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Abstract

We consider a probabilistic approach to collective choice prob-
lems where a group of agents with single-peaked preferences have
to decide on the level or location of a public good. We show that
every probabilistic rule that satisfies Pareto efficiency and “soli-
darity” ~population-monotonicity or replacement-domination! must
equal a so-called target rule.

1. Introduction

We consider the problem of choosing the provision level or the location
of a public good along a one-dimensional continuum. Each agent has a
“single-peaked” preference relation over the continuum. An agent’s pref-
erence relation is “single-peaked” if up to a certain point, his “peak level,”
his welfare is strictly increasing, and it is strictly decreasing beyond that
point. An economy is given by a population of agents and a profile of
single-peaked preferences. Examples are voting situations where candi-
dates, or alternatives, can be ordered on a left-to-right spectrum. Another
example is the choice of the quality of a public service under budgetary
constraints as in public education. Monetary transactions between the
social planner and the agents are not allowed.
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1.1 Solidarity

We consider changes in the economic environment; for instance, new
agents may enter the economy, or the availability of resources may vary.
The decisions made by the social planner, say, the government, are typi-
cally different before and after such changes. Such situations include the
allocation of resources before and after an earthquake or a growth in
population and the compulsory duration of schooling before and after
the change of the interests of some members of the society. Solidarity
means that in such situations the welfares of the agents whose character-
istics did not change will be affected in the same direction: as a result of
the change either they all ~weakly! benefit or they all ~weakly! lose. Soli-
darity ensures that changes of the decisions made by the social planner
are “fair” in the following sense: there cannot be a pair of agents whose
characteristics did not change such that one of them strictly benefits
whereas the other strictly loses.

We apply the idea of solidarity to situations when the population of
agents varies or the preference relations of some agents change. If some
agents leave, then as a result either all remaining agents ~weakly! gain or
they all ~weakly! lose. This requirement is called population-monotonicity
~Thomson 1983!. Alternatively, if the preference relations of some agent
change, then as a result either all the agents whose preference relations
did not change ~weakly! gain or they all ~weakly! lose. This requirement is
called replacement-domination ~Moulin 1987!.1 The idea of solidarity has
been applied to various contexts. Thomson ~1983! studied the idea in
bargaining; Chichilnisky and Thomson ~1987!, Kim ~1999!, and Sprumont
and Zhou ~1999! in classical exchange economies; Thomson ~1997!, Chun
~1999!, and Klaus ~2000! in private good economies with single-peaked
preferences; Sprumont ~1990! and Hokari ~1999! in cooperative games
with transferable utility; and Miyagawa ~1998a, 1998b! for the provision of
multiple public goods.2

The idea of solidarity has also been applied to the problem of choos-
ing the level of a public good along a one-dimensional continuum. A rule
assigns to every economy a level. Thomson ~1993! and Ching and Thom-
son ~1996! showed that if a rule satisfies Pareto efficiency and either of
the two solidarity properties described above, then it must be a so-called
target rule. Such a rule is determined by its target ~level!. If the target is
Pareto efficient, then the target is chosen by the rule. If the target is not
Pareto efficient, then the Pareto efficient level that is closest to the target
is chosen by the rule. Note that the target that essentially determines any
target rule might be the status quo of the present level of the public good,

1Moulin ~1987! calls it “agreement.”
2This list is not exhaustive.
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or alternatively it may be a target level for the public good that is imposed
by the social planner.

1.2 Probabilistic Rules

We consider a probabilistic approach. Alternatives are distributions from
which the final level of the public good is drawn. A deterministic rule
assigns to every economy a distribution that places probability one on
exactly one level. Agents with peak levels that are far away from that
uniquely chosen level may regard the outcome to be unfair because more
favorable levels of the public good were excluded a priori. By using a
probabilistic approach, it is possible to assign positive probabilities to
several public good levels that might improve “a priori fairness.” For
example, consider the probabilistic rule that assigns equal probability to
every agent’s peak level of the public good. Since now, at least a priori,
each agent has an equal chance that his peak level is the outcome assigned
by the probabilistic rule, this rule would be “a priori fair.” A probabilistic
rule assigns to every economy a distribution. Recently, probabilistic stud-
ies have received renewed attention: Abdulkadiroğlu and Sönmez ~1998!
and Bogomolnaia and Moulin ~1999! for house allocation problems, Crès
and Moulin ~1998! for the tragedy of the commons, and Ehlers ~1998! for
private good economies with single-dipped preferences. We use the ordi-
nal extension of preferences from levels to distributions to define gains
and losses ~Gibbard 1977!.

1.3 Results

It turns out that Pareto efficiency is equivalent to ex-post efficiency: the
probabilistic rule assigns to every preference profile a distribution that
places probability 1 on the interval having as boundary points the smallest
peak level and the greatest peak level. Our main results are the following.
First, we show that Pareto efficiency and either of the two solidarity
properties imply anonymity ~the names of the agents do not matter! and
strategy-proofness ~truthtelling is a weakly dominant strategy!. Those prop-
erties are very desirable. Second, we show that deterministic target rules
are the only probabilistic rules satisfying Pareto efficiency and replacement-
domination. Surprisingly, even if we allow rules to be probabilistic, then
still only deterministic rules satisfy these two requirements. The class we
characterize is the same that Thomson ~1993! characterized in the deter-
ministic model. Furthermore, we extend deterministic target rules to the
probabilistic setting. Given a ~fixed! target distribution, a probabilistic
target rule assigns to every economy the following distribution: in the
interior of the interval having as endpoints the smallest peak level and the
greatest peak level the target probability distribution is applied; all prob-
ability outside that interval is “projected” to the smallest peak level and
the greatest peak level, respectively. Third, we show that the probabilistic
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target rules are the only probabilistic rules satisfying Pareto efficiency and
population-monotonicity. Therefore, a probabilistic rule that satisfies Pareto
efficiency and solidarity must be of the “target type,” using a target prob-
ability distribution or a target level.

