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Abstract

Panel unit-root and no-cointegration tests that rely on cross-sectional
independence of the panel unit experience severe size distortions when this
assumption is violated, as has, for example, been shown by Banerjee,
Marcellino and Osbat [Econometrics Journal (2004), Vol. 7, pp. 322–
340; Empirical Economics (2005), Vol. 30, pp. 77–91] via Monte Carlo
simulations. Several studies have recently addressed this issue for panel unit-
root tests using a common factor structure to model the cross-sectional
dependence, but not much work has been done yet for panel no-
cointegration tests. This paper proposes a model for panel no-cointegration
using an unobserved common factor structure, following the study by Bai
and Ng [Econometrica (2004), Vol. 72, pp. 1127–1177] for panel unit roots.
We distinguish two important cases: (i) the case when the non-stationarity in
the data is driven by a reduced number of common stochastic trends, and
(ii) the case where we have common and idiosyncratic stochastic trends
present in the data. We discuss the homogeneity restrictions on the
cointegrating vectors resulting from the presence of common factor cointe-
gration. Furthermore, we study the asymptotic behaviour of some existing
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residual-based panel no-cointegration tests, as suggested by Kao [Journal of
Econometrics (1999), Vol. 90, pp. 1–44] and Pedroni [Econometric Theory
(2004a), Vol. 20, pp. 597–625]. Under the data-generating processes (DGP)
used, the test statistics are no longer asymptotically normal, and convergence
occurs at rate T rather than

ffiffiffiffi
N
p

T as for independent panels. We then
examine the possibilities of testing for various forms of no-cointegration by
extracting the common factors and individual components from the observed
data directly and then testing for no-cointegration using residual-based panel
tests applied to the defactored data.

I. Introduction

The effect on panel unit-root tests of persistent cross-sectional dependence
has been analysed in some detail in Monte Carlo simulations (Banerjee,
Marcellino and Osbat, 2005) or by asymptotic analysis (Lyhagen, 2000;
Pedroni and Urbain, 2001). First-generation panel unit-root tests are found to
display dramatic size distortions or even worse to diverge with the cross-
sectional dimension of the panel. To overcome these problems, new panel
unit-root tests have been proposed that model the possibly persistent cross-
sectional dependence using common factor models (see Breitung and Pesaran,
2005, for a recent overview).

For tests for the null of no-cointegration, few studies have so far been
carried out. Banerjee, Marcellino and Osbat (2004) conduct an extensive
Monte Carlo study where they conclude that while all statistics investigated
(residual-based tests or likelihood-based trace-type test) are affected, the
presence of cross-sectional cointegration appears much less harmful for
single-equation tests than for the panel version of the Johansen test. In
many cases, in the presence of cointegration between units of the panel,
these tests cannot discriminate between cointegration among the units and
cointegration for a single unit of the panel. Bai and Kao (2004) and
Banerjee and Carrion-i-Silvestre (2006) study tests for panel no-cointegra-
tion with cross-sectional dependence using residual-based tests for a single
cointegration relationship. The error term of the cointegrating equation
follows a common factor structure as in Bai and Ng (2004). Urbain (2004),
on the other hand, studies analytically the issue of spurious regression in
panels when the units are cointegrated along the cross-sectional dimension,
i.e. when there is cross-member cointegration. In contrast with the spurious
regression results for independent panels studied by Phillips and Moon
(1999), Pedroni (1995) or Kao (1999), these estimators are often not
consistent and in fact converge to non-degenerate limiting distributions once
the observed non-stationarity is generated by a reduced number of common
stochastic trends.
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This paper builds on these results to study panel tests for no-cointegration
when the cross-sectional dependence in the panel is modelled by a common
factor structure as in Bai and Ng (2004). Two different cases are considered
that we believe are of theoretical and empirical relevance: (i) the case where
the observed non-stationarity in the variables originates from cross-sectional
common trends only; (ii) the case where we have both cross-sectional
common and idiosyncratic stochastic trends. The spurious regression analysis
for the first case reported in Urbain (2004) corresponds to the cross-member
cointegration case. The second case is considered by Moon and Perron (2004)
and Pesaran (2006) in the context of panel unit-root analysis and excludes the
existence of cross-unit cointegration in the panel because both components are
I(1).

For both classes of data-generating processes (DGPs), we discuss the
homogeneity restrictions on the cointegrating vectors resulting from the
presence of common factor cointegration. These implications of the common
factor cointegration are important reasons for proposing a sequential approach
whereby the data are decomposed into common and idiosyncratic components
and (no-)cointegration is tested for these components separately. Then,
we study analytically the behaviour of several tests for panel cointegration
including Kao’s (1999) and Pedroni’s (1999, 2004a) residual-based panel
no-cointegration tests that have been widely used in empirical studies. For
example, when the number of common factors generating the non-stationarity
in the panel is kept fixed while the cross-sectional dimension of the panel
increases, the Gaussian limiting results derived for the independent case are no
longer valid. Tests that are based on pooled or least-squares dummy variable
(LSDV) estimation of the underlying panel cointegration static regression in
some cases diverge with

ffiffiffiffi
N
p

and hence important size distortions can occur
for moderate values of N. Group-mean statistics are also affected and not
asymptotically Gaussian. These results complement and help to have a better
understanding of some of the Monte Carlo results reported by Banerjee et al.
(2004). We then examine the possibilities of testing for no-cointegration, using
residual-based panel tests applied to the defactored data.

The paper is organized as follows: in section II we present our model
for panel no-cointegration with a common factor structure. In section III
we examine the asymptotic behaviour of some residual-based panel no-
cointegration tests when the data are generated by our DGP. Section IV
discusses defactoring the data prior to testing for various forms of no-
cointegration when the data contain unobserved common factors. The finite
sample behaviour of the proposed approach is analysed in section V.
Conclusions are drawn in section VI.

A note on notation: throughout the text, M is used to denote a generic
positive number, not depending on TorN. For a matrixA,A > 0 denotes thatA
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is positive-definite. Furthermore, kAk ¼ traceðA0AÞ
1
2. We write the integralR 1

0 BðrÞ dr as
R
B, and

R 1
0 BðrÞBðrÞ0dr as

R
BB0. Furthermore, ‘)’ denotes weak

convergence, and ‘!p ’ denotes convergence in probability. For any number x,
ºxß denotes the largest integer smaller than x. For any variable Xi,t,

~Xi;t ¼ Xi;t �
1

T

XT

s¼1
Xi;s:

Similarly, for any Brownian motion B, ~B ¼ B�
R

B. Throughout the paper,
we employ sequential limit theory,1 where we consider T!1 followed by
N!1.

II. The model

We consider balanced panels with N cross-sectional units and T time-series
observations, indexed by i ¼ 1, . . . ,N and t ¼ 1, . . . ,T, respectively. For each
unit in the panel, we observe a (1 + m)-dimensional vector of variables
Zi;t ¼ ðYi;t;X 0i;tÞ

0, where Yi,t is a scalar time series and Xi,t an m-vector time
series.2 We assume that the DGP for Zi,t has a common factor structure as, e.g.
in Bai and Ng (2004), and we assume the presence of k common factors in the
data. Furthermore, we assume the number of common factors to be fixed as
T, N!1 throughout the paper. Our model is given by

Zi;t ¼ Di;t þ KiFt þ Ei;t; ð1Þ

t ¼ 1, . . . , T, i ¼ 1, . . . ,N. Di,t is an unobserved deterministic component such
that either Di,t ¼ 0 for all i and t if there are no deterministic components
present, Di,t ¼ d0i for all t if the data contain individual-specific fixed effects,
or Di ¼ d0i + d1it if the data contain individual-specific deterministic linear
time trends, where the coefficients d0i and d1i depend on i only. For the
remainder of the paper we assume Di,t ¼ 0, unless mentioned otherwise. The
common component in Zi,t is given by Ft in equation (1). Ft is a k-vector of
common I(1) factors given by

Ft ¼ Ft�1 þ ft; ð2Þ
where ft ¼ U(L)gt, gt is a sequence of (k · 1) identically and independently
distributed (i.i.d.) (0, Ik) random vectors, and

1Although sequential limits are sometimes restrictive, they correspond to joint limits under certain
restrictions (see, e.g. Phillips and Moon, 1999). Furthermore, sequential asymptotic theory is well
established in the literature.

2We assume that, e.g. economic theory leads to a natural choice of Y in such a way that swapping
some X for Y would not make sense. Nevertheless, the choice of Y is an interesting topic in
cointegration analysis, but beyond the scope of this work.
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UðLÞ ¼
X1
j¼0

UjLj:

The (1 + m) · k matrix of factor loadings Ki is assumed to be of full rank and
block-diagonal, with block diagonality corresponding to the partition of Zi,t,
and diagonal blocks denote a k01i and k02i for the upper left and lower right
block, respectively.

As for the vectors of observations Zi,t, we have partitions for the
unobserved vector of common factors Ft ¼ ðF Y 0

t ; F X 0
t Þ
0, where F Y

t and F X
t

have kY and kX elements, respectively, and the partition of Ft corresponds to
the structure of Ki, such that k1i is kY · 1 and k2i is kX · m. The block-
diagonal structure for the factor loadings is necessary to ensure that Yi,t and Xi,t

are not cointegrated when the non-stationarity in the data is driven by the
common factors alone. When the idiosyncratic components are non-stationary
as well, this assumption on Ki might be relaxed and a more general structure
can be considered.

For the idiosyncratic component in equation (1), Ei,t, we distinguish two
cases, namely stationary and non-stationary idiosyncratic components. For the
former case we have

Ei;t ¼ ei;t; ð3Þ

while in the latter case we assume

Ei;t ¼ Ei;t�1 þ ei;t; ð4Þ

where the stationary vector ei,t ¼ Ci(L)ei,t with ei,t being a sequence of
i.i.d.(0, Ri) random vectors,

CiðLÞ ¼
X1
j¼0

CijLj:

Again, we partition Ei,t conformable with the data Zi,t, such that Ei;t ¼
ðEY

i;t;E
X 0
i;t Þ
0, where EY

i;t is a scalar time series and EX
i;t has m elements.

