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In this paper an algebraic characterization of consistent assessments in extensive
Ž .form games in the sense of Kreps and Wilson, 1982, Econometrica 50, 863]894 , is

given. As a corollary, we show that consistency can be characterized by so-called
‘‘simple’’ sequences of assessments. The algebraic characterization is used to
develop an algorithm which computes the set of consistent assessments. Moreover,
the geometrical structure of the set of consistent assessments is described: It turns
out to be the intersection of a finite product of simplices with a finite number
of logarithmic cones. Journal of Economic Literature Classification Number: 210.
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1. INTRODUCTION

In an extensive form game, a combination of a behavior strategy profile
and a belief system is called an assessment. Such an assessment is a

Ž .sequential equilibrium Kreps and Wilson, 1982 if it satisfies sequential
rationality and consistency. A sequential equilibrium can be viewed as

Ž . Ž .properly extending Selten’s ideas of subgame perfectness 1965, 1975 .
The first condition, sequential rationality, is equivalent to a system of
polynomial inequalities and is therefore straightforward to check. Check-
ing consistency, however, is in general much harder because the definition
requires sequences of assessments. A formal definition of consistent as-
sessments is given in Section 2.

Ž .In Section 3 we present the central result of this paper Theorem 3.1 ,
which is a purely algebraic characterization of consistent assessments: It
does not make any use of sequences and limits, but characterizes consis-
tent assessments by two algebraic conditions. The first condition is a
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restriction pertaining to the supports of the strategies and beliefs. It turns
out that checking this restriction is equivalent to solving a linear program,
an insight which plays an important role in the algorithm indicated below.
The second condition of the characterization implies that we can put
mistake probabilities on the actions played with probability zero in such a
way that the relative beliefs are equal to the relative realization probabili-
ties of the corresponding nodes. The relationship between relative proba-
bilities and consistency of assessments is also considered in Kohlberg and

Ž . Ž .Reny 1991 and McLennan 1989a, 1989b . Before stating the proof of
this theorem, we provide an example illustrating how this result can be
used to check whether a given assessment is consistent.

This central result will be applied in several ways. First, as is shown at
the end of Section 3, the proof of Theorem 3.1 can be used to prove that a
consistent assessment can always be approximated by a sequence of
completely mixed assessments of a very simple form, determined by just a
few parameters.

Second, in Section 4, the characterization is used to develop an algo-
rithm which computes the set of consistent assessments in a given exten-
sive form game.

Finally, the characterization makes it possible to give a geometrical
description of the set of consistent assessments in Section 5. As a byprod-
uct of this description, it can be shown rather easily that the set of
consistent assessments is semialgebraic, which means that it can be de-
scribed by a finite number of polynomial inequalities. Since sequential
rationality is equivalent to a finite system of polynomial inequalities, it
follows directly that the set of sequential equilibria is semialgebraic, a

Ž .result which has already been shown by Blume and Zame 1994 .

� 4 Ž .Notation. R* [ R j y` . For every x g R we define x q y` [
Ž . Ž . Ž . Ž .y`. Moreover, y` q y` [ y` whereas y` y y` is not de-

fined.
Ž .For a finite set A, D A is the set of all probability distributions on A.

For a matrix M we denote the transposed matrix by M t.

2. MODEL AND DEFINITIONS

Notation in Extensï e Form Games

In an extensive form game, the information sets are denoted by h,
whereas H is the collection of all information sets. By X we denote the
set of all nonterminal nodes. The set of terminal nodes is denoted by Z. At

Ž .an information set h, A h is the set of actions available at h. The sets
Ž . Ž . Ž .A h should be such that A h and A h9 are disjoint whenever h and h9
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are different. We assume that the extensive form games considered have
Ž .perfect recall see Kuhn, 1953 . A formal description of extensive form

Ž .games can be found in Kreps and Wilson 1982 .

