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Abstract. Network loading problems occur in the design of telecommunication networks, in many different
settings. For instance, bifurcated or non-bifurcated routing (also called splittable and unsplittable) can be
considered. In most settings, the same polyhedral structures return. A better understanding of these structures
therefore can have a major impact on the tractability of polyhedral-guided solution methods. In this paper,
we investigate the polytopes of the problem restricted to one arc/edge of the network (the undirected/directed
edge capacity problem) for the non-bifurcated routing case.

As an example, one of the basic variants of network loading is described, including an integer linear
programming formulation. As the edge capacity problems are relaxations of this network loading problem,
their polytopes are intimately related. We give conditions under which the inequalities of the edge capacity
polytopes define facets of the network loading polytope. We describe classes of strong valid inequalities for
the edge capacity polytopes, and we derive conditions under which these constraints define facets. For the
diverse classes the complexity of lifting projected variables is stated.

The derived inequalities are tested on (i) the edge capacity problem itself and (ii) the described variant
of the network loading problem. The results show that the inequalities substantially reduce the number of
nodes needed in a branch-and-cut approach. Moreover, they show the importance of the edge subproblem for
solving network loading problems.

Key words. network design – mixed integer programming – cutting planes – knapsack with integer capacity

1. Introduction

The network loading problem (NLP) occurs in telecommunications problems where
demand for capacity for multiple commodities is to be realized by inserting capacity
into a given network. The capacity can be placed in different sizes, usually multi-
ples of each other. We restrict ourselves to a single capacity size, although many
of the ideas presented in this paper can be extended in case multiple capacity sizes
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are available. Along with a capacity plan a routing of all commodities is to be de-
termined to obtain a capacity plan that facilitates the demands of all commodities.
This problem has been studied in many variants with respect to network lay-out, cap-
acity usage, and routing possibilities. Routing of the demand can be done by reserv-
ing capacity on a subnetwork that consists of a single path between the endpoints
of a commodity only (non-bifurcated routing), or of a set of paths (bifurcated rout-
ing). The cases are also known as unsplittable and splittable flow, respectively. We
only consider the non-bifurcated case which is also studied by Gavish and Altinke-
mer [11] and Brockmüller et al. [8,9]. For the bifurcated case we refer to Mag-
nanti et al. [18,19]. With respect to capacity usage one can distinguish unidirec-
tional and bidirectional capacity usage, i.e., if an edge contains a unit of capacity
this unit can either be used in one or in both directions of the edge. In most stud-
ies the unidirectional (or undirected) case is studied. Exceptions are Bienstock and
Günlük [7] and Bienstock et al. [6], who study the bidirectional case. Most of our
results can be applied to both capacity models; for the sake of clarity, we restrict
us to the bidirectional case in this paper (see [15] for the other case). With respect
to network lay-out we do not specialize us. For instance, we do not take reliabil-
ity requirements into account. For the design of survivable networks with bifurcated
routing we refer to Wessäly [23] and the references therein, for non-bifurcated rout-
ing to Van de Leensel [17]. Also generalizations like network design with multicast
commodities are not considered (cf. Bienstock and Bley [5]). However, this paper
considers the relaxation of NLP to a single edge of the network, the so-called edge
capacity problem (ECP). We are specifically interested in the polyhedral structure
of the polytope of ECP as it is an important substructure of all network loading
models.

The edge capacity polytope with a single capacity type can be viewed as a 0–1 knap-
sack problem with a single integer variable representing the capacity of the knapsack.
The closely related knapsack problem with a single continuous capacity variable is
studied by Marchand and Wolsey [20]. They employ valid inequalities of the standard
0–1 knapsack problem (see Balas [2], Hammer et al. [14], Wolsey [24]) to obtain valid
inequalities for the extended model by projection and lifting. The edge capacity poly-
tope itself has also been studied by Brockmüller et al. [8,9], who derive valid and facet
defining inequalities. Magnanti et al. [18] study the version of the polytope in which the
binary variables are relaxed to real variables and derive a complete description of the
corresponding polytope. Recently, Atamtürk and Rajan [1] study both the edge capacity
polytope and its relaxation to real variables.

In this paper we derive various new results for the edge capacity polytope. In Sect. 2,
we discuss one of the basic variants of the non-bifurcated network loading problem.
A possible integer linear programming formulation is derived, formulation and model-
ing alternatives are discussed, and the dimension and trivial facets are stated. Next, in
Sect. 3, we introduce two polytopes obtained by restricting the network loading problem
to a single edge. The polytopes differ in the number of capacity constraints taking into
account (one or two). We show that every non-trivial facet defining inequality for the
directed edge capacity polytope defines a facet of the overall network loading polytope
as well. For the undirected version conditions are derived under which the same result
holds.
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The sequel of the paper is devoted to a polyhedral study of both edge capacity
polytopes. First, in Sect. 4, the undirected edge capacity polytope is studied. General
properties of facet defining inequalities are derived and two classes of valid inequalities
are introduced, both generalizing the c-strong inequalities of Brockmüller et al. [8].
These classes of inequalities are defined on a projection of the original polytope. We
show that the general properties allow to lift the projected variables in polynomial time.
Next, in Sect. 5, the directed edge capacity polytope is studied. We introduce for this
polytope one class of valid inequalities and derive conditions under which these in-
equalities define facets. Moreover, we prove that the lifting of valid inequalities for this
polytope is NP-complete in general.

The third part of the paper is devoted to a computational analysis of the effectiveness
of the derived inequalities for both the edge capacity polytope itself and the described
variant of the network loading problem. In Sect. 6, we discuss the separation of the
valid inequalities, computational results for generated edge capacity instances, and the
effectiveness of different strategies in solving real-life network loading problems. The
paper is closed by some concluding remarks.

2. Network loading problems

2.1. Problem description

Let G = (V, E) be an undirected connected graph with node set V and edge set E.
We define the arc set A, which contains two directed arcs (i, j) and ( j, i) for every
edge e = {i, j} ∈ E. Let Q be a set of commodities. Each element q ∈ Q is
a triple (sq, tq, dq), with sq, tq ∈ V , sq �= tq , representing a commodity with de-
mand size dq ∈ Z+

0 that must be routed from source node sq to sink node tq on
a single path through the network. To route a set of commodities on an arc, suf-
ficient capacity must be available. The capacity on an edge is determined by the
number of capacity units installed, where each unit has a base capacity λ ∈ Z+

0 .
Depending on the transmission technology, the installed capacity is available in both
directions once (bidirectional capacity installation), or has to be shared by the com-
modities routed across (i, j) and ( j, i) (undirected capacity). Bidirectional capacity
installation is sometimes simply called directed, since the capacity can be used in
both directions. The goal is to minimize the costs of the installed capacity in the
network while ensuring that all commodities can be routed from source to sink simul-
taneously.

2.2. An integer linear programming formulation

To formulate the bidirectional network loading problem as an integer program, let
xi j ∈ Z+

0 be the number of capacity units installed on edge {i, j}, and let f q
i j be a binary

variable indicating whether the commodity q ∈ Q is routed via arc (i, j) ∈ A or not.
If ci j represents the costs per base capacity unit on edge {i, j} ∈ E, then the model
reads:
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min
∑

{i, j}∈E

ci j xi j (1)

s.t.
∑

{i, j}∈E

f q
i j −

∑
{ j,i}∈E

f q
ji =




1 if i = sq

−1 if i = tq

0 otherwise
∀q ∈ Q,∀i ∈ V (2)

λxi j ≥
∑
q∈Q

dq f q
i j ∀{i, j} ∈ E (3)

λxi j ≥
∑
q∈Q

dq f q
ji ∀{i, j} ∈ E (4)

f q
i j , f q

ji ∈ {0, 1}, xi j ∈ Z+
0 ∀q ∈ Q, ∀{i, j} ∈ E. (5)

This model is called the Directed Non-bifurcated Flow Model, and the corresponding
set of feasible solutions is denoted DNFM . The capacity on an edge is (bi)directed be-
cause installed capacity can be used twice, once in each direction. Hence, the required
capacity on an edge is determined by the maximum of forward flow and backward flow
on the edge. It is called non-bifurcated since the demand of a commodity has to be
routed on a single path (i.e. the demand cannot be bifurcated). Finally, flow variables
f q
i j on individual arcs (i, j) are used to model the routing of a commodity from source

node sq to sink node tq .

