∈ Σi

ω, we denote

by (σ−i
ω , σ̄i

ω) the mixed strategy that results from replacing σi
ω by σ̄i

ω . If a mixed

strategy combination σω ∈ Σω is played, then the instantaneous expected payoff of

player i is denoted by ui(ω, σω) and the expected transition to state ω̄ is denoted

by π(ω̄ |ω, σω).

The set of possible histories up to a stage k, Hk = X
k−1
κ=0

H , consists of all

sequences hk = (ω0, sω0 , ω1, sω1 , . . . , ωk−1, sωk−1) that could have actually occurred

up to time k. Here ωκ represents the state and sωκ the actions of the players at

stage κ, κ = 0, . . . , k − 1.

A behavior strategy σik of player i specifies for each stage k, each state ωk at time

k, and each history hk a strategy σik(hk, ωk) ∈ Σi
ωk . So, a behavior strategy σi for

player i is a sequence σi0, σi1, . . ., where σi0 ∈ Σi := Xω∈ΩΣi
ω and σik : Hk → Σi

for all k ≥ 1.

A stationary strategy for player i is a behavior strategy for which σik(hk, ωk) is

of the form σi(ωk), i.e. a history independent, but state dependent strategy. In the

sequel, a stationary strategy for player i will be denoted by the symbol ρi. If player

i decides to play the stationary strategy ρi, then every time that the system is in

state ω, player i selects his pure action according to ρi
ω. So, a stationary strategy

ρi for player i is an element of Σi.
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Given initial state ω and a strategy σ, the stream of expected payoffs is evaluated

by

U i(ω, σ) :=

∞
∑

k=0

δk · U ik(ω, σ) ,

where U ik(ω, σ) denotes the expected utility at stage k. Here, U i(ω, σ) equals the

total discounted expected payoff of player i when the discount factor equals δ, the

starting state is ω and the strategy-tuple σ is played. Since the state and action

spaces are assumed to be finite, U i(ω, σ) exists.

A strategy-tuple σ is an equilibrium if and only if σi is a best response to σ−i

for all i ∈ N .

In the sequel of this paper we will restrict ourselves to stationary strategies.

Motivations for restricting to stationary strategies are that stationary strategies

prescribe the simplest form of behavior that is consistent with rationality, that

stationarity captures the notion that “bygones are bygones”, and it embodies the

principle that “minor causes should have minor effects”. Moreover, the focus on

stationary strategies allows for clean, unobstructed analysis of the influence of the

state variables, stationary strategies substantially reduce the number of parameters

to be estimated in dynamic models, and stationary models can be simulated, see

also Maskin and Tirole (2001).

Suppose the players decide to play a stationary strategy-tuple ρ and ω is the

initial state. The total discounted expected payoff of player i is denoted by U i(ω, ρ).

The instantaneous payoff player i obtained in stage k = 0 equals ui(ω, ρω). The

probability that at the next stage the state will be ω̄ equals π(ω̄ |ω, ρω).

When ρ is a stationary strategy-tuple and ω is the initial state, the expected

payoffs are given by the following recursive formula (see e.g. Fink (1964))

U i(ω, ρ) = ui(ω, ρ) + δ ·
∑

ω̄∈Ω

π(ω̄ |ω, ρ)U i(ω̄, ρ) .

A stationary strategy-combination ρ ∈ Σ is a stationary equilibrium if it is a Nash

equilibrium in stationary strategies. Every finite discounted stochastic game has

at least one equilibrium point in stationary strategies (see Fink (1964), Takahashi

(1964), and Sobel (1971)). In Haller and Lagonoff (2000) it is shown that the number

of stationary equilibria is generically finite. In Herings and Peeters (2000) this result

is sharpened to generic oddness. For δ = 0, the number of stationary equilibria is

the product of the number of Nash equilibria of the separate stage games. It is

shown in McLennan (1999) that the number of Nash equilibria of each stage game

might be enormous. So, for δ = 0 the number of stationary equilibria is enormous.

There is no reason to expect that the number of stationary equilibria will not be

huge when δ is unequal to 0.
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3. Linear Tracing Procedure

In this section, we fix a state ω and explain the linear tracing procedure for the

corresponding normal-form game Γω = 〈N, {Si
ω}i∈N , {ui(ω)}i∈N 〉.

The linear tracing procedure is a mathematical construct to model a process

of convergent expectations, by which rational players come to adopt, and expect

each other to adopt, one particular equilibrium point as the outcome for a given

game. At the beginning of this outcome-selection process, the players will as yet

lack any specific theory predicting the strategies to be used by the other players.

