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ABSTRACT This paper "resents several new methods for measuring intersectoral knowledge spillovers, 
and applies these methods in an analysis of productivity growth in manufacturing for a cross-country, 
cross-sectional sample for the 1980s. It is argued that existing methods of measuring such 
intersectoral knowledge spillovers are mostly aimed at measuring so-called `rent spillovers'. The 
methods developed here are aimed at measuring knowledge spillovers--an additional aspect of the 
spillover process. The empirical analysis shows that there are indeed differences between these two 
types of spillover measure.  

KEYWORDS: R&D spillovers, patents, productivity growth  

1. Introduction  
Despite recent efforts, technology is still an ill-measured phenomenon in economics. The most 
frequently used statistical measures of technology (patent counts and R&D data) suffer from all sorts 
of problems. (Pavitt (1985), Griliches (1979,1990) and Soete and Verspagen (1991) are a few 
examples of contributions that discuss the usefulness of the different indicators.) Theoretical advances 
in what might be called the field of the `economics of technological change' (encompassing such 
broadly distinct topics as endogenous growth theory, diffusion theory and parts of industrial 
economics, to name only a few) have helped in applying the commonly used data on patents and R&D 
in a more ingenious way to economic trends and problems, such as productivity growth and 
international trade. One important aspect of technological change that has inspired empirical research 
on measuring technology more adequately is the existence of public aspects, or externalities, of 
technology.  

The idea that a technological innovation is not only useful to its innovator but also to other economic 
agents, and that these other economic agents do not always pay a `full' price for the use of the 
innovation, i.e. the existence of externalities, has recently inspired a complete rewriting of neoclassical 
growth theory (Grossman & Helpman, 1991; Romer, 1990). In the more empirical literature on the 
relationship between productivity growth and technology indicators such as R&D, this notion goes 
back to at least Griliches (1979) and Scherer (1982), with Scherer presenting a measure of `indirect' 
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R&D used in a sector, and showing that this indirect R&D significantly affected productivity 
development in a cross-section of US industries.  

The externalities connected with an innovation might take different forms. Griliches (1979) proposed 
the (analytical) distinction between so-called `rent spillovers' and `knowledge spillovers'. The first of 
these two types relates to the tendency that supplier firms, under competitive pressure, typically are 
not able to raise prices proportionally to quality improvements in their product. Therefore, the quality-
to-price ratio will generally rise, leading to spillovers for the firms who use the intermediary product or 
investment good. Knowledge spillovers are more directly related to the knowledge embodied in the 
innovation, and not necessarily to the economic transaction (as in the case of rent spillovers). An 
example of knowledge spillovers is when one invention might lead to a new idea for a different 
inventor.  

`Pure' knowledge spillovers are difficult to measure. This paper presents several attempts to quantify 
these spillovers, by using the specific ways in which the European Patent Office (EPO) and the US 
Patent Office (USPO) classify patents. These methods are aimed at identifying and quantifying 
additional sources of knowledge spillovers, as compared with the methods already available in the 
literature.  

The rest of the paper is organized as follows. Section 2 describes the methods used in more detail, 
and presents the raw results of the analysis on the basis of EPO and USPO data. Section 3 applies the 
results of these methods to the relationship between productivity and R&D, which is a main 
application area in the field of knowledge spillovers. A simple regression model will be estimated, 
which includes direct and indirect R&D in the explanation of growth rates of total factor productivity 
(TFP) in a cross-sectional, cross-country panel. The results will also be compared with one specific 
example of a broad class of other measures of spillovers found in the literature, i.e. the so-called `Yale 
method', as described by Putnam and Evenson (1994). The final section summarizes the results and 
concludes on the empirical relevance of the methods of identifying technological spillovers between 
sectors developed in this paper.  

2. Measuring Technology Spillovers: A `Technology Perspective'  
Perhaps the most effective method for measuring technology spillovers in the literature is by means of 
setting up a matrix with innovation or patent data classified by the user and producer industries. 
According to this method, which was originally proposed by Scherer (1982),( n1) spillovers flow from 
the innovation producing sector to the innovation-using sector. Typically, this approach simplifies to 
identifying the product or process that will result from an invention, and subsequently identifying the 
(main) economic sector in which this product or process will be used. For example, a patent that 
relates to fertilizers will be assigned to the chemical industry as the producing sector, and to the 
agriculture sector as the using sector.  

This method is also the basis for the so-Galled `Yale matrix', which is constructed on the basis of data 
from the Canadian Patent Office. As well as assigning International Patent Classification (IPC) codes to 
a patent, the Canadian Patent Office (exclusively in the world) assigns principal user and producing 
sectors to each patent, so enabling the researcher to calculate a matrix such as that proposed by 
Scherer (1982) directly from the patent office data, without having to make inferences on the 
relationship between IPC codes and industrial sectors. The Yale matrix is presented in the paper by 
Putnam and Evenson (1994). The method described by DeBresson et al. (1994) is also based on the 
user-producer principle, although this method uses data on innovations rather than data on patents.  

Although the approaches mentioned so far have proven to be useful in measuring spillovers, such as 
leading to significant estimates of the relationship between productivity growth and technology 
spillovers, there are at least two reasons why one may argue that they tend to ignore important 
aspects of the spillover process. First, because they are based on user-producer relationships, they 
tend to overlook spillover relationships that are more explicitly based on technological linkages 
between sectors. For example, the technical knowledge in a patent on fertilizers may be useful to a 
broad range of economic sectors, although the fertilizer itself will probably not be applied outside the 
agricultural sector. One may think of sectors such as rubber and plastic products or the glass industry, 



which, by the chemical nature of their technology base, may benefit from technical knowledge on 
fertilizers, although their relationships in terms of user-producer interactions with the fertilizer industry 
will be marginal.  

The second problem with the user-producer method of measuring technological spillovers stems from 
the fact that, at least in as far as patent data are used to construct the spillover matrix, the underlying 
technological knowledge is actually appropriated by the knowledge producer. Again, using the 
example of fertilizers, the producer of the innovation, if the patent application is granted, may claim 
the sole use of the knowledge in the patent, so will be able to charge a mark-up over marginal costs 
to cover R&D costs. In such a case, if there were spillovers (between producer and user of the 
innovation) at al!, then they would most certainly contain important rent spillovers in addition to pure 
knowledge spillovers, because they are related to the economic transaction, rather than by a pure 
technological link (see van Meijl, 1995, 1997). Despite these problems, one may argue that the Yale- 
or Scherer-type matrix captures at least some aspects of pure knowledge spillovers, if only because 
economic linkages in the form of user-producer relationships may `guide' technological search efforts 
by firms to a certain extent.  

An alternative approach by Jaffe (1986) was based on a more explicit `technological perspective'. 
Jaffe constructed a measure of the technological distance between firms, on the basis of the 
distribution of firms' patenting activities over technology fields. He then assumed that spillovers can be 
measured by the stock of knowledge developed by other firms, where each firm's input into this total 
stock of external knowledge is weighted by its technological distance from the spillover-receiving firm. 
Goto and Suzuki (1989) used a similar method.  

Jaffe's method is clearly distinct from the user-producer-oriented methods described earlier. Although 
both methods are aimed at measuring knowledge spillovers, one should not compare them as 
alternative ways of measuring the same process. A more useful interpretation of the differences 
between the two methods is that they place different emphasis on different aspects of the complicated 
process of knowledge spillovers. Jaffe's technological method tends to stress technology-based 
linkages between firms or sectors, whereas the user-producer method tends to stress transaction-
based linkages.  

The different methods developed in this paper (following Jaffe) adopt a `technology perspective' to 
measuring spillovers. In light of the foregoing, it should be seen as a complement, and not a 
substitute, for the user-producer methods developed by Scherer (1982) and Putnam and Evenson 
(1994). The methods developed here all use patent statistics to measure technology flows. One of the 
problems with patent statistics is that the different national and international patent offices use 
different procedures to evaluate and classify patent applications. This implies that each system used 
provides different opportunities for measuring economic aspects of patents, such as spillovers, while 
none of these methods individually will enable the measurement of all aspects of spillovers.  

