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BART J. BRONNENBERG and CATARINA SISMEIRO*

The authors show how multimarket data can be used to make predic-
tions about brand performance in markets for which no or poor data exist,
To obtain these predictions, the authors propose a model for market sim-
ilarity that incorporates the structure of the U.S. retailing industry and the
geographic location of markets. The model makes use of the idea that i
two markets have the same retailers or are located close to each other,
then branded goods in these markets should have similar sales perform-
ance (other factors being held constant). In holdout samples, the pro-
posed spalial prediction method improves greatly on naive prediclors
such as global-market averages, nearest neighbor predictors, or local
averages, In addition, the authors show that the spatial model gives mare
plausible estimates of price elaslicities. It does so for two reasons. First,
the spatial model helps solve an omitted variables problem by allowing for
unobserved factors with a cross-market structure. An example of such
unobserved factors is the shelf-space allocations made at the retail-chain
level. Second, the model deals with uninformative estimates of price elas-
ticities by drawing them toward their local averages. The authors discuss

other substantive issues as well as fulure research.

Poor Data Exist

Using Multimarket Data to Predict Brand
Performance in Markets for Which No or

Most large consumer goods manufacturers wish to moni-
tor sales perlormance of their brands in a variety of regional
markets. To accommuodate this desire, the leading market
rescarch providers, such as Information Resources Inc. ([RI)
or ACNielsen, collect multimarket time-series data of brand
performance through complex data-collection systems,
These mulumarket data are now widely available to both
practitioners and academicians, but they pose several new
challenges,

First, in the Linited States, many locations are left unsam-
pled because of obvious economic constraints in collecting
and handling complete time-by-market data, The exclusion
of many locations from the spatial sample poses a missing
data problem for managers of pational brands who [re-
gquently make decisions on the basis of local demand condi-
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bronmenbers @Eanderson uclaede), and Cataring Sismeiro is a doctoral can-
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ticipants at the Erasmes University in Rotterdam, the UCLA research
camp, the University of Chicago, the Harvand Business Sclool, and Colum-
L University for comments o prévious doafts.

tions (Hoch et al. 1995). We propose to solve this problem
through spatial prediction,

Sccond, and not unrelated, strong dependencies across the
sumpled markets can and do occur. These dependencies
raise new issues about how o model multimarket data. A
least in marketing, modeling approaches rarely broach on
the subject of cross-sectional or spatial dependencies of datn
from multiple locations.

Perhaps as a result; and despite the familiarity of market-
ing practitioners and academicians with the extrapolation of
stochastic processes in time, spatial prediction has remained
unstudied in our figld. Both prediction problems share the
same underlying philosophy: The goal is to determine the
sample points that are most informative about the behavior
of the process at prediction points. The main distinction is
that stochastic processes in space are multidimensional and
do not have a clear or particular ordering. In contrast, sto-
chastic processes in time are defined over one single dimen-
sion of interest—tume itself—with a natural and clear direc-
tional ordering. Because of these differences, the spatal
prediction problem is nonstandard.

n this article, we demonstrate how o model spatial
dependence across markets, and we offer a perspective an
how o make spatial predictions. Our contribution s
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intended to bhe both methodological and substantive,
Methodologically, we first make an existing spatial predic-
tion method. called kriging (pronounced KREE-ging), oper-
ational in marketing and test its performance. Our spatial
prediction approach is based on a model that can be cali-
brated on spatiotemporal data. It is estimated using Markov
Chain Monte Carlo (MCMC) methods.

Second, we also contribute methedologically to the spa-
tial prediction problem by using the presence of the same
retailers in multiple markets to construet a measure of mar-
ket similarity. In other words, whereas traditional spatial
prediction methods use purely distance-hased metrics, we
develop a model that also captures the impact of retailer ter-
ritorics on the multimarket data. In the process, we (1)
obtain a cross-market covariation structure that is more {lex-
ible and provides a better representation of the data than
purely distance-based approaches and (2) offer a measure of
the importance of the U.S. retail structure in explaining the
cross-sectional variation in the data, while controlling for
purely spatial (i.c.. distance-based) clfects in a variance
decomposition model.

Substantively, we aim to shed some light on the determi-
nants of the cross-sectional differences in sales performance
for natonally distributed brands. For the brands considered,
market performance measures, such as market shares and
sales velocity, differ greatly across the 64 markets sampled
by LRL despite the product homogencity that characterizes
the categories under amalysis. To investigate possible
sources for these cross-sectional differences, we allow For
distance effects and retailer effects on (1) mode] constants,
(2} observed dynamic elfeets (e.g., due to price). and (3)
unchserved dynamic cifects (2.2, dug to unobserved retailer
behavior).

Cur analysis offers the following conclusions: First, the
territories of retailers in the U.S. are “shungled™ in the sense
that retailers™ territories neither perfectly overlap nor are
completely separated. There are, in other words, no truly
isolated markets in the network of U5, retailers. Second, the
structure of the ULS, retail industry accounts fora large por-
tion of the cross-market variance of the data, even in the
presence of competing distance-based spatial structures.
Third. esumates of price elasticities are more efficient (and
more reasonable) when the spatial nature of the data is
accounted for. Finally. for both performance measures, krig-
ing methods outpertorm naive predictors, such as local aver-
ages, across holdout samples of various sizes and spatial
structures (e.g., geographic region versus random localions).
This result appears especially true when the holdout sample
is large and the estimation sample is small, which demon-
strates the uselulness and power of these new approaches.

The remainder of this article is structured as follows: In
the next section, we discuss a set of marketing problems that

researchers may fruitfully address through spatial predic-
tion. Then, we develop our mode! for spatiotemporal data
and formalize the spatial predictor, In the following section,
we focus on spatial covanance models and a model of the
U.S. retailing industry, We then provide the empirical analy-
sis and conclude with future research and managerial
implications.

MULTIMARKET DATA
Temporal and Spatial Components in Multimarket Data

Syndicated market data for the grocery industry are col-
lected in the United States for a multitude of geographic
markets, olien defined as a metropolitan area or a part of a
state. These data are generally correlated across both time
und locations. 'Time dependence can be caused by brand loy-
alty, inertia within the distribution channel, the use of
heuristic decision rules (e.g., history based pricing), or the
seasonal nature of some products. Spatial dependence, in
contrast, can be caused by the economic agents in the distri-
bution channel (e.g., retailers) that are common to multiple
markets, by climate-dependent demand of some product
categories, or by a nonrandom distribution of consumer
types.

Given the pervasiveness of these three factors, correlation
of demand across geographic markets is likely 1o be the
norm and not the exception in multimarket data. Yet not
much academic work has explicitly accounted for these
dependencies and their effects on inference. ‘To fill this hia-
tus in the literature, we classify spatial dependence into dif-
ferent types on the basis of the duration and the reach of the
spatial elfects (see Table 1). First, in terms of duration, spa-
tial dependence may apply 1o cither constant or dynamic
data components.

Second, spatial dependencies may die out over a short
(e.g.; local marker), a medium (e.g., retailer trade arca), ora
long range in space (c.g.. the domestic LS. market). The
spatial dependencies induced by the distribution of con-
suwmer types and the behavior ol independent retailers are
both short-range dependencies, though one type of depend-
ency is constant whereas the other changes over time.,

At the medium-range level, the effects of retailer-level
pricing and promotion decisions are an example of dynamic
effects with a regional character, The effects of retailer-level
distribution decisions (adoption)}—uwhich are made less fre-
quently than promotion decisions—cause a more constant
component with regional structure,

Finally, manufacturer supply constraints, climate varia-
tions, and order-ol-entry effects may also lead to spatial
dependencies that hold over longer ranges (such as the entire
domestic U.5, market). For example, order-of-entry deci-
sions by manufacturers reflect unobserved market condi-

Table 1
EXAMPLES OF EFFECTS ON BRAND PERFDRMANCE IN MULTIMARKET DATA

Time Effects

Spuadical Efffecis

Crymamic

Coratant

Short range ez, local market)
Medium range {e.g., retagler trade anca)
Long mange (eg., national markes)

Behavior af independent stores

Retuiler-level prncing decistons

Manufacturer supply constraints
Clinste

Consumer type distributions
Retailer-fevel distribation decisions
Orler-ofentry effects
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tions and transportation and distribution costs, among other
factors, at the time of the product launch. To the extent that
such order-of-entry effects have permanent effects on the
data, they may give rise 1o larger-share “home-markets”™ and
lower-share “distant markets”; that is, such order-ol-entry
effects may cause a long-range spatial dependence in the
data that 15 more or less constant. In contrast, supply con-
straints and climate variations give rise Lo spatial dependen-
cies that vary over time.