2.3. Formulation and model alternatives

The problem can alternatively be formulated with so-called path variables instead of the
flow variables, see [15]. Depending on the exact application and level of aggregation,
other variants of the problem can be studied. For instance, capacity that is installed
on edges in the network can also be undirected, i.e. each unit of capacity installed on
an edge {i, j} has to be shared by traffic on both corresponding arcs (i, j) and ( j, i).
A formulation similar to (1)–(5) can be derived in this case. Basically, the constraints (3)
and (4) are replaced by a single capacity constraint, summing up all the flows in forward
and backward direction (cf. [15] for a flow and path formulation for these cases). Both
the directed and the undirected version of the problem areNP-hard (see Appendix A).

2.4. Dimension and trivial facets

With conv(DNFM) we define the convex hull of all integer solutions of (2)–(5). For
this network loading polytope, the dimension and its trivial facets can be specified.

Proposition 1. The dimension of conv(DNFM) is equal to |E| + |Q|(|A| − |V | + 1).

Proposition 2. Let q ∈ Q and (i, j) ∈ A. The trivial inequalities f q
i j ≥ 0 are valid and

facet defining for conv(DNFM).

The same results hold for the undirected flow model, whereas similar results can
be derived for the path formulations of both variants (see [15] for these results and for
proofs of the above stated results).
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3. Two edge capacity polytopes

In this paper, we focus on the polyhedral structure of polytopes associated with
conv(DNFM). More precisely, we study the convex hull of sets related to individual
edge capacity constraints in the formulations. Whether a flow or path model is con-
sidered, whether directed or undirected capacity can be installed, inequalities like (3)
and (4) turn up in the formulation. Depending on the variant, for each edge one or two of
these inequalities are part of the model. This gives rise to two edge capacity polytopes
with associated sets X and Y defined by respectively a single edge capacity constraint
and a pair of edge capacity constraints. For DNFM these sets are defined by

X DF
i j =

{
(x, f ) ∈ Z+

0 × {0, 1}|Q| : λxi j ≥ ∑
q∈Q dq f q

i j

}

Y DF
i j =

{
(x, f ) ∈ Z+

0 × {0, 1}2|Q| : λxi j ≥ ∑
q∈Q dq f q

i j , λxi j ≥ ∑
q∈Q dq f q

ji

}
.

For the path formulation as well as for other model variants, similar sets can be derived
(cf. [15]).

Obviously any valid inequality for these polytopes is valid for the original problem
DNFM . Moreover, valid inequalities that define a facet of conv(Y DF

i j ), also define
a facet of conv(DNFM).

Theorem 1. Any non-trivial facet defining inequality for conv(Y DF
i j ) is a non-trivial

facet defining inequality for conv(DNFM).

Proof. See [15].
��

For the polytopes conv(X DF
i j ) and conv(DNFM), such a strong relation is subject to

restrictions, formalized in Proposition 3. Here, Qi j denotes the subset of commodities
that do not have source j or sink i, i.e., Qi j = {q ∈ Q : sq �= i ∧ tq �= j}.
Proposition 3. Let ax ≥ bT f − c be a non-trivial facet defining inequality for
conv(X DF

i j ). It defines a non-trivial facet defining inequality for conv(DNFM) if

and only if for all q̂ ∈ Q ji there exists a subset Q̄ ⊆ Qi j \ {q̂} that satisfies∑
q∈Q̄ bq − c = a max{

⌈
dq̂

⌉
,
⌈∑

q∈Q̄ dq
⌉
}.

Proof. See [15].
��

Similar results can be derived for the undirected capacity model as well as for the
path formulation. Note that, since the dimension of the flow and path formulations differ,
these results do not directly follow from the above stated ones.

The edge capacity sets X DF
i j and Y DF

i j are stated as two examples of edge models
occurring in various network loading problems. Although the interpretation of the
variables differs on the problem variant and the selected formulation alternative, all
these models can be abstracted to two models X and Y defined by respectively a single
edge capacity constraint and a pair of edge capacity constraints. Consider a set Q of
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items (commodities) and let dq ∈ Q+ represent the size (demand) for an item q ∈ Q
(normalized to the base capacity λ). Let the integer variable x denote the number
of capacity units selected and let the binary variables f q indicate whether or not an
individual item q is selected. The undirected edge capacity set X is then defined as

X =
{
(x, f ) ∈ Z+

0 × {0, 1}|Q| : x ≥ ∑
q∈Q dq f q

}
.

This set is named undirected since it represents the undirected network loading problem
restricted to a single edge.

For the directed edge capacity set Y , the undirected binary variables f q are replaced
by two sets of variables f q and hq for respectively the “forward” and “backward”
direction:

Y =
{
(x, f, h) ∈ Z+

0 × {0, 1}2|Q| : x ≥ ∑
q∈Q dq f q, x ≥ ∑

q∈Q dqhq
}

.

The sequel of this paper is devoted to a polyhedral study of the polytopes defined by X
and Y , in respectively Sect. 4 and Sect. 5.

We use the following additional notation. Let Dq = �dq� be the smallest integer
greater than or equal to dq, and let rq = dq + 1 − Dq ∈ (0, 1] be the ‘fractional’ part
of the demand. Similarly, for a subset S ⊆ Q, let d(S) = ∑

q∈S dq, D(S) = �d(S)� and

r(S) = d(S)+1−D(S). Finally, define eS ∈ {0, 1}Q as the characteristic vector of a set S,
i.e. eS

i = 1 if i ∈ S and zero otherwise. Note that, for each S ⊆ Q, (D(S), eS) ∈ X.
Similarly, for each S1 ⊆ Q, S2 ⊆ Q, (max{D(S1), D(S2)}, eS1, eS2) ∈ Y .

4. The undirected edge capacity polytope

4.1. Preliminaries & characteristics

The undirected edge capacity polytope has previously been studied by Brockmüller
et al. [8] in the context of telecommunication network design, and very recently by
Atamtürk and Rajan [1]. The authors of the latter paper obtained to some extend the
same (or equivalent) results as we. To avoid overlap, these results are only briefly
mentioned in this paper. Proofs can be found in [15].

Given an arbitrary objective function (δ, γ) ∈ Z×Z|Q|, the problem of minimizing
the objective over the set X is NP-hard in general. The polytope conv(X) is full
dimensional and the inequalities f q ≥ 0 and f q ≤ 1 define the so-called trivial facets.
Brockmüller et al. [8] proved that each non-trivial facet conv(X) can be written in
the form ax ≥ ∑

q∈Q bq f q − c, with a, c ∈ Z+
0 , bq ∈ Z+

0 , for all q ∈ Q. A further
characterization of the facets is given by the so-called shifting theorem which shows
that the complete set of facet defining inequalities for the edge capacity polytope can be
obtained from a related edge capacity polytope in which the demands satisfy dq ∈ (0, 1]
for all q ∈ Q. The same result was indirectly proven by Atamtürk and Rajan [1].

Theorem 2. (Shifting theorem) Let i ∈ Q and µ ∈ Z such that di + µ ≥ 0, and define

X(i, µ) =
{
(x, f ) ∈ Z+

0 × {0, 1}|Q| : x ≥ (di + µ) f i + ∑
q∈Q\{i} dq f q

}
. (6)
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Then the inequality

x ≥ ∑
q∈Q bq f q − c (7)

is a non-trivial facet defining inequality for conv(X) if and only if

x ≥ (bi + µ) f i + ∑
q∈Q\{i} bq f q − c (8)

is a non-trivial facet defining inequality for conv(X(i, µ)).

Proof. Note that we only need to prove that any facet defining inequality for conv(X)

can be converted as indicated to a facet defining inequality for conv(X(i, µ)), since the
converse then directly follows for a suitable choice µ′ = −µ. First, we prove validity.

Let (x̄, f̄ ) ∈ X(i, µ), then (x̄ − µ f̄
i
, f̄ ) ∈ X, hence x̄ − µ f̄

i ≥ ∑
q∈Q bq f̄

q − c which

implies that x̄ ≥ (bi+µ) f̄
i+∑

q∈Q\{i} bq f̄
q−c. Next, let (x1, f1), . . . , (x|Q|+1, f|Q|+1)

be |Q| + 1 affinely independent solutions of X that satisfy (7) at equality. Then (x1 +
µ f i

1, f1), . . . , (x|Q|+1 + µ f i|Q|+1, f|Q|+1) satisfy (8) at equality, and they are also
affinely independent.