1.4 Target Rules

Samuelson and Zeckhauser ~1988! prove that in many situations individ-
uals disproportionally stick to the status quo. In other words, a “target
bias” with the target equal to the status quo is present in many decisions.
Our main results imply that in public good economies Pareto efficiency
and solidarity imply such a target bias. Target rules with the target equal
to the status quo are useful in economic situations when agents have veto
power over changes in the status quo, as this might be the case for risky
undertakings. A practical advantage of target rules is that they are simple
and can be implemented easily and quickly. Furthermore, they are strategy-
proof and to some extent fair if they use “fair” target probability distri-
butions for example, the uniform probability distribution. On the other
hand, since target rules are almost constant ~apart from ruling out prob-
abilities on inefficient levels! one can interpret our ~and previous! results
concerning target rules as impossibility results.

The paper is organized as follows. Section 2 introduces the model and
some basic properties. Section 3 defines the solidarity properties and
presents relations and implications of those properties. Section 4 contains
the characterizations. The proofs are relegated to the Appendix.

2. The Model and Basic Properties

We consider the problem of choosing a level of a public good on the real
line R.3 Let N denote the set of natural numbers. There is a population P #
N of “potential” agents. The population P can be either finite or infinite.
Let P contain at least four agents. Let P denote the class of nonempty and
finite subsets of P with cardinality greater than or equal to three. Each agent
i [ P is equipped with a continuous and “single-peaked” preference rela-
tion Ri defined over R. Single-peakedness of Ri means that there exists a level
p ~Ri ! [R, called the peak level of Ri , with the following property: for all x , y [
R, if x , y ≤ p ~Ri ! or x . y ≥ p ~Ri !, then yPi x . As usual, xRi y means “x is
weakly preferred to y , ” and xPi y means “x is strictly preferred to y .” Let R
denote the class of all continuous, single-peaked preference relations over
R. Given N [P, let RN denote the set of all ~preference! profiles R 5 ~Ri !i[N

3All results remain true if we restrict R to a closed interval @a , b # or an open interval #a , b @,
a , b [ R.
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such that for all i [ N , Ri [ R. We also call R an economy. Given R [ RN, let
rp ~R ! :5 mini[N p ~Ri !, +p ~R ! :5 maxi[N p ~Ri !, and E ~R ! :5 @ rp ~R !, +p ~R !# .4

A deterministic (decision) rule F is a function that selects for every N [
P and every R [ RN a level in R, denoted by F~R !. We extend the original
analysis of deterministic rules by considering “probabilistic” rules. A prob-
abilistic (decision) rule w is a function that selects for every N [ P and every
R [ RN a ~probability! distribution over R, denoted by w~R !. For all
~measurable! subsets X of R, the number w~R !~X !, which the distribution
w~R ! assigns to X , is the probability that the final level belongs to X . We
consider distributions defined on the Borel s-algebra L. Elements of L
are called Borel sets.5

A deterministic rule is a probabilistic rule that selects for every N [ P
and every R [ RN a distribution placing probability 1 on a single level in
R. We extend preferences over levels in R to preferences over distribu-
tions ordinally ~see Gibbard 1977; or Ehlers, Peters, and Storcken 1999!.
This ordinal extension is based on the concept of upper contour sets.

Given x [ R and Ri [ R, the weak upper contour set of x at Ri is defined
by B ~x , Ri ! :5 $ y [ R6yRi x %, and the strict upper contour set of x at Ri is
defined by B +~x , Ri ! :5 $ y [ R6yPi x %. Because of single-peakedness, all
upper contour sets are measurable.

An agent i prefers distributions that assign larger probabilities to all
his upper contour sets. Given a preference relation Ri [ R and two
distributions Q ,Q ' over R, agent i weakly prefers Q to Q ', if Q assigns to
each weak upper contour set at least the probability that is assigned by Q '

to this set. Abusing notation we use the same symbols to denote prefer-
ences over distributions and preferences over levels.

ORDINAL EXTENSION OF PREFERENCES: For all Ri [ R and all distributions Q ,Q '

over R, QRi Q ' if and only if

for all x [ R, Q~B ~x , Ri !! ≥ Q '~B ~x , Ri !!. ~1!

Furthermore, QPi Q ' if and only if

QRi Q ' and for some y [ R, Q~B ~ y , Ri !! . Q '~B ~ y , Ri !!. ~2!

Inequality ~1! is a first order stochastic dominance condition; in par-
ticular it requires that the distributions Q and Q ' are comparable in that
respect. Therefore, our extension is not complete over the set of all
distributions over R. Note that for preferences over distributions com-
pleteness is a demanding requirement.

Our extension of preferences is equivalent to the following. Assume
that each agent is a von Neumann–Morgenstern ~vNM! expected utility

4As explained later ~Remark 1!, E ~R ! is the set of Pareto efficient levels at profile R .
5All basic results of measure theory that are used in the paper can be found in Halmos
~1970!.
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maximizer. That means that each agent has a vNM-utility function and
compares two distributions via the expected values relative to this func-
tion. Then ~1! is equivalent to the fact that the expected value relative to
any vNM-utility function representing Ri is at Q greater or equal than at
Q '. Thus, regardless what vNM-utility function the agent has, he will weakly
prefer Q to Q ' although the rule depends only on the ordinal information
of the preference profile.