From this point of view, this paper uses the two most widely used patenting databases available in the 
world, i.e. the USPO and EPO databases. As will be described in detail, both databases are quite 
different, from the point of view of measuring spillovers, so that the different matrices that will arise 
are expected to measure different aspects of technology spillovers, even if a broad technological 
perspective underlies both methodologies.  

The measurements based on the EPO database take as the point of departure the distinction between 
different types of knowledge which may be described in a patent document. According to the 
description of the IPC (WIPO, 1989, p. 26):  

Patent documents  

(a) comprise `invention information' i.e. technical information as defined by the claims, with due 
regard given to the description and the drawings (if any). The classification symbols allotted should 
not be restricted to the place or places in the Classification which cover only one aspect of a technical 



subject identified. Due regard should also be given to further places in the Classification where non-
trivial other aspects of that technical subject may need to be classified;  

(b) may comprise `additional information' i.e. non-trivial technical information given in the description, 
which is not claimed and does not form part of the invention as such but might constitute useful 
information to the searcher.  

Thus, two forms of classification are typically distinguished: one form for the `claimed' knowledge (or 
`invention information') and the other form for non-appropriable knowledge (or `additional 
information'). It is clear from the quote that, even in the first (`claimed') classification, there is room 
for spillovers. The second type of knowledge, because it is not appropriable, is almost by definition a 
spillover. In this case, one may think, for example, about descriptions of certain characteristics of a 
previously known material. These characteristics themselves cannot be claimed in a patent, but a 
device which makes use of these characteristics can be (the device would be classified under 
`invention information' and the material's characteristics under `additional information').  

In the case of the EPO, the main application of the claimed knowledge in a patent is assigned to a 
single technological class, while other, related knowledge is classified into (multiple) supplementary 
classes. Supplementary classes may contain invention information (claimable) and additional 
information (unclaimable).  

The processing of the European patent data was carried out using a concordance table which maps 
four-digit IPC codes into one or multiple International Standard Industrial Classification (ISIC) (rev. 2) 
industrial sectors (see Verspagen et al., 1994).2 Two different matrices were constructed on the basis 
of approximately 650000 European patent applications over the period 1979-94 (note that data for the 
most recent, say, 3 years are scarce, as a result of a lag in information processing at the EPO). The 
first of these matrices (Table 1) is constructed on the basis of the distinction between main and 
supplementary IPC codes for claimable knowledge. This matrix assumes that the main IPC code into 
which a patent is classified provides a good proxy of the producing sector of the knowledge, and that 
the listed supplementary IPC codes (taken as partially unintended `by-products' of the main goal of 
the invention) given an indication for technology spillovers to other industrial sectors (see also Grupp 
(1996) for a similar idea). This matrix makes use of approximately 60% of the 650000 records in the 
EPO database (the other records do not have supplementary IPC codes).  

The second matrix (Table 2) is constructed using information on the main classification of claimable 
knowledge and the (supplementary) codes for unclaimable knowledge. In this case, the main IPC code 
is again seen as a good proxy for the producing sector of the invention; however, in this case, the 
spillovers relate specifically to the unclaimable aspects of the patent description. Then, the number of 
available records with information is much smaller, so that the second matrix is based only on 2.5% of 
all patents in the database (again, other records do not have information on supplementary IPC 
classes).  

A third spillover matrix (Table 3) was constructed on the basis of the US patent data. In the US 
system, the first page of a patent document lists citations to other patents (or to scientific 
publications). Cited patents and the patent application itself are classified into one or multiple US 
patent classes, which are different from the international patent classes used in the EPO system. The 
USPO also uses a concordance table between the US patent classes and US SIC scheme, which is a 
variant of the ISIC industrial activity classification system.( n3)  

In the US patent database used here, each patent is assigned to two series of SIC codes: one series 
for the `original' US patent classes and the other series for all classes, i.e. the original classes as well 
as the `original' classes for patents cited on the front page. This provides an obvious opportunity to 
measure spillovers by means of patent citations, assuming that spillovers flow from the cited patent 
sector (SIC) to the citing patent sector (SIC). A matrix was set up in this way, where fractional counts 
were used (i.e. a patent is counted as 1/(ao), where a is the number of `all SICs' and o is the number 
of `original SICs). Note that this method tends to overestimate the values on the diagonal, because 
there is no way to distinguish between `original' and `cited' SICs in the series for `all SICs'. 



Therefore, a SIC that occurs in both series may or may not represent `citation spillovers', while it is 
always counted as such. Another disadvantage of the US data is that there are three sectors for which 
there are no data, although these sectors are present in the IPC-ISIC concordance: wood and 
products, paper and printing, and other manufacturing. In contrast to the EPO data, the US data 
concern only granted patents. To achieve comparability with the EPO data, only data from the period 
1980-92 were used.  

Tables 1-3 present matrices A and B for the EPO data and the US patent matrix respectively. All three 
matrices have been constructed by dividing the number of patents in each cell by its row total, so that 
the cells hold the fraction of total patents in the sector (row) that generates spillovers to another 
sector (column). Perhaps the most striking feature of all three matrices is the fact that there are 
several `generic' sectors, in the sense that these sectors receive technology spillovers from a broad 
range of other sectors (i.e. the columns for these sectors generally have high values). These sectors 
are electrical machinery (column 1), chemicals (column 3), metal products (column 12), instruments 
(column 13) and machinery (column 15). Note also that, as in the matrix of Scherer (1982) and the 
Yale matrix, the diagonal elements have relatively high values.  

To compare the results in the three matrices with each other and with the Yale matrix described 
earlier, Table 4 gives correlation coefficients for individual rows and columns, as well as for the overall 
matrices (i.e. simply correlating all elements from the same cell from two matrices). The diagonal 
elements of the matrices have been set to zero while calculating the coefficients, to avoid spurious 
correlation. In combinations where the US patents matrix was used, correlations were made for 19 
rows and/or columns; otherwise, for 22 rows and/or columns.  

The version of the Yale matrix that was used is described fully in Putnam and Evenson (1994). Using 
the data supplied by the Canadian Patent Office, Putnam and Evenson (1994) constructed a matrix 
which gives the (ex post) probability that a patent manufactured in industry i will be used by industry 
j.( n4) They used data for 1978-89, so the period is roughly comparable with the periods used here. 
The matrix presented by Putnam and Evenson (1994) includes many primary and tertiary sectors, 
such as agriculture, mining and many services sectors. These sectors mainly turn up as `user sectors'. 
In the method used to calculate matrices A and B, and in the database of the USPO, patents are 
always assigned to the `industry of manufacture of the knowledge', even in the case of a 
supplementary patent class or cited patent. For this reason, primary and tertiary sectors were not 
included in Tables 1-3. To keep the results comparable, all data from the Yale matrix that will be used 
in the remainder of this paper were normalized by dividing through all cells by the row total for 
manufacturing columns only. The resulting sectors are similar to those in Tables 1 and 2.  

However, it should be kept in mind that, by doing this, an important feature of the Yale-Canada 
methodology, i.e. measuring spillovers from manufacturing to services, is omitted. This is related to 
the distinction between rent spillovers (or user-producer spillovers) and `pure' knowledge spillovers. 
Spillovers from manufacturing and services might be characterized as mainly consisting of rent 
spillovers; hence, the three matrices developed here do not measure this aspect very well, which 
implies an important disadvantage compared with the Yale-Canada methodology.  

What emerges from Table 4 is that, in general, the correlation between matrix A and matrix B is quite 
high. In all three categories of correlations, the combination A-B yields the highest coefficient. The 
Yale matrix, although always positively correlated with the other three matrices, seems to be 
somewhat distinct, especially with respect to matrices A and B. For the total matrix, the correlation 
between the Yale matrix and the other matrices is never significant, while, for column correlations, it is 
only significant in the case of the US matrix. Thus, the US patent matrix seems to form an 
`intermediate' case between matrix A and matrix B, on the one hand, and the Yale matrix, on the 
other hand. When considered along the row dimension only, all correlations are significant. In general, 
correlation coefficients for columns are lower than for rows.  