For the above-given model we specify the following assumptions, whereM
denotes a generic positive real number:

Assumption 1. Common factors: (i) gt � i.i.d.(0, Ik) with finite fourth
moments, (ii) there is an M such that

X1
j¼0

j � kUjk < M ;

(iii) rank(U(1)) ¼ k, (iv) EkF0k�M.
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Assumption 2. Factor loadings: (i) for non-random k1i and k2i, kk1ik�M and
kk2ik�M; for random k1i and k2i, Ekk1ik4�M and Ekk2ik4�M,

(ii) N�1
XN

i¼1
K0iKi!

p
RK > 0;

(iii) for non-random k1i and k2i,

N�1
XN

i¼1
k1i 6¼ 0 and N�1

XN

i¼1
k2i 6¼ 0;

for random k1i and k2i, E(k1i) 6¼ 0 and E(k2i) 6¼ 0.

Assumption 3. Idiosyncratic components: for each i ¼ 1, . . . ,N, (i) ei,t �
i.i.d.(0, Ri) with finite eighth moments, and ei,t and ej,s are independent
for any t, s and i 6¼ j, (ii) Ekei,0k < M, (iii) Ci(L) fulfils the random
coefficients and summability conditions from Phillips and Moon (1999,
Assumptions 1 and 2 on p. 1060 and p. 1061 respectively), (iv) rank(Ci(1)) ¼
m + 1, "i.

Assumption 4. The errors, gt, ei,t, and the factor loadings Ki form mutually
independent groups.

Under the conditions of Assumption 1, the common factors Ft form a
k-dimensional I(1) process and the possibility of cointegration between the
common factors is excluded. The full-rank assumption on the long-run
covariance matrix of Ft could in fact be relaxed, as long as the diagonal blocks
corresponding to the long-run covariances of F Y

t and F X
t each have at least

rank 1. The long-run covariance matrix of the common factors is given by (see
e.g. Phillips and Durlauf, 1986)

X ¼ Uð1ÞUð1Þ0 ¼ N þ H þ H0;

where

N ¼ lim
T!1

1

T

XT

t¼1
Eðftf 0t Þ and H ¼ lim

T!1

1

T

XT

t¼1
EðftF 0t�1Þ:

Furthermore, an invariance principle holds such that

T�1=2FbrT c ) BF ðrÞ as T !1; ð5Þ

where BF is a k-vector Brownian motion with covariance matrix X.
Assumptions 2(i) and 2(ii) are standard assumptions for factor models and
ensure that the factor loadings are identifiable. Assumption 2(iii) is needed
for the spurious regression results when the non-stationarity in the data is
only driven by the common factors. Assumption 3(iii) specifies that a panel
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functional central limit theorem holds for Si;t ¼
Pt

s¼1 ei;t, which corresponds
to Ei,t in case the idiosyncratic components are non-stationary as in equation
(4), or to its cumulative sum if equation (3) is true. The long-run covariance
matrix of Si,t is given by

Wi ¼ Cið1ÞRiCið1Þ0 ¼ !i þ Di þ D0i;

where

!i ¼ lim
T!1

1

T

XT

t¼1
Eðei;te0i;tÞ and Di ¼ lim

T!1

1

T

XT

t¼1
Eðei;tS0i;t�1Þ;

and an invariance principle ensures that

T�1=2Si;brT c ) BiðrÞ as T !1; ð6Þ
where Bi is a randomly scaled (1 + m)-vector Brownian motion with covari-
ance matrix Wi. Assumption 3(iv) ensures that the idiosyncratic terms do not
cointegrate in case these are I(1) vectors.

The implications of these assumptions are best understood by considering
the Beveridge–Nelson (BN) decomposition for Ft and for Ei;t ¼

Pt
s¼1 ei;s:

Ft ¼ Uð1Þ
Xt

s¼1
gs þ U�ðLÞðgt � g0Þ þ F0; ð7Þ

Ei;t ¼ Cið1Þ
Xt

s¼1
ei;s þ C�i ðLÞðei;t � ei;0Þ þ Ei;0; ð8Þ

where

U�ðLÞ ¼
X1
j¼0

U�j Lj with U�j ¼ �
X1

l¼jþ1
Ul;

C�i ðLÞ ¼
X1
j¼0

C�i;jL
j with C�i;j ¼ �

X1
l¼jþ1

Ci;l;

U�(L)(gt ) g0) and C�i ðLÞðei;t � ei;0Þ are stationary with finite fourth-order
moments and F0 and Ei,0 are Op(1) by assumption.

If equation (3) is true, the idiosyncratic data components are I(0), and the
I(1) trends of the common factors contained in KiUð1Þ

Pt
s¼1 gs drive the non-

stationarity in the data. Then, we might observe cross-member cointegration
between some Yi,t and Yj,t, and between some Xi,t and Xj,t for some i, j, i 6¼ j,
the exact cointegration structure depending on the individual loadings. The
assumption on the block-diagonal structure of the factor loadings Ki in turn
implies that we have separation in a cointegrating system (see Hecq, Palm and

689Cointegration testing in panels with common factors

� Blackwell Publishing Ltd 2006



Urbain, 2002). Note that the assumption of cointegration between Yi,t and Xi,t

would only be possible if the common factors F Y
t and F X

t would cointegrate,
which is ruled out by Assumption 1 from which the full rank of the long-run
covariance matrix of Ft follows.

When Ei,t is given by equation (4), both common and idiosyncratic data
components are non-stationary. Furthermore, the idiosyncratic components do
not cointegrate along the cross-section. Hence, we do not have cointegration
‘within’ units, e.g. between Yi,t or Xi,t. The BN decomposition of Zi,t is easily
obtained from equations (1) and (7–8) and shows that the non-stationarity of
Zi,t stems from the term KiUð1Þ

Pt
s¼1 gs þ Cið1Þ

Pt
s¼1 ei;s.

Remark 1. To investigate tests for no-cointegration we need to maintain the
assumption that there does not exist a full-column rank matrix b0i such that
b0iZit � Ið0Þ. Different cases can be considered. Two cases are important,
namely one with cross-member cointegration where we have I(1) common
factors and I(0) idiosyncratic terms and one where the panel units contain
common stochastic trends, but do not cointegrate even along the cross-
sectional dimension so that both the common and the idiosyncratic com-
ponents are I(1).

Remark 2: Heterogeneity and cross-sectional dependence. With I(1) com-
mon factors as well as I(1) idiosyncratic components, we actually have two
different sets of possible cointegrating vectors that would annihilate the
idiosyncratic and the common I(1) stochastic trends, respectively (see also
the discussion in Gregoir, 2005; Breitung and Pesaran, 2005). Combining
equations (1) and (7)–(8), the resulting BN representation of Zi,t shows that
it will not be easy to annihilate both. In particular, cointegrating vector(s),
say d, that annihilate the common I(1) components should lie in the left null
space of Ki, that is dKiU(1) ¼ 0 as U(1) is of full rank by Assumption 1,
while those for the idiosyncratic components, say c0i would have to lie
in the left null space of Ci(1), i.e. c0iCið1Þ ¼ 0. If the intersection of these
left null spaces is empty, there does not exist a cointegrating relationship
that annihilates both the unit roots from the common stochastic trends and
those of the idiosyncratic terms. In this case, none of the Zi,t vectors is
cointegrated. The components taken in isolation could be cointegrated
though.

In fact, there is an important trade-off between the degree of heterogeneity
that can be allowed for and the existence of cross-sectional dependence
modelled by common factors. Without loss of generality, consider the fol-
lowing simple bivariate DGP where we have a single I(1) common factor in Y
and a single I(1) common factor in X:

Yi;t ¼ k1;iF Y
t þ EY

i;t; ð9Þ
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Xi;t ¼ k2;iF X
t þ EX

i;t; ð10Þ

from which we see that any linear combination can be written as

Yi;t � biXi;t ¼ k1;i F Y
t �

bik2;i
k1;i

F X
t

� �
þ EY

i;t � biE
X
i;t: ð11Þ

For the linear combination (1, )bi)
0 to be a cointegrating vector such that

Yi,t ) biXi,t � I(0), two conditions need to hold, namely

(i) F Y
t �

bik2;i
k1;i

F X
t

� �
� Ið0Þ

(ii) ðEY
i;t � biE

X
i;tÞ � Ið0Þ.

Given that here we have only two I(1) common factors, there can be at most
a single linear cointegrating combination between these factors and hence
bik2,i/k1,i should be the same "i. Three different cases are compatible with a
constant (over i) ratio:

1 With homogeneity of the factor loadings and of bi the ratio bik2,i/k1,i ¼
bk2/k1 does not depend on i. A similar restriction is considered by
Gregoir (2005). Another possibility is homogeneity of bi and constancy
of the ratios of the factor loadings k2,i/k1,i for all i which is also
excluded by Assumptions 1–4.

2 The second case allows for some degree of heterogeneity: the factor
loadings vary with bi such that the ratio bik2,i/k1,i is constant across i.
This is excluded by Assumptions 1–4 where the loadings and Wi are
assumed to vary independently of each other.

3 A third case arises when for all i the variables Yi,t and Xi,t have a single
common source of nonstationarity Ft only. The idiosyncratic com-
ponent is assumed to be stationary (or could be cointegrated with
cointegrating vector bi). In this case, Yi,t and Xi,t are cointegrated with
bi ¼ k1,i/k2,i. This is ruled out by the assumption of block diagonality
of Ki, but it would be a natural alternative hypothesis to the null of
no-cointegration. Homogeneity of the cointegrating vector then arises if
k1,i/k2,i is constant across entities i.

To conclude, if we allow for almost unrestricted (under Assumptions 1–4)
heterogeneity, the existence of cointegrating relations that annihilate both
the common and idiosyncratic I(1) stochastic trends is very unlikely. The
consequences of this for testing of the null of no-cointegration in this factor
set-up will be mentioned in section IV.

Remark 3. A similar framework is also, independently of the present study,
proposed by Dees et al. (2005) for the study of macroeconomic linkages
within the Euro area. The purpose of their study was however different, as no
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attempt to discuss tests for cointegration is made. This study is thus com-
plementary to theirs.