This classification of the spatial dependencies provides
the basic framework we use 1o both understand and model
spatial phenomena, Neat, we present some marketing appli-
cations that can benelit from the modeling of these spatial
phenomena and introduce our modeling and  prediction
approaches,

Applicationy of Spatial Analysis to Marketing

Collecting, handling, and maintaining [ull time-by-space
data over all relevant cross-sectional units is both cost pro-
hibitive and likely subject to diminishing marginal returns in
information content, Therelore, we believe that spatial pre-
diction methods may provide great benefits 1o market
researchers in sitwations in which detailed knowledge exisis
on selected crogs-sectional units and information is required
about other cross-sectional units. Store audits and shelf-
space audits, market tests of new prodoces, hit rate predic-
tiens for direct marketing companies, and micromarketing
sludies are some examples of possible applications in which
we may observe such benefits. The only difference between
these examples is how we define the cross-sectional units.

For example, store aodits or shell-space aodits give
detailed information about merchandizing activity or shelf-
space allocation for i subset of stores. Spatial prediction can
then help predict store execution of promotions or shelf-
space allocations for unsampled stores.

Customer records, which mclude Zip code information,
owned by catalog, Internet, or direct-marketing companies
represent another example of a sparsely sampled cross-
section of date. These companies have an interest in know-
ing, for example, the a prion hit rate of mailings to potential
customers in cerlain Zip code arcas (see, e.g., Steenburgh,
Ainslie, and Engebretson 2001). By means of spatial meth-
ods, it is generally possible o interpolate such information
{rom hit rate dato of current customers given their location.

Micromarketing, the line-tuning of the marketing mix to
local markets (see Hoch et al. 1993), provides yet another
example. Spaual prediction can be helpful in forecasting,
say, the responses to price promotions in unsampled markers
from the corresponding responses in sampled markets.
These forecasts are fundamental input 1o any micromarkeat-
ing decision process.

Finally, the proposed spatial prediction methods are also
beneficial when a given market, though sampled, provides
“poor” (e, impracise) information. This 15 because we use
a Bayesian approach that allows for the influence of precise
information from close markets during estimation,

MODELING AND PREDICTION APPROACH

A Model of Market-by-Time Panel Data

The purpose of our modeling work 15 to investigate spa-
tial dependence of brand performance across regional mar-
kets. Tt is our goal to capture the impact of spatial variables
that are either Ume-mvarant, as in the case of demand con-

3

stanls, or dynamic, as in the case of price effects. To do so,
we allow demand intercepts, prices, and price responses 1o
be spatially distributed. We also allow lor a stochastic term
that is both spatially and time dependent to capture other
unohserved spatial effects. We have adopted a log-log for-
mulation for the demand model because such a formulation
provides direct estimates of price clasticities, which may be
compared across markets,

Assume that we sample N locations, for T time periods.
Chur basic demand model is

N ¥y, = i +daglp,)p+e, =1..T

e = '}_v"‘l—l + T

where ¥; is an N » 1 vector of log-demands for all the
markets at time period 1, P is an N x| veetor of log-
prices, and dingi-) represents the operator that transforms
a vector into a diagonal matrix (e, diag{p,) isan N x N
diagonal matrix of log-prices). The element & isan N = 1
vector of intercepts, and [ is an N % 1 vector of price elas-
ticities. The scalar py is an autoregression effect for the
M = 1 vector of demand error terms, e, and 1), is an N x 1
veclor of zero-mean time-independent stochastic terms.
The autocorrelation in e can be due to nertia of manufac-
turers, retailers. consumers, or any oiher channel
participant.

Using the within-market means p; of the log-prices, f;.
we orthogonalize the demand system by rewriting it as
follows:

(1w, =+ [diaglp) — dinglP) + dasplp + ¢,
= [ + diag(pB] + diag(p, — )P + &,
= it + dingip I + &,

where p is an N x | vector econtaining the means of log-
prices for all markets, and p; is an N | vector of demeaned
log-prices,

As a result, the ransformed model factors the data into
three separate “bins,” each of which may be subject to spa-
tial dependencies: (1) constant demand effects, o (2)
observed time-varying price effecis, diagip)f; and (3)
unobserved time-varying effects, e, which are autoregres-
sive transient shocks, If so desired, the original demand con-
stants, &, can be casily recovered using the estimated values
of ¢, . and the means of Tog-price.

[f we had access to the actual markel prices for all markets,
sampled and unsampled, spatial predictions would require
only the estimates of the unknowns in Equation 2 and the
variance—-covariance structures of all spatial variables. In gen-
eral, however, price knowledoe is absent for unsampled loca-
tions. In such cases, before we predict demand, we must first
predict prices or, more specifically, demeaned log-prices.
Therefore, we specify the following model for the demeaned
log-prices (making use of the mean of p, being zero)

(3) p=0+v,
Vi =P + 5

where the scalar p, is an autorcgression effect for the N = 1
vector of price error terms, v, and £, 1s-an N x 1 vector of
zero-mean time-independent stochastic terms. Although this
mode! appears rudimentary, it is necessary for the spatial
prediction of prices
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Spatial Processes

To predict brand performance for M unsampled Tocations,
we now allow some components of our model to be spatially
distributed and specify their spatial processes. In Equation
2, we allow for three potential sources of spatial structure:
(1) the demand constants, ¢ (2} the price-clasticities, [3; and
(3) the random shocks, e, through the time-independent
shocks ;. We also allow the demeaned log-prices in Equa-
tion 3 to be spatially distributed through the time-
independent random shocks £, We assume that these spatial
variables follow (different) second-order stationary spatial
processes in B2, that is, spatial processes that satisfy the fol-
lowing two properties (using o to illustrate):

(4} Eloy) = Loy, Vi and covi, o) = Ag(d;.0,),

where i and i designate markets, Z; is a vector of covari-
ates, and @, is the corresponding vector of parameters, The
notation Agidy, O,) rellects that the covariance is a Function
of a parameter vector, 8, and of location difTerentials, dp,
such as the distance or the direction between location pairs.!
Therefore, the covariance function docs not depend on
absolute location of 1 or i”. If this function depends only on
distance. it is called “isotropic.” If it also depends on the
direction of the vector connecting the location pair {i, i’} it
is called “anisotropic,” We abbreviate the notation for the
full variance—covariance matrix Ag(d, 8,) by A,

As a result of the second-order stationarity assumption,
the cross-sectional structure—which is measurable through
the N sample points—will hold over all N + M locations.
For cach of the spatial components in the model, we use o
joint Normal distribution over N + M variates. That is, we
posit the following:

3 (" oY = Ny u@aPe Ak
(6 (B B = Nyap(Zapp. Ap),
7 (M N0 = N0 AL), and
(8) G0 &) = N0 AL),

where o*, B*, 7,*. and £* are M % 1 vectors of the demand
constants, price elasticities, demand shocks, and price
shocks for the unsampled markets. respectively, Elements
Z,; and Zg are covariates, and @, and gy, are vectors of cor-
responding paramelers. We assume that the unobserved
compenents of the spatial variables are conditionally inde-
pendent from one another. This implies the assumption that
the unobserved components of one spatial variable are con-
ditionally uninformative about the unohserved components
of other spatial variables,

The vanance—covariance structure of the stacked stochas-
tic terms from Equation 1, e = [e'; ... ¢'4]" for all sampled
and unsampled markets, is a (M + N)T square matrix cqual
to 'y, ® A, (for a brief overview of some proofs, see also
Appendix A). The element YW, is the standard variance—
covariance mairix for an AR(1) process with autoregressive
parameter p, and with unit variance in the innovation terms
(see Judge ct al. 1985, p. 284} Similarly, the variance—

"The sume prnciple s owsed frequently in remporal dependence. For
example, the siandard AR process has o vamence—covariance function
that o5 dependent on time differences (the equivaleat to d;;-) and on an ato
cormelation parameter (the squivalen 1o 8)

covariance matrix of the corresponding stacked price error
lerms, ¥, is 'FI, & !'u where V¥, is the variance—covariance
matrix of an AR{1) process with autoregressive parameter
Pp and unit variance in the innovation terms. The exact mod-
cﬁng of the variance—covariance matrices A, Ap. Ay, and
Az 15 discussed subsequently.

Spatial Prediction or Kriging

Assuming that estimates for the model exist, we now
address how these can be used for spatial prediction. We
assume that we want to predict the process for some market
Jowhere j=N+ 1, .., N+ M, at a time period t, fort = 1,
- T2 We need to spatially predict four (conditionally)
independent components of the model: the constants o5,
the price elasticities Bi*, the random components g;*, and
the random components v *. The method of spatial predic-
tion is identical for c* and (;* on the one hand, and for Ty
and v * on the other.