Accordingly, each player will express his expectations about the strategy choice

of any other player in the form of a subjective probability distribution over the

other players’ pure strategies. These subjective distributions will be called prior

probability distributions, or simply priors. An important assumption of this model

is that all players other than i will associate the same prior probability distribution

pi
ω with any given player i. Part of the Harsanyi–Selten theory is the determination

of a prior.

The linear tracing procedure is based on a one-parameter family of auxiliary

games Γt
ω with t ∈ [0, 1]. In any game Γt

ω, every player i has the same strategy set

Σi
ω as he has in the original game Γω. But his payoff function vi(t; ω) in Γt

ω is

vi(t; ω, ρω) = (1 − t)ui(ω, p−i
ω , ρi

ω) + tui(ω, ρω) ,

where ui(ω) is his payoff in the original game Γω. Clearly, we have vi(1; ω, ρω) =

ui(ω, ρω) so that Γ1
ω = Γω. On the other hand, vi(0; ω, ρω) = ui(ω, p−i

ω , ρi
ω).

Thus Γ0
ω is a game of a rather special structure in which the payoff vi(0; ω) of

each player i will depend only on his own strategy ρi
ω and will be independent of

the other players’ strategy combination ρ−i
ω . Consequently, the game Γ0

ω naturally

decomposes into several mutually independent and separate maximization prob-

lems, one for each player. For almost all games Γω, for almost all choices of the

prior vector pω, the game Γ0
ω has exactly one equilibrium point ρ0

ω, which is in pure

strategies.

For any auxiliary game Γt
ω, the set of all equilibrium points in Γt

ω will be denoted

E(Γt
ω). By Nash’s (1951) existence theorem for equilibrium points, all of these sets

will be nonempty. Let Lω = L(Γω , pω) be the graph of the correspondence t �

E(Γt
ω) for t ∈ [0, 1]. Lω will typically be a collection of pieces of one-dimensional

algebraic curves, though in degenerate cases it may also contain isolated points

and/or subsets of more than one dimension, see Herings and Peeters (2001).

Suppose the graph Lω contains a path γω connecting a point x0
ω = (0, ρ0

ω),

corresponding to an equilibrium point ρ0
ω of the game Γ0

ω, with a point x1
ω = (1, ρ∗ω),

corresponding to an equilibrium point ρ∗
ω of the original game Γ1

ω = Γω. Then γω

will be called a feasible path, whereas x0
ω and x1

ω will be called the starting point

and the end point of this path γω, respectively. Moreover, the strategy part ρ∗
ω of

this end point x1
ω will be called the outcome selected by path γω . This strategy

combination ρ∗
ω can be rationally selected as the outcome of the game because it

will always be an equilibrium point of the original game Γω.
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We can now define the linear tracing procedure: it consists of selecting an out-

come ρ∗ω for any game Γω by tracing a feasible path γω from its starting point

x0
ω = (0, ρ0

ω) to its end point x1
ω = (1, ρ∗ω). For any given pair (Γω , pω), we will

call the linear tracing procedure feasible if the graph Lω = L(Γω, pω) contains at

least one feasible path γω, and we will call it well-defined if Lω contains exactly one

feasible path γω.

For any possible pair (Γω, pω), the linear tracing procedure is always feasible

but is not always well-defined (see Harsanyi (1975)). For any specific vector pω of

prior probability distributions, almost all games Γω will give rise to a well-defined

linear tracing procedure (see Herings and Peeters (2001)).

4. Stochastic Tracing Procedure

For the remainder of this paper, let a stochastic game Γ and a prior p ∈ Σ be given.

The prior p is taken out of the set of stationary strategy-combinations, because we

are selecting on stationary equilibria. Moreover, a player always has a stationary

best response if his opponents are playing stationary strategies. So, when the prior

p is an element from Σ, each player i has a stationary best response to p−i and we

can start the linear tracing procedure in a point inducing a stationary equilibrium

in Γ0.

For every t ∈ [0, 1], the stochastic tracing procedure generates a stationary

equilibrium of the stochastic game Γt = 〈N, Ω, {Σi
ω}ω∈Ω,i∈N , {V i(t)}i∈N 〉, where

the total expected discounted payoff function V i(t) of player i is defined such that

V i(0; ω, ρ) = U i(ω, p−i, ρi) and V i(1; ω, ρ) = U i(ω, ρ) .

The stochastic game Γ0 corresponds to a trivial stochastic game, where all players

believe that all their opponents play with probability 1 according to the prior belief.

The stochastic game Γ1 coincides with the original stochastic game Γ. Alternative

definitions of V i(t) for t ∈ (0, 1) will give rise to alternative stochastic tracing

procedures.