3. R & D, Productivity and Spillovers  
One of the main applications of technology spillover matrices has been to the case of productivity 
growth (Scherer, 1982; Wolff & Nadiri, 1993). The general finding in this literature is that the impact 



of `indirect' R&D (i.e. R&D performed in other sectors, calculated on the basis of a spillover matrix) on 
productivity growth is positive and significant. In many cases, the finding is even that the impact of 
indirect R&D is greater than that of direct R&D (Mohnen, 1992). The comparison between the two 
types of R&D is difficult, however, because direct and indirect R&D are highly collinear in many cases, 
making inference in nested regression models difficult. In this section, a simple, heuristic model for 
the relationship between productivity growth and direct and indirect R&D will be used. A comparison 
between indirect measures of R&D based on the four different spillover matrices will be made.  

The analysis starts from an assumed Cobb-Douglas production function, written in labour-intensive, 
dynamic format as  

( 1) q - l = c + Alpha(k-l) + Mul + Rho + Gamma ri  

where q, l and k denote the growth rates of output, labour input and the capital stock respectively. r 
and ri denote the growth rates of two distinct knowledge stocks, with r relating to knowledge 
generated in the sector itself and ri consisting of `indirect' knowledge, or spillovers. Alpha is the 
elasticity of output with respect to capital and Mu is defined as Alpha + Beta-1, where Beta is the 
elasticity of output with respect to labour (thus, if Mu = 0, then constant returns to scale with respect 
capital and labour hold).  

Next, following Terleckyj's (1974) basic contribution, one may write the growth rate of the direct 
knowledge stock as  

( 2) r = R&D/Q Q/R  

where R&D denotes the R&D expenditures in the sector, Q is the output and R is the direct knowledge 
stock. A similar expression can be written for the indirect knowledge stock, substituting for direct R&D 
expenditures by indirect R&D expenditures.  

On multiplying equation ( 2) by Rho(or Gamma for indirect knowledge), one obtains the R&D intensity 
(R&D over output) multiplied by the rate of return to direct (or indirect) knowledge investments 
(because the elasticity of output with respect to the knowledge stock divided through by the ratio of 
the knowledge stock to output can be interpreted as a rate of return). Therefore, equation ( 1) can be 
rewritten as  

( 3) q - l = c + Alpha(k-l) + Mul + mdid + msis  

where id and is are the direct and indirect (spillover) R&D intensities, respectively, and md and ms are 
their respective rates of return.  

The model in equation ( 3) is called the unrestricted model, which can be further restricted in several 
ways. First, a model which will be called the CRS (constant returns to scale) model is obtained by 
setting Mu to zero, i.e.  

( 4) q - l = c + Alpha(k-l) + mdid + msis  

Second, the CRS model can be further restricted by assuming that Alpha can be inferred from the 
data, i.e. that it can be estimated as 1-Sigma, where Sigma is the share of labour in income. In this 
model, TFP growth becomes the dependent variable, i.e.  

( 5) q - l - Alpha(k-l) = TFP = c + mdid + msis  

These are the basic equations that will be estimated, using each of the four different matrices 
discussed previously as measures to calculate indirect R&D. The two R&D intensity variables are 
measured as SigmatR&D/Sigmat Q (where Q denotes value added and Sigmat indicates a sum over the 
period 1979-89( n5)). Indirect R&D flows in sector i are calculated as Sigmaj equal to i mji (where j 
indicates the 22 sectors and m is an element from matrix A, matrix B, the US patents or the Yale 
matrix(.( n6) In calculating indirect R&D flows, the diagonal elements of the spillover matrices (mii) 
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have been set to zero to avoid collinearity with the direct R&D measure. This implies that the 
estimated rate of return on direct R&D includes intrasectoral spillovers, i.e. that it is an intrasectoral 
`social' rate of return.  

TFP is measured as  

TFP= 1n Q1989 - 1n Q1979 - Alpha(1n L1989 - In L1979) - ( 1- Alpha)(1n K1989-1n K1979)/10  

where L denotes the labour input used, K is the capital stock and is the wage share in value added.( 
n7) This measure of TFP growth is admittedly crude, because it does not adjust for underutilization of 
(quasi-)fixed inputs, and the capital stock input used is based on a fairly crude method. However, 
given the nature of the analysis, and keeping in mind the intended coverage of a large number of 
sectors and countries, the development of a more sophisticated measure is not possible.  

The main source of the data is the OECD,( n8) but the price indices used to deflate R&D (i.e. the GDP 
deflator) and investment were taken from the Penn World Tables (version 5.5).( n9) The countries 
included in the analysis are Canada, Denmark, Finland, France, Germany, Italy, Japan, the UK and the 
US.  

To give a crude impression of the dependencies in the data, Table 5 shows correlation coefficients 
between the variables in the model. Indirect R&D variables are subscripted by A, B, U or Y to indicate 
the matrix used in the calculations (i.e. matrices A, B, US patents and Yale). There are several 
interesting features in Table 5. First, the correlation between direct and indirect R&D measures, 
although positive, is not very high. The Yale measure of indirect R&D yields the highest correlation 
with direct R&D. Second, the indirect measures of R&D have fairly high correlation coefficients with 
respect to each other. Perhaps surprisingly, the correlation between the Yale matrix and the US patent 
matrix results are lowest in this part of the table. Finally, the correlation coefficients between TFP 
growth and labour productivity growth, on the one hand, and indirect R&D, on the other hand, are 
higher than for direct R&D; however, these coefficients are generally low (indirect R&D based on 
matrices A and B yields the highest coefficients). Overall, the danger for collinearity does not seem to 
be great, except in cases with more than one measure for indirect R&D in the same equation.  

In the regressions that were carried out, the assumption of equal coefficients between countries and 
sectors was relaxed. To this end, the regression constants are assumed to vary between countries, 
whereas the regression slopes are assumed to vary between three broad groups of sectors. This 
specification is admittedly ad hoc. Slightly different specifications have been implemented, however, 
such as adding a country-specific element to the slope, instead of the constant. The results did not 
point to significantly different conclusions. Given the choice to abstract from the time dimension in the 
data set (this would undoubtedly introduce huge problems with regard to non-stationarity in the data 
and identifying an adequate lag structure), a more adequate specification is difficult to implement.  

The three groups of sectors for which the slope is allowed to vary are set up according to the current 
OECD classification of ISIC sectors into low-, medium-and high-tech sectors. This classification is 
based on the R&D value added ratio in each sector, with high (low) values classified into the high-
(low-)tech group. The group of high-tech sectors consists of electronics, computers, aerospace, drugs 
and medicines, and instruments. Medium-tech sectors are chemicals, motor vehicles, other transport,( 
n10) rubber and plastic products, machinery and electrical machinery. Other sectors are classified as 
low-tech sectors.  

The three different models introduced earlier were estimated for each of the four different measures 
of indirect R&D. Inspection of the results showed that some of the significance levels of the estimated 
coefficients were quite sensitive to the inclusion of around 10 `influential' observations, defined as 
observations for which the diagonal of the `hat' matrix was greater than two times the number of 
estimated coefficients divided by the number of observations. From a theoretical point of view, there is 
no strict reason to exclude such `influential' observations, which is why the results for all observations 
are presented here. Appendix A documents the same estimations, excluding the influential 



observations. These are generally somewhat less significant, but are also higher. Finally, the country 
dummies are not documented explicitly.  

The results are documented in Table 6. They confirm the expectation that the estimated coefficients 
differ between sectors. For the unrestricted model, we find that, for all sectors, the coefficient on the 
growth rate of labour (l) is negative, indicating decreasing returns to scale with regard to labour and 
capital. In the low-tech and medium-tech sectors, the negative signs are significant. Among the direct 
and indirect R&D variables, the only variables that are significant are the coefficients for indirect R&D 
in low-tech industries (not for the Yale measure), and the EPO A and US measures in medium-tech 
industries.  

However, the results for the unrestricted model seem somewhat problematic, because the values of 
the coefficients for I in the low-tech sectors are implausibly low, whereas the values for the indirect 
R&D variables in these industries are rather high (they point to rates of return of the order of 
magnitude 350-900%). Therefore, the CRS model seems a reasonable alternative: in the high-tech 
sectors, the restriction that it imposes is not rejected in a t-test and, in the low-and medium-tech 
sectors, not imposing the restriction leads to results that are implausible from a theoretical point of 
view.  