Case I: Prediction of the demand constants o and the
price elasticities 3% Consider the case of the demand con-
stants (similar results hold for the price elasticities). For spa-
tial prediction, partition Equation 5 into

o 7 i Al Al2Y
(4 ( } o st e i
ﬂ"‘_ M+M z,u'(p“ h%l;l hlé ;

then (Searle, Casclla, and McCulloch 1992) [otFlee] is muilti-
variate Mormal with
(a0 Eetfon) = 2

FOARAD e - Z,,)

P
e e oy e
adusrmient for spanal dependence

feesilin mean

and
(L Aty = A — AZNAL-TALL

If we estimale (p, using §5-S = [ M2 AT,
then the mean of the conditional distibution in Equation 10
is called the “universal kriging predictor” (see Cressie
1993). The first term of this predictor, Z,: 5% | is the stan-
dard generalized repression resull. This term ignores the
unobserved spatial covariation, AL, in (& — Z_g,). The sec-
ond term in the prediclor corrects for this correlation and is
the conditional expectation of the unobserved stochastic
terms, (% — L..0,). given the observed differences (o —
Zotpy). Therefore, we can interpret the kriging prediclor as
an adjusted generalized least squares prediclor. Cressie
(1993) shows that this predictor has the additional benefit of
minimizing the squared prediction ermor: that is. it is the best
lingar unbiased predictor,

Case 2: prediction of the stochastic terms eg* and v;,*. As
an example, consider the prediction of ¢* (=N +'1, ..,
N+ M, t= I, ..., T). This case proceeds in a similar fashion
a5 in the previous case. The main difference is that, given the
temporal structure of the stochastic terms, we need to con-
dition our predictions on all NT stochastic terms from our
sample, as opposed o only the N contemporaneous stochas-
tic terms, ¢,= ey, ..., Gyl In Appendix A, we prove that lor
the prediction of the M2 1 vector ¢ conditional on the full
NT * | vector e; only the subvector ¢; matters, so that

We do not constder hens the case of predicting out of borh the spatial
samiple and the 1me sumple. However, such a case is easy 1o develop,
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(12 E(eyle} = AZ(AY e,
and
. L ] Ll a - X
{13} Vierle) = T_?["‘W = AN 1""'1;}
¥

Similar results hold for the prediction of w*i(1=1, ..., T).

Seene Differences with the Classic Keiging Predictor

Kriging methods require knowledge of the spatial (cojvari-
ance structure of the data, as can be seen from Equation 10, In
practice, researchers using the classic knging predictor esti-
mate the cross-sectional covariance using actual ohservations
of, say, o fori= 1,..., N3 Afier the parameters on which the
covariance Ay depends, here denoted as 8, are estimated, it
is simple to estimale the varance—covariance matrix Ag(d, 8,)
of the (M + M) random veetor [0 a**]". Researchers can then
predict the mean and the variance of the process for the M
unohserved markets using Equations 10 and 11.

Drespite their inluitive appeal, classic kriging methods
have some drawbacks that we seek to address with the
approach presented in thes article: First, although classic
kriging infers Ay, from sampled data, the final predictor does
not account for the sampling error in £, This is a general
problem alfecting any classic kriging application. In con-
trast, our prediction approach relies on Bayesian methods
and constructs a margingl predictive distribution that inte-
writes over the density of all unknown maodel parameters.

Second, classic kriging models the covanance structure
solely on the basis of distance. In marketing contexts, this
method 15, at best, a reduced-form-approach. Instead, in the
next section, we derive the spatial structure of the data from
first principles. Specifically, we incorporale the spatial
organization and an aspect of the behavior of retailers in the
vanance—covariance moddel, Doing so, we oblain direction-
sensitive patterns of covariation that cannot be represented
even with very flexible anisotropic covariance functions.

Finally, in a marketing context, not all vaciables of mana-
gerial interest areg directly observable {e.g.. o is estimated,
nat ohserved), Therelore, cross-sectional prediction of these
measures requires the construction of both a measurement
and a prediction model, Classic kriging addresses the pre-
dicuon problem but does not address the issue of measure-
ment In contrast, our model incorporates both,

SPECIFIC MODELS OF COVARIATION
Cempanents of the Covarianee Structire

We model the variance—covariance structure of the unob-
served components of the demand constanis, Ay of price
elasticities, Ag; of temporary demand shocks, A: and of
temporary price shocks, Ag, as mixtures of three independ-
ent variance structures that are, respectively, distance based,
retailer based, and purely random, Therefore, we posiulate
that the variance—covariance structure for each spatial vari-
ahle can be factored into three components such that (using
the demand intercepts o as an illustration)

(14} "1";1 = GE(_?EH::{H:LI ) ﬂf:.-lz.\'ﬂiﬂﬂl'l i E&f‘E[N vl

IFar alternative cmpirical methods 10 estimate the Covimag i or covar-
ance function, ses Cressie (F993, Ch, 2

5

where B3, Oy, and 8.5 are all positive unknown parame-
ters. The term B335, (0y;) represents the retailer compo-
nent, 824, (8,2) represents the distance-based component,
and 855y . v represents a spatially uncorrelated variance
component, Similar expressions hold for the remaining spa-
tial variables 3, 1, and £

The distance-based component of the spatial variance—
covariance serves as an approximation to several unob-
served varables {e.g_, taste, culture, climate) that can be cor-
related across neighboring markets and can affect the spatial
variahles,

The retailer-based component accounts [or the effects of
retailer structure and conduct on the spatial variables. Dif-
ferent mechanisms exist that justify the presence of these
retailer-based effects. For example, retailers have control of
shelf-space policies and other forms of brand support.
Therefore, we expect retailers to affect the baseline sales of
the brand (captured in demand constants o or the dynamic
sales effects 11,). Retailers also influence the composition of
their clientele in terms of price sensitivity with store-format
choice and private-label program decisions. Consequently,
observed price responses may vary with retailer structure
and conduct. Finally, prices themselves are often set at the
account level, so we also expect price effects, &, to have a
retailer structure. Next, we describe in more detail hoth the
spatial and the retailer model of covariation and provide an
interpretation {or different possible patierns.

Distance-Based Model of Covariation

The typical procedure in selecting 2 functional form for a
distance-hased covariogram is to plot the empirical covari-
ogram and choose a valid covariance function that allows for
the type of patterns actually encountered in the data (e.g.,
whether spatial correlations die out, whether there are posi-
tive andf/or negative correlations, whether there is a need o
aceount for measurement error). Both Cressie (1993) and
Journel and Hutjbregts { 1978) offer an overview of the elfects
that are usually considered part of the spatial covariance funec-
tion. In our application, we found that positive correlations
dominate between observations that are close together but
that negative spatial correlations may cccur between observa-
tions that are separated by larger distances in space. This
would happen when the observations have a tendency (as they
do in our data) o be below average on one coast and above
average on the other. As a result, we use a covariogram in H2
that allows for negative correlations across larger distances.

The choice of a specific functional form that is valid for
use as a covarance function is not rivial and depends on the
pumber of spatiel dimensions used. For example, for any
n-dimensional process, the spatial autocorrelations cannot be
fess than —1/n (see, e.g., Christakos 1984). Therelore, not all
models of covariation in B! are valid in B, forn > 1. Valid
maodels in 80 are, however, valid in spaces with less than n
dimensions, Other requirements on valid covariograms exist,
and the literature on valid covariograms in B has received
much attention in spatial analysis (see, e.g_, Christakos 1984;
Mantoglou and Wilson 1982; Vecchia 1988; Whittle 1954).

For our empirical analysis, we selected a function that is
iften used in the spatial sciences as a correlanon function in
2 and allows for negative correlations. This lunction is the
Bessel function of the first kind and order O (see, e.2., Chris-
takos 1984; Mantoglow and Wilson 1952; Matern 1986).
This correlation function is parameterized by a single
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Figure 1
TWC PATTERNS OF DISTANCE-BASED CORAELATIONS GENERATED BY THE BESSEL FUNCTION
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parameter that controls the range of going from pesitive to
negative correlation and looks like a dampened oscillation in
distance, It is also a simple and standard function in most
economelric soltware,

Formally, each (i, 1'} element of the matrix g, 00,5),
which forms the distance-based variance—covariance matrix,
is defined as follows:

(15) g (1,000 = Ty00,58.),

¥ii' = 1., N+ M, (8., >0)

where ; is the distance between location i and location i',
and Ji is the Bessel function of the fiest kind and order 0. In
Figure 1, we illustrate the shapes of the Bessel function for
twor representative values of Oys. Distance is expressed in
rads (see also the empirical section) spanming the distance
between the East Coast and the West Coast,

Retailer Madel of Covariation

To model the covariation structure across markets due to
retailer location and conduct, we assume that o component of

retailer policies is common to the level of a retail account. The
retail account is generally the unit at which retailers make deci-
stons. It is either a portion of the retail chan—uypically if the
refailer is spread over multiple states—or the entire retailer,

Define a K x (N + M) matrix H of retail structure con-
tarning the share of all-commaodity volume (ACY) for each
retailer account rir= 1, ..., K} in each sampled and unsam-
pled marketi(i=1, .., N+ M) Columns in H sum 1o one,
and a typical element Hir, i) isa number from (1w 1 that
indicates the relative size of retailer rin market 1.