Given a proper definition of V i(t) for t ∈ (0, 1), the stochastic tracing procedure

S(Γ, p) is defined as the set of pairs (t, ρ) for which it holds that ρ is a stationary

equilibrium of the stochastic game Γt, i.e.

S(Γ, p) = {(t, ρ) ∈ [0, 1]× Σ|ρi is a best stationary response to ρ−i in Γt} .

The stochastic tracing procedure is said to be feasible if there exists a path in

S(Γ, p) connecting a best response against the prior to a stationary equilibrium of

the stochastic game Γ, i.e. there exists a continuous function γ : [0, 1] → S(Γ, p)

such that γ(0) ∈ S(Γ, p) ∩ ({0} × Σ) and γ(1) ∈ S(Γ, p) ∩ ({1} × Σ). In general

there may be many trajectories γ([0, 1]) that link a stationary equilibrium of Γ0 to

a stationary equilibrium of Γ1. If this trajectory is unique, then S(Γ, p) is said to

be well-defined. If the stochastic tracing procedure is well-defined, then it selects a

unique stationary equilibrium of the stochastic game Γ.
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The concepts stochastic tracing procedure, feasibility and well-definedness are

all based on the definition of V i(t) for t ∈ (0, 1). There are at least four a priori

reasonable ways in which V i(t) can be defined to extend the linear tracing procedure

of Harsanyi and Selten to the setting of stochastic games. Choices have to be made

whether a player holds correlated beliefs within a state or not, and whether a player

holds correlated beliefs across time or not.

Correlation within states, C(S), means that when a player knows that some

opponent plays according to the prior (which he expects with probability 1 − t),

he expects all opponents to play according to the prior. Alternatively, absence of

correlation within states, I(S), implies that even when a player knows that some

opponent is playing according to the prior he may not infer that other opponents

are playing according to the prior; all opponents are expected to play (1− t)pi + tρi,

independent from one another.

Correlation across time, C(T), means that when a player knows that some oppo-

nent plays according to the prior today, he expects that opponent to play according

to the prior in all future stages. Absence of correlation across time, I(T), implies

that even when a player knows that some opponent is playing according to the prior

today, this opponent might not play according to the prior in future stages. In all

future events he faces independent lotteries which assign probability 1 − t to play

against the prior strategies of his opponents.

In the rationalizability literature the issue of “correlated beliefs” versus “un-

correlated beliefs” is often discussed. The second requires players to believe that

the opponent players choose their strategies independently, while the first does not.

Rationalizability with uncorrelated beliefs has been studied extensively defined by

Bernheim (1984) and Pearce (1984). The correlated rationalizability concept is de-

fined by Brandenburger and Dekel (1987) and is related to the correlated equilib-

rium concept of Aumann (1974, 1987).

To analyze the four possible extensions, we first have to define the four alter-

natives properly by specifying the corresponding functions V i(t). Therefore, this

section contains four subsections, with each subsection devoted to one of the alter-

natives.

4.1. Alternative 1: C (S), I (T)

Suppose beliefs are correlated within states, but not across time. Because here

correlation within states is assumed, each player expects that in stochastic game Γt

all opponents are playing according to the prior with probability 1− t and playing

strategically with probability t. The additional assumption of absence of correlation

across time causes that each player faces this lottery at every stage. Therefore, the

total discounted payoff to player i in stochastic game Γt when the initial state is ω

and ρ is played, is



January 12, 2004 12:24 WSPC/151-IGTR 00108

314 P. J.-J. Herings & R. J. A. P. Peeters

V i
C(S),I(T)

(t; ω, ρ) = (1 − t)ui(ω, p−i
ω , ρi

ω) + tui(ω, ρω)

+ δ ·
∑

ω̄∈Ω

[(1 − t)π(ω̄ |ω, p−i
ω , ρi

ω) + tπ(ω̄ |ω, ρω)]V i
C(S),I(T)(t; ω̄, ρ) .

Stationarity implies that this payoff can be written by means of a recurrent relation.

This stationarity results from the assumption that the beliefs players have depend

only on the state and not at the stage in which the state is reached.

4.2. Alternative 2: C(S), C(T)

When we assume correlation as well within states as across time, again each player

expects that in a stochastic game Γt all opponents are playing according to the

prior with probability 1 − t and playing strategically with probability t. But now,

unlike in the previous case, we have correlation across time. This means that when

a player knows that some opponent plays according to the prior today, he expects

that opponent to play according to the prior in all future stages. Apparently, unlike

in the previous case each player faces this lottery only once and this will be at

k = 0. Therefore, the total discounted payoff to player i in stochastic game Γt when

the initial state is ω and ρ is played, is

V i
C(S),C(T)(t; ω, ρ) = (1 − t)U i(ω, p−i, ρi) + tU i(ω, ρ) .