Consistent Assessments

Ž .A beha¨ior strategy profile BSP is a function s which assigns to every
Ž .information set h a probability distribution s on A h . A belief system ish

a function b which assigns to every information set h a probability
Ž .distribution b on the nodes in this information set. A combination s , bh

of a BSP and a belief system is called an assessment.
Ž .An assessment s , b is called Bayesian consistent if at every informa-

tion set which is reached with positive probability the beliefs are derived
Ž .according to Bayes’ rule. So for every h with P h ) 0 it must hold thats

P xŽ .s
b x sŽ .h

P hŽ .s

Ž . Ž .for every x g h. Here, P x and P h denote the probabilities that thes s

node x and the information set h, respectively, are reached if s is played.
Ž .An assessment s , b is called consistent if there is a sequence

Ž k k .s , b of completely mixed, Bayesian consistent assessments con-k g N

Ž .verging to s , b . Completely mixed means that every action is played with
positive probability. Obviously, consistency implies Bayesian consistency.

3. CHARACTERIZATION OF CONSISTENT ASSESSMENTS

Before formulating our main result, we need some further definitions.
Ž . qŽ .For an assessment s , b , A s denotes the set of actions played with

qŽ .positive probability and by X b we mean the set of nodes with positive
qŽ . qbelief. The restriction of s on the actions in A s is denoted by s . By

0Ž .A s we denote the set of actions played with probability zero whereas
0Ž .X b denotes the set of nodes with belief zero.

Ž . Ž . w xA pseudo-BSP is a system s s s of functions s : A h ª 0, 1 .h hg H h
Ž .In contrast with BSP’s, the sum of the probabilities of the actions in A h

does not need to be equal to 1 in a pseudo-BSP. A pseudo-BSP s is called
completely mixed if every action is played with positive probability.

Ž . Ž .For a pseudo-BSP s , P x and P h are defined in a similar way as fors s

a BSP.
The following theorem gives an algebraic characterization of consistent

assessments. In the theorem, we denote by A the set of actions whichx
occur on the path to the node x.



CONSISTENT ASSESSMENTS 241

Ž .THEOREM 3.1. Let G be an extensï e form game and s , b be an
Ž .assessment. Then, s , b is consistent if and only if :

Ž . � Ž .4 Ž .01 there are numbers « a g 0, 1 such thatag A Žs .

« a s « aŽ . Ž .Ł Ł
0 0Ž . Ž .agA s lA agA s lAx y

qŽ .for all nodes x, y g X b in the same information set and

« a - « aŽ . Ž .Ł Ł
0 0Ž . Ž .agA s lA agA s lAx y

0Ž . qŽ .for all nodes x, y in the same information set with x g X b and y g X b ,
and

qŽ .2 s can be extended to a completely mixed pseudo-BSP s such that

P x b xŽ . Ž .s s
P y b yŽ . Ž .s

qŽ .for all nodes x, y g X b in the same information set.

Ž .Intuitively, condition 1 says that we can put mistake probabilities on
the zero probability actions such that b places positive belief exactly on
those nodes which are reached with maximum mistake probability. There-

Ž qŽ . qŽ ..fore, this condition checks whether the combination A s , X b is
Ž .possible in a consistent assessment. Condition 2 states that we can put

mistake probabilities on the zero probability actions such that the relative
probabilities of the nodes with positive belief are equal to the relative
beliefs.

Ž .Condition 1 is somewhat related to the notion of a b-labelling, used by
Ž .Kreps and Wilson 1982 in their Lemma A1. Furthermore, there is a

Ž . Ž b b.connection between condition 2 and the mapping m , p which can be
found in Lemma A2 of the same paper.

Before proving this theorem, we give an example in order to illustrate
Ž . Ž .the meaning of conditions 1 and 2 in the theorem. Moreover, this

example shows how the characterization can be used to check whether a
given assessment is consistent or not.