In addition, we construct an asymmetric retailer influence
mateix W of size K % K. This matrix lists in each row, that
is, for each retailer, the relauve size of all other retailers it
competes with directly. Define {C,} as the set of markels in
which retailer ¢ is present; that is, (C,} is the territory of
retailer T, Then, a typical element of W is compuled as
follows:

Z ACVIT, i)
1240, |

Zr':r Zie{c” ACV(r™, 1)

and Wir.r} = (L

(6 Wir, ) =
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In other words, W contains, in each row r, the normalized
ACY share of cach of the other retailers in s retail lerritory,
Rows of W add to one, and 115 diagonal is zero, Note that W
accounts for differences in market size. For example,
W(r, r') will be higher if the competing retailer t* is large in
big markets than if it is large in small markets.

We assume that the elements in the rth row of W capture
the relative competitive influence on r. We illustrate the
effect of this influence for the spatial variable . Suppose a
retailer r has an effect on the demand intercepts equal to Sy,
Although this efTect is unobservable to the analyst, it is pos-
sible to make inferences about the structure that such unob-
servable effects would cause across space, given the struc-
ture of retail territories and retailer conduct. For this
purpase, we model the retailer effect on demand intercepts
8y s a combination of retailer r's idiosyneratic actions and
of the compentive influence [tom the other retailers in 's
territory. Vectorizing the rotailers’ effects 5, into a K % |
veclor 8., we then have

(1T S, = 8, WS, +ue
(K=}

Sy =l —8,W) 7y =l<8, <]

The K x| stochastic vector wis assumed independent, with
mean 0 and varance 851, and reflects the idiosyneratic
actions of the retailers to support one brand over another. The
term B, WS, represents a local interaction effect reflecting
the competitive interaction of retailers. A short way of defin-
ing this relation 15 simply to point out that we allow the spa-
tial variables w be autoregressive across retail territories,
The parameter Uy, controls the strength and direction of the
interaction among retailers in supporting one brand versus
another. The strongest form of interaction occurs when 8,
approachas T or =1, In the first case, retailers locally imitate
ane another. In the second case, retailers tend not o follow
ana another. This may happen when retailers vie for locally
exclusive distribution of nationally available brands,

We can convert the retailer-level effects on intercepts, S,
to market-level effects by taking their weighied average,
where the weights are the relative size of cach retailer in mar-
ket 1, In mathematical notation, the market-level effects due
to retailers correspond to the ith element of the vector H'S,,,
where H is the matrix of relative size of each retatler in cach
market {as defined previously). Therelfore, the implied
varance—covariance structure across markets due o retail
structure and conduct is equal to B, (8,1, such that

(18)  Ep,l8,,) = H'(l, = 8,,W)-(E, -8, W)V,

where 0% 18 the scale parameter or the vanance of the inno-
vations U We discuss the different patterns of spatial corre-
Fation that this function generates subsequently.

Covariation Patterns

Owur parsimonious varance model can capure a wide
variety of covariation patterns, depending on alternative
mixtures ol retailer- and distance-based spatial components,
This Mexibility results from the distinet featres of each
compenent. For example, distance-based spanal effects in
our data are long-range, dircction independent, and smoath,
whereas retailer-based covariation palterns are direction
sensitive and show ridgzes and discontinuities according 1o

7

the shapes of retail territories. With mixtures of these differ-
ent components, the model is flexible enough 1o accommo-
date the intricate patterns of covariation that can be expected
in market performance data.

We consider two specific patterns from the retailer
madel, First, when there is no retailer interaction but only
retailer structure effects (i.e., 0 = 0 and 85 > 0) cross-
markel dependence is local (see also the next section) and
direction dependent. Mathematically, we obtain from
Equation |8 that Ty = H'H = 3, where 36 has market-
specific Herfindahl indices of retailer concentration on the
diagonal and cross-products of the retail shares in two mar-
kets on the off-diagonals. TF this cross-product is zero, no
retailer serves both markets, whereas if this product is
high, few retailers have high share in both markets, There-
lore, cross-market correlation will be present simply
because an unobserved component of the spatial variables
in retailer-specific and retailer territories spans multiple
markets.

Second, when retail interaction and retail structure effects
exist (.., @ ; = 0and 0 4 > 0), both retailer multimarket pres-
ence and the interaction among competing retailers explain
cross-sectional variability. In addition, retailers indirectly
influgnce one another even when their territories do not
overfap, simply because relailers interact with ong another,
For exumple, Retatlers A and C may not compete head-to-
head, because their territories do not overlap: However, A
may indirectly influence C, and vice versa, il they have
Retailer B as a common competitor. As 0 increases in
absolute value, the indircet influence of A on C becomes
more important, and retailer dependence extends over larger
ireas,

EMPIRICAL ANALYSIS
Darta

In our empirical application, we combine four different
data sers. First, we apply the proposed spatial prediction
methods 1o INFOSCAN =ales and price data for Mexican
salsa and wrtilla chips. The raw data, collected by TRT over
two years (May 1994 o April 1996) from its sample of
approsimately 3000 stores in 64 domestic ULS. markets, are
at the local market level,

Second, to operationalize the retail strocture model, we
ohtained U.S. retail data [rom TradeDimension. These data
are at the designated market arca (DMA) level. A DMA is a
geographic area that designales a single advertising market.
The continental U8, market is divided into 205 DMASs, and
every county in the United States 15 a member of ong and
only ane DMA, The retail structure data include account-by-
market ACY for all retailer accounts with more than 15
market share. TradeDimension also has the same data at the
IRI market level. From these data, we retained the retailers
present in more than two markets and with no less than 10%
market share in at least one of the markets in which they
operale, Thus, we removed from the data retailers thal are
ton small to play a magor role in the spatial structure of
demand. We also removed the so-called independent retail-
ers. These retailers share the same label but do not corre-
spond 1o the same decision makers across the markels. In
total, this left us with 185 retail chains. These include
pational discounters such as Wal-Mart and Kmart and
retatler chains such as Albertsons, H-E-B, and Vons.




8 JOURNAL OF MARKETING RESEARCH, FEBRUARY 2002

Third, to compute distances, we collected location data
for all DM As and all IRI markets. We computed the location
of each DIMA from the latude and longitude coordinaies of
Zip vode centroids and a mapping of Zip codes into DMAs.
i The necessary data to make this computation are availahle
from httpaiwww.zipinfo.com.) For the 64 IRI markets, we
collected longitude and Tatitude daga using an Inlernel map-
ping service (available at hupZfwww.indo.com/distance).
Most IRI markets are associated with a single city, In some
cases, a single IRT market is defined as either a part of a siate
or a set of multiple cities. In these cases, we approximaled
the location of these [RI markets by an intecior point. We
used the latitude and longitude data {in rads) to compute
pairwise market distances (1 rad = 4000 miles at the
equator).

Fourth, we collected demographic information for each
county in the United States {rom the Census Bureau’s 1994
Cowniy and City Data Book. We agoresated these data to the
DMA and IRI market level.

Extimation

The combination of the lemporal Equations 2 and 3 with
the four cross-sectional Equations 5-8 lorms a hicrarchical
model. which we estimate using Bayesian methods. Given
the complexity of the model, an MCMC approach is neces-
sary o simulate the posterior and predictive distributions of
the variables of interest,

The specification of the priors and the Tull conditional dis-
tributions used in the MCMC aleorithm appear in Appendix
B. Animportant feature of this MCMC algorithm pertains o
the [ull conditionul distributions of the spatial vanables oo
aned By, Tor ecach market 1. These conditional distributions
combine two sources of relevant information: (1) the time-
series data of market 1 and (2) the values of the spatal vari-
ables for the remaining markets. The mixing of these two
tvpes: of information will depend on the data siself, For
example, if the s and s are spatially dependent, the time
series estimates for these parameters will be shrunk to their
local averages. This shrinkage is stronger when the within-
market data are less informative about the s and Bes. T
instead, the data are not spatially dependent, the time-series
estimates for the parameters will be shrunk toward the over-
all average.

The MCMC algorithm conlains a Metropolis—Hastings
step for the variance—covariance parameters and conjugate
steps for all others, Appendix C lists the complete algorithm,

We ran the algorithm for 40,000 draws. We discarded the
first 10,0000 draws for burn-in and wsed the remaining
30,000 in the analysis. Specifically, 1o chiminate the aulo-
regression in the samples, we sampled each 25th draw lor a
total of 1200 draws from the results to make predictions.
Also, we confirmed the stability of the Markov Chains
using t-tests on the split-half samples of these 1200 draws.

Operationalizations and Model Testing

We analyzed two measures of brand performance: sales
velocitics and market shares. Sales velocity is defined as the
brand weekly sales (in pounds) divided by the total market
ACY (mensured in millions of dollars per year). For space
teasons, we report only on the analysis of sales velocity as
the dependent variable in Equation | We delined the price
in Bquation | as the ratio of dollar sales and sales in pounds,

Functional form. We estimated a log-log specification.
With such a specilication, price responses are interpretable
as seale-free elasticities that can be compared meaninglully
across markets. However, the log—log specification is not
without problems. Because we make predictions of the log
of sales velocity rather than of the sales velocity tsell, the
log—log model implies log-nommal prediction errors upon
exponentiation of the predictions, Such prediction errors
have a mean that increases in the variance of the errors.
Therefore, as we predict farther away from actual sample
points, the prediction mean increases because prediction
error will increase. This is not the case with, for example,
the linear model. The drawback with the linear model is that
price effects lack economic interpretation and cannot be
meaningfully compared across markets.