Ehlers et al. ~1999, Lemma 2.1! show that we can equivalently extend
preferences with respect to strict upper contour sets.

LEMMA 1: Let Ri [ R and Q ,Q ' be distributions over R. Then QRi Q ' if and
only if

for all x [ R, Q~B + ~x , Ri !! ≥ Q '~B + ~x , Ri !!. ~3!

Furthermore, QPi Q ' if and only if

QRi Q ' and for some y [ R, Q~B + ~ y , Ri !! . Q '~B + ~ y , Ri !!. ~4!

From now on, we use @~1! and ~2!# or @~3! and ~4!# for our ordinal
extension of preferences. We are interested in the following properties.

First we consider Pareto efficiency: for each profile, there does not
exist a distribution that all agents weakly prefer to the distribution assigned
by the probabilistic rule to this profile with strict preference for some
agent.

Let N [ P and Q , Q ' be distributions over R. If for all i [ N , QRi Q '

and for some j [ N , QPjQ
', then we call Q a Pareto improvement of Q '.

PARETO EFFICIENCY: For all N [ P and all R [ RN, there exists no Pareto
improvement of w~R !.

Remark 1: A deterministic rule satisfies Pareto efficiency if and only if for
all N [ P and all R [ RN, F~R ! [ E ~R !. Therefore, we call E ~R ! the
Pareto set of R .

Ehlers et al. ~1999, Lemma 2.2! show that a probabilistic rule satisfies
Pareto efficiency if and only if it only selects distributions that place for
every profile probability 1 on its Pareto set. Therefore, in our model,
ex-post efficiency is equivalent to Pareto efficiency.

LEMMA 2: Let w be a probabilistic rule. Then w satisfies Pareto efficiency if and
only if for all N [ P and all R [ RN, w~R !~E ~R !! 5 1.

The next requirement ensures that no agent can ever benefit by
misrepresenting his true preference relation.

Let N , M [ P, N # M , and R [ RM. Then M\N :5 $i [ M 6i Ó N %. Let
RN denote the restriction ~Ri !i[N [ RN of R to N .
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STRATEGY-PROOFNESS: For all N [ P, all j [ N, and all R , OR [ RN such that
RN \ $ j % 5 ORN \ $ j %, w~R !Rj w~ OR !.

Note that our notion of strategy-proofness also contains the require-
ment that the distributions that are assigned by the probabilistic rule
before and after any unilateral deviation are comparable. For a more
detailed discussion of strategy-proofness we refer to Ehlers et al. ~1999!.

The next requirement says that the probabilistic rule is symmetric in
its arguments; in other words, the names of the agents do not matter.

Let N [ P and PN be the class of all permutations on N . For all R [
RN and all p [ PN, let R p denote the profile ~R p~i ! !i[N .

ANONYMITY: For all N [ P, all R [ RN, and all p [ PN, w~R ! 5 w~R p!.

Ehlers et al. ~1999, Corollary 5.4! give a full characterization of all
probabilistic rules satisfying Pareto efficiency, strategy-proofness, and anon-
ymity. Given N [ P, a probabilistic rule on RN satisfying these properties
is determined by ~6N 6 2 1! fixed distributions. These fixed distributions
play the same role as the fixed ~6N 6 2 1! “phantom voters,” or calibration
points, that characterize any Pareto efficient, strategy-proof, and anony-
mous deterministic rule on RN ~Moulin 1980, Ching 1997!.

Let Q 1` and Q 2` denote the probability distributions placing prob-
ability 1 on 1` and 2`, respectively. For all N [ P and all R [ RN, let
-p1 , {{{ , -pt be such that $ -p1, . . . , -pt % 5 $ p ~Ri !6i [ N %. Given a Borel set

X , let 1X denote the indicator function of X : for all x [ R, if x [ X , then
1X ~x ! 5 1, and if x Ó X , then 1X ~x ! 5 0.

THEOREM 1: Let w be a probabilistic rule. Then w satisfies Pareto efficiency, strategy-
proofness, and anonymity if and only if for all N [ P, there exist 6N 62 1 distribu-
tions over R ø $2`,1`%, denoted by D1

N , . . . , D6N 621
N , such that

~i! for all l [ $2, . . . , 6N 621% and all x [R, Dl
N ~ @2`, x # ! ≥ Dl21

N ~ @2`, x @ !
and

~ii! for all R [ RN, all X [ L, D0
N :5 Q 1`, and D6N 6N :5 Q 2`,

w~R !~X ! 5 (
l51

t21

Dl
N ~X ù # -pl , -pl11 @ !

1 (
l51

t

1X ~ -pl !~Dl
N ~ @2`, -pl # ! 2 Dl21

N ~ @2`, -pl @ !!. ~5!

Moreover, all Dl
N are uniquely determined.

3. Solidarity Properties and Their Logical Relations

In this section we introduce two solidarity properties and show that Pareto
efficiency and either of the two solidarity properties imply anonymity and
strategy-proofness.
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First, we apply the idea of solidarity to population changes. We require
that if an agent leaves, then all agents that are present after weakly gain as
a result of the departure.