EXAMPLE 1. Consider an extensive form game with the extensive form
structure shown in Fig. 1. This extensive form structure is also used by

Ž .Kohlberg and Reny 1991 in their Fig. 5.
1Ž . Ž . Ž . Ž .Consider an assessment s , b with s c s s d s 1, b x s ,1 3

1 1Ž . Ž .b y s , and b z s . We apply Theorem 3.1 in order to verify if1 15 2
Ž .s , b is consistent.
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FIGURE 1

qWe can extend s to a completely mixed pseudo-BSP s by defining
1 2 3 6s a s , s b s , s e s , and s f s .Ž . Ž . Ž . Ž .3 3 10 10

Obviously, it holds that

P x b xŽ . Ž .s s
P y b yŽ . Ž .s

Ž .for all x, y lying in the same information set. Hence, condition 2 in
Theorem 3.1 is satisfied.

Ž .Condition 1 in this theorem is also satisfied by choosing
1« a s « b s « e s « f s .Ž . Ž . Ž . Ž . 2

Ž .Therefore, we may conclude that s , b is consistent.
Ž . Ž . Ž . Ž .Now, consider an assessment s , b with s c s s d s 1, b x s 0,1

1 2Ž . Ž .b y s , and b z s .1 13 3
Ž .Assume that condition 1 in Theorem 3.1 would be satisfied for some

Ž . Ž . Ž . Ž . Ž . Ž .« a , « b , « c and « d . Since b x s 0 and b x ) 0 it follows that1 2
Ž . Ž . Ž . Ž . Ž . Ž .« a - « b . Furthermore, it must hold that « a ? « e s « b ? « f

Ž . Ž . Ž .which implies that « e ) « f . However, this would mean that « a ?
Ž . Ž . Ž . qŽ .« f - « b ? « e which is a contradiction since z , z g X b . Hence,1 2

Ž . Ž .condition 1 can not be satisfied. By Theorem 3.1, s , b is not a
consistent assessment.
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Ž .Proof of Theorem 3.1. Let s , b be an assessment. For convenience,
q 0 q 0 qŽ . 0Ž . qŽ .we write A , A , X , and X instead of A s , A s , X b , and

0Ž . Ž .X b . For every information set h, let r h be the first node in h with
Žpositive belief. We assume, for convenience, that the nodes in an informa-

. Ž . Ž .tion set are ordered. For a node x g h, let r x [ r h . We construct the
matrix M as follows. The rows of the matrix correspond with the nodes in

0 Ž . 0X and the columns with the actions in A , so M s m . Thex, a x g X , ag A
elements m are given byx, a

1 if a g A and a f A¡ x r Ž x .~m [ y1 if a f A and a g Ax , a x r Ž x .¢
0 otherwise.

Ž .Furthermore, we define the vector s s s byx x g X

s [ log t c q log s a y log t cŽ . Ž . Ž .Ý Ý Ýx
qcgC cgCagA lAx rŽ x .x

y log s a .Ž .Ý
qagA lArŽ x .

Ž .Here, C is the collection of chance moves on the path to x and t c is thex
positive probability that the chance move c occurs.

Ž .Let the vector b s b be given byx x g X

b [ log b x y log b r x ,Ž . Ž .Ž .x

Ž .where log 0 [ y`. Note that b can be y` since b x can be 0.x
From the definitions of M, b, and s, it can be shown that an assessment

Ž . Ž k . A0
s , b is consistent if and only if there is a sequence w in Rk g N

converging coordinatewise to y` such that

b s s q lim M w k . 3.1Ž .
kª`

Now, let Mq and M 0 be the restrictions of M to the rows corresponding
to nodes in Xq and X 0 respectively and let sq, bq be the restrictions of
the vectors s, b to nodes in Xq. In the following lemma, we show that

Ž .condition 3.1 is equivalent to two algebraic conditions.