III. The behaviour of panel residual-based tests

The purpose of this section is to study, given the set-up introduced in the
preceding section, the asymptotic behaviour of some standard and popular
panel tests for no-cointegration. The statistics we consider are designed to test
for the presence of a single cointegration relationship between Yi,t and Xi,t.

3

Kao (1999) considers a homogenous cointegrating vector, whereas Pedroni
(1999) allows for heterogeneity. However, both rely on the cross-sectional
independence of the panel unit to derive asymptotic normality for their test
statistics.

3.1. Kao (1999)

Kao (1999) proposes estimating the homogeneous cointegrating relationship
by pooled regression allowing for individual fixed effects. The regression
equation is given by

Yi;t ¼ ai þ bXi;t þ ui;t; ð12Þ
where b and Xi,t are row and column vectors, respectively, and ui,t is a
regression error. The LSDV estimator for b is

~b ¼
XN

i¼1

XT

t¼1

~Yi;t ~X 0i;t

 ! XN

i¼1

XT

t¼1

~Xi;t ~X 0i;t

 !�1
;

where

~Yi;t ¼ Yi;t �
1

T

XT

s¼1
Yi;s and ~Xi;t ¼ Xi;t �

1

T

XT

s¼1
Xi;s:

The residuals from this first-stage regression ~ui;t ¼ ~Yi;t � ~b~Xi;t will still
contain a unit root under the null hypothesis of no cointegration. We now
estimate a pooled Dickey–Fuller (DF) regression

D~ui;t ¼ ðq� 1Þ~ui;t�1 þ vi;t; ð13Þ
where the pooled ordinary least squares (POLS) estimator of (q ) 1) is given
by

3This is a restrictive assumption that we, however, will make in what follows. Approaches that
allow for more than one cointegrating vector are reviewed in Breitung and Pesaran (2005).
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ð~q� 1Þ ¼
XN

i¼1

XT

t¼2
D~ui;t~ui;t�1

 ! XN

i¼1

XT

t¼2
~u2i;t�1

 !�1
:

Kao’s (1999) tests are based on ~q and the corresponding t-statistic

t~q ¼ ð~q� 1Þ ŝ2~u
XN

i¼1

XT

t¼2
~u2i;t�1

 !�10
@

1
A
�1

2

;

where

ŝ2~u ¼ N�1T�1
XN

i¼1

XT

t¼2
ðD~ui;t�1 � ð~q� 1Þ~ui;t�1Þ2;

corrected for endogeneity and serial correlation. When the panel units are cross-
sectionally independent, the test statistics are asymptotically normally distributed
as T!1 followed by N!1. However, for the model given by equations (1),
(2) and (3) or (4), this assumption is clearly violated. Using the results reported
in Lemmas 1–3 in Appendix A, we obtain the following limit results:

vec

Z
dBF KB0F K

� �
¼ �K vec

Z
dBF B0F

� �
; vecðHF KÞ ¼ �K vecðHÞ;

vec

Z
BF KB0F K

� �
¼ �K vec

Z
BF B0F

� �
;

vec

Z
dBF K~B0F K

� �
¼ �K vec

Z
dBF ~B0F

� �
;

vec

Z
~BF K~B0F K

� �
¼ �K vec

Z
~BF ~B0F

� �
; and �K¼ p lim

N!1

1

N

XN

i¼1
ðKi�KiÞ:

WYX is the long-run average covariance between the idiosyncratic errors in
Yi,t and Xi,t, WXX is the long-run average covariance matrix of the idio-
syncratic errors in Xi,t, and BF and Bi are given in equations (5) and (6),
respectively.

Proposition 1. Given Assumptions 1, 2, 3 and 4:

(A) Consider the model given by equations (1), (2) and (3),

(a) ~b) ð
R

~BY
F K

~BX 0
F KÞð

R
~BX

F K
~BX 0

F KÞ
�1 ¼ ~bA as T, N!1 sequentially,

(b) T ð~q� 1Þ )
ð1;�~bAÞ

R
dBF K~B0F K þHF K þ c1 � !

� �
ð1;�~bAÞ0

ð1;�~bAÞ
R

~BF K~B0F K

� �
ð1;�~bAÞ0

as T ;N !1 sequentially, where c1 ¼ E(ci1) and ci1 ¼ Eð~ei;t�1~e0i;tÞ,
(c) t~q diverges at rate

ffiffiffiffi
N
p

as T, N!1 sequentially.
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(B) Consider the model given by equations (1), (2) and (4),

(a) ~b) ð
R

~BY
F K

~BX 0
F K þ 1

6WYX Þð
R

~BX
F K

~BX 0
F K þ 1

6WXX Þ�1 ¼ ~bB

as T ; N !1 sequentially,

(b) T ð~q� 1Þ )
ð1;�~bBÞ

R
dBF K~B0F K þHF K � 1

2Wþ D
� �

ð1;�~bBÞ0

ð1;�~bBÞ
R

~BF K~B0F K þ 1
6W

� �
ð1;�~bBÞ0

as T ;N !1 sequentially,

(c) t~q diverges at rate
ffiffiffiffi
N
p

as T, N!1 sequentially.

Proof. See Appendix. j

The results summarized in Proposition 1 are clearly in contrast to the
asymptotic normality Kao (1999) derives for the test statistics for independent
panels, although we have not yet considered corrections for serial correlation
and endogenous regressors. Results A(a) and B(a) are similar to those derived
by Urbain (2004) for the pooled least squares estimator (PLS). This is in
sharp contrast with the

ffiffiffiffi
N
p

consistency of the LSDV estimator in the case of
a spurious regression estimated from independent panel data (see Phillips and
Moon, 1999). The statistics proposed by Kao (1999) rely on this consistency,
namely on the fact that ~b!p WYX WXX�1 where WYX is the long-run average
covariance between the errors driving Xi,t and those driving Yi,t and WXX is
the long-run average covariance matrix of the Xi,t values. The presence of
common factors destroys this property and consequently the asymptotic
normality of these estimators and of the statistics relying on this result. For
the case of stationary idiosyncratic components, our findings are similar to the
spurious regression results from time-series analysis. With non-stationary
idiosyncratic components we obtain some mixture of time-series and panel
spurious regression results in the limiting distributions. The tests are
inconsistent when the data have a common factor structure, and size
distortions have to be expected which will increase with N. The nuisance
parameters in the limiting distributions given in Proposition 1 introduced by
the serial correlation in the common factors and idiosyncratic components can
be corrected for non-parametrically, i.e. the composite effect of QFK + c1 ) !
or QFK + D can be accounted for. However, it is not possible to identify
nuisance parameters associated with the common factors or the idiosyncratic
components individually. So, the covariance of ~BF K as well as the long-run
average covariance matrix of idiosyncratic stochastic trends, W, will in
general remain in the limits. The limit of t~q will be the product of

ffiffiffiffi
N
p

, the
limit of ð~q� 1Þ and the limit of the standard deviation of ð~q� 1Þ. Whereas
the standard deviation is positive, the driving factor of the limiting
distribution of ð~q� 1Þ is

R
dBF K~B0F K=

R
~BF K~B0F K which has a negative

expected value. Thus, t~q can be expected to diverge to )1.
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3.2. Pedroni (1999)

Pedroni (1999) allows for heterogeneity of the slope coefficient b in the
cointegration relationship (12), which thus becomes bi. He proposes
estimating a first-stage regression individually for each panel member to
obtain an estimate of bi,

~bi ¼
XT

t¼1

~Yi;t ~X 0i;t

 ! XT

t¼1

~Xi;t ~X 0i;t

 !�1
: ð14Þ

Pedroni (1999) proposes two classes of statistics, namely those based on the
within-dimension denoted as ‘panel’ statistics, and those based on the
between-dimension denoted as ‘group mean’ statistics. For the former group,
the residuals from the first-stage regression, ~ui;t ¼ ~Yi;t � ~bi

~Xi;t, are stacked and
a pooled DF regression is estimated as in equation (13).4 The group mean
statistics are based on averages of individual unit-root statistics, derived from

D~ui;t ¼ ðqi � 1Þ~ui;t�1 þ vi;t; ð15Þ
to obtain

ð~qi � 1Þ ¼
XT

t¼2
D~ui;t~ui;t�1

 ! XT

t¼2
~u2

i;t�1

 !�1
:

Consider now the panel-rho statistic denoted by Z~qNT�1 and the group-mean
rho statistic ~Z~qNT�1 given by

Z~qNT�1 ¼
XN

i¼1

XT

t¼2
ðD~ui;t~ui;t�1 � k̂iÞ

 ! XN

i¼1

XT

t¼2
~u2i;t�1

 !�1
; ð16Þ

and

~Z~qNT�1 ¼
XN

i¼1

XT

t¼2
ðD~ui;t~ui;t�1 � k̂iÞ

 ! XT

t¼2
~u2i;t�1

 !�10
@

1
A; ð17Þ

with

k̂i ¼ T�1
XJ

s¼1
xsJ

XT

t¼sþ1
~vi;t~vi;t�s

where ~vi;t are the residuals of the second-stage regression, and J and xsJ are
suitable bandwidth and kernel functions, respectively. For these two statistics,
we obtain the following limiting results:

4Note that although the estimated DF equation is the same for Kao (1999) and Pedroni (1999), the
residuals used in the estimation are obtained from individual regressions instead of a pooled one.
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Proposition 2. Given Assumptions 1, 2, 3 and 4:

(A) Consider the model given by equations (1), (2) and (3),

(a) ~bi )
�
k01ið
R

~BY
F

~BX 0
F k2i

��
k02ið
R

~BX
F

~BX 0
F Þ k2i

��1 ¼ ~biA as T !1,

(b) TZ~qNT�1 )
PN

i¼1 k01iL
0
11

R
dQF

~Q0F L11k1iPN
i¼1 k01iL

0
11

R
~QF ~Q0F L11ki1

as T !1,

(c) T ~Z~qNT�1 )
PN

i¼1
k01iL

0
11

R
dQF ~Q0F L11k1i

k01iL
0
11

R
~QF ~Q0F L11ki1

as T !1,

where

~Q ¼ ~W Y
F �

Z
~W Y

F
~W X 0

F

� � Z
~W X

F
~W X 0

F

� ��1
~W X

F ;