We can also explain the game Γt by means of payoffs and transitions. Each player

expects with probability 1 − t to face the stochastic game without externalities,

i.e. opponents’ decisions do not influence the payoffs and transitions, which are

determined as if the opponents are playing according to the prior, and with proba-

bility t, they expect to face the stochastic game with opponents playing an updated

strategy ρ−i.

A solution (t, ρ) for t ∈ (0, 1) in S(Γ, p) is not necessarily a stationary equi-

librium of the game Γt. A player i might have a non-stationary strategy that is

better than ρi against ρ−i in Γt. Namely, at k = 0 all players make their stationary

decisions believing that with probability 1 − t all opponents play according to the

prior and with probability t they play strategically. In fact, in k = 0 all players

are facing a lottery. Once the players are in k = 1, they know the outcome of the

lottery. It might be better, and most of the time it will be better, to revise their

strategy having this knowledge, which would lead to a non-stationary strategy.

4.3. Alternative 3: I(S), I(T)

In this subsection we consider the situation in which absence of correlation both

within states and across time is assumed. Absence of correlation within states means

that in the stochastic game Γt a player expects that each opponent is playing

independently according to the prior with probability 1−t and playing strategically

with probability t. The additional assumption of absence of correlation across time

causes every player to face this lottery at every stage. Clearly, these assumptions
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imply the total discounted payoff to player i in stochastic game Γt when the initial

state is ω and the strategy ρ is played to be equal to

V i
I(S),I(T)

(t; ω, ρ) = U i(ω, (1 − t)p−i + tρ−i, ρi) .

Just like in Subsection 4.2 it is possible, because of absence of correlation across

time, to rewrite the total discounted payoffs in recurrent form:

V i
I(S),I(T)

(t; ω, ρ) = ui(ω, (1 − t)p−i
ω + tρ−i

ω , ρi
ω)

+ δ ·
∑

ω̄∈Ω

π(ω̄ |ω, (1 − t)p−i
ω + tρ−i

ω , ρi
ω)V i

I(S),I(T)(t;ω̄,ρ) .

Since the decision problem a player faces depends on the state only, his problem

is stationary no matter at which stage of the game the state is realized. Assuming

that beliefs are not correlated across time captures, therefore, the presence of sta-

tionarity. Stationarity means that a recurrent relation can be given. A direct result

is that best stationary responses are best responses in the broader class of behavior

strategies as well.

4.4. Alternative 4: I(S), C(T)

When absence of correlation within states, but correlation across time is assumed,

again each player expects that in stochastic game Γt each opponent is playing ac-

cording to the prior with probability 1−t and playing strategically with probability

t. But this time, in contrast to Subsection 4.3, we have correlation across time. This

means that when a player knows that some opponent plays according to the prior

today, he expects that opponent to play according to the prior in all future stages.

Therefore, the total discounted payoff to player i in stochastic game Γt when the

initial state is ω and ρ is played, is

V i
I(S),C(T)(t; ω, ρ) =

∑

S⊆N\{i}

(1 − t)StN−S−1U i(ω, pS, ρN\S) .

In the formula, (1−t)StN−S−1 is the probability that the opponents from S ⊆ N\{i}
are playing according to the prior, whereas the other opponents are playing strate-

gically. When player i observes that the opponents from S are playing according

to p and the others according to ρ, his total discounted payoff is U i(ω, pS , ρN\S).

Player i’s payoff in the game Γt is therefore the sum over all subsets of N \ {i} of

the probability that only the players from S play according to p (given t) times the

total expected discounted payoff in that case.

Like in Subsection 4.2, a solution (t, ρ) for t ∈ (0, 1) in S(Γ, p) is not necessarily

a stationary equilibrium of the game Γt. A player i might have a non-stationary

strategy that performs better than ρi against ρ−i in Γt. Apparently, a best sta-

tionary response is not necessarily a best response in the broader class of behavior

strategies.
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4.5. Properties

In order to be useful as a selection theory, it is important that for almost all stochas-

tic games the stochastic tracing procedure determines a unique stationary equilib-

rium. When well-definedness holds, we are sure of selecting a unique stationary

equilibrium. According to Herings and Peeters (2000), the following theorem holds:

Theorem 4.1. Assume C(S) and I(T). For an open set of stochastic games Γ

and priors p ∈ Σ with full Lebesgue measure, the stochastic tracing procedure is

well-defined.

We also claim the following result:

Theorem 4.2. Assume I(S) and I(T). For an open set of stochastic games Γ and

priors p ∈ Σ with full Lebesgue measure, the stochastic tracing procedure is well-

defined.