Ž .LEMMA 3.2. The assessment s , b is consistent if and only if

Ž . q 01 there is a ¨ector w - 0 with M w s 0 and M w - 0 and
Ž . q q Ž q.2 b g s q Im M .
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Ž .Proof. ‘‘« ’’ Assume that s , b is consistent. Then, we can find a
Ž k .sequence w converging coordinatewise to y` such that b s s qk g N

lim Mw k. Let the vector ¨ be given by ¨ [ b y s and let ¨q be thek ª`

restriction of ¨ to the nodes in Xq. By construction, ¨ g R for allx
x g Xq and ¨ s y` for all x f Xq. Since lim Mw k s ¨ , it followsx k ª`

that the linear system of equations Mx s ¨ has an approximate solution,
Ž . 1in the sense of Kohlberg and Reny 1991 . Now, we can use a remark in

Kohlberg and Reny’s paper, stating that if the system Mx s ¨ has an
approximate solution, then the system restricted to the finite entries of ¨
has a solution in the ‘‘normal’’ sense. In this case, this means that the

q q q q Ž q.system M x s ¨ has a solution, implying that b g s q Im M .
A0 q q � A0 0Now, let z g R with M z s ¨ . Let B [ w g R N w F y1, M w

4 � q 4 ŽF y1 and C [ M w N w g B . The inequality w F y1 should be read
.coordinatewise. Obviously, B is a closed and convex set. Moreover, B is

nonempty since w k g B for large k. It follows that C is a nonempty closed
convex set. Suppose that 0 f C. Then, there exists a hyperplane which

� 4separates the sets C and 0 strongly. In other words, we can find a
nonzero vector p and a number a g R such that p ? c ) a for all c g C
and p ? 0 - a . The last inequality implies that a ) 0. From the first
inequality, it follows that p ? Mqw ) a for every w g B. Since w k y z g B

qŽ k .for large k, it follows that lim p ? M w y z G a . We know thatk ª`

lim Mqw k s ¨qs Mqz. Therefore 0 G a , which is a contradiction. Sok ª`

0 g C, which implies that there is a w g R A0
, w F y1, with M 0 w F y1

and Mqw s 0.
Ž . Ž . A0

‘‘¥’’ Let 1 and 2 in Lemma 3.2 be satisfied and let z g R with
q q q Ž k . kb s s q M z. Define the sequence w by w [ z q kw. It is easyk g N

Ž k .to check that w converges coordinatewise to y` and b s s qk g N
k Ž .lim Mw , which implies that s , b is consistent. Bk ª`

Now, we are able to prove Theorem 3.1.
Ž . Ž .‘‘« ’’ Let s , b be consistent. By 2 in Lemma 3.2 there is a

0A q q qz g R such that b s s q M z. We define the pseudo-BSP s by

s a if a f A0Ž .
s a [Ž . 0½ exp z if a g A .Ž .a

Since

b s s q m z s s q z y zÝ Ý Ýx x x , a a s a a
0 0 0agA agA lA agA lAx rŽ x .

1A linear system of equations Mx s ¨ , where ¨ can contain infinities, is said to have an
Ž k . kapproximate solution if there is a sequence x satisfying lim Mx s ¨ .k g N k ª`



CONSISTENT ASSESSMENTS 245

for every x g Xq, we obtain by taking the exponential function on both
sides and using the definitions of b , ¨ , and m thatx x x, a

s aŽ .t c ? s a ŁŽ . Ž .Ł Ł
q 0b xŽ . cgC agA lA agA lAx x xs ?

b r x t c ? s a s aŽ . Ž . Ž . Ž .Ž . Ł Ł Ł
q 0cgC agA lA agA lArŽ x . r Ž x . r Ž x .

P xŽ .ss
P r xŽ .Ž .s

q Ž .for every x g X which implies condition 2 in Theorem 3.1.
Since Mqw s 0 it follows that

w y w s 0Ý Ýa a
0 0agA lA agA lAx rŽ x .

for every x g Xq. Taking the exponential function on both sides leads to
the equation

exp wŁ a
0agA lA x s 1

exp wŁ a
0agA lArŽ x .

for every x g Xq. Since M 0 w - 0, we can show in a similar way that

exp wŁ a
0agA lA x

- 1
exp wŁ a

0agA lArŽ x .