We therefore report on the tesults for the log-log formu-
lation, which provides a good compromise between predic-
tive accuracy and model interpretation. We evaluate the pre-
dictive ability of this model using the units in which the
maodel is estimated ? Therefore, we evaluate predictive abil-
ity in logs. We note that the ability of the linear model to
predict the sales velocities is substantively identical to that
of the log-log model in predicting the log of sales velocity,

The between-market model for interceprs. We used an
intercepit-only model for net demands (denoted @), For the
variance structure of net demands, we used a full spatial
covariance structure as in Bquation 14,

The berween-markel mode! for price responses. We spec-
ified the model for price elasticities to depend on demo-
graphic variables, as do Hoch and colleagues (19935). How-
gver. in our data, demographic variables did not help explain
the cross-market patterns of price elasticities. Therefore, we
removed the demographics from the model.® The final spec-
ification for the mean of price responses includes only an
intercept (denoted ).

For the covanance structure of price responses, we allow
for only two covariance components: a retailer-based and an
independent component. Tn other words, we set 8gq = 0 in
Eguation 14, We did this because the empirical covanogram
of the estimated price elasticities reveals no long-range spa-
tial dependence among price elasticities.

The muodely for the spatiotemporal components in the
data, For identification purposes, e;, and v, are zero-mean
error components. No mean specification is therefore
needed. For the spatial covariance structure of those compo-
nents, we used the full model of Bqguation 14,

RESULTS

Although results arc available for multiple brands, for
conciseness, we report only the results of a single brand,
Pace Salsa. This brand is the market leader in the Mexican
salsa category 1o the United States,

We focus our discussion of the results around three areas:
(1} the differences in infercnce of the price elasticities
between our spatial model and other frequently used
approaches, (2) the estmates of the parameters 8 that gov-

AW thank an anonymous reviewer for sugzesting ths appaoach a5 a way
to reconeile demands on interpretation and prediction,

A, possible difference that may help explain this discrepancy 5 that the
level of geogmphic aggregution used here is different from the one used n
Haoch and colleagues” {19953 analyss,
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ern the spatial variance decomposition of Equation 14, and
(3) the cross-sectional sales velocity and price elasticity
predictions,

Inferences About Price Elasticities

There are several different approaches to estimate market-
specific price elasticities from multimarket data. The first
logical approach is to take ordinary least squares (OLS) esti-
males of price elasticities from the time series of each mar-
ket A second approach is to compute an estimated general-
ized least squares (EGLS) estimate of price elasticities for
each of the 64 markets and account at least for a temporal
dependence in the data using an AR(1) model. A third
approach is the one we present in this article. This approach
accounts for both the temporal and the spatial structure of
the data, through %, and Ay, respectively. Our approach
gocs even further, as it also accounts for the possibility of
spatial structure in the price elasticitics themselves, through
Ap. The final estimales are then influenced by these two dis-
tinct layers of spatial information,

T show that we obtain better estimates of market-specific
price elasticities, by taking into account the spatial nature of
the daia, we present some summary statistics lor the three
approaches. First, the average of the 64 market-specific QLS
estimales of price elasticity is —46; and the average standard
error for these estimates is 111, In addition, 19 of these 64

clasticity estimates are positive. Boatwright, McCulloch, -

and Rossi (1999, p. 1063) find a similar fraction of weongly
signed estimates n their analysis of promoton effects in
multinccount data.

Second, the avarage of the 64 market-specihe EGLS esti-
mates of price clasticities is —1.31, with an averaee standard
error of T0, and 5 of the 64 elasticity estimates are positive.

Third, from our proposed model, the average of the pos-
terior means for the market-specific Bis (= 1, .., 64) is
—1.79, with an average standard ecror of 39 With ouor
approach, only 2 ol the 19 onginal positive price clasticities
remain positive, These belong o “spatial-cdge”™ locations
{Miami in the South and Syracuse in the North) that have
fewer neighbors from which they draw information. Tn sum-
mary, most of the |9 positive OLS estimates of price elas-
ticities are replaced by negative and significant estimates
when the spatial natore of the daa is accounted for,

These results suggest that accounting for the spatial
nature of the data {and of the parameters themselvest pro-
vides a more efficient and, prima facie, more plausible set of
estimates of price elasticities in LS. markets, These results
also make our approach relevant to the methodalogy devel-
oped by Boatwright, MeCuolloch, and Rossi (19999, These
authors use theoretically motivated truncated prioes Lo obtain
maore reasonable estimaltes of price and promotion effective-
ness. In contrast, we do not use such priors but rather fet the
data speak alter allowing the estimation to borrow informa-
tion from neighboring markets. Qur approach can perhaps
be thought of as a useful alternative to the approach devel-
oped by Boatwrizht, McCulloch, and Bossi (19949),

The Spatial Variance Structires

[n this section, we analyee in more detal the results of the
posiericr distributions for the hieruchical spatial parameters of
o, T and &, (see Bquations 5, 7, and 8. We turther discuss the
results Tor the price elasticities i in the “Predictions™ section,

g

The spatial structure of the demand consiants. Figure 2
presents the posterior distributions obtained for the hierar-
chical model of the demand constants, o Using the draws
for B, we can compute that approximately 699 of the cross-
sectional variance in o is distance based, 23% is related o
retail structure and conduct, and 6% has no cross-sectional
struciure.

The retailer autoregression parameter, 8,,;, has a mode at
approximately .5, and more than 95% of its probability
mass is in positive termitory. Therefore, with some degree of
confidence, we conclude that the interaction of retailers—
net of other spatial influences—is one of local imittion.
This may be of some importance 1o brand managers,
because it suggests that the influence ol any given retailer
extends beyond its own retail territory. For example, with-
out tetailer avtoregression (Le., with 85, = 0, the average
area over which thereas retailer-based spatial correlation of
at least .2 has a radivs of 240 miles. However, if B, = .3,
then on average, the same level of spatial correlation
extends to an area with a 320-mile radius, As B, increases,
so will the arca in which retailer-based spatial correlation is
at feast .2. We note that because of the structure of the retail
industry, these patierns of spatial correlation are highly
anisotropic,

The distribution of the distance-based covariation param-
eters provides additional insights inlo the covariation pat-
terns. The Bessel parameter 8,5 has 1 mean of approxi-
mately 3.5 (for an interpretation, see the Wop graph in Figure
1'). This means that from a purely distance-based perspec-
tive, the demand constants are positively comelated (Jocally
similary over a long range of distances. However, as we
move ¢ven farther away (roughly 1600 miles, cg., Los
Angeles, Calill, 10 Saint Lowms, Mo, the correlation
becomes pegative. This result 15 consistent with the data
(sales velocity data for Pace Salsa tend to be above the L1S.
mean on the West Coast and below the USS. mean on the
East Coast}).

A final aspect of the demand constant parameters involves
the large right iail of the posterior disiribution for 8,4 (the
standard deviation in the spatial component) and the large
left tail of the posterior distribution tor ¢, (the mean of the
demand constanis). There are two reasons for these long
tails.

First, precise estimates of gy are difficult 1o obtain
because of the predominantly positive correlation acress
space, The impact of strong spatial cormelatnons on the esti-
mation of ¢y can be observed as Tollews: IF we knew the
spatial covariance strueture. Ag, and 17 we had observed the
constants o, fy, would be the usual generalized least squares
estimate with varjance (UAZ"-, where 1 is an N % | vector
of ones. The guestion now is. “Why is this variance large
with positive spatial dependence”” Suppose, lor case of
exposition, that the diagonal of the covariance matrix con-
tains equal elemems. Factoring oul the diagonal, we obtain
a(U'Tzl)t as the sampling variance of @, where T, is the
correlation matrix and &7 5 the comesponding scale, The
wrm ('Fg") is known in the decision sciences as the
Clemen—Winkler measure (Clemen and Winkler 19857 and
expresses the number of independent observations con-
tained in N dependent observations. Write this number as
N’ This number will become very low as the spatial depend-
ence increases, In the specific ease of the local demand con-
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Figure 2
POSTERIOR DISTRIBUTIONS FOR THE PARAMETERS OF THE CROSS-SECTIONAL MODEL FOR o
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stanis, o, lor the Pace brand, this number 15 approximately
ten. This means that our 64 spatially dependent demand con-
stants are “waorth” only len independent observations. [t is
this lack of independent chservations that underlies the large
posterior variance in the @s.

Second, the lower the draw of the mean, the higher is the
likely corresponding draw of the variance conditional on
that mean. Because of this correlation, the variance of the
posterior distribution of 8,y will also be large,

The spatial structure of the demand residuals. Table 2
presents the percentiles and mean for the posterior distribu-
tion of 8. Because there are NT observations of g, these
posterior distributions are much tighter than those for the
demand constants (for which we only had N observations).
Computations on the draws for 8, suggest that approxi-
mately 685 of the cross-sectional variance in the dynamic
demand shocks s either retailer related (31%) or distance
based (37%), whereas only 32% of the cross-sectional vari-
ance tn the dynamic demand shocks is independent across
markets.