��
The general characterization of Brockmüller et al. [8] combined with the shifting

theorem leads to a range of integer values for the coefficients of the f q variables in any
non-trivial facet-defining inequality.

Theorem 3. Let ax ≥ ∑
q∈Q bq f q − c be a non-trivial facet defining valid inequality

for conv(X) with a, c ∈ Z+
0 , and bq ∈ Z+

0 for all q ∈ Q. Then bq = adq if dq is integer,
and bq ∈ {a(Dq − 1), . . . , aDq} if dq is not integer, for all q ∈ Q.

Proof. Let q̄ ∈ Q and let (x0, f0) ∈ X be a solution with f q̄
0 = 0 that satisfies

the facet defining inequality at equality. Moreover, let Q0 = {q ∈ Q : f q
0 = 1}. Then

aD(Q0) = ∑
q∈Q0

bq −c and since q̄ /∈ Q0 it follows from validity that aD(Q0∪{q̄}) ≥
(
∑

q∈Q0
bq−c)+bq̄ = aD(Q0)+bq̄ . This yields an upper bound on bq̄ since we conclude

bq̄ ≤ aD(Q0 ∪ {q̄}) − aD(Q0).
Similarly, let (x1, f1) ∈ X be a solution with f q̄

1 = 1 that satisfies the facet defin-
ing inequality at equality, and define Q1 = {q ∈ Q : f q

1 = 1}. Again, aD(Q1) =∑
q∈Q1

bq − c and since q̄ ∈ Q1 it follows from validity that aD(Q1 \ {q̄}) ≥
(
∑

q∈Q1
bq − c) − bq̄ = aD(Q1) − bq̄ . This implies a lower bound on bq̄ , namely

bq̄ ≥ aD(Q1) − aD(Q1 \ {q̄}).
If dq̄ is integer, then both the lower and upper bound are equal to a dq̄ which proves

the first part of our claim. If dq̄ is not integer, then bq̄ ≤ aD(Q0 ∪{q̄})−aD(Q0) ≤ aDq̄

and bq̄ ≥ aD(Q1) − aD(Q1 \ {q̄}) ≥ a(Dq̄ − 1).
��

From Theorem 3, we can derive necessary and sufficient conditions under which
the inequalities x ≥ ∑

q∈Q dq f q (called the model inequality) and 0 ≤ f q ≤ 1 for all
q ∈ Q yield the complete description of the edge capacity polytope X.
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Theorem 4. The model inequality is the unique non-trivial facet defining inequality for
the polyhedron conv(X) if and only if dq ∈ Z+

0 , for all q ∈ Q.

Proof. If dq̂ /∈ Z+
0 , for some q̂ ∈ Q, then the fractional solution (x, f ) = (dq, e{q̂}) is

an extreme point of the LP-relaxation that satisfies all the model inequalities. If dq ∈ Z+
0

for all q ∈ Q, then by Theorem 3 we have that in every inequality x ≥ ∑
q∈Q bq f q − c

that defines a non-trivial facet of conv(X), bq = dq for all q ∈ Q. If c > 0, then the
resulting inequality is dominated by the model inequality. Hence, the model inequality
x ≥ ∑

q∈Q dq f q defines the only non-trivial facet in this case.
��

The main consequence of Theorem 2, however, is that we can restrict ourselves in
the sequel to dq ∈ (0, 1]. Afterwards, each inequality can simply be shifted back.

In Brockmüller et al. [8], the class of c-strong inequalities is introduced. A set S ⊆ Q
is called c-strong if c = ∑

q∈S Dq − D(S). The set is maximal c-strong if S \ {i} is
c-strong for all i ∈ S, and S ∪{i} is not c-strong for all i ∈ Q \ S. Given a c-strong set S,
the c-strong inequality is defined as

x ≥
∑
q∈S

Dq f q +
∑

q∈Q\S

(Dq − 1) f q − c. (9)

Inequality (9) is valid for all S and defines a facet of conv(X) if and only if S is maximal
c-strong. By Theorem 3, the class of c-strong inequalities covers all inequalities with
a = 1 in the general form with only integer coefficients.

In Atamtürk and Rajan [1], the c-strong inequalities are generalized to the class of
k-split c-strong inequalities. In the next subsection, the class of lower convex envelope
inequalities is derived, whereas Sect. 4.3 is devoted to lifted knapsack cover inequalities.
The latter class was also derived in [1]. Both classes include the class of c-strong
inequalities.

4.2. Lower convex envelope inequalities

A lower convex envelope inequality is defined on a projection of the set X . We show
two different types of facet defining inequalities that may arise in the class of lower
convex envelope inequalities. Moreover, we show that lifting lower convex envelope
inequalities to obtain valid inequalities for X itself can be performed in polynomial
time. We start with the definition of a projection of the edge capacity polytope.

Definition 1. Let Q0, Q1 ⊂ Q be disjoint subsets of Q. Then X(Q0, Q1) defined by

X(Q0, Q1) = {(x, f ) ∈ X : f q = 0 ∀q ∈ Q0, f q = 1 ∀q ∈ Q1}

is the projection of X on the space with f q = 0 for all q ∈ Q0 and f q = 1 for all
q ∈ Q1.
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This projected edge set can be seen as a set of vectors in (|Q| + 1)-dimensional space.
Instead of representing the set X(Q0, Q1) in (|Q| + 1)-dimensional space, one can also
plot all vectors in X(Q0, Q1) in two-dimensional space, as in the example of Fig. 1. Let
S = Q\(Q0 ∪Q1). The horizontal axis of this figure measures

∑
q∈S f q and the vertical

axis measures the value of the capacity variable x. Hence, a solution (x, f ) ∈ X(Q0, Q1)

is represented by a point with coordinates (
∑

q∈S f q, x) in the two-dimensional figure.
Similarly as in (|Q| + 1)-dimensional space, an inequality ax ≥ b

∑
q∈S f q − c that

is satisfied by all solutions in this two-dimensional space yields a valid inequality for
the set X(Q0, Q1). Note that these inequalities have the same coefficient for all q ∈ S
in the inequality. We consider the strongest possible (non-redundant) valid inequalities
arising from the two-dimensional space. These inequalities describe the lower convex
envelope of the set of solutions in X(Q0, Q1), as indicated in Fig. 1.

�

�

�

�

�

�

�

�

�

�

�

�

�������������

�
�
�
�
�
�
��

2x ≥
∑
q∈S f

q + 2

x ≥
∑
q∈S f

q

∑
q∈S f

q

x
Q = {1, 2, 3, 4}

dq = 0.6 for all q ∈ Q

Q0 = ∅, Q1 = {4}

S = {1, 2, 3}

0 1 2 3

1

2

3

4

Fig. 1. Lower convex envelope inequalities

Assume that the commodities in S are ordered such that d1 ≤ d2 ≤ . . . ≤ d|S|,
and for k = 1, . . . , |S|, let Sk = {1, . . . , k}. Then the set of lower convex envelope
inequalities basically describes the lower convex envelope of the points (k, D(Q1 ∪ Sk))

for k = 1, . . . , |S| in two-dimensional space. The following proposition states bounds
on the slope of a lower convex envelope inequality.

Proposition 4. Let ax ≥ b
∑

q∈S f q − c be a non-dominated lower convex envelope

inequality for the set X(Q0, Q1) with demand values dq = rq ∈ (0, 1] for all q ∈ Q.
Then the slope b/a of the lower convex envelope inequality satisfies 0 ≤ b/a ≤ 1.
Moreover, a, b, and c can be selected in such a way that a, b, c ∈ Z+

0 and a ≤ |S|.
Proof. Each non-dominated lower convex envelope inequality is defined by two points,
say (k1, D(Q1 ∪ Sk1 )) and (k2, D(Q1 ∪ Sk2 )) in the two-dimensional figure, for some
k1, k2 ∈ {0, . . . , |S|}, with k1 < k2. The slope b/a of such a line is then the quotient of
D(Q1 ∪ Sk2 )− D(Q1 ∪ Sk1 ) and k2 −k1. Since Sk1 ⊆ Sk2 it follows that the numerator is
nonnegative, which together with k1 ≤ k2 implies that b/a ≥ 0. Furthermore, Sk1 ⊆ Sk2

together with dq ∈ (0, 1] for all q ∈ S implies that D(Q1∪Sk2 )−D(Q1∪Sk1 ) ≤ k2−k1.
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Hence, b/a ≤ 1. Finally, both the numerator and denominator are bounded by |S|. Hence,
the inequality can be written in a form with a, b, c ∈ Z+

0 and a ≤ |S|.
��

Next, we derive necessary and sufficient conditions under which there exists a lower
convex envelope inequality ax ≥ b

∑
q∈S f q − c with slope b/a = 1 that is also facet

defining for conv(X(Q0, Q1)). Let n(Q1, S) := ∑
q∈S Dq + D(Q1)− D(S ∪ Q1) with

Q1 ⊂ Q and S ⊂ Q \ Q1. In words, n(Q1, S) measures the surplus in capacity for the
set of items Q1 ∪ S if D(Q1) units of capacity have already been ‘installed’ for the set of
items Q1 and an additional Dq units of capacity are installed for each item q ∈ S. Note
that the value of n(Q1, S) does not change if demand data rq ∈ (0, 1] are considered
instead of the real demand data dq, for all q ∈ Q.