0 Ž . Ž . Ž .for every x g X . Finally, we define the constants « a by « a [ exp wa
for every a g A0.

Since the proof in the other direction is similar, the proof of Theorem
3.1 is complete. B

Consistency and Simple Sequences of Assessments

As a corollary of Theorem 3.1, we show that we can restrict ourselves to
a very special class of sequences of completely mixed assessments if we
want to check whether a given assessment is consistent or not. These
sequences, which we call simple, have the property that they are com-
pletely determined by assigning two parameters to every action. As a
consequence, the infinitely dimensional problem of checking consistency is
reduced to a finitely dimensional problem.
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Ž k k .A sequence s , b of assessments is called simple if for everyk g N

Ž . Ž . Ž xaction a there are numbers s a ) 0 and « a g 0, 1 such that

kk ks a s R h ? s a ? « aŽ . Ž . Ž . Ž .Ž .

Ž . kŽ .for every k g N. Here, h is the information set with a g A h and R h
k k y1Ž . w Ž . Ž Ž .. xis the normalizing constant given by R h s Ý s a9 ? « a9 .a9g AŽh.

Ž .COROLLARY 3.3. An assessment s , b is consistent if and only if there is
Ž k k .a simple sequence s , b of completely mixed, Bayesian consistent assess-
Ž .ments con¨erging to s , b .

Proof. We only have to prove the ‘‘only if’’ part, since the ‘‘if’’ part is
Ž .true by definition. Let s , b be a consistent assessment. By Theorem 3.1

0Ž . Ž . Ž .we can find numbers « a and s a for every a g A s such that the
Ž . Ž . qŽ .conditions 1 and 2 in this theorem are satisfied. For every a g A s

k kŽ . Ž . Ž . Ž .we define s a [ s a and « a [ 1. Since the simple sequence s , b
of completely mixed, Bayesian consistent assessments induced by these

Ž .numbers converges to s , b the proof is complete. B

The notion of simple sequences of assessments is somewhat related to
Ž .the sequences used by Kreps and Wilson 1982 in the proof of Lemma A2.

However, the sequences in Kreps and Wilson are constructed in a differ-
ent way.

4. AN ALGORITHM

In this section we provide an algorithm to compute the set of consistent
assessments in an extensive form game. First, we introduce some further
notation and discuss several lemmas which play an essential role in the
development of the algorithm.

In an extensive form game G, we denote the set of consistent assess-
c q q cŽ q q.ments by AA . For given sets A and X , AA A , X denotes the set of

Ž . qŽ . q qŽ . qconsistent assessments s , b with A s s A and X b s X . Obvi-
ously,

AAc s AAc Aq, Xq .Ž .D
q qA , X

Ž .In the proof of Theorem 3.1 we constructed for a given assessment s , b
qŽ . qŽ .a matrix M. However, this matrix depends on the sets A s and X b

only. This means that we can construct such a matrix M for every possible
combination Aq, Xq. Furthermore, we introduced for a given assessment
Ž .s , b the vectors b and s, where b depends on b and s depends on s .
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Ž . Ž .Therefore, we denote these vectors by b b and s s respectively. By
qŽ . qŽ . Ž . Ž . qb b and s s we denote restrictions of b b and s s to X .

Ž .From Lemma 3.2 it follows that an assessment s , b can only be
consistent if there is a vector w - 0 with Mqw s 0 and M 0 w - 0.
Obviously, this problem is equivalent to the problem ‘‘Is there a vector
w F y1 with Mqw s 0 and M 0 w F y1?’’.2 The latter problem is an LP

Žproblem and can therefore be solved efficiently by using the simplex
.method, for example . Combining this insight with Lemma 3.2 leads to the

following lemma, which turns out to be the keystone for our algorithm.