The CRS model yields significant estimates for the growth rate of the capital/ labour ratio in all three 
groups of industries. The values obtained for this parameter seem reasonable from a theoretical point 
of view. For direct R&D, no significant estimates are obtained, except in low-tech industries for EPO B. 
With the exception of the high-tech industries, the signs are positive, as expected. For indirect R&D, 
the results are significant for three out of four cases in medium-tech industries (Yale is the exception), 
two out of four cases in low-tech industries (Yale and US patents are the exceptions), and two of the 
four cases for high-tech industries (EPO B and US are the exeptions here). In all these significant 
cases, the estimated rates of return are quite high, ranging from 1.5 to 3.  

The TFP model drops the capital/output ratio from the right-hand side of the equation, while using 
TFP growth as the dependent variable. This equation shows a clear difference with respect to the 
order of magnitude of the estimated coefficients on indirect R&D. Significant coefficients are found for 
all four measures of indirect R&D in low- and medium-tech industries, but for none in high-tech 
industries. Direct R&D is (still) not significant in any equation.  

A final model--not introduced previously--drops the insignificant direct R&D variables from the 
equation, leaving only the indirect R&D variables and the undocumented country dummies as 
explanations for TFP growth. This is termed the restricted TFP model in Table 6. The results for this 
estimation show that, in general, leaving out direct R&D does not tend to yield higher or lower 
coefficients, or to give more significant coefficients for indirect R&D.  

Summarizing, it appears that indirect R&D is a strong determinant of productivity growth, either 
measured in terms of labour productivity growth or in terms of TFP growth. Its impact, as measured in 
the current framework, is certainly much stronger than the impact of direct R&D. There are also 
differences between the different measures of indirect R&D that have been used in the analysis. The 
measure based on US patent citations yields relatively high rates of return (highest in low- and high-
tech industries), whereas the Yale measure generally yields low rates of return, except in medium-tech 
industries, where this measure ranks highest. The two measures based on interdependencies in the 
EPO patent data yield intermediate values for the rates of return.  

The differences between the estimated rates of return on indirect R&D can also be expressed in terms 
of `social rates of return' to R&D (see, for example, Mohnen & Lepine, 1991). Because no significant 
estimation results were obtained for direct R&D, the social rates of return calculated here are so-called 
`extrasectoral' rates of return to R&D, i.e. they do not include the direct effect of R&D or the indirect 
effect within the sector from which the R&D originates. The construction of this rate of return starts 
from the assumption that an extra `dollar' of R&D is distributed over the different R&D-performing 
sectors according to the existing sectoral distribution of R&D, and the expression for it is  



[Multiple line equation(s) cannot be represented in ASCII text]  

where m, as before, is an element of one of the four different spillover matrices, and the derivative of 
output with respect to indirect R&D (JR) (the rate of return to indirect R&D) is obtained from the 
above estimations of the restricted TFP model. The sectoral shares of R&D and output are calculated 
as the mean of the 1984 values for seven of the nine countries in the sample (excluding Canada and 
Denmark, because of missing values).  

The calculations for the extrasectoral social rate of return indeed show that there are differences 
between the different spillover matrices, although they are small. The highest values are obtained for 
the EPO B and US matrices: 15.2% and 14.0% respectively. The Yale matrix yields a value of 11.7% 
and the EPO A matrix gives a value of 10.4%.  

4. Conclusions  
The questions that emerge from the foregoing analysis are as follows. Do the results in Section 3 lead 
to the conclusion that the methods for measuring knowledge spillovers presented in Section 2 are 
useful undertakings? Also, do the results point out that matrices A and B, the US patent matrix and 
the Yale matrix actually measure different aspects of the knowledge spillover process, or can they be 
regarded as different ways of measuring the same thing?  

With regard to the first question, the argument in Section 2 was that methods such as the Yale matrix 
or the matrix developed by Scherer (1982) measure knowledge spillovers related to economic 
transaction, rather than spillovers related to technological linkages between sectors. It was argued 
that such a `transaction-based' approach leads to the danger of confusing rent spillovers with pure 
knowledge spillovers.  

The comparison in Section 3 between the transaction-based Yale matrix and the technology based 
matrices A and B, as well as the US patents matrix developed in this paper, led to the conclusion that 
there are indeed differences between these matrices. The overall correlation between cell values in 
the matrices is low, although positive. Comparing the cell values row by row or column by column 
yields higher correlation coefficients, although those obtained for columns (i.e. from where sectors get 
their spillovers in particular) are low. This seems to indicate that there is at least some use in 
constructing a technology-based spillover matrix to be able to compare the results with the more 
traditional transaction based approach. It must be kept in mind, however, that such pure knowledge 
spillovers are mostly restricted to the manufacturing sector and that, for example, technology flows 
from manufacturing to services are not captured. The Yale matrix does measure flows from 
manufacturing to services or agriculture, which is an important advantage.  

The results in Section 4 indicate that, as a result of collinearity, a direct comparison between the 
different measures of indirect R&D, by means of the inclusion of multiple measures in the same 
equation estimating productivity growth, is not very practical. This seems to indicate that there is at 
least some overlap between the various methods with regard to what is being measured. Various 
models were used to estimate the rates of return to direct and indirect R&D, with the latter measured 
by four different matrices. The estimations indicate that there are indeed differences between the 
different measures. The Yale matrix measure yields a relatively high rate of return in medium-tech 
sectors, but not so in the other sectors. The measure based on US patent citations yields relatively 
high rates of return. The two measures based on EPO patent data yield intermediate values for the 
rates of return. In terms of extrasectoral social rates of return, the EPO B and US data yield high 
values compared with the other two measures.  

With regard to the differences between the technology-based estimates, recall that there are 
considerable differences between these matrices, both in terms of methodologies and of the 
underlying database. The matrix B is explicitly based on non-appropriable aspects of the knowledge 
described in a patent application, whereas the matrix A is based on the appropriable aspects of this 
knowledge. Thus, one might expect that the knowledge captured in matrix B flows more freely 
between sectors, but also that it is possibly less directly relevant for production. The relatively high 
estimated social rate of return for the matrix B must be seen in this light. The US patents matrix is 



based on patent citations, which might be regarded as a form of very directly relevant knowledge. 
Therefore, the higher values for this measure are not surprising. In the high-tech sectors, the matrix A 
and the US patent measures are the only two that are significant, indicating the importance of these 
types of technological linkage to other sectors in this group, as compared with transaction-based 
linkages.  

Is there a `final verdict' on the technology-based matrices versus the transaction-based Yale matrix? 
It has already been stressed that a direct comparison is difficult, because of collinearity and, perhaps 
more importantly, because an important aspect of the Yale matrix, i.e. flows between manufacturing 
and primary and tertiary sectors, was omitted from the analysis. Therefore, the results can only point 
out that the technology-based measures are an important contribution. It is not the outcome or the 
aim of the analysis to reject the user-producer-oriented matrices, such as the Yale matrix, as a less 
adequate measure of technology spillovers. Any serious analysis that aims to provide a complete 
picture of the issue of knowledge spillovers must take into account both aspects.  

Notes  
(n1.) "Each patent was individually examined to determine the industry of origin . . . , the industry(ies) 
in which use was anticipated, and whether the invention involved an internal process, or externally-
sold product" (Scherer, 1982, p. 627).  

(n2.) This concordance table assigns IPC codes to the ISIC sector(s) where the patent most likely 
originates (i.e. in terms of the Canadian Patent Office methodology, the `producing' sector). In cases 
where multiple originating sectors seemed possible, weights were assigned to each of these, on the 
basis of the technological description of the IPC class.  

(n3.) The concordance between US patent classes and US SICs is known to lead to slightly different 
results as compared with the concordance between international patent classes and ISIC as applied in 
the case of EPO patents above. See, for example, European Commission (1994) for a comparison. 
There is no a priori reason to favour one,of the two systems, although a case study for the chemicals 
sector has shown that the IPC-ISIC concordance may lead to better results in that particular sector 
(see European Commission, 1994, methodological appendix).  