~WF is a demeaned k-vector standard Brownian motion, and L11 is the upper
left element of L, the block triangular decomposition of X ¼ L0L.
(B) Consider the model given by (1), (2) and (4),

(a) ~bi )
�
k01i

R
~BY

F
~BX 0

F k2i þ
R

~BY
i

~BX 0
i þ k01i

R
~BY

F
~BX 0

i þ
R

~BY
i

~BX 0
F k2i

�
�
�
k02i

R
~BX

F
~BX 0

F k2i þ
R

~BX
i

~BX 0
i þ k02i

R
~BX

F
~BX 0

i þ
R

~BX
i

~BX 0
F k2i

��1 ¼ ~biB

as T!1,

(b) TZ~qNT�1 )
PN

i¼1ð1� ~biBÞ
�
K0ið
R
dBF ~B0F ÞK0i þ

R
dBi ~B0i þ Ki

R
dBF ~B0i þ

R
dBi ~B0F K0i

�
ð1� ~biBÞ0PN

i¼1ð1� ~biBÞ
�
Ki
R

~BF ~B0F K0i þ
R

~Bi ~B0i þ Ki
R

~BF ~B0i þ
R

~Bi ~B0F K0i
�
ð1� ~biBÞ0

as T!1,

(c) T ~Z~qNT�1 )
XN

i¼1

ð1� ~biBÞ
�
K0ið
R
dBF ~B0F ÞK0i þ

R
dBi ~B0i þ Ki

R
dBF ~B0i þ

R
dBi ~B0F K0i

�
ð1� ~biBÞ0

ð1� ~biBÞ
�
Ki
R

~BF ~B0F K0i þ
R

~Bi~B0i þ Ki
R

~BF ~B0i þ
R

~Bi ~B0F K0i
�
ð1� ~biBÞ0

as T!1,

Proof. See Appendix. j

For the panel-rho and group-mean-rho statistics, Pedroni (1999, 2004a)
derives asymptotic normality when they are properly standardized. In parti-
cular,

ffiffiffiffi
N
p

TZ~qNT�1 �
ffiffiffiffi
N
p

h2h
�1
1 and N�

1
2T ~Z~qNT�1 �

ffiffiffiffi
N
p

~h1 are asymptotically
normally distributed for independent panels, where h1, h2 and ~h1 are means of
functionals of Brownian motions (for details, see Pedroni, 2004a). The results
from Proposition 2 indicate that under the DGP we consider, T Z~qNT�1 and
T ~Z~qNT�1 converge, so that the two test statistics diverge at rate

ffiffiffiffi
N
p

when standardized as above. Furthermore, because of the presence of the
common factors, the individual statistics will not be independent along the
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cross-section, so that the use of a Central Limit Theorem (CLT) to derive
asymptotic normality of the average statistic will be invalid. The result is
similar to that derived by Lyhagen (2000) for the Im–Pesaran–Shin (IPS)
statistics. Moreover, for independent panels the distributions of Z~qNT�1 and
~Z~qNT�1 will be nuisance parameter-free. For the DGP we consider, this is not
true in general. Although the composite effect of serial correlation in the
common factors and idiosyncratic components can be corrected for non-
parametrically, nuisance parameters coming only from the common factors or
from the idiosyncratic components cannot be identified. So, the limiting
distributions will in general depend on the long-run covariances of the
common and/or idiosyncratic stochastic trends. A special case arises when
there is a single common factor in Yi,t and the idiosyncratic components are
stationary. Then, k1iL11 will cancel from the limits given in Proposition 2A(b)
and (c).

IV. A two-step procedure to test for (no-)cointegration in the
presence of common factors

As shown in section III, standard panel tests for the null of no-cointegration
suffer from serious problems when applied to data with a common factor
structure. To tackle the problem we propose a simple approach based on the
Bai and Ng (2004) PANIC methodology.5

A related, albeit different, idea is exploited in the work of Banerjee and
Carrion-i-Silvestre (2006), who assume a factor structure for the disturbance
of a panel static regression model:

Yi;t ¼ ai þ biXi;t þ ui;t

ui;t ¼ c0iFt þ Ei;t;

where Ft and Ei,t are the common factors and the idiosyncratic components,
respectively, that can be either I(1) or I(0). A similar framework is used by
Bai and Kao (2004) for the estimation of a cointegrating relationship in the
presence of common factors. Under some conditions that bound the possible
heterogeneity, this framework leads to panel statistics for the null of no-
cointegration that have the same distribution as panel unit-root tests and hence
are not affected by the number of regressors.6

Consider the simple bivariate DGP (9)–(10)7 and address the issue of
no-cointegration at three different levels.

5Wagner and Müller-Fürstenberger (2004) use similar ideas in an empirical study of the Kuznets
curve.

6A similar set-up is retained by Westerlund (2005) who proposes Durbin–Hausman tests for
cointegration in panels.

7The discussion extends to a more general set-up.
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(i) Testing for idiosyncratic component no-cointegration: This would
mean testing the null hypothesis that ðEY

i;t � biE
X
i;tÞ � Ið1Þ against

ðEY
i;t � biE

X
i;tÞ � Ið0Þ.

(ii) Testing for common factor no-cointegration: This would boil down to
testing the null hypothesis that ðF Y

t � dF X
t Þ � Ið1Þ against ðF Y

t � dF X
t Þ �

Ið0Þ.
(iii) Testing for panel no-cointegration: This is testing the null hypothesis

that Yi,t ) biXi,t � I(1) against Yi,t ) biXi,t � I(0). Rejecting the null of
no-cointegration requires evidence of idiosyncratic component cointe-
gration with cointegrating vector (1, )bi)

0 as well as of common factor
cointegration with cointegrating vector (1, )bik2,i/k1,i)0 which should
be constant across the individuals i.

Provided the components have been extracted from the data, case (i) is tested
using standard panel tests for no-cointegration given in equations (16) and
(17). Case (ii) can be investigated using standard time-series no-cointegration
tests such as the Johansen rank test. Case (iii) is slightly more problematic
since rejecting the null of panel no-cointegration requires not only factor and
idiosyncratic cointegration, but also cointegrating vector(s) for the factors of
a very specific form. The restrictions between the cointegrating coefficients
result from the common factor structure and from the condition that the left
null spaces of the common factor and idiosyncratic component cointegration
must have a non-empty intersection.

There is however a useful indirect way of addressing this ques-
tion. Consider equation (11) and write ðF Y

t � ðbik2;i=k1;iÞF X
t Þ 	 Gt and

ðEY
i;t � biE

X
i;tÞ 	 E�i;t such that equation (11) becomes:

Yi;t � biXi;t ¼ k1;iGt þ E�i;t ð18Þ
which is nothing but the parametrization considered in Banerjee and Carrion-
i-Silvestre (2006). Under this parametrization, (1, )bik2,i/k1,i) will be a
cointegrating vector for the common factors if and only if Gt � I(0). One may
consequently investigate the hypothesis of panel cointegration using the
approach proposed by these authors.

Now we shall outline a sequential testing procedure based on the factor
structure under equations (1), (2) and (3) or (4) that does not restrict the hetero-
geneity. The approach starts with a decomposition of the data into common
factors and idiosyncratic components as in Bai and Ng (2004). It investigates
the cointegration properties of the extracted factors and components.

Step 1
Conduct a PANIC analysis of each variable Xi,t and Yi,t individually to extract
the common factors, e.g. using the principal components approach advocated
by Bai and Ng (2004). Test for unit-roots in both the factors and the
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idiosyncratic components using the Bai and Ng (2004) or the Breitung and
Das (2005) approach.

Step 2

a. If I(1) common factors and I(0) idiosyncratic components are detected,
we face the situation of cross-member cointegration and consequently
the nonstationarity in the panel is entirely due to a reduced number of
common stochastic trends. Cointegration between Yi,t and Xi,t can occur
only if the common factors for Yi,t cointegrate with those of Xi,t. The
null of no-cointegration between these estimated factors can be tested
using a Johansen type of likelihood ratio test for example.

b. If I(1) common factors and I(1) idiosyncratic components are detected,
we carry out step (2a) on the estimated common factors and we will
work with defactored series. In contrast to Banerjee and Carrion-i-
Silvestre (2006), however, who defactor the residuals from a static
regression (11) we defactor separately Yi,t and Xi,t. The defactored Yi,t
(e.g. the estimated idiosyncratic components) is simply obtained as

ÊY
i;t ¼

Xt

s¼1
êY

i;s ¼
Xt

s¼1
ðDYi;s � k̂01;if̂sÞ

where f̂s is a consistent factor estimate of ft in equation (2) and k̂01;i
a consistent estimate of the loading. Testing for no-cointegration
between the defactored data can be conducted using standard panel
tests for no-cointegration such as those of Pedroni (1999, 2004a)
given in equations (16) and (17).

The rejection of no-cointegration between Yi,t and Xi,t occurs only if
the tests for both common factor and idiosyncratic no-cointegration
reject. However, this is a necessary condition. If the three restrictions
mentioned under (iii) hold as well for the cointegrating vectors, panel
cointegration will hold. If the outcome of step (2b) is that both the
common factors and the idiosyncratic components cointegrate one
might want to jointly or sequentially test the restrictions on the
cointegrating vectors. The required tests are not available with the
exception of a homogeneity test on the idiosyncratic component
cointegrating vectors proposed by Pedroni (2004b). Comparing point
estimates of the parameters involved could yield further insight into the
structure of the model. Formal testing of panel no-cointegration could
be done using the Banerjee and Carrion-i-Silvestre (2006) test.

Remark 4. The sequential panel no-cointegration test outlined in steps 1 and 2
is a multiple comparison procedure. Panel no-cointegration is rejected if both
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the hypotheses of common factor no-cointegration and idiosyncratic compo-
nent no-cointegration are rejected and the restrictions between the cointe-
grating vector parameters are not rejected. An approximate test of the joint
hypothesis could use the Bonferroni procedure (see, e.g. Savin, 1980). In a
Monte Carlo simulation, the joint hypothesis test of factor and idiosyncratic
component (no-)cointegration is found to be undersized because of the
idiosyncratic component (no-)cointegration. Its power properties are shown to
be fine. The results are available upon request.