POPULATION-MONOTONICITY:6 For all N [ P, all i [ N, all j [ P\N, and all
R [ RNø$ j %, w~RN !Ri w~R !.

Thomson ~1983! introduced population-monotonicity in the context
of bargaining. For a survey on population-monotonicity we refer to Thom-
son ~1995!. We prove the following logical relationship of properties in the
Appendix.

LEMMA 3: Pareto efficiency and population-monotonicity imply anonymity and
strategy-proofness.

Second, we apply the idea of solidarity to changes in preference
relations. When the preference relation of an agent changes, then the
welfares of all agents whose preference relations remained the same should
be affected in the same direction. Either they all weakly gain or they all
weakly lose as a result of the change of an agent’s preference relation.

REPLACEMENT-DOMINATION: For all N [ P, all j [ N, and all R , OR [ RN such
that RN \ $ j % 5 ORN \ $ j %, either [for all i [ N \$ j %, w~R !Ri w~ OR !] or [for all
i [ N \$ j %, w~ OR !Ri w~R !].

Moulin ~1987! introduced replacement-domination in the context of
binary choice with quasi-linear preferences. Thomson ~1993,1997! called
it welfare-domination under preference-replacement and studied its implications
in public and private good economies with single-peaked preferences. For
a survey, we refer to Thomson ~1999!. We prove the following logical
relationship of properties in the Appendix.

LEMMA 4: Pareto efficiency and replacement-domination imply anonymity and
stratgy-proofness.

4. Target Rules

The following classes of “target rules” play the central role in the sequel.
A deterministic target rule is determined by its target level. If the target
level is Pareto efficient, then the rule chooses the target level. If the target
level is not Pareto efficient, then the rule chooses the Pareto efficient
level that is closest to the target level.

6The “standard population-monotonicity property” would require that if a group of agents
leave or come in, then the welfares of all agents who are present before and after the change
in population are affected in the same direction. Instead of considering all possible changes
in population we only consider the arrival or departure of one agent. Note that Pareto
efficiency together with this weaker population-monotonicity property implies our population-
monotonicity property.
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DETERMINISTIC TARGET RULES, Fa : Given a [ R ø $2`,1`%, the deterministic
target rule with target level a, denoted by Fa, is defined as follows. For all N [
P and all R [ RN, Fa~R ! 5 med~ rp ~R !,a , +p ~R !!.7

Given N [ P, we say that a probabilistic rule w is a deterministic target
rule on the domain RN, if there exists a N [ R ø $2`,1`% such that for
all R [ RN, w~R !~$Fa N

~R !%! 5 1.
In many public choice decision processes, target oriented decisions

where the target equals the status quo are prevailing, for instance, if all
participants have veto power over changes in the status quo and unanim-
ity is required to change it.

A probabilistic target rule is determined by its target probability dis-
tribution. In the interior of the Pareto set, the target probability distribu-
tion is applied. Probability outside the Pareto set is projected to the
closest level belonging to the Pareto set.

PROBABILISTIC TARGET RULES, wQ : Given distribution Q over R ø $2`,1`%, the
probabilistic target rule with target distribution Q, denoted by wQ, is defined as
follows. For all N [ P and all R [ RN, if rp ~R ! Þ +p ~R !, then for all X [ L,

wQ ~R !~X ! 5 1X ~ rp ~R !!Q~ @2`, rp ~R !# ! 1 Q~X ù # rp ~R !, +p ~R !@ !

1 1X ~ +p ~R !!Q~ @ +p ~R !,1`# !,

and if rp ~R ! 5 +p ~R !, then for all X [ L,

wQ ~R !~X ! 5 1X ~ rp ~R !!.

It is easy to check that all probabilistic target rules satisfy Pareto
efficiency and population-monotonicity. If the target distribution assigns
probability 1 to a single point a [ R ø $2`,1`%, then the probabilistic
target rule wQ is identical to the deterministic target rule Fa.

Remark 2: All probabilistic target rules satisfy Pareto efficiency, strategy-
proofness, and anonymity. Probabilistic target rules are a special sub-
class of the class of rules as characterized in Theorem 1: a probabilistic
rule as described in Theorem 1 is a probabilistic target rule if and
only if all fixed probability distributions are the same; that is, for all
N , M [ P, D1

N 5 {{{ 5 D6N 621
N 5 D1

M 5 {{{ 5 D6M 621
M .

Thomson ~1993! shows that all deterministic target rules satisfy
replacement-domination. However, the following example shows that not
all probabilistic target rules satisfy replacement-domination.

7By med we denote the median operator; that is, if x ≤ y ≤ z , then med~x , y , z ! 5 y . For all N [
P and all R [ RN, rp ~R !, +p ~R ! [ R. Hence, for all a [ R ø $2`,1`%, med~ rp ~R !,a , +p ~R !! [ R.
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Example 1: Let Q be the distribution over R ø $2`,1`% assigning prob-
ability 1

2
_ to 2` and probability 1

2
_ to 1`. The resulting probabilistic

target rule wQ is determined as follows. For all N [ P, all R [ RN, and
all X [ L,

wQ ~R !~X ! 5 2
121X ~ rp ~R !! 1 2

121X ~ +p ~R !!.

We show that wQ violates replacement-domination. Let N 5 $1,2,3%
and R [ RN be such that ~ p ~R1!, p ~R2!, p ~R3!! 5 ~0,1,2!. Let OR3 [ R
be such that p ~ OR3! 5 21 and OR 5 ~R1, R2 , OR3!. Then, ORN \ $3% 5 RN \ $3% ,
and by definition of wQ,

wQ ~R !~$0%! 5 2
12 . 0 5 wQ ~ OR !~$0%!

and

wQ ~R !~$1%! 5 0 , 2
12 5 wQ ~ OR !~$1%!.