Since b/a ≤ 1, it is always possible, by an appropriate choice of c, to construct
a valid lower convex envelope inequality with b/a = 1. The strongest lower convex
envelope is obtained by selecting c in such a way that the inequality is adjacent to the
point (|S|, D(Q1 ∪ S)). Theorem 5 states which other condition should be satisfied by
the inequality to be facet defining. In words this condition states that for every q ∈ S,
the capacity needed for Q1 ∪ S is one larger than the capacity needed for Q1 ∪ S \ {q}.
Note that, since the lower convex envelope inequalities with b/a = 1 are in fact c-strong
inequalities, this condition is equivalent to the condition for c-strong inequalities to be
facet defining.

Theorem 5. Let Q0, Q1, S be a partition of Q, dq ∈ (0, 1] for all q ∈ Q, and let
ax ≥ b

∑
q∈S f q − c be the strongest lower convex envelope inequality with slope

b/a = 1 for the edge capacity set X(Q0, Q1). Then c = n(Q1, S) − D(Q1), resulting
in the inequality.

x ≥ ∑
q∈S f q + D(Q1) − n(Q1, S) (10)

It defines a facet of conv(X(Q0, Q1)) if and only if D(Q1 ∪ S \ {q}) = D(Q1 ∪ S) − 1
for all q ∈ S.

Proof. The value of c directly follows from the fact that (D(Q1 ∪ S), eS) satisfies (10)
with equality.

Next, we prove that the remaining conditions are sufficient to guarantee that the
inequality is facet defining for conv(X(Q0, Q1)), which has dimension |S| + 1. This
follows from the fact that the vectors (D(Q1∪S), eQ1∪S) and (D(Q1∪S\{q}), eQ1∪S\{q})
for all q ∈ S yield |S| + 1 affinely independent vectors in X(Q0, Q1) that satisfy that
inequality at equality.

Conversely, let q̂ ∈ S. If D(Q1 ∪ S \ {q̂}) �= D(Q1 ∪ S) − 1 then the solution
(x, f ) = (D(Q1 ∪ S \ {q̂}), eQ1∪S\{q̂}) is not on the face of the valid inequality x ≥∑

q∈S f q + D(Q1)− n(Q1, S). For any set T ⊆ S \ {q̂} it holds that D(Q1 ∪ S \ {q̂}) ≤
D(Q1 ∪ T ) + |S \ (T ∪ {q̂})|. Hence, the vector (D(Q1 ∪ T ), eQ1∪T ) does not satisfy
the inequality at equality, since D(Q1 ∪ T ) ≥ D(Q1 ∪ S \ {q̂}) − |S \ (T ∪ {q̂})| >

|S\{q̂}|−c−|S\(T ∪{q̂})| = |T |−c. Thus there exists no solution (x, f ) ∈ X(Q0, Q1)

with f q̂ = 0 that satisfies the inequality at equality. As a result, the face of the inequality
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is a subset of the face defined by the inequality f q̂ ≤ 1, which implies that the inequality
is not facet defining.

��

Figure 1 shows a facet defining lower convex envelope inequality with slope b/a = 1.
Also the “last but one” lower convex envelope inequality can define a facet of
conv(X(Q0, Q1)).

Theorem 6. Consider X(Q0, Q1) for demand data dq = rq ∈ (0, 1]. Assume that
D(Q1 ∪ S \ {q}) = D(Q1 ∪ S) − 1 for all q ∈ S. If D(Q1 ∪ S|S|−1) = D(Q1 ∪ S|S|−2),
then the inequality

αx ≥ ∑
q∈S f q + αD(Q1 ∪ S) − (|S| + α − 1) (11)

with

1/α = max
k=0,... ,|S|−2

{
D(Q1 ∪ S) − 1 − D(Q1 ∪ Sk)

|S| − 1 − k

}

defines a second lower convex envelope inequality through the point (|S| − 1, D(Q1 ∪
S|S|−1)). Moreover, it defines a facet of conv(X(Q0, Q1)).

Proof. It is easy to verify that the inequality (11) goes through the point (|S| − 1,

D(Q1 ∪ S)−1), independently of the value α. Since D(Q1 ∪ S|S|−1) = D(Q1 ∪ S|S|−2),
the point (|S| − 2, D(Q1 ∪ S|S|−2)) is not on the same line as (|S|, D(Q1 ∪ S)) and
(|S| − 1, D(Q1 ∪ S) − 1). Hence, values α > 1 exist such that (11) is a valid lower
convex envelope inequality, different from (10). The strongest inequality (11) with α > 1
goes through a second point (k, D(Q1 ∪ Sk)) for some k ∈ {0, . . . , |S| − 2}. Since the
lower convex envelope inequality must be valid, it follows that its slope is equal to the
maximal slope between point (|S| − 1, D(Q1 ∪ S) − 1) and (k, D(Q1 ∪ Sk)), over all
k ∈ {0, . . . , |S| − 2}.

The fact that (11) is facet defining for conv(X(Q0, Q1)) follows from the fact that
the solution vectors (D(Q1 ∪S\{q}), eQ1∪S\{q}) for all q ∈ S all satisfy the inequality at
equality. Moreover, for the k that maximizes α, the vector (x, f ) = (D(Q1∪Sk), eQ1∪Sk)

also satisfies the inequality at equality. This yields |S| + 1 affinely independent vectors
in X(Q0, Q1) on the face of the inequality, hence it defines a facet.

��

Lower convex envelope inequalities for X(Q0, Q1) have to be lifted to X. Theorem 7
states that this can be done polynomial time.

Theorem 7. Let ax ≥ b
∑

q∈S f q − c be a lower convex envelope inequality for

conv(X(Q0, Q1)) with demand data dq = rq ∈ (0, 1] for all q ∈ S. Given a se-
quence of the commodities in Q0 ∪ Q1, maximal sequential lifting of this inequality to
obtain a valid inequality for conv(X) can be done in polynomial time.
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Proof. By Proposition 4, we may assume without loss of generality that a, b, c ∈ Z+
0

with b ≤ a ≤ |S|. By Theorem 3, the lifting coefficients bq obtained by maximal
sequential lifting of variables in q ∈ Q0 ∪ Q1 also satisfy bq ≤ a ≤ |S|.

Now consider the lifting process for a variable f q̂, q̂ ∈ Q0, then the value of the
lifting coefficient bq̂ is given by

bq̂ = min(x, f )∈X(Q0\{q̂},Q1) : f q̂=1{ax − b
∑

q∈S f q + c}.
For a fixed value of x, the problem simplifies to a knapsack problem. Since dq ∈ (0, 1],
x is bounded from above by |Q|. Hence, the problem can be solved by solving at most
|Q| knapsack problems. Even stronger, by using dynamic programming techniques, all
|Q| knapsack problems can be solved by solving the one with largest x. Since the optimal
value is bounded by |S| ≤ |Q|, this knapsack problem can be solved inO(|Q|2). Hence,
the lifting coefficient can thus be determined inO(|Q|2) time. A similar argument holds
for the lifting of a variable in Q1. Since the total number of variables to be lifted is
bounded by |Q|, the complete lifting process can be performed in O(|Q|3) time.

��

4.3. Integer lifting of knapsack inequalities

A different approach to obtain the two special cases of valid lower convex envelope
inequalities (10) and (11) is stated in this subsection. Using a result of Wolsey [25],
valid inequalities for the edge capacity polytope can be obtained from valid inequalities
for a related 0–1 knapsack polytope by integer lifting techniques.