This spatial dependence of the dynamic demand shocks
may indicate that these tend o be common o (multiple co-
located ) retatlers. An example of retatler-based time-varying
factors is the effect of unobserved trade promotions o (a
geographic segment of) retailers. Although these trade pro-
maticons are not directly observed (and may not be observ-
able at all), it 15 possible to account for their influence
through Ag.

The spatial dependence in e, underscores once more that
we should expect significant efficiency losses il we treat the
multimarket data as cross-sectionally independent (see the
previous discussion on price ¢lasticities). In the context of
prediction, this result also suggests that local residuals will
be informative about the residuals in other nearby markets,
even after we account for price effects.

The spatial strucinre of the price residuals. Table 2 also
presents the postenior distributions for 8. These suggest that
for the dynamic cffcets noprices, similar results hold as for
the demand residuals. The retailer component in cross-
sectional covariation of dynamic price shocks 15 larger than
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Table 2
CREDIBILITY INTERVALS FOR SELECTED MODEL PARAMETERS
Percenitles and Mean
Effect Parameter A23 050 Mean Q0 975
Ttercepls
Autoregression peross retailers O )1t 43 450 7635 RO07
Bessel function parameter B 2390 3061 5.593 T34 §.287
5.0, retailer component Bey A7 472 623 85 R28
5.0, spatial component Hpy 2 AT 1,322 2,890 3792
5.0, independent component Ous B DS 02 A9 211
hlean migrcept Gy -1.732 — 03 18364 [.512 1,953
FPrive Elasticities
Autoregression neross retailess By —5933 —864 a2 729 807
S0 remiler component B Al 42 1.251 1925 2.051
5.0, independent component B 4 212 514 B25 Ra4
Mean price elasticity Ba -2.323 -2.230 -1.373 =540 -1.462
Drynamic Campaonent in Salex Yelocity
ABloregression across retailers By 54 2467 A28 386 395
Spatial dependence By (8.1 1580 2414 2561 2.939
5.0, retailer compaonent [ 488 (141 43 NEL 56 k57
5.0, spatinl component L 072 074 £33 2 94
5.0, independent compoment B A6 L) i L A |
AULGDEEIESSIN CTUSS T Py had HET 03 T8 T2
Dyndemic Component in Prices
Autoregression aenoss reiliens B, [+ AR M3R 153 68
Spatial dependence Ozs i ¥ A6 1B 3179 337N
5.1, retailer compaonent Hiy s A38 040 042 A42
5.0, spanial component ey (% KR A0 0l Aarl
&1L independent components =g 013 AMK Aa Ols L))
Auloregression perss Hime P e bt HEL £ 100

Motes: 502 = standand deviation.

the distance-based component, as would be expected if
prices arc sel al the account level.

Fredictions

In this section, we present and analyze the prediction
resulis for demand and price clasticities. We predicr these
variables for a regularly spaced grid of locations, con-
structed using a spatial resolution of .02 rads (approximately
&0 miles) and spanning the entire continental United Swates.
Predictions in this section are for the Tast time period of our
data set (T = 1045

We gvaluate demand predictions using the units in which
the model is estimated, as explained previously. Therefore,
in Figure 3. we present prediction results for the log of sales
velpeities. Fioure 3, Panel A, shows the posterior means of
the predictive distribution at each prediction location. From
this graph, we can ohserve that sales velocities differ greatly
across the various regions in the United Stes. This spatial
variation is surprising for a product category (Mexican
salsa) with limited or no degree of product differentiation {at
least among the nationally available brands). The terraced
appearance of the prediction surface, especially in the West,
reflects the DMA structure of the data, These platcaus are
not completely flat but slightly curved, This 15 a conse-
quence ol the concurrent presence of the distance-based
variance component in the model.

Figure 3, Panel B, shows the standard errors of the pre-
dictions. Fram this graph, we observe that the standard
crrors of the predictive distribution have the intuitively cor-

rect pattern: Prediction variance is higher for prediction
focations farther away from sample points. This is exactly
the same as in temporal predictions; The longer the predic-
tion horizen, the lurger is the prediction error.

Figure 4 details the predictions for price elasticities. Fig-
ure 4, Panel A, presents the predictions of price elasticities.
Figure 4, Panel B, presents the standard errors in these pre-
dictions, Price elasticities tend to become more pronounced
going west, For example, the price elasticity in the western-
most states avernges =1.94, whercas in the easternmost
states it averages —1.42. Also, the procedure predicts that in
almost all locations, price effects are signilicant. We believe
that this is @ strong pomnt of the analysis.

OUT-OF-SAMPLE VALIDATION

Wi establish the predictive power of the proposed kriging
method using out-ol-sample lests. Because our application 15
spatial, we generated four different types of holdout samples:
(1) random remeval of IRImarkets {rom our original sample,
(2) removal of IR1 markets contained in a circle with a ran-
dom center and a given radius, (3) removal of IRT markets
contained in an Bast—West band with 4 random location and
fixed width, and (4) removal of the [RI markets contained in
a Morth=South band with a random location and fixed width.
For each sample pattern, we used three different sample-
generation values. For example, we removed 10, 15, and 20
markets from the 64 IR sample points, and we removed
markets located in randomly positoned eircles with a radios
al 05, .10, and .15 rads {for other values, see Table 3},
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Figure 3
PREDICTIONS OF SALES VELOCITY OF PACE SALSA IN THE UNITED STATES
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It is computationally not feasible 1o generate many hold-
oul sumples and then execule an MCMC approach for each
of these. Tn pddition, we believe that there 1s more value in
establishing the approximate predictive accuracy of the spa-
tial interpolation method for many different types of holdout
samples than there is in knowing the exact predictive accu-
racy for one or two of these. Therefore, we estimate the
approximate accuracy of the kriging predictor by setting the
covariance parameters, 8, 1o reasonable values, This
amounts 1o using a classic kriging predictor with exogenous
8, We chose two sets of parameters {or the Os, The first is
sinply the mean of the posteriors reporied in Table 2. The
second set of porameters used was intentionally set away
from the corresponding posterior means or modes. We did
this to prevent the influence of “hindsight wisdom.”

We evaluated three distinet prediction models. In the first
model, DIRECT, we use a kriging predictor dircetly on the
log of sales velovity, without price effects. In this model, we

directly use Equation 10 to compute §|{y;} for some loca-
tiom j that is in the holdout sample and all locations 1 that are
in the estimation sample. The second model. FULL, uses the
full hierarchical model {(see also the subsequent discussion).
The third and fourth models are identical 1w FULL, except
that we suppressed retailer internction (8 = 0) and retailer
structure (8, = (), respectively.® The fifth model, KPRICE,
15 the same as FULL but assumes that prices in the holdout
markets are known.

The prediction procedure for the most general casc of the
FULL mode| works as follows: For each in-sample location,
we ohblain EGLS estimates of the unobserved spatial vari-

o an idea of the approximme location of the O paramerers in these var-
ious spatial meddels, we conducted additional MCMC analyses for the
DIRECT model and thee FULL model with parameter restrictions on By and
By



Mullimarkel Data to Predict Brand Perfarmance

13

Figure 4

PREDICTIONS OF PRICE ELASTICITI

ES OF PACE SALSA IN THE UNITED STATES
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ables ot and [ and compute the residuals e, and v, 1= 1, ...,
T. We then predict for an out-of-sample location j, E‘:ﬂ&, and
B.tﬁ using Equation 10 and &,|& and ¥ |%, using Equation 12.
Then we predict y;, with §5 = & + E"r'_:'j: + &, Finally, we
compute the mean squared error of prediction as the mean of
(¥ —v;)* over all j and all .

We also evaluate four naive prediction models o serve as
benchmarks. The lirst model, NEAR3, predices sales veloc-
ity for holdout locations by averaging over the observations
of the nearest three neighbors in the estimation sample. The
second model. NEARI, predicts sales velocity using the
observation of the nearest neighbor. The third model, AVER,
uses the average of the in-sample ohservations as a predic-
tion for the out-of-sample locations. From Figure 3, we can
casily verily that these three naive predictors are nol simply
easy-lo-beat straw men. Finally, the fourth naive maodel,
APRICE, uses the average of the in-sample EGLS estimates
of the intercepts and price effects, assuming an AR(L) tem-

poral structure in the data. Then, APRICE uses these aver-
ages and the actual price data from the unsampled markets
to predict sales velocity. This model makes use of price
information of unsampled markets but does not use any spa-
tial structure.

Tahle 3 reports the average mean squared prediction error
(MSE) in log of sales velocity. This table reports the average
MSE for each of the six predictors and for each type of hold-
out sample, computed across 100 randomly drawn holdout
sumples and across all 104 time periods. The results for both
sets of parameters 8 are as follows.