Since p ~R1! 5 0 and p ~R2! 51, this contradicts replacement-domination.

The following result states that Pareto efficiency and replacement-
domination essentially characterize the class of deterministic target rules.

THEOREM 2: A probabilistic rule satisfies Pareto efficiency and replacement-
domination if and only if, for all N [ P, it is a deterministic target rule on the
domain RN.

Pareto efficiency and population-monotonicity characterize the class
of probabilistic target rules.8

THEOREM 3: A probabilistic rule satisfies Pareto efficiency and population-
monotonicity if and only if it is a probabilistic target rule.

Remark 3: If in Theorem 3 we replace population-monotonicity by a
weaker replacement-domination property, then for each N [ P, a
probabilistic rule satisfying these two properties must be a probabilis-
tic target rule on RN ~Appendix, Theorem 4!.

The Appendix contains the proofs of Theorems 2 and 3 and Remark
3 ~Appendix, Theorem 4!. Our proofs use the fact that Pareto efficiency
and either one of the solidarity properties imply anonymity and strategy-
proofness. Then we apply Theorem 1 and Remark 2 to deduce that a rule
satisfying these requirements must be a probabilistic target rule. More-
over, we show that if a probabilistic target rule satisfies replacement-
domination, then it must be a deterministic rule. Interestingly, our proofs
provide an alternative way to show the results of Thomson ~1993! and
Ching and Thomson ~1996!.

8Theorem 3 remains valid if 6P6 ≥ 3 and P contains all nonempty subsets of P.
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The last requirement we consider says that if all agents have the same
preference relation, then the probabilistic rule places probability 1 on the
unanimous peak level.

UNANIMITY: For all N [ P and all R [ RN, if for all i , j [ N, Ri 5 Rj , then
w~R !~$ p ~Ri !%! 5 1.

Ehlers et al. ~1999! show that when in Theorem 1 Pareto efficiency is
replaced by unanimity, their characterization still holds. The following
example shows that we cannot weaken Pareto efficiency to unanimity in
Theorems 2 and 3.

Example 2: Let a [ R. We define the deterministic rule Ca as follows. For
all N [ P and all R [ RN,

Ca ~R ! 5 H rp ~R ! if for all i , j [ N , Ri 5 Rj ,

a otherwise.

The deterministic rule Ca satisfies unanimity, population-monotonicity,
and replacement-domination but not Pareto efficiency.

Examples 2 and 3 establish the independence of Theorems 2 and 3.

Example 3: We define the deterministic rule Q as follows. For all N [ P
and all R [ RN,

Q~R ! 5 p ~Rmin$i 6i[N % !.

The deterministic rule Q satisfies Pareto efficiency but neither popula-
tion-monotonicity nor replacement-domination.

Appendix

Proofs of Lemmas 3 and 4

The following lemma will be a useful tool.

LEMMA 5: For all N [ P, all R [ RN, all i , j [ N such that p ~Ri ! ≤ p ~Rj !, and
all distributions Q ,Q ' over R, if QRi Q ', QRj Q

', and Q~ @ p ~Ri !, p ~Rj !# ! 5 1 5
Q '~ @ p ~Ri !, p ~Rj !# !, then Q 5 Q '.

Proof: Let x [ @ p ~Ri !, p ~Rj !# . Then, Q~ @ p ~Ri !, p ~Rj !# ! 5 1 5 Q '~ @ p ~Ri !,
p ~Rj !# ! and QRi Q ' imply Q~ @ p ~Ri !, x # ! 5 Q~B ~x , Ri !! ≥ Q '~B ~x , Ri !! 5
Q '~ @ p ~Ri !, x # !. Similarly, QRj Q

' implies Q~ #x , p ~Rj !# ! ≥ Q '~ #x , p ~Rj !# .
Because Q~ @ p ~Ri !, p ~Rj !# ! 51 5 Q '~ @ p ~Ri !, p ~Rj !# !, all inequalities are
equalities. Therefore, for all intervals #a , b # , R, Q~ #a , b # ! 5 Q '~ #a , b # !.
Because the s-algebra L is generated by those intervals, it follows that
Q 5 Q '. n

Applying Pareto efficiency, population-monotonicity, and Lemma 5
yields the following.
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LEMMA 6: Let w be a probabilistic rule satisfying Pareto efficiency and population-
monotonicity. For all N [ P, all j [ P\N, and all R [ RNø$ j %, if E ~RN ! 5
E ~R !, then w~RN ! 5 w~R !.

Successive application of Lemma 6 yields the following.

LEMMA 7: Pareto efficiency and population-monotonicity imply anonymity.

In order to prove Lemmas 3 and 4, we need to introduce a weaker
replacement-domination property. This condition only requires solidarity
when the Pareto set before the change of an agent’s preference relation is
either a subset or a superset of the Pareto set after the change. We call
these changes one-sided because we restrict changes in the Pareto set to
changes of “one of its sides.”

ONE-SIDED REPLACEMENT-DOMINATION: For all N [ P, all j [ N, and all R , OR [
R N such that RN \ $ j % 5 ORN \ $ j % and E ~R ! # E ~ OR ! or E ~R ! $ E ~ OR !, either
[for all i [ N \$ j %, w~R !Ri w~ OR !] or [for all i [ N \$ j %, w~ OR !Ri w~R !].