Definition 2. Let Q0, Q1, S be a partition of Q, and let x̄ ∈ Z+
0 with x̄ ≥ D(Q1 ∪ {q})

for all q ∈ S. Let b = x̄ − d(Q1), then X(Q0, Q1, x̄) is a knapsack set defined by

X(Q0, Q1, x̄) = {
(x, f ) ∈ X : f q = 0 ∀q ∈ Q0, f q = 1 ∀q ∈ Q1, x = x̄

}
� {

f ∈ {0, 1}|S| : ∑
q∈S dq f q ≤ b

}
.

The set X(Q0, Q1, x̄) is the projection of X on the space with f q = 0 for all q ∈ Q0,
f q = 1 for all q ∈ Q1, and x = x̄. Note that the condition x̄ ≥ D(Q1 ∪ {q}) for all
q ∈ S implies that dim(conv(X(Q0, Q1, x̄))) = |S|, that is, the knapsack polytope
X(Q0, Q1, x̄) is full dimensional.

Given a valid inequality for X(Q0, Q1, x̄), we can lift it to multiple valid inequalities
for X(Q0, Q1):

Theorem 8. (cf. Wolsey [25]) Let Q0, Q1, S be a partition of the set Q, and let x̄ ∈ Z+
0

be an integer with x̄ ≥ D(Q1 ∪ {q}) for all q ∈ S. If
∑

q∈S πq f q ≤ π0 is a valid

inequality for X(Q0, Q1, x̄) then
∑

q∈S πq f q ≤ π0 + α(x − x̄) is a valid inequality for

X(Q0, Q1) if and only if

αL := max
x∈Z+

0 :x>x̄

{
η(x) − π0

x − x̄

}
≤ α ≤ min

x∈Z+
0 :D(Q1)≤x<x̄

{
π0 − η(x)

x̄ − x

}
=: αU
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where

η(x) = max
{∑

q∈S πq f q : ∑
q∈S dq f q ≤ x − d(Q1), f q ∈ {0, 1},∀q ∈ S

}
.

Moreover, if
∑

q∈S πq f q ≤ π0 is a facet defining inequality for conv(X(Q0, Q1, x̄))

and αL ≤ αU , then
∑

q∈S πq f q ≤ π0 +αL(x − x̄) and
∑

q∈S πq f q ≤ π0 +αU(x − x̄)

are facet defining inequalities for conv(X(Q0, Q1)).

The problem to be solved to determine η(x) is a knapsack problem which can be solved
by dynamic programming in pseudo-polynomial time. In fact, the values η(x) can be
obtained by a single run of the dynamic program for a sufficiently large value of x,
since all smaller values are calculated during this run. In general, αL ≤ αU does not
necessarily hold, in which case integer lifting is not possible. For the special case of the
well-known cover inequalities [2,21,24] for the knapsack polytope, however, integer
lifting is always possible and can be done in polynomial time (provided that dq ∈ (0, 1]
for all q ∈ Q).

Theorem 9. Let dq ∈ (0, 1] for all q ∈ Q, let Q0, Q1, S be a partition of the set Q
such that S �= ∅, and let x̄ ∈ Z+

0 satisfy x̄ ≥ D(Q1 ∪{q}) for all q ∈ S. If S is a minimal
cover for the knapsack polytope X(Q0, Q1, x̄), then

(i) integer lifting of the minimal cover inequality can be done in polynomial time,
(ii) 1 = αL ≤ αU ,
(iii) αU > 1 if and only if D(Q1 ∪ S|S|−1) = D(Q1 ∪ S|S|−2),
(iv) the resulting facet defining inequalities for conv(X(Q0, Q1)) are:

x ≥ ∑
q∈S f q + D(Q1) − n(Q1, S) (12)

αU x ≥ ∑
q∈S f q + αU D(Q1 ∪ S) − (|S| + αU − 1). (13)

Proof. The knapsack problem that needs to be solved in order to determine the lifting
coefficients has the same objective coefficient for all items. Hence, a sorting algo-
rithm can solve the knapsack problem in polynomial time. Since S is a minimal cover,∑

q∈S\{i} dq ≤ x̄ − d(Q1) for all i ∈ S. Hence, by dq ∈ (0, 1] for all q ∈ Q it follows

that η(x) = |S| for all x > x̄, and hence, the maximum value for αL is attained for
x = x̄ + 1, which yields αL = 1. For x < x̄, it is easy to see that η(x) ≤ η(x + 1) − 1.
Therefore, for x < x̄ it holds that (π0 −η(x))/(x̄ − x) ≥ (x̄ − x)/(x̄ − x) = 1, such that
αU ≥ αL .

Next, if D(Q1 ∪ S|S|−1) > D(Q1 ∪ S|S|−2) then there exist i, j ∈ S such that
n(Q1, S\{i, j}) = n(Q1, S\{i}), which implies η(x̄ −1) = |S|−2, and hence αU ≤ 1.
Together with αU ≥ αL = 1 this yields αU = 1. Conversely, if n(Q1, S \ {i, j}) �=
n(Q1, S\{i}) for all i, j ∈ S, then η(x̄ −1) ≤ |S|−3. Hence, for x = x̄ −1 the quotient
(π0 −η(x))/(x̄ −x) is strictly greater than 1. Moreover, again using η(x) ≤ η(x +1)−1
it follows that the quotient can never attain the value 1, for x < x̄.

Finally, since S is a minimal cover and dq ∈ (0, 1] for all q ∈ S, it follows that
x̄ = D(Q1 ∪ S) − 1. Substitution of this value in the inequalities of Theorem 8 yields
the required inequalities.

��
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Note that (12) and (13) are equivalent to (10) and (11), respectively. As a conse-
quence, Theorem 7 can be applied implying that maximal lifting of (12) and (13) can
be done in polynomial time as well. This in contrast to the lifting problem of minimal
covers for the knapsack polytope, which is still open (cf. [12]).

Moreover, note that Theorem 9 does not hold for general demands dq. In [15], an
example is presented where shifting to (0, 1] and back results in two facet defining valid
inequalities, whereas direct application of the integer lifting technique on the cover
inequality gives αU < αL , and hence, no valid inequalities can be found.

5. The directed edge capacity polytope

In this section, we derive a class of valid inequalities for the directed edge capacity
polytope conv(Y ) and identify conditions under which the valid inequalities are facet
defining. Next, we show that sequential lifting for the directed edge capacity polytope
is NP-hard in general, even for lifting orders which first lift all flow variables in the
same direction.

Proposition 5. Let q̂ ∈ Q and let α ∈ Z+
0 such that 1 ≤ α ≤ Dq̂. Then

x ≥ α f q̂ + ∑
q∈Q(Dq − α)hq (14)

is a valid inequality for Y.

Proof. Consider an arbitrary feasible solution (x̄, f̄ , h̄)∈Y and let Q̄={q∈Q : h̄q =1}.
If |Q̄| = 0, then x̄ ≥ Dq̂ f̄

q̂ ≥ α f̄
q̂ = α f̄

q̂ + ∑
q∈Q(Dq − α)h̄q . If |Q̄| ≥ 1, then

x̄ ≥ ⌈
max

{∑
q∈Q dq f̄

q
,
∑

q∈Q dqh̄q
}⌉ ≥ D(Q̄)

= ∑
q∈Q̄(Dq − α) + ∑

q∈Q̄(α − 1) + ⌈∑
q∈Q̄ rq

⌉
≥ ∑

q∈Q̄(Dq − α) + (α − 1) + 1 ≥ α f̄
q̂ + ∑

q∈Q(Dq − α)h̄q

which proves our claim.
��

Next, in Proposition 6, we derive a sufficient condition for the inequality (14) to be
facet defining.

Proposition 6. Let q̂ ∈ Q. If α = 1, Dq ≥ Dq̂ for all q ∈ Q, and for all q ∈ Q \ {q̂}
there exists a subset Q̃ ⊆ Q, with |Q̃| = 2,

⌈∑
q∈Q̃ rq

⌉
= 1, and D(Q̃) ≥ D({q, q̂}),

then (14) is facet defining for conv(Y ).

Proof. The dimension of conv(Y ) is 2|Q| + 1. We give 2|Q| affinely independent
vectors in Y satisfying the inequality at equality. These vectors are (x, f, h) = (0, 0, 0),
(x, f, h) = (Dq, eq̂, eq), for all q ∈ Q, and (x, f, h) = (D(Q̃), eq̂∪q, eQ̃), for all
q ∈ Q \ {q̂}.