(n4.) Putnam and Evenson (1994) discuss two different methods of measuring spillovers on the basis 
of the same data. In the method used here, a matrix which has patent counts by `manufacturing' and 
`using' industry is normalized by dividing through by the row totals, i.e. by the total of the 
`manufacturing' sector. The second method of Putnam and Evenson estimates the probability that a 
patent used by industry j is manufactured in industry i. This is obtained by dividing through each cell 
in the matrix of patent counts by its column total. The second of these methods is conceptually more 
different from the method used in Tables 1 and 2. Moreover, Putnam and Evenson (1994) conclude: 
"Our best out-of-sample estimates with [the second method] tended to have an overall reliability 
about the same, or somewhat worse than, our best estimates using [the first method]". This is why 
the analysis in the remainder of this paper will only use their first method.  

(n5.) R&D is measured in constant prices, where the GDP deflator was used to create these from 
current values. This also applies for Q, except that the sectoral producer price indices were then used. 
For the subsectors in ISIC classes 352, 382 and 383, no disaggregated price indices were available. In 
these cases, the three-digit price indices were used for the four-digit subsectors.  

(n6.) For indirect R&D based on the US patents matrix, R&D flows from sectors 20-22 in Tables 1 and 
2 have been set to zero. These sectors are left out of the regressions presented in the case of the US 
patents matrix measures for indirect R&D.  

(n7.) K is calculated as a perpetual inventory: Kt = 0.9Kt-1 + It. K1975 is estimated by dividing through 
I1976 by 0.15 (this is consistent with the assumed depreciation rate of 10% and the assumption that 
the growth rate of the capital stock in 1976 relative to 1975 was 5%). It is deflated using a price index 
for investment goods. Beta is measured as Sigma W/Sigma Q, where Sigma indicates a summation 



over the period 1979-89 and W is the wage bill. In this case, both Wand Q are measured in current 
prices.  

(n8.) STAN and ANBERD databases.  

(n9.) Producers' price indices used to deflate value added were taken from the STAN database.  

(n10.) In the OECD scheme, this sector is classified as low tech, but this seems less adequate for 
countries such as France, where R&D related to the train a grande vitesse (TGV) falls under this 
heading. Classifying this sector under low tech does not significantly change the results. However, the 
example does show the extent to which any classification into high-, medium- and low-tech sectors 
includes arbitrary elements. This again adds to the crudeness of the results in this section, as in most 
other literature on this subject.  

Table 1. Patent spillover matrix A, EPO patents 1979-94, main IPC code by supplementary IPC code  
                          1      2      3      4      5      6 

 

 1 Electrical            0.440  0.355  0.008  0.000  0.000  0.000 

 2 Electronics           0.187  0.629  0.017  0.001  0.000  0.000 

 3 Chemicals             0.013  0.009  0.531  0.137  0.025  0.000 

 4 Drugs                 0.001  0.000  0.261  0.369  0.006  0.000 

 5 Refined oil           0.046  0.005  0.371  0.070  0.191 

 6 Ships, boats          0.012  0.001  0.004  0.000         0.290 

 7 Automotive            0.027  0.007  0.019  0.001  0.000  0.003 

 8 Aerospace             0.028  0.014  0.008                0.029 

 9 Other transport       0.065  0.005  0.002                0.004 

10 Ferrous metals        0.030  0.001  0.035  0.002  0.001  0.000 

11 Non-ferrous metals    0.043  0.008  0.069  0.007  0.003  0.000 

12 Metal products        0.052  0.016  0.027  0.004  0.002  0.002 

13 Instruments           0.035  0.038  0.071  0.111  0.005  0.000 

14 Computers             0.027  0.075  0.006  0.001  0.000  0.000 

15 Machines              0.024  0.007  0.069  0.014  0.003  0.002 

16 Food, etc.            0.003  0.002  0.284  0.263  0.0001 0.000 

17 Textiles              0.013  0.012  0.085  0.005  0.001  0.000 

18 Rubber, plastic       0.156  0.007  0.046  0.005  0.005  0.000 

19 Glass, etc.           0.020  0.008  0.135  0.008  0.001  0.001 

20 Paper, printing       0.024  0.006  0.105  0.022  0.003  0.001 

21 Wooden products       0.018  0.004  0.074  0.008  0.000  0.001 

22 Other manufacturers   0.031  0.042  0.026  0.002  0.001  0.003 

 

                           7      8      9      10     11     12 

 

 1 Electrical            0.012  0.001  0.006  0.002  0.007  0.038 

 2 Electronics           0.001  0.001  0.005  0.001  0.001  0.011 

 3 Chemicals             0.001  0.000  0.001  0.004  0.004  0.018 

 4 Drugs                 0.000         0.000  0.000  0.000  0.003 

 5 Refined oil           0.001         0.000  0.005  0.005  0.042 

 6 Ships, boats          0.444  0.010  0.049  0.000  0.000  0.038 

 7 Automotive            0.368  0.004  0.080  0.001  0.002  0.085 

 8 Aerospace             0.133  0.433  0.015         0.001  0.062 

 9 Other transport       0.479  0.003  0.275  0.000  0.001  0.044 

10 Ferrous metals        0.007         0.000  0.187  0.461  0.095 

11 Non-ferrous metals    0.007  0.000  0.001  0.322  0.298  0.085 

12 Metal products        0.026  0.002  0.004  0.009  0.012  0.478 

13 Instruments           0.005  0.002  0.002  0..01  0.002  0.026 

14 Computers             0.004  0.000  0.002  0.000  0.000  0.008 

15 Machines              0.039  0.003  0.004  0.006  0.007  0.110 



16 Food, etc.            0.001         0.000  0.000  0.000  0.019 

17 Textiles              0.006  0.002  0.004  0.091  0.002  0.042 

18 Rubber, plastic       0.093  0.001  0.023  0.001  0.002  0.119 

19 Glass, etc.           0.005  0.001  0.001  0.001  0.005  0.107 

20 Paper, printing       0.004  0.001  0.001  0.003  0.008  0.034 

21 Wooden products       0.006  0.002  0.016  0.000  0.001  0.247 

22 Other manufacturers   0.008  0.001  0.006  0.004  0.001  0.041 

 

                          13     14     15     16     17     18 

 

 1 Electrical            0.059  0.020  0.029  0.001  0.002  0.001 

 2 Electronics           0.065  0.056  0.010  0.000  0.002  0.000 

 3 Chemicals             0.043  0.004  0.085  0.013  0.018  0.002 

 4 Drugs                 0.023  0.000  0.031  0.025  0.002  0.000 

 5 Refined oil           0.106  0.004  0.111  0.005  0.003  0.000 

 6 Ships, boats          0.035  0.002  0.088         0.004  0.001 

 7 Automotive            0.033  0.003  0.194  0.001  0.005  0.044 

 8 Aerospace             0.077  0.006  0.153         0.000  0.005 

 9 Other transport       0.041  0.003  0.061  0.000  0.001  0.001 

10 Ferrous metals        0.021  0.001  0.123  0.000  0.003  0.000 

11 Non-ferrous metals    0.015  0.002  0.092  0.000  0.002  0.001 

12 Metal products        0.051  0.004  0.187  0.004  0.003  0.004 

13 Instruments           0.510  0.044  0.085  0.011  0.003  0.001 

14 Computers             0.075  0.761  0.012  0.000  0.001  0.000 

15 Machines              0.060  0.005  0.528  0.029  0.020  0.002 

16 Food, etc.            0.039  0.000  0.091  0.274  0.007  0.000 

17 Textiles              0.050  0.003  0.249  0.006  0.286  0.016 

18 Rubber, plastic       0.144  0.007  0.142  0.006  0.126  0.034 

19 Glass, etc.           0.049  0.002  0.212  0.003  0.004  0.001 

20 Paper, printing       0.105  0.041  0.163  0.003  0.088  0.006 

21 Wooden products       0.092  0.004  0.096  0.003  0.017  0.020 

22 Other manufacturers   0.110  0.189  0.121  0.009  0.076  0.004 

 

                          19     20     21     22 

 

 1 Electrical            0.009  0.005  0.001  0.005 

 2 Electronics           0.004  0.001  0.000  0.008 

 3 Chemicals             0.039  0.011  0.000  0.014 

 4 Drugs                 0.001  0.003  0.000  0.002 

 5 Refined oil           0.029  0.007  0.000  0.004 

 6 Ships, boats          0.004  0.002  0.001  0.015 

 7 Automotive            0.039  0.057  0.005  0.023 

 8 Aerospace             0.005  0.004  0.003  0.024 

 9 Other transport       0.003  0.003  0.002  0.007 

10 Ferrous metals        0.024  0.002         0.004 

11 Non-ferrous metals    0.020  0.016         0.010 

12 Metal products        0.038  0.034  0.016  0.024 

13 Instruments           0.05   0.022  0.001  0.019 

14 Computers             0.001  0.006  0.001  0.019 

15 Machines              0.020  0.016  0.002  0.030 

16 Food, etc.            0.002  0.004  0.000  0.010 

17 Textiles              0.015  0.026  0.002  0.083 

18 Rubber, plastic       0.012  0.016  0.025  0.029 

19 Glass, etc.           0.366  0.042  0.007  0.020 

20 Paper, printing       0.011  0.283  0.003  0.087 

21 Wooden products       0.017  0.204  0.108  0.061 

22 Other manufacturers   0.009  0.034  0.003  0.282 



 

Note: Rows denote `spillover-generating' sectors; columns 

are `spillover-receiving' sectors; empty cells must be read 

as `true' zeros; the value 0.000 indicates a positive value 

rounded to zero. 