LEMMA 8: Pareto efficiency and population-monotonicity imply one-sided
replacement-domination.

Proof: Let w be a probabilistic rule satisfying Pareto efficiency and
population-monotonicity. By Lemma 7, w satisfies anonymity. Let N [
P, j [ N , and R , OR [ RN be such that RN \ $ j % 5 ORN \ $ j % and E ~R ! #
E ~ OR !. Without loss of generality, we suppose that rp ~R ! 5 rp ~ OR !. We
show that for all i [ N \$ j %,

w~R !Ri w~ OR !, ~6!

which proves one-sided replacement-domination. We distinguish two
cases.

Case 1: P\N Þ B.
Let k [ P\N and ER [ RNø$k % be such that ERN 5 R and ERk 5

ORj . By population-monotonicity, for all i [ N , w~R !Ri w~ ER !. By
Lemma 6, w~ ER ~Nø$k %! \ $ j % ! 5 w~ ER !. By anonymity, w~ ER ~Nø$k %! \ $ j % ! 5
w~ OR !. The previous three facts imply ~6!.

Case 2: N 5 P.
If E ~ OR ! 5 E ~R !, then Lemma 6 and Case 1 imply ~6!. Let

E ~R ! #
00

E ~ OR ! and suppose that p ~Rj ! , +p ~R !. By Lemma 6,
w~RN \ $ j % ! 5 w~R !. Let R ' [ RN be such that RN \ $ j %

' 5 RN \ $ j % and
p ~Rj

' ! 5 +p ~RN \ $ j % !. By Lemma 6 and the previous fact, w~R ' ! 5
w~RN \ $ j % ! 5 w~R !. Therefore, without loss of generality, we may
assume that p ~Rj ! 5 +p ~R !.

Because 6P6 ≥ 4, rp ~R ! 5 rp ~ OR !, p ~Rj ! 5 +p ~R !, and p ~ ORj ! 5 +p ~ OR !,
there exist l , k [ N such that E ~RN \ $k % ! 5 E ~R ! 5 E ~RN \ $l % ! and
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E ~ ORN \ $k % ! 5 E ~ OR ! 5 E ~ ORN \ $l % !. By Lemma 6, w~RN \ $k % ! 5 w~R ! and
w~ ORN \ $k % ! 5 w~ OR !. Thus, by Case 1, for all i [ N \$ j, k %,

w~R !Ri w~ OR !. ~7!

Similarly, by considering N \$l %, it follows that for all i [ N \$ j, l %,
w~R !Ri w~ OR !. The previous fact and ~7! imply ~6!. n

Applying Pareto efficiency, one-sided replacement-domination, and
Lemma 5 yields the following.

LEMMA 9: Let w be a probabilistic rule satisfying Pareto efficiency and one-sided
replacement-domination. For all N [ P, all j [ N, and all R , OR [ RN such that
RN \ $ j % 5 ORN \ $ j %, if E ~R ! 5 E ~ OR !, then w~R ! 5 w~ OR !.

Successive application of Lemma 9 yields the following.

LEMMA 10: Pareto efficiency and one-sided replacement-domination imply
anonymity.

The following implication of Pareto efficiency and one-sided replacement-
domination will be useful to finish the proofs of Lemmas 3 and 4.

LEMMA 11: Let w be a probabilistic rule satisfying Pareto efficiency and one-sided
replacement-domination. For all N [ P, all j [ N, and all R , OR [ RN such that
RN \ $ j % 5 ORN \ $ j %, if E ~R ! #

00
E ~ OR !, then for all i [ N \$ j %, w~R !Ri w~ OR !.

Proof: Without loss of generality, we suppose that rp ~R ! 5 rp ~ OR !. Assume,
by contradiction, that for all i [ N \$ j %, w~ OR !Ri w~R !, and for some l [
N \ $ j %, w~ OR !Pl w~R !. Thus, for some x [ R, w~ OR !~B ~x , Rl !! .
w~R !~B ~x , Rl !!. Without loss of generality, we suppose that B ~x , Rl ! 5
@ y , x # . Hence,

w~ OR !~ @ y , x # ! . w~R !~ @ y , x # !. ~8!

Let k [ N \$ j % be such that p ~Rk! 5 rp ~R !. We show that

w~ OR !Pk w~R !. ~9!

If y ≤ rp ~R !, then by Pareto efficiency, p ~Rk! 5 rp ~R ! 5 rp ~ OR !, and ~8!,
w~ OR !~B ~x , Rk!! . w~R !~B ~x , Rk!!. The previous fact and w~ OR !Rkw~R !
imply ~9!.

If rp ~R ! , y , then, w~ OR !~ @ rp ~R !, y @ ! 5 w~ OR !~B o~ y , Rk !! ≥ w~R !
~B o~ y , Rk!! 5 w~R !~ @ rp ~R !, y @ !,where the equalities follow from Pareto
efficiency, and the inequality from w~ OR !Rk w~R !. Therefore,
w~ OR !~@ rp ~R !, y @ ! ≥ w~R !~@ rp ~R !, y @ !. This and ~8! yields w~ OR !~@ rp ~R !, x #! .
w~R !~ @ rp ~R !, x # !. So, by Pareto efficiency and p ~Rk! 5 rp ~R ! 5 rp ~ OR !,
w~ OR !~B ~x , Rk!! . w~R !~B ~x , Rk!!. The previous fact and w~ OR !Rkw~R !
imply ~9!.