��
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Example 1. Consider an instance of the set Y with |Q| = 4 and the demands are
d1 = 1.8, d2 = 2.1, d3 = 2.6, d4 = 3.2. If q̂ = 1, then the inequalities

x ≥ f 1 + h1 + 2h2 + 2h3 + 3h4

x ≥ h1 + f 1 + 2 f 2 + 2 f 3 + 3 f 4

are valid and facet defining for conv(Y ).

In contrast to the lifting of lower convex envelope inequalities, the lifting of a valid
inequality for the directed model under an arbitrary lifting order is anNP-hard problem
in general.

Proposition 7. Lifting of a valid inequality for the directed edge capacity polytope is
NP-complete.

Proof. See Appendix B.
��

6. Computational analysis

To test the effect of the developed theory on the solvability of network loading prob-
lems, we implemented a branch-and-cut algorithm, using A Branch-And-CUt System
(ABACUS), version 2.2 [22], in combination with CPLEX 6.5 [16]. The algorithm
was executed on a Sun Ultra-1 m140 workstation with 128MB internal memory. The
program was tested on two sets of instances. First, we tested the quality of the valid
inequalities for the edge capacity polytope with a set of randomly generated edge
capacity instances. Second, we compared the results of the Branch-and-Cut algorithm
with/without these inequalities for real-life instances of the DNFM model from KPN
Research, The Netherlands. We start this section with a discussion of the computational
aspects of the separation of the different sets of inequalities.

6.1. Separation of valid inequalities

For the undirected edge capacity polytope, the classes of c-strong, lower convex enve-
lope, and integer lifted knapsack covers have to be separated, and for the directed edge
capacity polytope, the two-side inequalities have to be separated. Moreover, for network
loading problems also the well-known classes of cut-set and 3 partition inequalities can
be separated.

The separation problem for the already known c-strong inequalities is described by
Brockmüller et al. [8]. They show that for a given value of c, finding the most violated
c-strong inequality requires solving a knapsack problem (Atamtürk and Rajan [1] for-
mally proved that the separation problem isNP-hard). They propose heuristic methods
to find the most violated inequality for values c = 0, 1, 2. The best results were obtained
with a greedy algorithm where the commodities are selected in non-decreasing order
of f̄

q
i jr

q . Our computational experiments support their findings that this method yields
good results.
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For any Q0, Q1 the lower convex envelope inequalities can be separated by enumer-
ation. However, it is still an open question whether the best Q0 and Q1 can be found in
polynomial time. Moreover, the complexity to determine the order in which the variables
of Q0 and Q1 have to be lifted to obtain the most violated inequality is open as well.
For a given LP-solution (x̄, f̄ ) and an arbitrary arc (i, j) ∈ A, we adopted the following
rule for the partition of Q: S = {q ∈ Q : 0 < f̄

q
i j ≤ 1}, Q0 = {q ∈ Q : f̄

q
i j = 0}

and Q1 = ∅. In this way, the highest value for
∑

q∈S f q is obtained. Moreover, since

f̄
q
i j = 0 for all q ∈ Q0, the (current) violation of the inequality is not influenced by the

lifting order of the projected variables. The variables of Q0 are lifted in order of non-
increasing reduced cost. Note that, this separation heuristic selects only lower convex
envelope inequalities of the subclass defined by Q1 = ∅.

For the integer lifted knapsack covers, again the questions raise how to partition Q
in Q0, Q1 and S such that S defines a (minimal) cover, and in which order the variables
in Q0 and Q1 have to be lifted in order to obtain the most violated inequality. For
a given LP-solution (x̄, f̄ ), we consider for every arc (i, j) ∈ A the knapsack polytope
X(Q0, Q1, x̃), with Q0 = {q ∈ Q : f̄

q
i j = 0}, Q1 = {q ∈ Q : f̄

q
i j = 1}, and x̃ = �x̄�.

The search for a violated cover inequality is done in the way proposed by Gu et al. [13].
After a violated cover is found, first the x variable is lifted, and afterwards the remaining
flow variables (those not in the cover are included in the set Q0) according to the
order defined in [13]: first lift the variables in Q1, next those in Q0, both in order of
non-increasing magnitude of reduced costs.

For the directed edge capacity polytope, the class of two-side inequalities have to
be separated. For a given arc (i, j) ∈ A and a fixed value of α, finding the most violated
two-side inequality (14) is an easy task. For a given LP-solution (x̄, f̄ ) a violated
two-side inequality exists if and only if there exists an element q̂ ∈ Q such that

α f̄
q̂
i j > x̄ − ∑

q∈Q(Dq − α) f̄
q
ji . Since the right hand side of the latter inequality is

a constant for the given LP-solution, finding the most violated two-side inequality on
arc (i, j) for the specific value of α (if one exists) is equivalent to finding the maximal
value f̄

q
i j over all commodities q ∈ Q. This can be done by any sorting algorithm. As

for c-strong inequalities, computational experiments indicate that two-side inequalities
should only be considered for small values of α, for instance α ∈ {1, 2}.

Apart from the inequalities for the edge capacity polytope as described in this
paper, we also incorporated some other classes of well-known valid inequalities for
network loading problems. Cut-set inequalities are used quite extensively for network
loading problems (see for instance Barahona [3], Magnanti et al. [18,19], Bienstock and
Günlük [7], among others). Given a partition of the node set V into two sets S and T ,
let d[S, T ] denote the accumulated demand of all commodities with source node in S
and sink node in T . Then it is clear that the total capacity on the edges in the cut δ[S, T ]
should exceed this accumulated demand since all of these commodities must cross the
cut. Since, capacity can only be installed in integer amounts, the cut-set inequalities
read

∑
{i, j}∈δ[S,T ]

xi j ≥ max{�d[S, T ]� , �d[T, S]�}. (15)
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Likewise, three partition inequalities (based on a partition of the node set into three sets)
have been considered (see [7]), as well as the general K -cuts (see Barahona [4]). For
small to medium sized graphs as considered in our experiments an exact separation that
considers all possible partitions of the graph can be performed reasonably fast, and is
therefore used.

6.2. Computational results edge capacity instances

To compare the performance of the different ways of separating inequalities for the
(undirected) edge capacity polytope, we have generated 20 instances of this single edge
problem. For |Q| = 10, 25, 50, 100 commodities, we constructed 5 instances each with
λ = 155 and dq uniformly distributed in the domain {10, . . . , 155}. As optimization
criterion we minimize λx − ∑

q∈Q cq f q with cq a randomly generated integer in the
range [0.8dq, 1.2dq] for all q ∈ Q.

Four different strategies are compared: branch-and-bound (B&B), c-strong separa-
tion (c-STR), lower convex envelope separation (LCE), and separation of lifted knapsack
covers (LKC). As enumeration strategy we selected Best-First-Search with an initial
upper bound of 0.

In Table 1, the results are compared on the number of nodes in the Branch-and-Cut
tree, the number of added violated inequalities, and the CPU time. The table shows that

Table 1. Computational results edge capacity instances

instance |Q| # nodes # cuts CPU time (sec)
B&B c-STR LCE LKC c-STR LCE LKC B&B c-STR LCE LKC