Proof. Since the stochastic tracing procedure when I(S) and I(T) is assumed can

be written as a recurrent relation, the proof of this theorem is completely analogous

to the proof in Herings and Peeters (2000).

For the alternatives where C(T) is assumed, it is not possible to rewrite the

payoffs into a recurrent relation. Therefore, to prove similar theorems with C(T)

assumed, calls for different techniques of proof. Nevertheless, it should be expected

that generic well-definedness holds as well when C(T) is assumed. Since the number

of variables is one less than the number of constraints imposed by the concept of

stationary equilibrium, there is one degree of freedom left. Under suitable transver-

sality conditions, this should be sufficient to show well-definedness.

5. Analysis of Alternatives

We proceed by analyzing the four alternatives defined so far. The first part of this

section is devoted to lay bare that the choice about beliefs within states matter. As

the proof of the pudding is in the eating, this is done by an example. Next, in the

second part of this section the same will be done for the assumption with respect

to beliefs across time.

5.1. Beliefs within states

We create an example for which it matters whether correlation or absence of cor-

relation within states is assumed, in the sense that different stationary equilibria

will be selected starting from the same prior. Before doing so, it is important to

know the minimal size of such an example. In case there are two players, assuming

absence or presence of correlation within states does not matter since the number

of opponents is 1.
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Fig. 1. Game Γ: C(S) vs. I(S).

Proposition 5.1. For n = 2, the stochastic tracing procedure based on I(S) is

identical to one based on C(S).

So, we need n ≥ 3 to construct an example.

Consider the normal form game of Fig. 1. This is a special case of a stochastic

game, i.e. a stochastic game with only one state and discount factor equal to 0. The

advantage of considering a normal form games, is that it disconnects assumptions

on beliefs within states and assumptions on beliefs across time.

Note that this game possesses three stationary equilibria: the pure stationary

equilibria (s1; s2; s3) and (s1′; s2′; s3′), and a mixed stationary equilibrium all play-

ers play their first strategy with probability
√

2−1 and their second with probability

2−
√

2. Because the discount factor is taken equal to 0, it does not matter whether

I(T) or C(T) is assumed.

Suppose we take the following prior:

p =

((

1

6
,
5

6

)

;

(

1

2
,
1

2

)

;

(

2

3
,
1

3

))

.

Note that for the best response against the prior it does not matter whether C(S)

or I(S) is assumed. Both alternatives lead to the same best response to all possible

priors.

Here, the prior is chosen such that we have the point (0, (s1; s2′; s3′)) as starting

point. Player 1 starts playing the equilibrium strategy of the first pure stationary

equilibrium and players 2 and 3 start playing the equilibrium strategy of the second

pure stationary equilibrium. To obtain a stationary equilibrium, at least one player

has to switch to another pure strategy. It turns out that in the case of I(S), player 2

or 3 is switching his strategy before player 1, whereas in the other case, C(S),

player 1 is the first player willing to switch his strategy.

5.1.1. When I(S) is assumed

When absence of correlation within states is assumed, Γt has the form as depicted

in Fig. 2.
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Fig. 2. Game Γt when I(S) is assumed.

The first element in the first box is the payoff to player 1 if he plays s1 and he

expects player 2 to play according to the prior with probability 1 − t and s2 with

probability t and expects player 3 to play according to the prior with probability 1−t

and s3 with probability t. So, player 1 expects player 2 to play ( 1
2 (1−t)+t, 1

2 (1−t))

and player 3 to play ( 2
3 (1 − t) + t, 1

3 (1 − t)) and the expected payoff when playing

s1 is therefore ( 1
2 (1 − t) + t)( 2

3 (1 − t) + t)2 = 1
3 (1 + t)(2 + t).

For all t ∈ [0, 1] it is possible to compute all stationary equilibria of Γt. Since

we are only interested in the stationary equilibrium selected, we only determine

the path starting at t = 0 and terminating at t = 1. Obviously, by the way we

constructed the prior, the path starts in the point (s1; s2′; s3′). This point is a

stationary equilibrium of Γt as long as t ≤ 1/10. When t = 1/10, player 2 is

indifferent between his two pure strategies. So, at t = 1/10 the path jumps from

(s1; s2′; s3′) to (s1; s2; s3′). Next, the point (s1; s2; s3′) is a stationary equilibrium

of Γt until t = 1/5(29 − 2
√

189) ≈ 0.3009, when player 3 is indifferent between

his two pure strategies. Here, in t = 1/5(29− 2
√

189), we jump from (s1; s2; s3′) to

(s1; s2; s3) which is a stationary equilibrium of Γt for all t ∈ [1/5(29−2
√

189), 1]. The

point (s1; s2; s3) is therefore the stationary equilibrium selected by the stochastic

tracing procedure when I(S) is assumed. The path is displayed graphically in Fig. 3.