LEMMA 4.1. Let Aq, Xq be gï en and M be the corresponding matrix.
If there is a ¨ector w F y1 with Mqw s 0 and M 0 w F y1 then

cŽ q q. Ž . qŽ .AA A , X is equal to the set of assessments s , b with A s s
q qŽ . q qŽ . qŽ . Ž q.A , X b s X , and b b g s s q Im M .

cŽ q q.Otherwise, AA A , X is empty.

The proof follows directly from Lemma 3.2.

ŽŽ q. t.LEMMA 4.2. There is a basis for Ker M which consists of integer
¨ectors.

Ž q. t Ž q. tProof. Since M is an integer matrix, we can transform M with
the Gauss-elimination method into a rational upper-triangular matrix.

ŽObviously, the kernel of this triangular matrix and, hence, the kernel of
Ž q. t.M has a basis consisting of rational vectors. By multiplying these
vectors with an appropriate integer, we obtain a basis consisting of integer
vectors. B

1 r ŽŽ q. t.LEMMA 4.3. Let n , . . . , n be a basis for Ker M consisting of integer
¨ectors. Then,

Im Mq s z N ni ? z s 0 for i s 1, . . . , r .� 4Ž .

The proof of this lemma is straightforward.
qŽ . qŽ .From Lemma 4.1 and Lemma 4.3 it follows that b b y s s g

Ž q. i qŽ . i qŽ .Im M if and only if n ? b b s n ? s s for all i. This result leads to
the following corollary.

1 r ŽŽ q. t.COROLLARY 4.4. Let n , . . . , n be a basis for Ker M . If there is a
q 0 cŽ q q.¨ector w F y1 with M w s 0 and M w F y1 then AA A , X is equal
Ž . qŽ . q qŽ . qto the set of assessments s , b with A s s A , X b s X , and

ni ? bq b s ni ? sq s for all i .Ž . Ž .
cŽ q q.Otherwise, AA A , X is empty.

2 The inequalities w F y1 and M 0 w F y1 should be read coordinatewise.
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Now, we are able to construct an algorithm which generates the set of
consistent assessments. The algorithm is based on the following steps.

Step 1. Choose Aq, Xq and compute the corresponding matrix M.
Step 2. Solve the LP-problem ‘‘Is there a vector w F y1 with Mqw

s 0 and M 0 w F y1?’’ with the simplex method.
If the answer is ‘‘yes,’’ then go to step 3.

cŽ q q. ŽIf the answer is ‘‘no,’’ then AA A , X is empty and go to Step 1 until
q q .every combination A , X has been chosen .

1 r ŽŽ q. t.Step 3. Compute a basis n , . . . , n for Ker M consisting of
cŽ q q.integer vectors with the Gauss-elimination method. Then AA A , X is

Ž . qŽ . q qŽ . qequal to the set of assessments s , b with A s s A , X b s X
i qŽ . i qŽ .and n ? b b s n ? s s for all i.

Ž q q .Go to Step 1 until every combination A , X has been chosen .

If we translate the linear equations in Step 3 into the original strategies
s and the original beliefs b by taking the exponential function on both
sides, we obtain a system of polynomial equations in s and b. A different
algorithm to compute such polynomial equations can be found in Kohlberg

Ž .and Reny 1991 .
In the following example, we apply the algorithm in order to compute

cŽ q q.one particular set AA A , X for the extensive form game of Example 1.

EXAMPLE 2. Let G be an extensive form game with the extensive form
structure of Fig. 1.

q � 4 q � 4Step 1. Choose A s c, d, g, h, i, j and X s x , x , y , y , z , z .1 2 1 2 1 2
0 � 4 0 Ž .Hence, A s a, b, e, f and X is empty. The nodes r x are given by

r x s r x s x , r y s r y s y , r z s r z s z .Ž . Ž . Ž . Ž . Ž . Ž .1 2 1 1 2 1 1 2 1

The corresponding matrix M is given by

a b e f

x0 0 0 0 1
xy1 1 0 0 2
y0 0 0 0 1M s .yy1 1 y1 1 2
z0 0 0 0 1
zy1 1 1 y1 2

Step 2. Since Xqs X, we have that Mqs M and M 0 s B. There is a
q Ž wvector w F y1 with M w s 0. Take, for example, w s y1, y1, y1,

x .y1 .
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ŽŽ q. t.Step 3. The transposed matrix M is given by

0 y1 0 y1 0 y1
t 0 1 0 1 0 1qM s .Ž .