Let h [ N \$k , j % and R ' [ RN be such that RN \ $h%
' 5 RN \ $h% and

p ~Rh
' ! 5 +p ~R !. Let OR ' [ RN be such that ORN \ $h%

' 5 ORN \ $h% and ORh
' 5 Rh

' .
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By Lemma 9, w~R ' ! 5 w~R ! and w~ OR ' ! 5 w~ OR !. Since Rk
' 5 Rk 5 ORk

' ,
then ~9! and the previous two equalities imply

w~ OR ' !Pk w~R ' !. ~10!

Then, w~ OR ' !~B ~ +p ~R ' !, Rk !! ≥ w~R ' !~B ~ +p ~R ' !, Rk !! 5 w~R ' !~ @ rp ~R ' !,
+p ~R ' !# ! 5 1, where the inequality follows from ~10! and the equalities

from Pareto efficiency. Hence, w~ OR ' !~ @ rp ~R ' !, +p ~R ' !# ! 5 1. Thus, by
one-sided replacement-domination and ~10!, w~ OR ' !Pk w~R ' ! and
w~ OR ' !Rhw~R ' !. Because @ p ~Rk!, p ~Rh!# 5 @ rp ~R ' !, +p ~R ' !# , the three pre-
vious facts and Lemma 5 imply w~ OR ' ! 5 w~R ' !. Hence, w~R ' !Rkw~ OR ' !,
which contradicts ~10!. Therefore, assumption ~8! was wrong, and it
follows that for all i [ N \$ j %, w~R !Ri w~ OR !. n

LEMMA 12: Pareto efficiency and one-sided replacement-domination imply
strategy-proofness.

Proof: By Lemma 10, w satisfies anonymity. Let N [ P, j [ N , and R , OR [
RN be such that RN \ $ j % 5 ORN \ $ j % . We have to show that w~R !Rj w~ OR !.
We consider four cases.

Case 1: E ~R ! 5 E ~ OR !.
By Lemma 9, w~R ! 5 w~ OR !. Thus, w~R !Rj w~ OR !, the desired

conclusion.

Case 2: E ~R ! #
00

E ~ OR !.
Without loss of generality, we suppose that rp ~R ! 5 rp ~ OR !. Let

k [ N \$ j % be such that p ~Rk! 5 rp ~R !, and l [ N \$k , j %. Let R ' [
RN be such that RN \ $l %

' 5 RN \ $l % and Rl
' 5 ORj . Thus, E ~R ' ! 5 E ~ OR !

and E ~R ! #
00

E ~R ' !. By Lemma 11, for all i [ N \$l %, w~R !Ri w~R ' !.
In particular, w~R !Rj w~R ' !. By anonymity and Lemma 9, w~R ' ! 5
w~ OR !. Thus, w~R !Rj w~ OR !, the desired conclusion.

Case 3: E ~R ! $
00

E ~ OR !.
Without loss of generality, we suppose that rp ~R ! 5 rp ~ OR !. Let

k [ N \$ j % be such that p ~Rk! 5 rp ~R !. By Lemma 11, w~ OR !Rkw~R !.
Thus, for all x [ @ rp ~ OR !, +p ~ OR !# ,

w~ OR !~ @ rp ~ OR !, x # ! ≥ w~R !~ @ rp ~ OR !, x # !. ~11!

By Pareto efficiency, w~R !~ @ rp ~R !, +p ~R !# ! 5 1. Because rp ~R ! 5 rp ~ OR !
and +p ~ OR ! , +p ~R !, ~11! implies that for all x [ @ rp ~R !, +p ~R !# ,
w~R !~ #x , +p ~R !# ! ≥ w~ OR !~ #x , +p ~R !# !. Hence, by Pareto efficiency
and p ~Rj ! 5 +p ~R !, for all x [ @ rp ~R !, +p ~R !# , w~R !~B o~x , Rj !! ≥
w~ OR !~B o~x , Rj !!. Thus, w~R !Rj w~ OR !, the desired conclusion.

Case 4: E ~R !\E ~ OR ! Þ B and E ~ OR !\E ~R ! Þ B.
Without loss of generality, we suppose that p ~Rj ! . +p ~RN \ $ j % !.

Thus, p ~ ORj ! , rp ~RN \ $ j % !. Let R ' [ RN be such that RN \ $ j %
' 5 RN \ $ j %

and p ~Rj
' ! 5 +p ~RN \ $ j % !. By Case 3, w~R !Rj w~R ' !. By Case 2,
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w~R ' !Rj
'w~ OR !. By Pareto efficiency, for all x [ @ rp ~R ' !, +p ~R ' !# ,

w~R ' !~B ~x , Rj
' !! 5 w~R ' !~ @x , p ~Rj

' !# ! 5 w~R ' !~B ~x , Rj !!. Therefore, it
follows that for all x [ @ rp ~R !, +p ~R !# , w~R !~B ~x , Rj !! ≥ w~ OR !~B ~x , Rj !!.
Hence, w~R !Rj w~ OR !, the desired conclusion. n

Thus, Lemmas 7, 8, and 12 prove Lemma 3 and Lemmas 10 and 12
prove Lemma 4.

Proofs of Theorems 2 and 3

Given N [ P, we show that the class of probabilistic target rules that is re-
stricted to the domain RN is characterized by Pareto efficiency and one-
sided replacement-domination on RN. Theorem 4 also proves Remark 3.