This figure shows a cube moving from t = 0 to t = 1. The cube itself displays

ð

ñ

ñ
ñ

ò ó�ôöõ÷ùø�úüû�ý¼þ
ÿ�������� �	���


� ����

Fig. 3. Feasible path when I(S) is assumed.
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the set of stationary strategy-combinations. The strategic possibilities of player 1,

player 2 and player 3 are displayed in the horizontal, diagonal, respectively vertical

direction. The point marked with a star is the point where all players play their

first pure strategy.

5.1.2. When C(S) is assumed

When correlation within states is assumed, Γt has the form as depicted in Fig. 4.

The first element in the first box is the payoff to player 1 if he plays s1 and he

expects players 2 and 3 to play according to the prior with probability 1−t and their

first pure strategy with probability t. So, player 1 expects with probability 1 − t

that players 2 and 3 are playing ( 1
2 , 1

2 ) and ( 2
3 , 1

3 ) respectively and with probability

t that players 2 and 3 are playing s2 and s3 respectively. The expected payoff to

player 1 when playing s1 will therefore be equal to ((1− t) 1
2

2
3 + t)2 = 2

3 (1− t) + 2t.

Again, it is possible to compute all stationary equilibria of Γt, for t ∈ [0, 1].

And, again, we restrict ourselves to determine the path starting at t = 0 and

terminating at t = 1. Just as before, the path starts in the point (s1; s2′; s3′).

�

��

� �����
���������	�

 !�"�#

Fig. 4. Game Γt when C(S) is assumed.
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Fig. 5. Feasible path when C(S) is assumed.
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This point is a stationary equilibrium point as long as t ≤ 1/3. When t = 1/3,

player 1 is indifferent between both his pure strategies and will be the first player

to switch to another pure strategy unlike in the previous case. At t = 1/3, the

path jumps from (s1; s2′; s3′) to (s1′; s2′; s3′). The point (s1′; s2′; s3′) is a stationary

equilibrium of Γt up to t = 1 and this point is therefore the stationary equilibrium

selected by the stochastic tracing procedure when C(S) is assumed. The path is

displayed graphically in Fig. 5 and is displayed in the same style as Fig. 3.

5.2. Beliefs across time

Again, it is important to know the minimal size of an example for which it matters

whether correlation or absence of correlation across time is assumed. In the next

proposition we claim that C(T) and I(T) select the same stationary equilibrium for

stochastic games with one state (repeated game), when the process never leaves

a state (finite number of independent repeated games) or when future payoffs are

ignored (finite number of normal games).

Proposition 5.2. When π = 11Ω or δ = 0, the stochastic tracing procedure based

on I(T) is identical to one based on C(T).

Proof. Suppose we have a repeated game, i.e. |Ω| = 1 and therefore trivially

π = 11Ω. In this case, the total discounted payoffs for the four alternatives are:

V i
C(S),I(T)(t; ρ) = (1 − t)ui(p−i, ρi) + tui(ρ) + δ V i

C(S),I(T)(t; ρ) ,

V i
C(S),C(T)

(t; ρ) = (1 − t)U i(p−i, ρi) + tU i(ρ) ,

V i
I(S),I(T)

(t; ρ) = ui((1 − t)p−i + tρ−i, ρi) + δ V i
I(S),I(T)

(t; ρ) ,

and

V i
I(S),C(T)(t; ρ) =

∑

S⊆N\{i}

(1 − t)StN−S−1U i(pS , ρN\S) .

First, note that

V i
C(S),C(T)

(t; ρ) = (1 − t)U i(p−i, ρi) + tU i(ρ)

= (1 − t)[ui(p−i, ρi) + δ U i(p−i, ρi)] + t[ui(ρ) + δ U i(ρi)]

= (1 − t)ui(p−i, ρi) + tui(ρ) + δ · [(1 − t)U i(p−i, ρi) + tU i(ρ)]

= (1 − t)ui(p−i, ρi) + tui(ρ) + δ V i
C(S),C(T)

(t; ρ) .

And secondly, note that
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V i
I(S),C(T)

(t; ρ) =
∑

S⊆N\{i}(1 − t)StN−S−1U i(pS , ρN\S)

=
∑

S⊆N\{i}

(1 − t)StN−S−1[ui(pS , ρN\S) + δ U i(pS , ρN\S)]

=
∑

S⊆N\{i}

(1 − t)StN−S−1ui(pS , ρN\S)

+ δ ·
∑

S⊆N\{i}

(1 − t)StN−S−1U i(pS , ρN\S)

= ui((1 − t)p−i + tρ−i, ρi) + δ V i
I(S),C(T)

(t; ρ) .