0 0 0 y1 0 1
0 0 0 1 0 y1

By Gauss-elimination, this matrix can be transformed to the upper-triangu-
lar matrix

0 y1 0 y1 0 y1
0 0 0 y1 0 1 .
0 0 0 0 0 0
0 0 0 0 0 0

Therefore, the integer vectors n1, n2, and n3 are given by

1 w x 2 w x 3 w xn [ 1, y2, 0, 1, 0, 1 , n [ 0, y2, 1, 1, 0, 1 , n [ 0, y2, 0, 1, 1, 1

ŽŽ q. t.form a basis for Ker M .
Ž .For every assessment s , b we have by definition

bq b s log b x y log b r xŽ . Ž . Ž .Ž .x

and

sq s s log s a y log s aŽ . Ž . Ž .Ý Ýx
q qagA lA agA lAx rŽ x .

qŽ . qŽ . � 4for every x g X. Hence, b b s s s s 0 if x g x , y , z . There-x x 1 1 1
i qŽ . i qŽ .fore, the equations n ? b b s n ? s s are all equivalent to the equa-

1 qŽ . 1 qŽ .tion n ? b b s n ? s s . This equation is given by

y2 log b x y log b x q 1 log b y y log b yŽ . Ž . Ž . Ž .Ž . Ž .2 1 2 1

q 1 log b z y log b z s 0Ž . Ž .Ž .2 1

qŽ .since s s s 0 for all x g X. If we take the exponential function on bothx
sides, we obtain the equation

y2
b x b y b zŽ . Ž . Ž .2 2 2 s 1y2 b y b zŽ . Ž .b xŽ . 1 11

which is equivalent to

2 2
b x b y b z s b x b y b z .Ž . Ž . Ž . Ž . Ž . Ž .1 2 2 2 1 1
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cŽ q q.Finally, we may conclude that AA A , X is the set of assessments
Ž . qŽ . q qŽ . qs , b with A s s A , X b s X , and

2 2
b x b y b z s b x b y b z .Ž . Ž . Ž . Ž . Ž . Ž .1 2 2 2 1 1

5. STRUCTURE OF THE SET OF CONSISTENT
ASSESSMENTS

In this section, we give a geometrical description of the set of consistent
assessments. To this purpose, we use some results derived in the previous
section.

Let G be an extensive form game and the sets Aq, Xq be fixed. By
cŽ q q. cŽ q q.Corollary 4.4 we know that either AA A , X is empty or AA A , X is

Ž . qŽ . q qŽ . qthe set of assessments s , b with A s s A , X b s X , and

ni ? bq b s ni ? sq sŽ . Ž .

for all i. If we take the exponential function on both sides and use the
qŽ . qŽ . i qŽ . i qŽ .definitions of b b and s s , the equation n ? b b s n ? s s is

equivalent to the equation

in xin x t c ? s aŽ . Ž .Ł Ł Łb xŽ .Ł q qq cgCxgX agA lAxxgX xs .i in nx xb r xŽ .Ž .Ł t c ? s aŽ . Ž .q Ł Ł ŁxgX q qcgCxgX agA lArŽ x . r Ž x .