 

Table 2. Patent spillover matrix B, EPO patents 1979-94, main IPC code by (uclaimable) `additional 
information' supplementary IPC code  
                           

                           1      2      3      4      5      6 

 

 1 Electrical            0.161  0.392  0.014  0.003  0.007  0.004 

 2 Electronics           0.285  0.227  0.121  0.008 

 3 Chemicals             0.008  0.005  0.599  0.176  0.007  0.000 

 4 Drugs                 0.001  0.000  0.241  0.654  0.006 

 5 Refined oil           0.076  0.034  0.365  0.152  0.008 

 6 Ships, boats          0.011                              0.485 

 7 Automotive            0.045  0.017  0.048  0.001  0.002  0.013 

 8 Aerospace                           0.083                0.083 

 9 Other transport       0.071  0.011  0.006 

10 Ferrous metals        0.087  0.013  0.062  0.008 

11 Non-ferrous metals    0.029  0.023  0.043  0.009 

12 Metal products        0.038  0.059  0.080  0.025  0.004  0.006 

13 Instruments           0.012  0.019  0.172  0.282  0.010  0.001 

14 Computers             0.037  0.115  0.022  0.004 

15 Machines              0.014  0.006  0.345  0.037  0.004  0.003 

16 Food, etc.                   0.002  0.410  0.318 

17 Textiles              0.007         0.294  0.041  0.003 

18 Rubber, plastic       0.040         0.097  0.027 

19 Glass, etc.           0.029  0.031  0.126  0.008  0.007  0.030 

20 Paper, printing       0.010         0.148  0.080 

21 Wooden products       0.031  0.011  0.107  0.010         0.002 

22 Other manufacturers   0.015  0.012  0.097  0.006 

 

                          7      8      9      10     11     12 

 

 1 Electrical            0.010         0.005  0.004  0.005  0.049 

 2 Electronics           0.003         0.07   0.002  0.010  0.031 

 3 Chemicals             0.002  .0001  0.001  0.001  0.001  0.012 

 4 Drugs                                      0.000         0.003 

 5 Refined oil                                0.034         0.050 

 6 Ships, boats          0.205  0.010  0.074                0.012 

 7 Automotive            0.290  0.23   0.044  0.001  0.001  0.102 

 8 Aerospace             0.333 

 9 Other transport       0.667         0.059                0.026 

10 Ferrous metals        0.021                0.279  0.251  0.094 

11 Non-ferrous metals    0.001         0.010  0.342  0.106  0.146 

12 Metal products        0.039  0.006  0.008  0.015  0.024  0.364 

13 Instruments           0.002  0.001  0.002  0.003  0.001  0.019 

14 Computers             0.007         0.002  0.001  0.01   0.004 

15 Machines              0.048  0.002  0.009  0.007  0.002  0.106 

16 Food, etc.                                 0.001         0.006 

17 Textiles              0.009         0.006         0.004  0.023 

18 Rubber, plastic       0.012                              0.075 

19 Glass, etc.           0.006  0.001         0.002  0.007  0.087 

20 Paper, printing                            0.003         0.046 

21 Wooden products       0.005  0.002  0.020                0.108 



22 Other manufacturers   0.034  0.006  0.009         0.003  0.098 

 

                          13     14     15     16     17     18 

 

 1 Electrical            0.077  0.198  0.040  0.001  0.002  0.001 

 2 Electronics           0.082  0.158  0.012  0.002  0.001 

 3 Chemicals             0.056  0.003  0.042  0.017  0.033  0.002 

 4 Drugs                 0.21   0.000  0.047  0.021  0.002 

 5 Refined oil           0.093  0.017  0.099  0.050         0.003 

 6 Ships, boats          0.080         0.081 

 7 Automotive            0.051  0.029  0.237  0.001  0.006  0.008 

 8 Aerospace                           0.500 

 9 Other transport       0.070         0.071 

10 Ferrous metals        0.032  0.008  0.103                0.007 

11 Non-ferrous metals    0.042  0.001  0.166 

12 Metal products        0.064  0.004  0.161  0.003  0.005  0.003 

13 Instruments           0.331  0.008  0.074  0.036  0.004  0.001 

14 Computers             0.048  0.747  0.007 

15 Machines              0.055  0.006  0.269  0.021  0.010  0.004 

16 Food, etc.            0.056         0.029  0.170  0.000  0.001 

17 Textiles              0.058         0.089  0.002  0.396  0.005 

18 Rubber, plastic       0.182         0.032         0.422  0.029 

19 Glass, etc.           0.083  0.007  0.159  0.007  0.002  0.000 

20 Paper, printing       0.060  0.035  0.152  0.014  0.282  0.005 

21 Wooden products       0.072         0.060  0.002  0.033  0.010 

22 Other manufacturers   0.166  0.051  0.140         0.079  0.008 

 

                          19     20     21     22 

 

 1 Electrical            0.008  0.003  0.005  0.010 

 2 Electronics           0.027  0.006         0.010 

 3 Chemicals             0.016  0.010  0.000  0.008 

 4 Drugs                 0.000  0.003  0.000  0.002 

 5 Refined oil           0.017                0.001 

 6 Ships, boats                               0.041 

 7 Automotives           0.016  0.025  0.003  0.034 

 8 Aerospace 

 9 Other transport              0.006  0.001  0.011 

10 Ferrous metals        0.025  0.003         0.008 

11 Non-ferrous metals    0.017  0.019         0.046 

12 Metal products        0.035  0.017  0.012  0.029 

13 Instruments           0.003  0.013  0.001  0.006 

14 Computers             0.001  0.006         0.001 

15 Machines              0.020  0.016  0.003  0.013 

16 Food, etc.            0.002  0.002         0.004 

17 Textiles              0.008  0.023  0.001  0.030 

18 Rubber, plastic       0.026  0.006  0.021  0.032 

19 Glass, etc.           0.335  0.037  0.004  0.031 

20 Paper, printing       0.013  0.129  0.002  0.021 

21 Wooden products       0.032  0.406  0.054  0.036 

22 Other manufacturers   0.009  0.031  0.002  0.233 

 

Notes: Rows denote `spillover-generating' sectors; columns 

are `spill-over-receiving' sectors; empty cells must be read 

as `true' zeros; the value 0.000 indicates a positive value 

rounded to zero. 