Finally, observe that

V i
C(S),I(T)

(t; ρ) = V i
C(S),C(T)

(t; ρ) ,

and that

V i
I(S),I(T)(t; ρ) = V i

I(S),C(T)(t; ρ)

for all (t; ρ) ∈ [0, 1] × Σ. So, for repeated games C(T) and I(T) are equivalent.

From this the equivalence between C(T) and I(T) follows trivially when π = 11Ω

as being a finite number of independent repeated games.

When δ = 0, the stochastic game is equivalent to a one shot game in which time

plays no role when stationary strategies are assumed.

Consider the stochastic game of Fig. 6. The stochastic game displayed in that

figure is a stochastic game with two states. In the first state both players have

two pure strategies, whereas in the second state both players have one strategy.

The upper-left corner of each box contains the payoffs. The transition probabilities

are displayed in the lower-right corner, where the first element is the probability

that in the next stage the game will be in the first state, the second element is the

probability that the game will be in the second state at the next stage.

3546
3 46 7

3986 3 86 7

:

;=<>; ;=<@?
?A<@? ;=<@?

?A<B? ;=<B?
?A<B? ?A<>; CED

FHGIF J G@K LNM JPORQ

Fig. 6. Game Γ: C(T) vs. I(T).
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When both players play their second strategy in state ω, they both expect to

earn 0 at the current stage, go to state ω′, earn 4 at the next stage and then return

to state ω. Notice that the game at ω′ is completely degenerate. There is no need

for players to make a choice. They simply collect a payoff of 4. When ω is the initial

state, both players expect to earn 4
3 (1 + 1

9 + 1
81 + · · ·) = 3

2 in total when both

always play their second pure strategy. Suppose the box that belongs to strategy-

combination (s1
ω

′
; s2

ω

′
) had 1,1 in the upper-left corner and 1,0 in the lower-right

corner. Then the game is always in state ω when ω is the initial state, so coincides

with a repeated game. When both players play their second pure strategy again at

all times, they both expect to earn (1+ 1
3 + 1

9 + · · · = 3
2 ) again. Nevertheless, the two

resulting stochastic games are not strategically equivalent when mixed strategies

are played. It turns out that (( 1
2 , 1

2 ); ( 1
2 , 1

2 )) is not a stationary equilibrium in the

stochastic game of Fig. 6 unlike in the adapted stochastic game (the repeated game).

Although the stochastic game of Fig. 6 is close to a repeated game, for which C(T)

and I(T) are equivalent, it is not quite.

The stochastic game of Fig. 6 possesses three stationary equilibria: the pure

stationary equilibria (s1
ω; s2

ω) and (s1
ω

′
; s2

ω

′
), and the symmetric mixed stationary

equilibrium where both players play their first strategy with probability 4− 2
√

3 ≈
0.5359 and the other strategy with the rest of the probability mass.

Just like in the previous example, we want the starting point of the stochastic

tracing procedure not to be a stationary equilibrium strategy-combination of the

original game. This can be arranged by taking for one player the prior play of

the first strategy smaller than 4 − 2
√

3 and the reverse for the other. Without

loss of generality, let the first player mentioned be player 1. Given such a prior,

player 1 will prefer strategy s1
ω and player 2 will prefer strategy s2

ω

′
. Consider the

prior

p =

((

1

2
,
1

2

)

;

(

2

3
,
1

3

))

,

which satisfies this property. Note that the starting point, in this case (s1
ω ; s2

ω

′
),

is independent of the choice made between the two assumptions I(T) and C(T).

Because the stochastic game depicted is a game with two players, it does not matter

whether C(S) or I(S) is assumed.

5.2.1. When I(T) is assumed

In Fig. 7 the stage game for t = 0 is given. The figure is almost similar to Fig. 6. The

difference is found in the lower-right corner of the boxes, which is divided into two

sectors. The lower-left sector displays the transition probabilities as player 1 thinks

they are, the upper-right sector the transition probabilities as player 2 thinks they

are. For example, when player 1 plays s1
ω

′
he expects to receive 0 and expects that

in the next stage the state will be ω with probability 2/3 and ω′ with probability

1/3.
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Fig. 7. Game Γ0 when I(T) is assumed.

The stage games Γt
ω can now be defined as Γt

ω = (1−t)Γ0
ω +tΓ1

ω for all t ∈ (0, 1).