Remark 5. The theoretical justification for this sequential procedure is
analogous to that of the PANIC panel unit-root analysis. As the DGP implies
that all series have a Bai and Ng (2004) representation, we proceed by
analogy with the results derived in Bai and Ng (2004). Provided the number
of common factors is known or consistently selected using one of the
consistent selection procedures discussed in Bai and Ng (2004), then it holds
that

T�1=2
Xt

s¼2
êY

i;s ¼ T�1=2
Xt

s¼2
eY

i;s þ OpðC�1NT Þ

where êY
i;t is the estimated idiosyncratic component, êY

i;t ¼ DYi;s � k̂01;if̂s, f̂s a
consistent factor estimate of ft, k̂01;i a consistent estimate of the loading and
C�1NT ¼ minðN1=2; T 1=2Þ. Consequently,

1ffiffiffiffi
T
p

XbTrc
t¼1

êY
i;t ) BY

i ðrÞ;8i

where BY
i ðrÞ is the first element of the (1 + m)-vector Brownian motion Bi(r).

BY
i ðrÞ and BY

j ðrÞ are uncorrelated Brownian motions for i 6¼ j. The same holds
for Xi,t. Consequently, standard panel no-cointegration tests derived under the
maintained assumption of independent panel units, such as those proposed by
Pedroni (2004a), can be used on the defactored observations.

Remark 6. This approach requires both large N and T which is one of the
important limitations. Moreover, this approach will have finite sample
properties that can, at best, be close to those observed for the tests when
applied to a panel data set with independent units.

Remark 7. If the rank of the long-run covariance matrix of the factors turns
out to be smaller than k, that is if the factors cointegrate, then a further step is
needed to assess overall lack of cointegration between Yi,t and Xi,t. No
cointegration then requires separability in cointegration as discussed and
analysed in detail in Hecq et al. (2002).
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V. Some Monte Carlo evidence

The theoretical foundation of the approach proposed in the preceding section
requires both large N and Twhich is not always met in typical applications of
panel cointegration techniques. A Monte Carlo analysis of some of its finite
sample properties is called for. We focus on the empirical size properties of the
proposed approach, namely testing for no-cointegration using defactored data,
as it was shown that tests designed for cross-sectionally independent data
may suffer from dramatic size distortions when applied to panels with cross-
member cointegration for example as pointed out by Banerjee et al. (2004).
The DGP is a simple bivariate process (i.e. m ¼ 1) with k ¼ 2 common factors
that obeys the representation (1)–(4).

Zi;t ¼ KiFt þ Ei;t; Ei;t ¼ ei;t or Ei;t ¼ Ei;t�1 þ ei;t;

ei;t ¼ ei;t þ Ciei;t�1;

Ft ¼ Ft�1 þ ft; ft ¼ gt þ U1gt�1;

where ei,t � i.i.d. N(0, Ri), gt � i.i.d. N(0, I2). The loading matrix has a
diagonal structure with diagonal elements k1i, k2i � U[)1, 3], where U
denotes uniform distributions. The remaining parameters are also drawn
from independent uniform distributions to allow for some degree of
heterogeneity: U11,22 � U[0.5, 0.7], U12,21 � U[0, 0.5], Ri,11,22 � U[1, 1.4],
C11,22 � U[0.5, 0.7], U12,21 � U[0, 0.5] and Ri,12,21 � U[0, 0.2]. The sample
size has been set to T 2 {50, 100, 250} and the number of units in the panel is
set to N 2 {25, 50, 100}. We consider the rejection frequencies based on
1,000 replications8 for Kao’s pooled normalized coefficient (the q test) and
pooled ADF test, and Pedroni’s panel-t, panel-q, group-mean t and group-
mean q statistics based on raw data. Furthermore, we consider Pedroni’s panel
q and Pedroni’s group-mean q statistics applied to the defactored data, and
Johansen trace test for the estimated common factors, using the information
criterion of Aznar and Salvador (2002) to select the lag length of the Vector
Error Correction Model (VECM).

For the last two statistics based on the defactored data, we estimate the
number of common factors k using the IC1 criterion of Bai and Ng (2002) with
kmax ¼ 4. For the Augmented Dickey–Fuller (ADF)-type tests the lag length
is selected using the Akaike’s Information Criterion (AIC). For the non-
parametric correction for serial correlation, we use a quadratic spectral kernel
with a bandwidth of 3:21T

1
3 (see Andrews, 1991).

The two polar cases that we consider in the simulations are the cases
discussed earlier, namely the case of cross-member cointegration in which the
common factors are I(1) and the idiosyncratic components are I(0), and the case
where both common factors and idiosyncratic components are I(1). In addition,

8All experiments are carried out using GAUSS 6.0.
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we consider cases where only the common factors are cointegrated but the
idiosyncratic components are not cointegrated, non-cointegrated common
factors are combined with cointegrated idiosyncratic components, and
cointegration in both the common factors and the idiosyncratic components.

Tables 1 and 2 present simulation results for the five cases with MA(1)
dynamics in the error terms and k ¼ 2 common factors, one common factor in
Yi,t and one in Xi,t. Furthermore, the number of common factors is estimated
using the IC1 criterion of Bai and Ng (2002) with kmax ¼ 4. Note that the
criterion always picks the correct number of common factors. Both Kao test
statistics show strong size distortions when either the common factors or the
idiosyncratic components (or both) cointegrate. The Pedroni tests exhibit very
strong size distortions in the cross-member cointegration case (Table 1). When
non-stationary idiosyncratic components are combined with non-cointegrated
or cointegrated common factors (Tables 1 and 2) size distortions are reduced.

TABLE 1

k ¼ 2 common factors; non-stationary common factors Ft with I(0) or I(1) idiosyncratic
component Ei,t

Ei,t N: 25 50 100 25 50 100 25 50 100

Raw data

T Kao – q� Kao – ADF Pedroni – Panel-q

I(0) 50 0.27 0.32 0.35 0.48 0.50 0.54 0.68 0.90 0.88
100 0.39 0.47 0.49 0.54 0.62 0.62 0.84 0.96 0.95
250 0.52 0.54 0.55 0.64 0.67 0.69 0.93 1.00 0.96

I(1) 50 0.17 0.17 0.23 0.59 0.65 0.69 0.00 0.00 0.00
100 0.23 0.28 0.36 0.63 0.74 0.75 0.02 0.02 0.03
250 0.34 0.39 0.45 0.74 0.81 0.80 0.10 0.08 0.14
T Pedroni – Panel-t Pedroni – Group-q Pedroni – Group-t

I(0) 50 0.76 0.92 0.91 0.33 0.67 0.62 0.52 0.79 0.77
100 0.83 0.96 0.94 0.67 0.94 0.89 0.67 0.89 0.85
250 0.92 0.99 0.95 0.88 1.00 0.94 0.78 0.95 0.88

I(1) 50 0.03 0.02 0.04 0.00 0.00 0.00 0.03 0.02 0.04
100 0.06 0.04 0.08 0.00 0.00 0.01 0.04 0.03 0.06
250 0.13 0.10 0.18 0.02 0.01 0.04 0.07 0.05 0.10

Estimated components

T Idiosyncratic–Panel-q Idiosyncratic – Group-q Aznar/Johansen

I(0) 50 1.00 1.00 1.00 1.00 1.00 1.00 0.12 0.12 0.11
100 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.11 0.09
250 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.10 0.08

I(1) 50 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 0.12
100 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.12 0.09
250 0.02 0.01 0.00 0.00 0.00 0.00 0.11 0.10 0.09

Note: Rejection frequencies are based on 5% asymptotic critical values.
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The tests are even undersized for some combinations of N and T. When
both the common factors and the idiosyncratic components cointegrate
(Table 2), the Pedroni tests have rejection frequencies of up to 1. However, as
the factor loadings are heterogeneous, panel cointegration is not present (see
the discussion in section IV).

TABLE 2

k ¼ 2 common factors; cointegration in either Ft or Ei,t or both. NC denotes
no cointegration, C cointegration

Ft Ei,t N: 25 50 100 25 50 100 25 50 100

Raw data

T Kao-q� Kao-ADF Pedroni Panel-q

C NC 50 0.18 0.17 0.24 0.55 0.60 0.65 0.01 0.00 0.01
100 0.25 0.29 0.39 0.59 0.69 0.73 0.07 0.03 0.11
250 0.37 0.40 0.50 0.70 0.77 0.78 0.18 0.10 0.32

NC C 50 0.26 0.28 0.33 0.57 0.60 0.64 0.05 0.13 0.10
100 0.36 0.43 0.46 0.62 0.72 0.72 0.16 0.39 0.32
250 0.46 0.52 0.55 0.71 0.77 0.78 0.31 0.53 0.48

C C 50 0.41 0.43 0.47 0.57 0.58 0.61 0.58 0.63 0.69
100 0.50 0.56 0.59 0.60 0.67 0.69 0.84 0.91 0.97
250 0.60 0.63 0.63 0.69 0.72 0.74 0.96 0.99 1.00
T Pedroni Panel-t Pedroni Group-q Pedroni Group-t

C NC 50 0.05 0.03 0.06 0.00 0.00 0.00 0.03 0.02 0.05
100 0.09 0.06 0.19 0.05 0.01 0.10 0.07 0.03 0.15
250 0.17 0.11 0.33 0.25 0.13 0.57 0.19 0.10 0.42

NC C 50 0.14 0.23 0.23 0.01 0.03 0.03 0.10 0.17 0.18
100 0.20 0.42 0.38 0.06 0.32 0.18 0.14 0.35 0.29
250 0.29 0.52 0.50 0.21 0.68 0.40 0.24 0.55 0.44

C C 50 0.69 0.77 0.84 0.74 0.81 0.91 0.86 0.94 0.98
100 0.87 0.94 0.98 1.00 1.00 1.00 1.00 1.00 1.00
250 0.95 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Estimated components

T Idiosyncratic Panel-q Idiosyncratic Group-q Aznar/Johansen

C NC 50 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.61 0.74
100 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.78 0.85
250 0.02 0.00 0.00 0.00 0.00 0.00 0.68 0.85 0.87

NC C 50 0.92 0.99 1.00 0.94 1.00 1.00 0.12 0.12 0.11
100 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.11 0.10
250 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.10 0.08

C C 50 0.98 1.00 1.00 0.99 1.00 1.00 0.67 0.65 0.75
100 1.00 1.00 1.00 1.00 1.00 1.00 0.79 0.83 0.89
250 1.00 1.00 1.00 1.00 1.00 1.00 0.78 0.87 0.92

Notes: If Ft is cointegrated, F Y
t ¼

Pt
s¼1 f Y

s , F X
t ¼ F Y

t þ f X
t . If Ei,t is cointegrated, EY

i;t ¼
PT

s¼1 eY
i;s,

EX
i;t ¼ EY

i;t þ eX
i;s, where ft and ei,t are MA processes generated as described in section V.