First, the FULL model and the KPRICE model are almost
equally good in terms of holdout performance. This suggests
that using the v, observed al sample locations, we can accu-
rately predict the price deviations vy Tor out-of-sample
locations j.

Second, the more elaborate models FULL and KPRICE
consistently beat the DIRECT kriging approach across all
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Table 3
MEAN SQUARED ERROR IN 100 RANDOMLY GENERATED HOLDOUT SAMPLES FOR PACE SALSA (LOG OF SALES VELOCITY)
Kriging Methody Naive Metfods
e oy . FULL  FULL Mear
oidout Generation  DIRECT  FULL _ (0,=0) (8,=0) KPRICE  NEAR3  NEARI  AVER  APRICE  Holdow
Furdom
framtar of cities)
! 166 158 159 229 153
0 158 RE 220 1 18 205 949 963
{131 163 153 161 234 149 13 212 837 450 J[gﬁ
(20) 194 185 193 255 179 213 236 074 088 210,00
Circle -
{rerediens fe ronedy)
(5] 207 157 196 268 182 2
i y ; 2 142 245 338 I 003 1015 12
(10 262 243 264 318 2% 358 447 1,123 1134 's"s'j
(15 253 216 250 310 230 AT7 582 1342 351 17,28
Erxt—West )
{wielth in radx)
{.05) N L 20 1660 2 154 173 2 ¥
) z : 19 NE= 245 475 985
(10 268 249 267 352 243 0% 379 1175 1184 "Ertlnig
(.15 366 337 393 467 332 437 446 1,236 1.245 20.94
Morth=South
{wredshe in roels)
(.05) 203 188 188 267 183 265 308 973 i 55
(10} 250 232 212 203 Bt 397 a4 1,200 1201 9.5
(.15) 283 270 262 209 265 455 553 1134 1.146 14.45
hleans 234 Relel ) 227 29] 215 AR 366 L.085 1.0094
Percentzge difference ~R: - 2 6% -15% 0% 430 TR —t05% -4 | [

types of holdout samples. Although we believe that both the
FULL and the KPRICE model represent a more accurate
description of the duta-generating process, it can be argucd
that the improvement these models provide over the
DIRECT approach 15 modest. The reason for this result
resides in the combined nature of the more elaborate fore-
casls, which mitigates their superiority in capiuring the
essence of the data by leading to higher forecast varability
and therelore higher MSE.

Third, if we restrict the retailers to be independent, 8; =
), the predictions (measured by the MSE criterion) are 6%
worse than those of KPRICE. Next, by sétting 8, = (), we
make predictions using only the distance-based component
ol the model. Now the drop in prediction accuracy is 35%.
The predictions using only distance-based covariation are
not much different from the naive approach thar takes the
average of the nearest three markets.

Fourth, the overwhelming result in Table 3 is that when
taken together, the Kriging approaches greatly outperform
the nuive predictors such as NEAR3 or NEARL. IF we take
the MSE of the AVER predictor, a measure of variance in
the data,” we find that the out-of-sample performance of the
FULL model is more than four times better than might be
expected a prior. In addition, the FULL approach is more
than 40% better than NEAR3 and more than 70% better than
NEARL. Finally, among all candidates, the AVER and
APRICE predictors are the worst predictors. If we focus
momentarily on the relative performance of these two pre-
dictors, it may come as a surprise that a mode| that uses
price information is worse than the AVER model, which
does not use such information o make predictions. How-

TTo illustrate furher how well the spatal forecasting method works, the
actwid varsance o the oz of sales velocines in the datais 92,

ever, it should be recalled that (o estimate price eftects and
intercepts, we must assume that these are constanl over
lime. AVER is more flexible because it uses data of period
only and therefore more accurately tracks temporal shifis in
sales velocity. We conclude that the predictive accuracy of
kriging methods appears 1o he superior to that of naive
methuods.

CONCLUSIONS AND FUTURE RESEARCH

The spatial dimension in U5, multimarket data on food
categories is likely 1o be an important source of variation in
the sales performance of nationally distributed brands. As
such, it constitutes an overlooked aspect of the (ood retail-
ing business in the marketing literature and has relevant
implications for local marketing palicies or micromarketing.

In the context of analyzing the cross-sectional or spatial
differences in sales performance, we hope this article has
contributed in the following three ways: First, il presents a
general prediction method for spatial problems. It intro-
duces optimal spatial predictors, operationalizes them in a
marketing context, and reports their performance. The for-
mal prediction methods developed and operationalized here
oulperform naive methods of spatial prediction on holdout
samples,

Second, the article proposes a random effects model of
the ULS. retailing industry that may be uselul in accounting
for unobserved retailer eifects in multimarket dala. This
maodel captures aspects of both structure and conduct of the
retailers in the fast-moving consumer goods industry.

Third, and relatedly, the article develops a feasible way to
take into account both the emporal and the spatial natwre of
the data in the estimation of local marketing-mix effects.
Therefore, we can () account for unobserved effects with a
spatial structure and (23 vse the results of neighboring mar-
kets to improve the estimates for markets inowhich informa-
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ti::m Iis poor. As a consequence of taking spatial dependen-
C1es o account, we obtain more efficient estimates of the
price elasticities in local U.S. markets. To the extent that
including the spatial dimension of the data helps climinate
model misspecification, we also believe that our estimates
are more reasonahble.

In terms of future research, spatial analysis can perhaps be
used to study retailer power by investigating the cross-
sectional properties of undifferentiated product-markets across
differentiated retail territories. This methodology is different
from that employed in the work of Messinger and Narasimban
(1995) and Lal and Narasimban { 1996), who use historical and
game-theoretic methodologies in assessing retailer power.

Through its operationalization of the retailer structure
and conduct, this research also opens a new avenue for sci-
entific inquiry into the spatial implications of new product
introductions. For example, given the location of retailers,
which is truly exogenous for any given product introduc-
tion, the choice for lead markets could be guided by a tar-
geting of the markets that are central in the “retail™ network,
that is, from which most spatial contagion emanates. To
evaluate the effectiveness of these efforts, general models of
growth across both time and space need to be developed in
marketing. Future research projects could deal with these
topics.

APPENINX A: SOME RESULTS FOR THE PREDICTION
STEPS

For the prediction of the random components i fand v,
where j=N+ 1, ....N+Mand t= 1, ..., T, we need 1o show
thal the only observations in e and v that matter [or the spa-
tial prediction are e = [eg, ... ep]” and v, = [vy, . vy’
respectively. It s convenient to use the convenlion that " =
J= M. We recall thae the cross sectional siructure contains the
following submatrices:

ALl a2
Mox M NxM
(AL h"l =" ‘:EII} { :-.? ) -

1 1
A0 N} (M o= M

Assuming ergodicity and expanding the AR(]) structure,

(A2 Eleye, )= E| > B, 3 pM . s

Ls=10 =1}
=5 ;‘zp?rrlil—l—ﬁ zp;'““—l—s
s=1h s=1

=B |J;zp$'sqi1—r—snll—r—s
=0 =

_ %
I —p3

i

where Ag;i1s the covariation between 1 and . This implies
that the covariation between ¢ and the 1 % N vector ¢ of
stochastic components at sampled markets at £ - ris

Py

3

[T N) 1—p;

{AT) Ele.e .} =

M
=t T

15

21

where Af is the 7'th row of ﬂ%' and is equal to the covari-
ation between the scalar 0y, and the 1 x N vector 1] of tran-
sient spatial effects at the sampled markets and time t. This
finally implies that the covariation between e and e’ is equal
to the 1> NT vector W, ® hf.lj where Wy, 15 the tth row of
'y Now it is simple to prove (see, e.g., Searle, Casella, and
MeCulloch 1992 that

(A4) Efeple. W A)

Efe;) + Eieje){Elee)] [ - Efe)]
— wp 2l = -
=0+{¥, ® ﬂ.m.}[LIJyI ® (AY) I]
% [e - Efe]]

=+ ["-I-‘s,,‘-l‘!r—I &= .-"'L;:_I'JJM',]'}"]E

04 ([P ol ] .{!'--Q}
(| T—t

& -

1 =
MLNDTe,
Similarly,

(A5} Viegle W A

n!

¥ 2 ¥, [ t
= Viey) - (%, ® ALY @ (a1 |ow, @ A1)

] i ¥ i £ 2
= —— AR W, W ® AT AR,

I . "
C'E-ﬁ*[r\ﬁ.l. { .|"'."|1|1-h‘k|“| :I'Ia'tlr‘l:l- !
where f\ii'_i' is the jth element om the diagonal of the full
(M + Nj = (M + N} matrix A Given these results, the dis-
tribution of [egle, W, Ayl does not depend on stochastic
components olher than e, and therefore, even lor very larse
T and N, these computations can be done efficiently.