ecp010a 10 77 11 19 11 16 15 15 0.43 0.08 0.15 0.20
ecp010b 10 43 31 13 19 35 20 31 0.36 0.30 0.17 0.36
ecp010c 10 53 19 15 17 21 17 20 0.40 0.22 0.12 0.26
ecp010d 10 33 13 13 13 10 13 9 0.14 0.16 0.13 0.16
ecp010e 10 103 23 21 21 41 23 24 0.63 0.25 0.22 0.28
average 10 61.8 19.4 16.2 16.2 24.6 17.6 19.8 0.39 0.20 0.16 0.25
ecp025a 25 149 55 49 55 71 53 74 0.80 0.68 1.44 2.26
ecp025b 25 107 31 47 39 46 61 59 0.46 0.31 1.66 1.76
ecp025c 25 235 87 73 99 127 88 144 1.30 1.05 2.36 4.22
ecp025d 25 131 63 55 49 92 45 42 0.79 0.80 1.19 1.43
ecp025e 25 501 203 135 193 256 126 247 2.97 2.40 3.45 7.81
average 25 224.6 87.8 71.8 87.0 118.4 74.6 113.2 1.26 1.05 2.02 3.50
ecp050a 50 455 155 157 127 411 124 228 2.72 5.04 11.50 21.00
ecp050b 50 13 41 9 3 93 1 2 0.13 1.22 0.17 0.23
ecp050c 50 353 53 59 53 377 69 75 1.97 3.23 6.28 7.25
ecp050d 50 723 431 99 167 661 115 204 4.73 11.67 10.53 20.38
ecp050e 50 353 147 61 167 271 90 332 2.54 4.28 7.92 30.93
average 50 379.4 165.4 77.0 103.4 362.6 79.8 168.2 2.42 5.09 7.28 15.96
ecp100a 100 109 69 57 151 125 65 345 0.99 5.05 22.04 116.41
ecp100b 100 79 13 23 13 9 27 9 0.62 0.58 9.10 3.51
ecp100c 100 693 223 273 251 263 279 531 6.93 11.78 95.67 182.41
ecp100d 100 371 197 57 85 241 81 114 3.08 10.60 27.21 42.27
ecp100e 100 1155 349 271 295 642 425 491 11.97 27.00 143.42 170.92
average 100 481.4 170.2 136.2 159.0 256.0 175.4 298.0 4.72 11.00 59.49 103.10
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with separation of lower convex envelope inequalities not only the smallest branch-and-
cut trees are obtained, but also the number of added cuts is minimized (compared with
the other strategies). This indicates that with this strategy very effective inequalities are
added. The CPU time of LCE, however, is less attractive (compared with c-STR). This
is due to the lifting procedure. The lifting procedure for lifted knapsack covers is more
complex which explains the CPU times in this case. In most cases the largest number
of violated inequalities has been found with the separation of c-strong inequalities. It
should be mentioned, however, that the results also show that the performance of the
different strategies strongly depends on the individual instances. For example, the c-
strong separation performs badly compared with the other ones on instance ecp050b,
whereas it outperforms LCE and LKC on the instance ecp025b in both the number of
nodes and cuts. A more detailed investigation of the computations learns that (almost)
all lower convex envelope inequalities with slope 1 are also generated with the c-strong
procedure. Therefore, we propose a combination of c-strong separation with separation
of the lower convex envelope inequalities for the network loading instances.

6.3. Computational results network loading instances

For the network loading problem, we have implemented a branch-and-cut algorithm
based on the flow formulation DNFM as described by (1)–(5). The alternative to
use a path formulation within the branch-and-cut algorithm has turned out to be less
attractive. Although the LP relaxations, even after the addition of valid inequalities, are
equivalent, and branching on path variables has some advantages, the exponential growth
of the number of path variables is a serious problem for larger graphs. The computational
results stated in the sequel are therefore obtained using the flow formulation.

Besides the classes of inequalities related to the edge capacity polytopes, also
the already mentioned cut-set inequalities and three partition inequalities are avail-
able. To show the importance of both the edge-related inequalities, as well as the
cut-related inequalities, we compare 4 different strategies: branch-and-bound (B&B),
separation of edge-related inequalities (EDGE), separation of non-edge-related inequal-
ities (NONEDGE), and separation of all available inequalities (ALL). As discussed in
the previous subsection, separation of edge-related inequalities involves the classes of
c-strong and lower convex envelope inequalities, plus the two-side inequalities. The
c-strong and lower convex envelope inequalities are separated for both directions of an
edge once. For the ALL strategy we consider two variants; with and without an initial
upper bound obtained with the heuristics described in [17] (ALL+UB). In all other cases
the algorithm starts without an upper bound. Computational experiments show that the
DiveAndBest enumeration strategy (Depth-First-Search until a first integer solution is
found, Best-First-Search afterwards) performs best for all strategies (in case of an initial
upper bound this strategy results in a Best-First-Search).

In Table 2, we compare the quality of the lower bounds derived by the different
strategies in the root node of the branch-and-cut tree. The comparison is done for fifteen
real-life instances of KPN Research. These instances are defined on complete graphs
in the range of 4 to 8 nodes, and for each graph size three different instances with
fully dense non-symmetric demand matrices were available. The name of each instance,
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stated in the first column, refers to the number of nodes in the graph (first digit), whereas
the second number in the name defines the demand matrix. Besides the lower bounds
obtained with the different strategies, the table states the optimal value, and an upper
bound obtained with the heuristics described in [17] (used in the second variant of the
strategy ALL).

Table 2. Computational results for KPN network loading instances: values

Instance lower bound root node optimal upper
B&B EDGE NONEDGE ALL value bound

(LP value)

kpn_4_3 1.74 2.68 3.00 3.00 3 3
kpn_4_10 5.81 7.17 6.75 7.19 8 8
kpn_4_20 11.61 13.00 12.67 13.00 13 13
kpn_5_3 1.89 3.02 3.75 3.75 4 4
kpn_5_10 6.32 7.98 7.67 8.50 9 9
kpn_5_20 12.64 15.04 13.77 15.06 16 16
kpn_6_3 1.94 3.39 4.11 4.11 5 5
kpn_6_10 6.45 8.07 8.11 8.36 9 10
kpn_6_20 12.90 15.30 14.08 15.47 16 17
kpn_7_3 1.95 3.79 4.42 4.42 6 6
kpn_7_10 6.52 8.35 8.54 8.81 10 10
kpn_7_20 13.03 15.38 14.59 15.73 17 18
kpn_8_3 2.17 4.29 4.89 4.89 7 7
kpn_8_10 7.22 9.44 9.74 9.83 11 12
kpn_8_20 14.45 17.15 16.44 17.33 19 21

In Table 3, statistics concerning the number of branch-and-cut nodes, the number
of added valid inequalities, and the computation times are reported. The results in
both tables show that the network loading problems become very difficult in case the
difference between the optimal value and lower bound of the root node is larger than
one. This observation holds for all strategies: kpn_5_20 and kpn_6_20 are already
too difficult for the NONEDGE strategy, whereas the instance kpn_6_10 cannot be
solved with the EDGE strategy. The results of the NONEDGE strategy also indicate
that the cut and three-partition inequalities are less powerful in case of larger demands.
For the EDGE strategy the relation between the size of the demands and the difficulty
of the instance is less clear. In fact, the percentage of the gap closed in the root node by
the edge-related inequalities increases as the demand increases, whereas the percentage
decreases for the NONEDGE strategy. This observation agrees with our theoretical
results that only the fractional part of the demand is important. Another, more surprising,
observation that can be made is that not in all cases the separation of more inequalities
results in a better overall performance of the algorithm. The instances kpn_5_20, and
kpn_6_20 can be solved more efficiently with separation of only the edge-related
inequalities than with separation of all inequalities. Also the addition of an initial upper
bound does not improve the performance of the algorithm in all cases (see for instance
kpn_6_10).

Finally, we have to conclude that for graphs as small as 8 nodes the inequalities
are not strong enough to solve the instances to optimality. Reasons for this relatively
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Table 3. Computational results for KPN network loading instances: statistics

Instance # nodes # cuts CPU time (sec)
B&B EDGE NONEDGE ALL ALL+UB EDGE NONEDGE ALL ALL+UB B&B EDGE NONEDGE ALL ALL+UB

kpn_4_3 31 5 1 1 1 185 10 34 34 0.47 0.67 0.10 0.11 0.13
kpn_4_10 77 7 47 7 1 99 8 129 35 1.82 0.47 1.28 0.49 0.15
kpn_4_20 51 1 125 1 1 40 20 54 26 0.72 0.15 1.87 0.16 0.13

kpn_5_3 183 7 5 5 1 478 37 202 74 8.95 3.76 0.48 1.16 0.34
kpn_5_10 – 15 3,745 5 1 447 1,164 262 65 – 4.52 209.36 1.90 0.36
kpn_5_20 – 65 – 73 1 1,097 – 1,532 156 – 16.62 – 17.18 0.90

kpn_6_3 – 43 9 9 1 2,879 117 572 147 – 90.24 2.19 7.48 1.14
kpn_6_10 – – 1,431 11 33 – 2,043 625 1,891 – – 240.36 10.04 33.71
kpn_6_20 – 297 – 319 125 6,271 – 9,238 3,831 – 226.01 – 238.72 89.45

kpn_7_3 – – 27 27 19 – 522 1,831 1,628 – – 28.56 122.83 65.90
kpn_7_10 – – – 693 19 – – 19,313 1,568 – – – 1,129.28 64.71
kpn_7_20 – – – – 255 – – – 7,093 – – – – 415.06

kpn_8_3 – – – – – – – – – – – – – –
kpn_8_10 – – – – – – – – – – – – – –
kpn_8_20 – – – – – – – – – – – – – –

bad performance of the branch-and-cut algorithm probably lie in the completeness
of the graph (which allows for many different paths) and the unitary cost function
which is independent of the edges. For the instance kpn_8_3 the optimal value can
be determined by the combinatorial argument that at least 7 links are needed to have
a connection between every pair vertices. Since, an upper bound of 7 is also avail-
able we can conclude that this is the optimal value. The branch-and-cut algorithms,
however, cannot produce a lower bound better than 6 within acceptable time and mem-
ory requirements. Also for the other two instances with 8 nodes, the branch-and-cut
algorithm is not able to solve them. The optimal values for these instances are ob-
tained by solving a preprocessed version of the linear programming relaxation (with
the violated inequalities added in the root node) with the CPLEX integer program-
ming solver. The computation of these optimal values took respectively 3,606 and
163,586 seconds.