 



Table 3. Patent spillover matrix for US patents 1980-92, on the basis of co-references  

 
                           1      2      3      4      5      6 

 

 1 Electrical            0.644  0.129  0.008  0.000  0.001  0.000 

 2 Electronics           0.055  0.815  0.003  0.000  0.000  0.000 

 3 Chemicals             0.005  0.006  0.752  0.098  0.016  0.000 

 4 Drugs                 0.001  0.000  0.451  0.467  0.001 

 5 Refined oil           0.002  0.005  0.139  0.001  0.754  0.000 

 6 Ships, boats          0.005  0.013  0.001  0.000  0.004  0.074 

 7 Automotive            0.020  0.016  0.002  0.000  0.000  0.002 

 8 Aerospace             0.015  0.012  0.011  0.000  0.000  0.004 

 9 Other transport       0.018  0.004  0.001  0.000  0.000  0.066 

10 Ferrous metals        0.013  0.008  0.011  0.000  0.002  0.001 

11 Non-ferrous metals    0.022  0.061  0.022  0.000  0.001  0.000 

12 Metal products        0.024  0.024  0.013  0.000  0.0003 0.004 

13 Instruments           0.040  0.056  0.012  0.011  0.001  0.000 

14 Computers             0.014  0.149  0.001  0.000  0.000  0.000 

15 Machines              0.027  0.011  0.017  0.001  0.007  0.002 

16 Food, etc.            0.001  0.000  0.051  0.020  0.000 

17 Textiles              0.009  0.008  0.135  0.002  0.010  0.006 

18 Rubber, plastic       0.015  0.024  0.157  0.002  0.004  0.001 

19 Glass, etc.           0.025  0.043  0.043  0.001  0.004  0.001 

 

                          7      8      9      10     11     12 

 

 1 Electrical            0.005  0.003  0.001  0.000  0.002  0.022 

 2 Electronics           0.002  0.001  0.000  0.000  0.001  0.006 

 3 Chemicals             0.000  0.001  0.000  0.001  0.001  0.005 

 4 Drugs                 0.000  0.000  0.000         0.000  0.000 

 5 Refined oil           0.000  0.001  0.000  0.001  0.000  0.009 

 6 Ships, boats          0.009  0.017  0.011  0.000  0.000  0.052 

 7 Automotive            0.436  0.104  0.051  0.000  0.000  0.046 

 8 Aerospace             0.146  0.488  0.024  0.001  0.001  0.023 

 9 Other transport       0.184  0.049  0.452  0.004  0.000  0.043 

10 Ferrous metals        0.004  0.005  0.011  0.537  0.131  0.092 

11 Non-ferrous metals    0.000  0.004  0.000  0.118  0.588  0.043 

12 Metal products        0.018  0.006  0.006  0.004  0.003  0.596 

13 Instruments           0.002  0.002  0.001  0.000  0.001  0.022 

14 Computers             0.006  0.001  0.001  0.000  0.000  0.003 

15 Machines              0.030  0.022  0.007  0.003  0.003  0.052 

16 Food, etc.            0.000  0.000         0.000  0.000  0.007 

17 Textiles              0.003  0.002  0.001  0.001  0.000  0.048 

18 Rubber, plastic       0.014  0.003  0.003  0.003  0.003  0.154 

19 Glass, etc.           0.003  0.002  0.001  0.004  0.004  0.132 

 

                          13     14     15     16     17     18 

 

 1 Electrical            0.087  0.011  0.072  0.000  0.002  0.007 

 2 Electronics           0.053  0.041  0.012  0.000  0.001  0.005 

 3 Chemicals             0.021  0.000  0.015  0.003  0.006  0.061 

 4 Drugs                 0.067  0.000  0.003  0.005  0.000  0.004 

 5 Refined oil           0.012  0.000  0.061  0.000  0.002  0.007 

 6 Ships, boats          0.007  0.004  0.114         0.007  0.013 

 7 Automotive            0.013  0.020  0.265         0.001  0.022 

 8 Aerospace             0.013  0.014  0.240         0.001  0.004 

 9 Other transport       0.016  0.029  0.176         0.001  0.012 



10 Ferrous metals        0.017  0.001  0.109  0.000  0.002  0.033 

11 Non-ferrous metals    0.021  0.000  0.088         0.001  0.043 

12 Metal products        0.052  0.003  0.139  0.001  0.005  0.073 

13 Instruments           0.794  0.012  0.037  0.000  0.001  0.006 

14 Computers             0.047  0.725  0.049  0.000  0.000  0.002 

15 Machines              0.040  0.013  0.735  0.003  0.003  0.016 

16 Food, etc.            0.006  0.000  0.055  0.8473 0.001  0.019 

17 Textiles              0.031  0.004  0.056  0.002  0.417  0.206 

18 Rubber, plastic       0.038  0.003  0.088  0.002  0.023  0.401 

19 Glass, etc.           0.040  0.003  0.089  0.001  0.021  0.164 

 

                          19 

 

 1 Electrical            0.005 

 2 Electronics           0.004 

 3 Chemicals             0.008 

 4 Drugs                 0.001 

 5 Refined oil           0.006 

 6 Ships, boats          0.003 

 7 Automotive            0.003 

 8 Aerospace             0.002 

 9 Other transport       0.003 

10 Ferrous metals        0.023 

11 Non-ferrous metals    0.014 

12 Metal products        0.027 

13 Instruments           0.004 

14 Computers             0.001 

15 Machines              0.009 

16 Food, etc.            0.001 

17 Textiles              0.054 

18 Rubber, plastic       0.061 

19 Glass, etc.           0.419 

 

Notes: Rows denote `spillover-generating' sectors; columns 

are `spillover- receiving' sectors; empty cells must be read 

as `true' zero; the value 0.000 indicates a positive value 

rounded to zero. 

 

Table 4. Correlation coefficients between the `Yale matrix', the US patents matrix, matrix A and 
matrix B (diagonal elements set to zero), for individual rows, columns and the complete matrices  

 
                Mean of rows              Mean of columns 

            Matrix   US      Yale      Matrix     US     Yale 

             B      matrix   matrix     B       matrix   matrix 

 

Matrix A   0.86(a)  0.73(a)  0.49(a)   0.74(a)  0.62(a)   0.30 

Matrix B            0.68(a)  0.44(a)            0.58(a)   0.29 

US matrix                    0.53(a)                      0.38(a) 

 

                         Total matrix 

                  Matrix       US       Yale 

                   B         matrix     matrix 

 

Matrix A          0.82(a)    0.61(a)    0.19 

Matrix B                     0.60(a)    0.16 

US matrix                               0.16 

 



 (a) 10% significance in a two-tailed t-test for sample 

correlation. 

 

Table 5. Correlation matrix between R&D ad TFP variables  

 
Legend for Table: 

 

A = id 

B = is,A 

C = is,B 

D = is,U 

E = is,Y 

 

             q-l    k-l     l     A      B      C      D     E 

 

k-l          0.10 

l           -0.31  -0.09 

1d     0.09   0.18   0.32 

Is,A   0.29   0.13  -0.11  0.24 

is,B   0.33   0.06  -0.02  0.31   0.85 

is,U   0.24  -0.01  -0.09  0.31   0.93   0.72 

is,Y   0.17  -0.01   0.13  0.36   0.74   0.77   0.62 

TFP          0.83   0.17  -0.39  0.05   0.35   0.38   0.31  0.20 

 

Note: Number of observations is 166, except for correlations 

where is,U is present (number of observations is 140). 

 

Table 6. Regression results for four different models  
                              

Low tech 

 

Dep.  Type 

var.  is   k-l          l         id    is 

 

Unrestricted model 

 

q-1   EPO A     0.082      -0.651(***)   0.558      2.848(**) 

q-1   EPO B     0.069      -0.569(***)   0.814      2.365(***) 

q-1   US        0.086      -0.735(***)  -0.357      8.606(**) 

q-1   Yale      0.091      -0.665(***)   0.466      2.615 

 

CRS model 

 

q-1   EPO A     0.278(***)               0.870      3.254(**) 

q-1   EPO B     0.245(**)                1.202(**)  3.087(***) 

q-1   US        0.364(***)               0.100      6.359 

q-1   Yale      0.298(**)                0.717      4.487 

 

TFP model 

 

TFP   EPO A                             -0.047      0.422(**) 

TFP   EPO B                             -0.016      0.428(***) 

TFP   Us                                -0.144      1.156(**) 

TFP   Yale                              -0.053      0.676(*) 

 

Restricted  TFP model 

 



TFP   EPO A                                         0.371(**) 

TFP   EPO B                                         0.412(***) 

TFP   Us                                            0.858(*) 

TFP   Yale                                          0.448 

 

                           Medium tech 

 

Dep.  Type 

var.  is    k-l           l           id   is 

 

Unrestricted model 

 

q-1   EPO A     0.303(***)    -0.444(**)    0.782      0.504(**) 

q-1   EPO B     0.267(***)    -0.495(***)   1.053      0.333 

q-1   US        0.312(***)    -0.424(**)    0.846      0.703(**) 

q-1   Yale      0.257(***)    -0.523(***)   1.013      1.043 

 