Rejection frequencies are based on 5% asymptotic critical values.
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The tests applied to the estimated idiosyncratic components show rejection
frequencies of (close to) 1 when they are stationary or cointegrated. When the
idiosyncratic components are not cointegrated, the idiosyncratic panel-q and
idiosyncratic group-q tests are undersized. The Aznar/Johansen test applied to
the estimated common factors is slightly oversized when the common factors
do not cointegrate with rejection frequencies between 8% and 15%. When
there is cointegration among the common factors, the test has a power
between 61% and 92%.

We also perform simulations where we have introduced a second factor in
Xi,t, such that k ¼ 3 now.9 Again estimating the number of common factors
using the IC1 criterion of Bai and Ng (2002), we note that the second common
factor of Xi,t is not picked up.10 Nevertheless, simulation results for the Kao
and Pedroni tests applied to the raw data and the Aznar/Johansen test applied
to the extracted common factors do not change qualitatively compared with
the results obtained for k ¼ 2. However, the idiosyncratic panel-q and
idiosyncratic group-q applied to the estimated common components exhibit
reduced power when the common components are cointegrated, in particular
when T ¼ 50.

VI. Conclusions

We have considered the problem of testing for (no-)cointegration in panel data
characterized by strong cross-sectional dependencies resulting from common
factors as in the study of Bai and Ng (2004). We focus on two polar cases that
we believe are of empirical relevance.

For both classes of DGPs, we discuss the homogeneity restrictions for the
cointegrating vectors resulting from the presence of common factor cointe-
gration. We study analytically the behaviour of several tests for panel
cointegration including Kao (1999) and Pedroni’s (1999, 2004a) residual-
based panel no-cointegration tests that have been widely used in empirical
work in the recent years. The results complement and help to understand some
of the Monte Carlo results reported by Banerjee et al. (2004), such as the loss
of Gaussian limiting results and occurrence of size distortions resulting from
the presence of cross-sectional dependence.

These observations provide sufficient reason to propose a two-step
procedure for testing for no-cointegration in panels with common factors.
Our procedure is similar in spirit and complementary to the work of Banerjee
and Carrion-i-Silvestre (2006). It has the advantages of covering many sub-
cases of interest and allowing us to get a clear picture of the common and

9Tables with the results for these simulations are included in the working paper version of
this paper (Gengenbach et al., 2005).

10Similarly, the PC1 or BIC3 criteria from Bai and Ng (2002) only select a single common factor
for Xi,t.
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idiosyncratic components in the panel and about the homogeneity require-
ments for common factor cointegration. The procedure is simple to apply and
makes use of existing tools. Simulation results show the procedure to have
reasonable size properties.

While being attractive due, among other things, to its ease of application
and nice properties, some limitations are inherent in this approach. The
theoretical validity of the proposed procedure, and that of Banerjee and
Carrion-i-Silvestre (2006), relies on both large N and large T which may be
unrealistic for applications with ‘moderate’ N and large T. The performance of
the proposed procedures, in particular the power properties, in such situations
needs to be further studied even if the size properties reported in the Monte
Carlo section are promising. If a large N analysis is inappropriate for the
problem under study, an alternative could be to adopt the nonlinear
Instrumental Variables (IV) testing approach of Demetrescu and Tarcolea
(2005) or use bootstrapping techniques that seem to work well from an
empirical point of view (see Fachin, 2005). Future work should study the
merits of these alternative approaches both theoretically and empirically.

A second limitation lies in the fact that the approach is residual-based and
hence suffers from the usual critiques against residual-based tests such as the
maintained assumptions of a single cointegrating relationship (if it exists) as
well as the imposition of the common factor restriction. Nothing however
precludes extension of the ideas developed in this paper to other cointegration
techniques that would not suffer from these drawbacks.
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Appendix

Given Assumptions 1–4, we can summarize some convergence results. In the
following lemmas, M is used to denote a generic positive number, not
depending on T or N. For a matrix A, A > 0 denotes that A is positive-definite.
Furthermore, kAk ¼ traceðA0AÞ

1
2. We write the integral

R 1
0 BðrÞ dr as

R
B,

and
R 1
0 BðrÞBðrÞ0dr as

R
BB0. Furthermore, ‘)’ denotes weak convergence, and

‘!p ’ denotes convergence in probability. For any number x, ºxß denotes the
largest integer smaller than x. For any variable Xi,t,

~Xi;t ¼ Xi;t �
1

T

XT

s¼1
Xi;s:

Similarly, for any Brownian motion B, ~B ¼ B�
R

B. Throughout the paper,
we employ sequential limit theory, where we consider T!1 followed by
N!1. Furthermore, for non-random factor loadings,

�K ¼ lim
N!1

1

N

XN

i¼1
Ki;

while for random factor loadings �K ¼ EðKiÞ, W ¼ E(Wi) and D ¼ E(Di).
Lemma 1 presents convergence results for the common data component

KiFt. The limiting distributions are functionals of Brownian motions
weighted by the factor loadings, even as N!1. These results are
intuitive, as we assume a fixed number of common factors. Lemma 2
summarizes the convergence for the idiosyncratic components, where we
recover the panel spurious regression results for Phillips and Moon (1999).
In Lemma 3, the limits for the cross-products of the common and
individual-specific components are given. It is evident that these cross-
products will only affect limiting distributions for finite N, but as N!1
these effects will vanish because of the independence of the shock driving
Ft and Ei,t.

Lemma 1: Common component. Given Assumptions 1, 2 and 4,

(a) 1
T

PT
t¼1

KiftF 0t�1K
0
i ) Kið

R
dBF B0F þHÞK0i as T!1,

and 1
N

PN
i¼1

Kið
R
dBF B0F þHÞK0i !

p R
dBF KB0F K þHF K as N !1,

(b) 1
T 2

PT
t¼1

KiFtF 0t K
0
i ) Kið

R
BF B0F ÞK0i as T !1,

and 1
N

PN
i¼1

Kið
R

BF B0F ÞK0i !
p R

BF KB0F K as N!1,
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(c) 1
T

PT
t¼1

Kift ~F 0t�1K
0
i ) Kið

R
dBF ~B0F þHÞK0i as T !1,

and 1
N

PN
i¼1

Kið
R
dBF ~B0F þHÞK0i !

p R
dBF K~B0F K þHF K as N!1,

(d) 1
T 2

PT
t¼1

Ki ~Ft ~F 0t K
0
i ) Kið

R
~BF ~B0F ÞK0i as T !1,

and 1
N

PN
i¼1

Kið
R

~BF ~B0F ÞK0i !
p R

~BF K~B0F K as N!1,

where

vec

Z
dBF KB0F K

� �
¼ �K vec

Z
dBF B0F

� �
; vecðHF KÞ ¼ �K vecðHÞ;

vec

Z
BF KB0F K

� �
¼ �K vec

Z
BF B0F

� �
;

vec

Z
dBF K~B0F K

� �
¼ �Kvec

Z
dBF ~B0F

� �
and vec

Z
~BF K~B0F K

� �

¼ �K vec

Z
~BF ~B0F

� �
; and �K ¼ p lim

N!1

1

N

XN

i¼1
ðKi � KiÞ:

Lemma 2: Idiosyncratic components. Given Assumption 3,

(a) 1
T

PT
t¼1

ei;tS0i;t�1 )
� R

dBiB0i þ Di
�

as T !1,

and 1
N

PN
i¼1

� R
dBiB0i þ Di

�
!p D as N !1,

(b) 1
T 2

PT
t¼1

Si;tS0i;t )
R

BiB0i as T !1,

and 1
N

PN
i¼1

R
BiB0i !

p 1
2W as N !1,

(c) 1
T

PT
t¼1

ei;t~S0i;t�1 )
� R

dBi~B0i þ Di
�

as T !1,

and 1
N

PN
i¼1

� R
dBi~B0i þ Di

�
!p � 1

2Wþ D as N !1,

(d) 1
T 2

PT
t¼1

~Si;t
~S0i;t )

R
~Bi~B0i as T !1,

and 1
N

PN
i¼1

R
~Bi~B0i !

p 1
6W as N !1.
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Lemma 3. Given Assumptions 1, 2, 3 and 4

(a) 1
T

PT
t¼1

KiFt�1e0i;t ) Ki
R

BF dB0i as T !1,

and 1
N

PN
i¼1

Ki
R

BF dB0i !
p

0 as N !1,

(b) 1
T

PT
t¼1

KiftS0i;t�1 ) Ki
R
dBF B0i as T !1,

and 1
N

PN
i¼1

Ki
R
dBF B0i !

p
0 as N !1,

(c) 1
T 2

PT
t¼1

KiFtS0i;t ) Ki
R

BF B0i as T !1,

and 1
N

PN
i¼1

Ki
R

BF B0i !
p

0 as N !1,

(d) 1
T

PT
t¼1

Ki ~Ft�1e0i;t ) Ki
R

~BF dB0i as T !1,

and 1
N

PN
i¼1

Ki
R

~BF dB0i !
p

0 as N !1,

(e) 1
T

PT
t¼1

Ki ~Ft�1~e0i;t ) Ki
R

~BF dB0i as T !1,

and 1
N

PN
i¼1

Ki
R

~BF dB0i !
p

0 as N !1,

(f) 1
T

PT
t¼1

Kift~S0i;t�1 ) Ki
R
dBF ~B0i as T !1,

and 1
N

PN
i¼1

Ki
R
dBF ~B0i !

p
0 as N !1,

(g) 1
T 2

PT
t¼1

Ki ~Ft~S0i;t ) Ki
R

~BF ~B0i as T !1,

and 1
N

PN
i¼1

Ki
R

~BF ~B0i !
p

0 as N !1.