7. Concluding remarks

In this paper, we have shown that the edge capacity polytope is an important substruc-
ture of the network loading problems, both in theory and practice. The computational
results of the previous section show that strong valid inequalities increase the value
of the LP-relaxation quite substantially. Similar results were obtained by Bienstock
and Bley [5], who applied the results of this paper to a multicast network design
problem.

Potential gain on our results may lie in extending the approach for a single edge
to larger structures such as cuts in the graph. Although cut-set inequalities (or the
more general partition inequalities) are facet defining for bifurcated versions of network
loading problems (see [7,19]), for non-bifurcated network loading problems this is in
general not the case, and several possibilities for strengthening arise. We have performed
some initial computational experiments to test the effect of a strengthening of the cut-set
inequalities, but so far the gain has been limited.
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Appendices

A. NP-hardness proof of the network loading problem

We will show NP-completeness only for the directed case, but from the proof it
immediately follows that the undirected case isNP-hard as well. We need the following
problem definitions.

MINIMUM COVER (see Garey and Johnson [10])
INSTANCE: S = {s1, s2, . . . , sn} and a family C of subsets of S, and an integer
� ≤ |C|.
QUESTION: Does there exist a family C ′ of C of at most � sets such that
∪c′∈C′c′ = S?

DIRECTED NON-BIFURCATED NETWORK LOADING PROBLEM

INSTANCE: Graph G = (V, E), a set Q of commodities (sq, tq, dq), with
dq ∈ Z+

0 for each q ∈ Q, integer capacity λ, cost coefficients ci j ∈ Z+
0 for

every {i, j} ∈ E, and a nonnegative integer L.
QUESTION: Does there exist a feasible solution for problem DNFM with solu-
tion value less than or equal to L ?

Proposition 8. DIRECTED NON-BIFURCATED NETWORK LOADING PROBLEM is
stronglyNP-complete.

Proof. It is easy to see that the DIRECTED NON-BIFURCATED NETWORK LOADING

PROBLEM is in NP . Next, given an instance of MINIMUM COVER, construct a graph
G as follows. Let V = S ∪ C ∪ {sink}. Let C j be an element in C. Introduce an
edge {si, C j } if si ∈ C j , and an edge {C j , sink} for all C j ∈ C (see Fig. 2). Next
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{1, 2}

sink

S = {1, 2, 3}

C = {{1, 2}, {2, 3}, {3}}

Fig. 2. Transformation of an instance of MINIMUM COVER to DIRECTED NON-BIFURCATED NETWORK

LOADING PROBLEM

define a commodity (si , sink, 1) for each si ∈ S, and let λ = n. The capacity costs
are defined by c{si ,C j } = |C| + 1 for all i and j and c{C j ,sink} = 1 for all j . Finally
let L = � + |S|(|C| + 1). This is clearly a polynomial transformation. We leave it
to the reader to verify that a problem instance for MINIMUM COVER with affirmative
answer corresponds to an instance with affirmative answer for the DIRECTED NON-
BIFURCATED NETWORK LOADING PROBLEM, and vice versa.

��
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B. Proof of Proposition 7: lifting of a valid inequality for the directed edge
capacity polytope is NP-complete

The proof is a reduction from SUBSET SUM.

SUBSET SUM (cf. Garey and Johnson [10])
INSTANCE: A set of items A, a size sq ∈ Z+

0 for all q ∈ A, and a positive
integer B.
QUESTION: Does there exist a subset Ā ⊆ A such that

∑
q∈ Ā sq = B ?

LIFTING FOR DIRECTED EDGE CAPACITY MODEL

INSTANCE: A set of commodities Q, a demand size dq ∈ Z+
0 for all q ∈ Q,

and a capacity λ ∈ Z+
0 (this defines an instance of Y , using the inequalities

x ≥ ∑
q∈Q d̃q f q and x ≥ ∑

q∈Q d̃qhq , where d̃q = dq/λ). A complete order
π on a set of variables T = ∪q∈Q( f q ∪ hq), a specific variable z ∈ T and an
integer K ∈ Z+

0 .
QUESTION: If maximal lifting is applied to the inequality x ≥ 0 in the lifting
order π to obtain a facet defining inequality for Y , is the lifting coefficient of
variable z less than or equal to K?

We show that SUBSET SUM polynomially reduces to LIFTING FOR DIRECTED EDGE

CAPACITY MODEL. Given an instance of SUBSET SUM, construct an instance of LIFTING

FOR DIRECTED EDGE CAPACITY MODEL as follows. Let Q = {1, 2, 3} ∪ A, λ = B,

and define dq = sq(λ + 1), for all q ∈ A. Define an integer m =
⌈∑

q∈A dq

λ

⌉
, and let

d1 = (m + 1)λ + 1, d2 = (m + 1)λ + λ − 1, d3 = (2m + 4)λ + λ2. Define the order π

on T as f 1, f 2, f q,∀q ∈ A, h3, h2, h1, hq,∀q ∈ A, f 3. Finally, let z = h3 and K = 1.
Next we show that an instance for SUBSET SUM yields an affirmative answer

if and only if the corresponding instance for LIFTING FOR DIRECTED EDGE CAP-
ACITY MODEL yields an affirmative answer. For convenience, we will use d̃q = dq/λ

throughout the proof. First, note that, starting with x ≥ 0, after lifting the variables
f 1, f 2, f q,∀q ∈ A the valid inequality reads

x ≥ bT f = �d̃1� f 1 + (�d̃2� − 1) f 2 + ∑
q∈A(�d̃q� − 1) f q.

Next, if we apply maximal lifting to variable h3 and if Ā ⊆ A is a subset with∑
q∈ Ā sq = B, then the lifting coefficient b3 for the variable h3 satisfies

b3 = min(x, f,h)∈Y:h3=1, f 3=0,hq=0,∀q∈Q\{3}{x − (bT f )}
≤

⌈
max{d̃q̂, d̃({1, 2} ∪ Ā)}

⌉
− ∑

q∈{1,2}∪Ā bq

= 2m + 4 + λ − (2m + 3 + λ) = 1 = K.

Conversely, let (x̄, f̄ , h̄) be the vector for which the minimum value less than or equal
to K = 1 in the lifting problem is attained, and let Q̄ = {q ∈ Q : f̄

q = 1}. If 1 /∈ Q̄,
then

∑
q∈Q̄ d̃q ≤ d̃q̂ and hence,

b3 = min(x, f,h)∈Y:h3=1, f 3=0,hq=0,∀q∈Q\{3}{x − (bT f )}
≥ d̃q̂ − (bT f ) = 2m + 4 + λ − (m + 1 + ∑

q∈A sq) ≥ 3 + λ > K
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since m ≥ ∑
q∈A sq . Hence, f̄

1 = 1. Similarly, one can prove that f̄
2 = 1. Next define

Ã = {q ∈ A : f̄
q = 1}, and let p = ∑

q∈ Ã sq . If p < B, then d̃({1, 2} ∪ Ã) < d̃q̂, thus,

b3 = x̄ − ∑
q∈Q̄ bq = 2m + 4 + λ − (2m + 3 + p) = λ − p + 1 > K

so, p < B cannot be the case. If p > B, then d̃({1, 2} ∪ Ã) > d̃q̂, hence,

b3 = x̄ − ∑
q∈Q̄ bq = 2m + 3 + p + ⌈ p

λ

⌉ − (2m + 3 + p) = ⌈ p
λ

⌉ ≥ 2 > K

hence, neither p > B can be the case. But this yields that
∑

q∈ Ã sq = p = B, hence Ã
is the required subset.

��
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