CRS model 

 

q-1   EPO A     0.390(***)                  0.419      0.907(***) 

q-1   EPO B     0.361(***)                  0.682      0.887(*) 

q-1   US        0.384(***)                  0.423      1.203(***) 

q-1   Yale      0.348(***)                  1.196      1.540 

 

TFP model 

 

TFP   EPO A                                 0.109      0.145(***) 

TFP   EPO B                                 0.097      0.184(***) 

TFP   Us                                    0.092      1.171(***) 

TFP   Yale                                  0.116      0.464(***) 

 

Restricted  TFP model 

 

TFP   EPO A                                            0.181(***) 

TFP   EPO B                                            0.228(***) 

TFP   Us                                               0.212(***) 

TFP   Yale                                             0.576(***) 

 

                            High tech 

 

Dep.  Type 

var.  is    k-l           l        id    is 

 

Unrestricted model 

 

q-1   EPO A     0.389(***)    -0.008     -0.363       1.505 

q-1   EPO B     0.413(***)    -0.082     -0.411       0.868 

q-1   US        0.464(***)    -0.044     -0.566       1.851 

q-1   Yale      0.457(***)    -0.061     -0.521       1.352 

 

CRS model 

 

q-1   EPO A     0.418(***)               -0.406       1.549(*) 

q-1   EPO B     0.434(***)               -0.458       0.957 

q-1   US        0.483(***)               -0.672       1.967 

q-1   Yale      0.491(***)               -0.588       1.570(**) 

 



TFP model 

 

TFP   EPO A                              -0.003       0.122 

TFP   EPO B                               0.014       0.060 

TFP   Us                                 -0.029       0.199 

TFP   Yale                                0.012       0.049 

 

Restricted  TFP model 

 

TFP   EPO A                                           0.103 

TFP   EPO B                                           0.068 

TFP   Us                                              0.107 

TFP   Yale                                            0.046 

 

Dep.  Type 

var.  is       n         F         Adj. R
2 

 

Unrestricted model 

 

q-1   EPO A         166      9.10(***)       0.50 

q-1   EPO B         166      9.73(***)       0.51 

q-1   US            140      7.10(***)       0.47 

q-1   Yale          166      8.13(***)       0.46 

 

CRS model 

 

q-1   EPO A         166      6.68(***)       0.37 

q-1   EPO B         166      7.76(***)       0.41 

q-1   US            140      5.21(***)       0.34 

q-1   Yale          166      5.53(***)       0.32 

 

TFP model 

 

TFP   EPO A         166      3.87(***)       0.20 

TFP   EPO B         166      5.44(***)       0.27 

TFP   Us            140      2.82(***)       0.16 

TFP   Yale          166      2.97(***)       0.14 

 

Restricted  TFP model 

 

TFP   EPO A         166      4.81(***)       0.20 

TFP   EPO B         166      6.91(***)       0.28 

TFP   Us            140      3.39(***)       0.16 

TFP   Yale          166      3.65(***)       0.15 

 

Note: (*) Significant at 10% level; (**) significant at 5% 

level; (***) significant at 1% level in a two-tailed t-test, 

using heteroscedasticity consistent standard errors. Country 

dummies not explicitly documented. 
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Appendix A: Regression results for the four different models, samples excluding `inferential 
observations'  
                              Low tech 

Dep. 

var.   Type is  k - l          l       id  is 

 

Unrestricted model 

 

q - l  EPO A          0.104      -0.633(***)   0.295   4.001(***) 

q - l  EPO B          0.052      -0.509(***)   0.637   3.658(***) 

q - l  US             0.123      -0.727(***)  -0.261   9.392(**) 

q - l  Yale           0.107      -0.650(***)   0.166   3.479 

 

CRS model 

 

q - l  EPO A          0.277(***)               1.119   4.222(***) 

q - l  EPO B          0.148                    1.201   5.090(***) 

q - l  US             0.375(***)              -0.697   9.850(*) 

q - l  Yale           0.262(**)                0.867   3.587 

 

TFP model 

 

TFP    EPO A                                   0.084   0.592(***) 

TFP    EPO B                                  -0.030   0.708(***) 

TFP    US                                     -0.110   1.506(**) 

TFP    Yale                                    0.109   0.357 

 

Restricted TFP model 

 

TFP    EPO A                                           0.787(***) 

TFP    EPO B                                           0.674(***) 

TFP    US                                              1.355(**) 

TFP    Yale                                            0.637 

 

                              Medium tech 

Dep. 

var.   Type is    k - l        l    id  is 

 

Unrestricted model 

 

q - l  EPO A          0.388(***)   -0.297   1.233     -0.705 

q - l  EPO B          0.310(***)   -0.271   1.369     -0.276 

q - l  US             0.434(***)   -0.287   1.111     -0.792 

q - l  Yale           0.374(***)   -0.237   1.094     -1.338 

 

CRS model 

 

q - l  EPO A          0.508(***)            0.070      0.131 

q - l  EPO B          0.449(***)            0.088      0.044 

q - l  US             0.421(***)            0.490      0.621 

q - l  Yale           0.480(***)            0.259     -1.291 

 

TFP model 

 

TFP    EPO A                                0.110      0.239 

TFP    EPO B                                0.171      0.128 

TFP    US                                   0.095      0.316(*) 



TFP    Yale                                 0.076      0.391 

 

Restricted TFP model 

 

TFP    EPO A                                           0.328(**) 

TFP    EPO B                                           0.284(***) 

TFP    US                                              0.424(***) 

TFP    Yale                                            0.710(**) 

 

                              High tech 

Dep. 

var.   Type is     k - l       l      id   is 

 

Unrestricted model 

 

q - l  EPO A           0.432(***)   0.393   -0.546     1.378 

q - l  EPO B           0.454(***)   0.351   -0.693     0.687 

q - l  US              0.361(**)    0.391   -0.455     4.324 

q - l  Yale            0.519(***)   0.370   -0.846     0.959 

 

CRS model 

 

q - l  EPO A           0.501(***)           -0.517     1.279 

q - l  EPO B           0.356(**)            -0.367     1.493(**) 

q - l  US              0.343(**)            -0.300     4.465(**) 

q - l  Yale            0.466(***)           -0.648     4.525 

 

TFP model 

 

TFP    EPO A                                -0.001     0.168 

TFP    EPO B                                 0.012     0.128(**) 

TFP    US                                   -0.005     0.180 

TFP    Yale                                  0.012    -0.003 

 

Restricted TFP model 

 

TFP    EPO A                                           0.249(**) 

TFP    EPO B                                           0.136(*) 

TFP    US                                              0.276(*) 

TFP    Yale                                            0.146 

 

Dep. 

var.   Type is    n        F       Adj. R
2 

 

Unrestricted model 

 

q - l  EPO A           155   8.11(***)      0.48 

q - l  EPO B           154   8.25(***)      0.49 

q - l  US              131   6.41(***)      0.45 

q - l  Yale            155   7.10(***)      0.44 

 

CRS model 

 

q - l  EPO A           156   6.06(***)      0.36 

q - l  EPO B           155   7.39(***)      0.41 

q - l  US              132   4.24(***)      0.30 

q - l  Yale            155   4.66(***)      0.29 



 

TFP model 

 

TFP    EPO A           156   2.89(***)      0.15 

TFP    EPO B           156   4.40(***)      0.23 

TFP    US              130   1.63(*)        0.06 

TFP    Yale            157   1.89(**)       0.07 

 

Restricted TFP model 

 

TFP    EPO A           156   4.21(***)      0.19 

TFP    EPO B           160   6.06(***)      0.26 

TFP    US              134   2.47(***)      0.11 

TFP    Yale            159   2.76(***)      0.11 

 

Notes: Original sample size for equations with EPO- and 

Yale-based indirect R&D measures is 166; for US-based indirect 

R&D measures it is 140. Observations for which the diagonal of 

the `hat' matrix was greater than two times the number of 

estimated coefficients divided by the number of observations 

were classified as `influential' and excluded from the 

regression. Regressions including all observations are documented 

in the appendix. (*) Significant at 10% level; (**) significant 

at 5% level; (***) significant at 1% level in a two-tailed 

t-test, using heteroscedasticity-consistent standard errors. 

Country dummies not explicitly documented. 
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