APPENDIX B: PRIORS AND FULL CONDHTTONAL
DISTRIBLTTONS

Toy use the Gibbs sumpler, we derived the distributions of
all mode] parameters conditional on the data at the N sampled
locations and on the remaining paramelers. Because all cross-
sectional processes are of size M. during this inference phase
of the analysis, we write the N % N submatrix AL in Equation
9 as Ay Similarly -"\h' will be represented by Ag, and so forth,

Frll Conditional Distribution of cor b

The model lrom which to estimate the vectors otand fis y, =
o + diag(pif + e (see Equation 2). Stacking this system over
time, we obtain the following expression: y = Lo+ pfi+ e, with

oo 0 P D
D s ¥ 0 - py
By 1 = i andp = | :
NT =i 1 e HNT x N Pyp 1 1
B o i ; 0 - pyr

Consider first the case of price clasnoities; 3, and define a
new dependent vanable ¥* as follows: y*¥ =y — loe=p + ¢
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Then, the Tull conditional distribution for the vector B, given
the time scries data and the hierarchical model in Equation
6, 15 as [ollows:

{B2) Blrest - Ny, {mg, Vi),

where Vig= [p'(*~! @ AzU)p + Az' ] and mp = V[p'(‘P1 @
AFy* + AF'Zpgp). Although this full cnndltmn:ﬂ appears
Lumpumtmmlly burdensome, the MCMC algorithim uses an
exact simplification that makes use of the special form of the
matrices 1 and p (see the subsequent discussion). The full
conditional for & is derived similarly using y* = y - p[i.

Fudl Conditienal Distributin of g, and P

Consider the case of @, We chose a Normal prior with
zere mean (Ygan = 0) and a diagonal variance—covariance
matrix, Vg with variances equal to 10.000. The full con-
ditional distribution is then
(B3 i |rest ~ N{'i‘w.?w},
where Via = (ZoAG'Zy + Vo)) and Vi = Voo pAzlee
stmilar expressions hold for the full conditional distribution
of ID-H.

Full Conditional Distribution of 8, 85, 0. and 6

The variance-covariance matrices Ay, Ap. M. and Ag
depend on the parameters 6, 8, 0, and 0z, respectively.
We use the Metropolis-Hastings .jlnuruhm 1o simulate the
distributions of these parameters, which are nonstandard,
Most elements in 8 have feasibility bounds: Standard devia-
tions must be positive, autoregression paramelers must be
within =1 and +1, and the Bessel-function parameter muost
be positive (see the text). As a resull, we use multivariate
Normal priors with a variance of 1 that are runcated w
the feasibility bounds, We set the modes of these priors to
values we believe are reasonabile. The Metropolis-Hastings
algorithm 15 explained in more depth subsequently.

APPENIDNX C: THE MCMC ALGORITHM

Arany stage of the sampler, the conditioning is updated
with the mast recent draws of the variables in the list of con-
ditionals. We can cross-sectionally vectorize all steps in the
algorithm. Again all eross-sectional processes are of size N.
Therefore, we again write the N » N leading submatrices
h” as Apy (for further details, see Appendix B). For each
iteration r of the sampler,

[.52t ¥* = y — pP. Draw from [e'7rest] using an expression
equivalent to the one of Eguation B2, This equation contains
multiplications using full-rank matrices of dimension NT x
NT (o oor cuse NT =6 104 = 6636). We take advantage of
the special structure of the matrices 1and p Lo simplily these
computations. Specifically, we can prove that Tor sny general
column vector Y oof seee NT, for o matix X of the same struc-
ture as the matrices 1and p in Equation B1_ and for symimet-
ric matrices -1 and Agl, the following equivalences hold:

cn X1 @ AN = Agl o XW-IX’
X1 ® AJHY = diag(ASIYPIX0),

where ° is the element-by-clement multiphicr, and X is an N =
T matrix containing the N time series [XG; ... Xp] as rows,
The element Y 15 an N = T matrix containing the N time serics
[y - Yiple Using these equivalences, we can speed up the
conditional mean and varance computiations

2. Draw '™ using the distribution in Equation B3.

3. Set y* = y— ot Draw from [Bo|rest] using the distribation in
Equation 132,

4. Draw @' using a distribution cquivalent to the ne in Equa-
tion B3.

5. Diraw ﬂ[ﬂ' LL'1|J1? the Metropolis-Hastings algorithm. First, draw
a candidate 621 from a jurnping distribution g{ﬁ‘fﬂjﬁg ~ 1), To
obey the Iogacal constraints on B, we use a truncated mult-
variate Normal disiribution. To draw from this jumping distri-
bution, we use rejection sampling to obtain a feasible candidate

&tr] (in the sense of satisfying all logical constraints on @)
from @ multivariate Normal distribution with mean 897 1 angd
variance-covariance matrix ¢2E, where ¢ = 2.4/d and d is the
number of parameters in @ (see Gelman etal. 19935 p. 334), Sec-
andl, the vector E[':' is probabilisfically determined as follows:

i:]-'”:I with probability min{( I:I
() Hl,r] ¥ mr
=) 2 E" W else
where
[£10.1 | 2, cte) ¢
- o Pag: Vao Va0l “3]
. [

[ti0 Vp, 2, al) x
I{H};'Hmuw Voo }.!_g[g:::—lllﬂ;lmj]

in which f(8)ip Z,.0607)) is a multivariate Normal density
with mean £, and 2 varianee—covasnance matrix gencrated
Iy E‘;mq evaluated at the last draw of o The term ft(x|m, v} is
a multivariate Mormal prior density evaluated at x. The trun-
cation points of the prior do not enter this ratio, because they
are common to 857 and 8] ~ U Ty compute the truncated
multivariate normal density giﬂ"”|Ei“ = 19y we need to com-
pute the probability mass ol Ih: Mormal  disiribution
NIHH_ PLeE) thar fies within the feasible area for all param-
chers. We computed this probability mass for every step of the
sampler by determining bow many of 1000 random dows
fram Wiﬁ"' D25 fall nside the feasible arca. We did the
same o g(H“‘ “IEI 1P, To make the algorithn more effi-
cient, we reu:umputud ‘the variance-covariance matrix £ of the
Jumping distribution by exponentially phasing in the covan-
ance matrix of the accepried draws over aninitialization period
of 10,000 draws.

fi. Draw 8'5 using the Metropolis-Hastings algorithm as
explained previously.

7. Draw B4 using the Metropolis—Hastings alporithm as
explained previously. However, this and the nexe step in the
algorithm differ slighely from Steps 3 and 6. This is because
we pead to compute the liketihood of a full NT = | vector e
with mean 0 and varance—covariance matrix 'Fy, @ Ay To do
this efficienily, we vsed the following result on determinants
! @ "'"'lil = |"‘|"}| |"'v.“t and 1he following resull an traces.
DLHI’IC o= e t.mi and € = [e; ... eg]. Then (9! @
Aglle = lrﬂu.{e‘l'-h_ ‘At

5 l"}raw 0 using the Metropolis—Hastings algorithm as
l."ﬂpF-.I.[i'ILI.F]HLVI{M'J}'
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Drawing a better
marketing map

Brand managers for nationally distdbuted consumer goods
often make decisions about how to market those products in
one geographic market based on brand performance and mar-
ket condition data from a nearby market, or on global or local
averages. But they likely would be better off using a spatial-

demand model thar berer fills in
¥ i missing variahles, according 1o Bart

FU&%&W ' Bronnenberg and Catarina Sismeiro

in their article, “Using Multimarket

Dtata to Predict Brand Performance
in Markets for Which No or Poor Data Exist,” in the February
issue of Journal of Marketing Research.

Most large consumer goods manufacmirers want to moni-
tor sales performance of their brands in a variety of regional
markets, and leading market research providers, such as
ACNielsen and Information Resources Inc., collect multimar-
ket time-series data of brand performance and market condi-
tons. However, the cost limits the number of [ocations thar are
sampled, creating a problem of missing data for managers of

See JMR / Page 7

JMR / From preceding page
Specific models help mapping

national brands, Those managers often
make decisions based on local demand
conditions, and also may have to accoun
for strong dependencies across markets
which demand new modeling approach-
es that incorporate the effects of these
dependencies on mode! inferences and
predictions.

The authors propose a model for mar-
ket similarity that incorporates the stroc-
ture of the U5, retailing industry and the
geographic location of markers. The
authars then use the proposed model to
show how to use multimarket data to pre-
dict brand performance in markers for
which no or poor data exist, applying it to
demand data in the Mexican food cawe-
gory.

Their results show that the spatial pre.

diction method improves greatdly on pre-
dicrors such as nearest-neighbor predic-
tors and global or local averages. In addi-
tion, the authors show that the sparial
model provides more plausible estimates
of prive elasticities by solving an omitted
variahles problem and by drawing unin-
formative estimates toward their local
averages,

In the article, the authors also discuss
other issues regarding retailer behavior
and its effect on demand,

Bart Bronnenberg is an assistant profes-
sor of marketing at the John E. Anderson
Groduate School of Management at the
Lniversity of California, Los Angeles. Cara-
rina Sismeiro is a doctoral condidate in
muarketing arthe Anderson school ar UCLA.