THEOREM 4: Let w be a probabilistic rule and N [ P. Then w satisfies Pareto
efficiency and one-sided replacement-domination on RN if and only if there exists
a distribution Q N over R ø $2`,1`% such that for all R [ RN, w~R ! 5
wQ N

~R !.

Proof: Let w be a probabilistic rule satisfying Pareto efficiency and one-
sided replacement-domination. Let N [ P. By Lemmas 10 and 12, w
satisfies strategy-proofness and anonymity on RN. Without loss of gen-
erality, we assume that N 5 $1, . . . , n%. Therefore, by Theorem 1, w is
characterized on RN by ~n 2 1! fixed distributions D1

N , . . . , Dn21
N over

R ø $2`,1`%. By Remark 2 it is sufficient to show that D1
N 5 {{{ 5

Dn21
N 5: Q N.

Suppose that there exist some l , t [ $1, . . . , n 2 1% such that Dl
N Þ

Dt
N. Since the Borel s-algebra on R ø $2`,1`% is generated by all

intervals @x ,1`# , x [ R, there exists y [ R such that Dl
N ~ @ y ,1`# ! Þ

Dt
N ~ @ y ,1`# !. Without loss of generality, we assume that l , t . Let

R1, Rn [ R be such that p ~R1! 5 y 2 1 and p ~Rn! 5 y . By R [ RN we
denote the profile such that for all i [ $1, . . . , l %, Ri 5 R1, and for all
i [ $l 1 1, . . . , n%, Ri 5 Rn . By OR [ RN we denote the profile such that
for all i [ $1, . . . , t %, ORi 5 R1, and for all i [ $t 1 1, . . . , n%, ORi 5 Rn . By
Theorem 1, equality ~5!,

w~R !~$ y %! 5 Dl
N ~ @ y ,1`# ! Þ Dt

N ~ @ y ,1`# ! 5 w~ OR !~$ y %!. ~12!

Notice that OR can be obtained from changing successively ~t 2 l !
agents’ preference relations from R1 to Rn . Since at these unilateral
deviations the Pareto set does not change, Lemma 10 implies w~R ! 5
w~ OR !, which contradicts ~12!. n

Theorem 4 and the following proposition yield the proof of Theorem 2.

PROPOSITION 1: Let N [ P and Q be a distribution over R ø $2`,1`%. If
wQ satisfies replacement-domination on RN, then Q places probability 1 on a
single point in R ø $2`,1`%.
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Proof: Suppose that Q does not place probability 1 on a single level in
R ø $2`,1`%. Then there exist y , x [ R such that

y , x , Q~ @2`, y # ! . 0 and Q~ @x ,1`# ! . 0. ~13!

We show that wQ violates replacement-domination on RN.
Without loss of generality, we assume that $1,2,3% # N . Let R [

RN be such that p ~R1! 5 1
2
_ ~ y 1 x !, p ~R2! 5 1

4
_ y 1 3

4
_ x , p ~R3! 5 x , and

for all i [ N \$1,2,3%, Ri 5 R1. Let OR [ RN be such that ORN \ $3% 5
RN \ $3% and p ~ OR3! 5 y . By definition of wQ and ~13!,

wQ ~R !~$ 4
12y 1 4

32x %! 5 Q~$ 4
12y 1 4

32x %! , Q~ @ 4
12y 1 4

32x ,1`# !

5 wQ ~ OR !~$ 4
12y 1 4

32x %!

and

wQ ~R !~$ 2
12~ y 1 x !%! 5 Q~ @2`, 2

12~ y 1 x !# ! . Q~$ 2
12~ y 1 x !%!

5 wQ ~ OR !~$ 2
12~ y 1 x !%!.

Since p ~R1! 5 1
2
_ ~ y 1 x ! and p ~R2! 5 1

4
_ y 1 3

4
_ x , the previous two

inequalities contradict replacement-domination. n

Finally, we prove Theorem 3 by using Theorem 4.

Proof of Theorem 3: Let w be a probabilistic rule satisfying Pareto effi-
ciency and population-monotonicity. By Lemma 8, w satisfies one-
sided replacement-domination. Hence, by Theorem 4, for each N [ P
there exists a distribution Q N such that for all R [ RN, w~R ! 5
wQ N

~R !.
We show that for all N , M [ P, Q N 5 Q M. Let x [ R, R 1 [ RN,

R 2 [ RM, and R 3 [ RNøM be such that RN
3 5 R 1, RM

3 5 R 2, and
E ~R 1! 5 E ~R 2! 5 E ~R 3! 5 @x 2 1, x # .

Successive application of Lemma 6 yields w~R 3! 5 w~RN
3 ! 5 w~R 1!

and w~R 3! 5 w~RM
3 ! 5 w~R 2!. Thus, w~R 1! 5 w~R 2!. Therefore,

Q N ~ @x ,1`# ! 5 wQ N
~R 1!~$x %! 5 w~R 1!~$x %! 5 w~R 2 !~$x %!

5 wQ M
~R 2 !~$x %! 5 Q M ~ @x ,1`# !,

where the first and the last equality follow from ~5!. Hence, Q N~@x ,1`#!5
Q M ~ @x ,1`# !. Since x was arbitrary, it follows that for all x [ R,
Q N ~ @x ,1`# ! 5 Q M ~ @x ,1`# !. Because the Borel s-algebra on R ø
$2`,1`% is generated by all intervals @x ,1`# , x [R, it follows that Q N 5
Q M. Hence, w 5 wQ where Q :5 Q N 5 Q M. n
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