The proofs of Lemma 1–3 are omitted here. They are included in the
working paper version of this article (Gengenbach et al., 2005).

Proof of Proposition 1(a): convergence of ~b

The LSDV estimator of b is given by

~b ¼
XN

i¼1

XT

t¼1

~Yi;t ~X 0i;t

 ! XN

i¼1

XT

t¼1

~Xi;t ~X 0i;t

 !�1
:
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Consider the numerator

XN

i¼1

XT

t¼1

~Yi;t ~X 0i;t ¼
XN

i¼1

XT

t¼1
ðk01i

~F Y
t

~F X
t
0k21 þ ~EY

i;t
~EX

i;t
0 þ k01i

~F Y
t

~EX
i;t
0 þ ~EY

i;t
~F X

t
0k21Þ:

ð19Þ
If the idiosyncratic term is given by equation (3), we have

XN

i¼1
ðOpðT 2Þ þ OpðT Þ þ OpðT Þ þ OpðT ÞÞ

in equation (19). So, as T!1,

XN

i¼1

1

T 2

XT

t¼1

~Yi;t ~X 0i;t )
XN

i¼1
k01i

Z
~BY

F
~BX

F
0k2i

from the first result of Lemma 1(d). Now, using the second result we obtain

1

N

XN

i¼1
k01i

Z
~BY

F
~BX

F
0k2i!

p
Z

~BY
F K

~BX
F K
0 as N !1;

where
R

~BY
F K

~BX
F K
0 is the 1 · m upper right block of

R
~BF K~B0F K defined in

Lemma 1.
If the idiosyncratic terms are also I(1), such that the DGP includes equation

(4), all terms in equation (19) are Op(T
2) when summed over T. However, the

cross-products of the common factors and idiosyncratic components will
vanish in the limit as N!1. Using Lemmas 1(d), 2(d) and 3(g) we find as
T!1 followed by N!1,

1

N

XN

i¼1

1

T 2

XT

t¼1

~Yi;t ~X 0i;t )
Z

~BY
F K

~BX
F K
0 þ 1

6
WYX ;

where WYX is the upper right 1 · m block of W.
Now the denominator of ~b is given by

XN

i¼1

XT

t¼1

~Xi;t ~X 0i;t ¼
XN

i¼1

XT

t¼1
ðk02i

~F X
t

~F X
t
0k21 þ ~EX

i;t
~EX

i;t
0 þ k02i

~F X
t

~EX
i;t
0 þ ~EX

i;t
~F X

t
0k21Þ:

ð20Þ

Similar to the results for the numerator, the terms in equation (20) are

XN

i¼1

�
OpðT 2Þ þ OpðT Þ þ OpðT Þ þ OpðT Þ

�
;

if the DGP contains equation (3). Hence,
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XN

i¼1

1

T 2

XT

t¼1

~Xi;t ~X 0i;t )
XN

i¼1
k02i

Z
~BX

F
~BX

F
0k2i as T !1:

Furthermore, the remaining term is Op(N), and we obtain

1

N

XN

i¼1

1

T 2

XT

t¼1

~Xi;t ~X 0i;t )
Z

~BX
F K

~BX
F K
0 as T !1

followed by N!1, where
R

~BX
F K

~BX
F K
0 is the lower right m · m block ofR

~BF K~B0F K.
If the true DGP contains equation (4), all terms in the summation over T in

equation (20) are Op(T
2) and as above, the cross-products between common

and idiosyncratic components will vanish in the cross-sectional average as
N!1. We find as T!1 followed by N!1,

1

N

XN

i¼1

1

T 2

XT

t¼1

~Xi;t ~X 0i;t )
Z

~BX
F K

~BX
F K
0 þ 1

6
WXX ;

where WXX is the lower right m · m block of W.
Combining the results given above yields Proposition 1A(a) and B(a). j

Proof of Proposition 1(b): convergence of ~q

The residuals from the first-stage PLS regression are given by ~ui;t ¼
ð1;�~bÞZi;t ¼ Yi;t � ~bXi;t. For the pooled regression given in equation (13)
we have

ð~q� 1Þ ¼
XN

i¼1

XT

t¼2
ð1 � ~bÞDZi;t ~Z 0i;t�1ð1 � ~bÞ0

 !

�
XN

i¼1

XT

t¼2
ð1 � ~bÞ~Zi;t�1~Z 0i;t�1ð1 � ~bÞ0

 !�1
: ð21Þ

For the numerator consider

XN

i¼1

XT

t¼2
DZi;t ~Z 0i;t�1¼

XN

i¼1

XT

t¼2
ðKift ~F 0t�1K

0
iþDEi;t ~E0i;t�1þKift ~E0i;t�1þDEi;t ~F 0t�1K

0
iÞ:

ð22Þ
From Lemma 1(c),

1

N

XN

i¼1

1

T

XT

t¼2
Kift ~Ft�1K

0
i )

Z
dBF K~B0F K þHF K as T !1
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followed by N!1. If the idiosyncratic terms are I(0), i.e. the true DGP is
given by equation (3),

XN

i¼1

XT

t¼2
DEi;t ~E0i;t�1 ¼

XN

i¼1

XT

t¼2

�
ðei;t � ei;t�1Þe0i;t�1 � ðei;t � ei;t�1Þ�e0i

�
;

where

�ei ¼
1

T

XT

t¼1
ei;t:

Now,

1

T

XT

t¼2
ei;te0i;t�1!

p
ci1 as T !1;

with

ci1 ¼ lim
T!1

1

T

XT

i¼1
Eðei;te0i;t�1Þ; and

1

N

XN

i¼1
ci1!

p
c1 as N !1;

with c1 	 E(ci1). Moreover,

1

T

XT

t¼2
ei;t�1e0i;t�1!

p
!i as T !1

and

1

N

XN

i¼1
!i!

p
! as N !1:

Furthermore,

1

T

XT

t¼2
ei;t�e0i!

p
0 and

1

T

XT

t¼2
ei;t�1�e0i!

p
0 as T !1:

Hence,

1

N

XN

i¼1

1

T

XT

t¼2
DEi;t ~E0i;t�1!

p
c1 � ! as T !1

followed by N!1.
For the third term in equation (22) we have as T!1,

1

T

XT

t¼2
Kift ~E0i;t�1 ¼

1

T

XT

t¼2
Kifte0i;t�1 �

1

T

XT

t¼2
Kift�e0i!

p
0:
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Finally, as T!1,

1

T

XT

t¼2
DEi;t ~F 0t�1K

0
i ¼

1

T
ei;T ~F 0T�1K

0 � 1

T
ei;1~F 01K

0 � 1

T

XT

t¼2
ei;t�1f 0t�1K

0
i!

p
0:

Hence, as T!1 followed by N!1,

1

N

XN

i¼1

1

T

XT

t¼2
DZi;t ~Z 0i;t�1 )

Z
dBF K~B0F K þHF K þ c1 � !:

If the idiosyncratic components are I(1) and their true DGP includes
equation (4), such that DEi,t ¼ ei,t and ~Ei;t�1 ¼ ~Si;t�1, using Lemmas 1(c), 2(c)
and 3(d) and 3(f), we obtain as T!1 followed by N!1,

1

N

XN

i¼1

1

T

XT

t¼2
DZi;t ~Z 0i;t�1 )

Z
dBF K~BF K þHF K �

1

2
Wþ D:

For the denominator in equation (21) consider

XN

i¼1

XT

t¼2

~Zi;t�1~Z 0i;t�1 ¼
XN

i¼1

XT

t¼2

�
Ki ~Ft�1~F 0t�1K

0
i þ ~Ei;t�1~E0i;t�1

þ Ki ~Ft�1~E0i;t�1 þ ~Ei;t�1~F 0t�1K
0
i

�
: ð23Þ

If the idiosyncratic components are given by equation (3), we find,

1

N

XN

i¼1

1

T 2

XT

t¼2

~Zi;t�1~Z 0i;t�1 )
Z

~BF K~B0F K as T !1

followed by N!1.
For I(1) idiosyncratic components given by equation (4), we find using

Lemmas 1(d), 2(d) and 3(g)

1

N

XN

i¼1

1

T 2

XT

t¼2

~Zi;t�1~Z 0i;t�1 )
Z

~BF K~B0F K þ
1

6
W

as T!1 followed by N!1. Combining the above given results with those
of A(a) or B(a) yields Proposition 1A(b) and B(b). j

Proof of Proposition 1(c): divergence of t~q

The t-statistic for ~q ¼ 1 is given by

t~q ¼ ð~q� 1Þs�1
XN

i¼1

XT

t¼2
~u2

i;t�1

 !1
2

;

where
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s2 ¼ 1

N

XN

i¼1

1

T

XT

t¼2

�
D~u2i;t þ Opð1Þ

�
:

As

1

N

XN

i¼1

1

T

XT

t¼2
D~u2i;t ¼

1

N

XN

i¼1

1

T

XT

t¼2
ð1 � ~bÞDZi;tD~Z 0i;tð1 � ~bÞ0;

which is Op(1) whether the idiosyncratic components are I(0) or I(1), s2 is
Op(1). Furthermore, T ð~q� 1Þ and 1

N

PN
i¼1

1
T 2

PT
t¼2 ~ui;t�1~u0i;t�1 are Op(1) as

well whether Ei,t is given by equations (3) or (4), as shown above. Hence,

t~q ¼
ffiffiffiffi
N
p

T ð~q� 1Þs�1 1

N

XN

i¼1

1

T 2

XT

t¼2
~ui;t�1~u0i;t�1

 !1
2

¼
ffiffiffiffi
N
p

Opð1Þ;

which diverges at rate
ffiffiffiffi
N
p

as T!1 followed by N!1. j

Proof of Proposition 2(a): convergence of ~bi

For each panel unit i, the estimator of bi is given by

~bi ¼
XT

t¼1

~Yi;t ~X 0i;t

 ! XT

t¼1

~Xi;t ~X 0i;t

 !�1
:

Consider the numerator

XT

t¼1

~Yi;t ~X 0i;t ¼
XT

t¼1
ðk01i

~F Y
t

~F X
t
0k21 þ ~EY

i;t
~EX

i;t
0 þ k01i

~F Y
t

~EX
i;t
0 þ ~EY

i;t
~F X

t
0k21Þ: ð24Þ

If the idiosyncratic term is given by equation (3), we have Op(T
2) +

Op(T) + Op(T) + Op(T) in equation (24). So, as T!1,

1

T 2

XT

t¼1

~Yi;t ~X 0i;t ) k01i

Z
~BY

F
~BX

F
0k2i

from the first result of Lemma 1(d).
If the idiosyncratic terms are also I(1), such that the DGP includes equation

(4), all terms in equation (24) are Op(T
2) when summed over T. Using

Lemmas 1(d), 2(d) and 3(g), we find as T!1,

1

T 2

XT

t¼1

~Yi;t ~X 0i;t) k01i

Z
~BY

F
~BX

F
0k2iþ

Z
~BY

i
~BX

i
0 þ k01i

Z
~BY

F
~BX

i
0 þ
Z

~BY
i

~BX
F
0k21

� �
:

Now the denominator of ~bi is given by
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XT

t¼1

~Xi;t ~X 0i;t ¼
XT

t¼1
ðk02i

~F X
t

~F X
t
0k21 þ ~EX

i;t
~EX

i;t
0 þ k02i

~F X
t

~EX
i;t
0 þ ~EX

i;t
~F X

t
0k21Þ: ð25Þ

Similar to the results for the numerator, the terms in equation (25)
are Op(T

2) + Op(T) + Op(T) + Op(T), if the DGP contains equation (3).
Hence,

1

T 2

XT

t¼1

~Xi;t ~X 0i;t ) k02i

Z
~BX

F
~BX

F
0k2i as T !1:

If the true DGP contains equation (4), all terms in equation (25) are Op(T
2)

and we have, as T!1,

1

T 2

XT

t¼1

~Xi;t ~X 0i;t) k02i

Z
~BX

F
~BX

F
0k2iþ

Z
~BX

i
~BX

i
0 þk02i

Z
~BX

F
~BX

i
0 þ
Z

~BX
i

~BX
F
0k21

� �
:

Combining the results given above yields Proposition 2A(a) and B(a). j

Proposition 2(b): convergence of Z~qNT�1 and ~Z~qNT�1

The residuals from the individual first-stage regression are given by ~ui;t ¼
ð1;�~biÞZi;t ¼ Yi;t � ~biXi;t. Consider first

XT

t¼2
D~ui;t~ui;t�1 ¼

XT

t¼2
ð1; �~biÞDZi;t ~Z 0i;t�1ð1; �~biÞ0: ð26Þ

Now,

XT

t¼2
DZi;t ~Z 0i;t�1 ¼

XT

t¼2
ðKift þ DEi;tÞðKi ~Ft�1 þ ~Ei;t�1Þ0

¼
XT

t¼2
ðKift ~F 0t�1K

0
i þ DEi;t ~E0i;t�1 þ Kift ~E0i;t�1 þ DEi;t ~F 0t�1K

0
iÞ:

ð27Þ
From Lemma 1(c),

1

T

XT

t¼2
Kift ~Ft�1K

0
i )

Z
KiðdBF ~BF þHÞK0i as T !1:

If the idiosyncratic terms are I(0), i.e. the true DGP is given by equation (3),

XT

t¼2
DEi;t ~E0i;t�1 ¼

XT

t¼2

�
ðei;t � ei;t�1Þe0i;t�1 � ðei;t � ei;t�1Þ�ei

�
;
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where

�ei ¼
1

T

XT

t¼1
ei;t:

Now,

1

T

XT

t¼2
ei;te0i;t�1!

p
ci1 as T !1;

with

ci1 ¼ lim
T!1

1

T

XT

i¼1
Eðei;tei;t�1Þ:

Moreover,

1

T

XT

t¼2
ei;t�1e0i;t�1!

p
!i as T !1:

Furthermore,

1

T

XT

t¼2
ei;t�e0i!

p
0 and

1

T

XT

t¼2
ei;t�1�e0i!

p
0 as T !1:

Hence,

1

T

XT

t¼2
DEi;t ~E0i;t�1!

p
ci1 � !i as T !1:

For the third term in equation (27) we have, as T!1,

1

T

XT

t¼2
Kift ~E0i;t�1 ¼

1

T

XT

t¼2
Kifte0i;t�1 �

1

T

XT

t¼2
Kift�e0i!

p
0:

Finally, as T!1,

1

T

XT

t¼2
DEi;t ~F 0t�1K

0
i ¼

1

T
ei;T ~F 0T�1K

0 � 1

T
ei;1~F 01K

0 � 1

T

XT

t¼2
ei;t�1f 0t�1K

0
i!

p
0:

Hence, as T!1,

1

T

XT

t¼2
DZi;t ~Z 0i;t�1 ) Ki

Z
dBF ~BF þH

� �
K0i þ ci1 � !i:
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If the idiosyncratic components are I(1) and their true DGP includes
equation (4), such that DEi,t ¼ ei,t and ~Ei;t�1 ¼ ~Si;t�1, using Lemmas 1(c), 2(c)
and 3(d) and 3(f), we obtain, as T!1,

1

T

XT

t¼2
DZi;t ~Z 0i;t�1 ) K0i

Z
dBF ~B0F þH

� �
K0i þ

Z
dBi~B0i þ Di þ Ki

Z
dBF ~B0i

�

þ
Z

dBi~B0F K0i

�
:

Furthermore, note that the residuals ~vi;t ¼ D~ui;t þ opð1Þ regardless of
whether they were obtained from the poooled regression equation (13) or the
individual regression equation (15). Now,

k̂i ¼ T�1
XJ

s¼1
xsJ

XT

t¼sþ1
~vi;t~vi;t�s

¼ T�1
XJ

s¼1
xsJ

XT

t¼sþ1
D~ui;tD~ui;t�s þ opð1Þ

¼ T�1
XJ

s¼1
xsJ

XT

t¼sþ1
ð1; �~biÞD~Zi;tD~Z 0i;t�sð1; �~biÞ0 þ opð1Þ:

Expanding D~Zi;tD~Z 0i;t�s in terms of the common factors and unobserved
components we obtain the following four terms and convergence results for
suitable choices of bandwidth J and kernel function xsJ. First,

T�1
XJ

s¼1
xsJ

XT

t¼sþ1
Ki

~fi;t
~f 0i;t�sK

0
i!

p
KiXK0i: ð28Þ

Next,

T�1
XJ

s¼1
xsJ

XT

t¼sþ1
Ki

~fi;tD~E0i;t�s!
p
0; ð29Þ

and

T�1
XJ

s¼1
xsJ

XT

t¼sþ1
D~Ei;t

~f 0i;t�sKi!
p
0; ð30Þ

because of the independence of common factors and idiosyncratic com-
ponents. Finally,

T�1
XJ

s¼1
xsJ

XT

t¼sþ1
D~Ei;tD~E0i;t�s!

p
lim

T!1

1

T

XT

t¼1
Eðei;t ~Ei;tÞ; ð31Þ
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which is c1i ) !i if the idiosyncratic components are stationary, and Di if they
are I(1).

Now consider

XT

t¼2
D~ui;t~ui;t�1 ¼

XT

t¼2
ð1; �~biÞDZi;t ~Z 0i;t�1ð1; �~biÞ0: ð32Þ

We have

XT

t¼2

~Zi;t�1~Z 0i;t�1 ¼
XT

t¼2

�
Ki ~Ft�1~F 0t�1K

0
i þ ~Ei;t�1~E0i;t�1

þ Ki ~Ft�1~E0i;t�1 þ ~Ei;t�1~F 0t�1K
0
i

�
: ð33Þ

If the idiosyncratic components are given by equation (3), when summed over T
the first term in equation (33) isOp(T

2), while the remaining three areOp(T). So,

1

T 2

XT

t¼2

~Zi;t�1~Z 0i;t�1 ) Ki

Z
~BF ~B0F K0i as T !1:

For I(1) idiosyncratic components given by equation (4), we find using
Lemmas 1(d), 2(d) and 3(g), as T!1,

1

T 2

XT

t¼2

~Zi;t�1~Z 0i;t�1 )
�

Ki

Z
~BF ~B0F K0i þ

Z
~Bi~B0i þ Ki

Z
~BF ~B0i þ

Z
~Bi~B0F K0i

�
:

We use the block-triangular decomposition of the long-run covariance

matrix of the common non-stationary factors X, such that X ¼ L0L with

L11 ¼ X11 � X021X
�1
22 X21Þ

1
2, L21 ¼ X

�1
2

22X21, and L22 ¼ X
1
2
22, where blocks are

conformable to the partition of BF ¼ ðBY
F
0;BX

F
0Þ0. Note that X22 > 0 by

Assumption 1.
Now, ~BF ¼ L0 ~WF , where ~WF is a demeaned k-vector standard Brownian

motion. Furthermore, denote

g0i ¼ ð1;�~biAÞ and j0 ¼ IkY ;�
Z

~W Y
F

~W X
F
0

� � Z
~W X

F
~W X

F
0

� ��1 !
:

Then,

LK0igi ¼ jL11k1i and g0i~BF ¼ k01iL
0
11

~QF ;

with

~QF ¼ ~W Y
F �

Z
~W Y

F
~W X

F
0

� � Z
~W X

F
~W X

F
0

� ��1
~W X

F :

Finally,
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g0i

Z
dBF ~B0F gi ¼ k01iL

0
11

Z
dQF

~Q0F L11k1i;

and

g0i

Z
~BF ~B0F gi ¼ k01iL

0
11

Z
~QF ~Q0F L11k1i:

Combining the above given results with those of A(a) or B(a) yields the
convergence results for Z~qNT�1 and ~Z~qNT�1. j
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