For all t ∈ [0, 1], it is possible to compute all stationary equilibria of Γt, but since

we are only interested in the stationary equilibrium selected, we only determine the

path starting at t = 0 and terminating in t = 1. As mentioned before, the path

starts in the point (s1
ω ; s2

ω

′
). This point is a stationary equilibrium point as long

t ≤ 1
2 (23−

√
513) ≈ 0.1752, the moment player 1 is indifferent between both his pure

strategies. Player 2 is not willing to switch strategy as long as t ≤ 1
6 (11 −

√
97) ≈

0.1919. So, player 1 is the first to change his strategy and at t = 1
2 (23 −

√
513)

the path jumps from (s1
ω; s2

ω

′
) to (s1

ω

′
; s2

ω

′
). This point is a stationary equilibrium

point for all t ∈ [ 12 (23 −
√

513), 1]. The point (s1
ω

′
; s2

ω

′
) is therefore the stationary

equilibrium selected by the stochastic tracing procedure when I(T) is assumed. The

path is displayed graphically in Fig. 8.

This figure shows the Cartesian product of the strategy space, a square, and the

interval [0, 1]. The strategic possibilities of player 1 and player 2 are displayed in the

horizontal, respectively vertical direction. The point marked with a star corresponds

to both players playing their first pure strategy.

�

�
�

�
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Fig. 8. Feasible path when I(T) is assumed.
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5.2.2. When C(T) is assumed

When C(T), correlation across time, is assumed, Γt cannot be represented easily

in a figure. Again, the path starts in the point (s1
ω; s2

ω

′
). Given that player 2 plays

s2
ω

′
during the whole play with probability t and according to the prior during

the whole play with probability 1 − t, the best stationary response of player 1 is

playing s1
ω as long as t is less than 4/19. When t is larger than 4/19 his other pure

stationary strategy, that is s1
ω

′
, will be his best stationary response. Vice versa,

when player 2 expects player 1 to play according to the prior the whole stochastic

game with probability 1 − t and s1
ω the whole play with probability t, his best

stationary response is playing strategy s2
ω

′
when t ≤ 1/15 and s2

ω otherwise. So,

player 2 will be the first player to switch strategy, since 1/15 < 4/19. Therefore,

at t = 1/15, the path will jump from (s1
ω ; s2

ω

′
) to (s1

ω; s2
ω). From t = 1/15 up to

t = 1 the point (s1
ω; s2

ω) is the stationary equilibrium and is also the stationary

equilibrium selected by the stochastic tracing procedure when C(T) is assumed.

The path is plotted in Fig. 9 and is displayed in the same style as Fig. 8.

5.3. Extending the linear tracing procedure

The first subsection showed that the choice between assuming absence of correlation

or assuming presence of correlation within states can cause different stationary

equilibria to be selected. Although this was shown by means of a normal form

game, the same result would have been found if we made it a repeated game by

taking a positive discount factor, i.e. δ ∈ (0, 1).

In the selection theory of Harsanyi and Selten (1988), the linear tracing proce-

dure of Harsanyi (1975) is used to select on a Nash equilibrium of a normal form

game. The structure of the linear tracing procedure there assumed beliefs to be

correlated. The most natural extension of the linear tracing procedure is therefore

the one that assumes correlation within states. For instance, this choice implies

that for repeated games, the stationary equilibria which is selected is the repeated

Nash equilibrium that is selected by the linear tracing procedure for the stage game

©
©

©

ª «�¬�®E¯�°�±�²�±�³

´ µ�¶�·

Fig. 9. Feasible path when C(T) is assumed.
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using the same prior.

The second subsection showed that the choice between assuming absence of

correlation or assuming presence of correlation across time can cause different sta-

tionary equilibria to be selected. When C(T) is assumed, a point (t, ρ) on the feasible

path is not necessarily a stationary equilibrium of Γt. For some player i there might

be a better behavior strategy than ρi against ρ−i in Γt which is non-stationary, i.e. a

best stationary response is not necessarily a best response in the broader class of

behavior strategies. However, assuming that beliefs are not correlated across time,

that is assuming I(T), captures the assumption of stationarity. The beliefs of a

player will depend only on the state reached and not on the stage at which it is

reached. We would therefore argue that the assumption of C(S) and I(T) leads to a

stochastic tracing procedure that is the most natural extension of the linear tracing

procedure of Harsanyi and Selten.

6. Summary

In this paper the linear tracing procedure of Harsanyi (1975) is extended in order

to select on an equilibrium for stochastic games, more precisely, to select on a

stationary equilibrium for stochastic games. There are four reasonable extensions.

After having defined all four properly, it is shown by examples that these extensions

are independent. The most natural extension, assumes that players hold correlated

beliefs within states, but do not hold correlated beliefs across time, since this is

the only possible extension consistent with the formulation of Harsanyi for normal

form games that captures stationarity. This extension is defined as the stochastic

tracing procedure. It follows immediately from the results in Herings and Peeters

(2000) that it is well-defined for almost all stochastic games.
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