This equation can be written in the form

mi mi l i l iix a x ab x ? s a s c ? b x ? s a 5.1Ž . Ž . Ž . Ž . Ž .Ł Ł Ł Ł
xgX agA xgX agA

where ci is a constant and mi , mi , l i , l i are nonnegative integers.x a x a
i ŽŽ i . Ž i . .. i ŽŽ i .Let m be the vector m , m and l be the vector l ,a ag A x x g X a ag A

Ž i . .. Ž .mi
l . By s , b we denote the expressionx x g X

mi mi
a xs a ? b x .Ž . Ž .Ł Ý

agA xgX

Ž . l i Ž .We treat similarly s , b . Using this notation, Eq. 5.1 can be written in
the form

mi l iis , b s c ? s , bŽ . Ž .

and we obtain the following theorem.
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q q cŽ q q.THEOREM 5.1. For e¨ery pair A , X either A A , X is empty or
cŽ q q.A A , X is determined by finitely many equations of the form

mi l iis , b s c ? s , b ,Ž . Ž .

where mi and l i are nonnegatï e integer ¨ectors.
n Ž .nFor a nonnegative vector ¨ g R , we denote by log ¨ the vector in R*

Žobtained by taking the coordinatewise logarithm in ¨ . Note that z s y`i
. n Ž .nif ¨ s 0. For a set S ; R of nonnegative vectors the set log S ; R* isi

defined in the obvious way.
Ž .n 1 2A set C ; R* is called a cone with ¨ertex if for every c , c g C and

1 2 Ž .nevery a, b ) 0 we have that ac q bc g C. We call a set C ; R* a
cone if there is a vector ¨ g R n and a cone C9 with vertex 0 such that
C s ¨ q C9.

A set L ; R n is said to be a logarithmic cone if log L is a cone. Hence,
a logarithmic cone can be transformed into a cone by taking the coordi-
natewise logarithm.

THEOREM 5.2. The set of consistent assessments is the intersection of a
finite product of simplices with a finite number of logarithmic cones.

q q Ž q q.Proof. For a given pair A , X we denote by AA A , X the set of
Ž . qŽ . q qŽ . qassessments s , b with A s s A and X b s X . By Theorem 5.1

cŽ q q.we know that AA A , X is either empty or is equal to the set of
Ž q q.assessments in AA A , X which satisfy finitely many equations of the

form

mi l iis , b s c ? s , b . 5.2Ž . Ž . Ž .

cŽ q q. Ž .Assume that AA A , X is not empty. For a nonnegative vector s , b of
qŽ . qŽ .the same size as an assessment we define A s and X b in the

Ž q q.obvious way. By L A , X we denote the set of nonnegative vectors
Ž . qŽ . q qŽ . qs , b with A s s A , X b s X , and which satisfies the equations
Ž .5.2 .

Ž . Ž . q qSince the variables s a , b x with a f A , x f X do not appear in
Ž q q.these equations, the set L A , X can be written as

q q � 4L A , X s y ) 0 N B log y s d = 0� 4Ž . Ž .

for some appropriate matrix B and vector d. Here, 0 denotes the vector of
Ž . 0Ž . 0Ž .zeroes corresponding to the restriction of s , b on A s = X b . It

Ž q q.can be seen easily that L A , X is a logarithmic cone.
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If we denote the set of all assessments by AA, we obtain

c q qAA s AA l L A , X .Ž .D
q qA , X

Since AA is a finite product of simplices, it follows that AAc is the intersec-
tion of a finite product of simplices with a finite number of logarithmic
cones.3 B

Ž .In Blume and Zame 1994 it has been shown that the set of sequential
Žequilibria is a semialgebraic set. A set is called semialgebraic if it is the

finite union of sets determined by a finite number of polynomial inequali-
.ties. These inequalities may be strict or non-strict. Using our insights

about consistent assessments, this result can be shown within a few lines.
Ž q q.Obviously, the sets L A , X in the proof of Theorem 5.2 are semial-

gebraic sets. Since AA is also semialgebraic, it follows that the set of
consistent assessments is semialgebraic. We already know that the set of
sequentially rational assessments is semialgebraic since sequential ratio-
nality is equivalent to a finite number of polynomial inequalities. Hence,
the set of sequential equilibria is the intersection of two semialgebraic sets
and is therefore semialgebraic itself.

COROLLARY 5.3. The set of sequential equilibria is a semialgebraic set.
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