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Chapter 1

Introduction

Most economic interactions have a recurrent nature. Households continuously de-
cide on consumption and savings, firms frequently adjust their strategic variables,
and governments repeatedly decide on market regulations and budgets. In such
dynamic settings, decisions are not only based on immediate rewards but also on
their influence on future interactions. The dynamic structure of the interactions
allows players to respond to previous actions of other players and to influence fu-
ture decisions by them. The decision making can be complicated further by the
presence of uncertainty over future market conditions.

Typically, when a competitive situation is modeled as a one-shot interaction,
players have no opportunity to reward cooperative behavior and to punish ag-
gressive competitive behavior. In a dynamic setting, players might act mutually
nonaggressive in order to ensure higher profits to all of them. On the other hand,
if a large initial market share can lead to long lasting reputational advantages,
players will compete much more vigorously in the early time periods than they
would in a one-shot interaction. In order to understand mutual aggressive or
nonaggressive behavior by players, dynamic models have to be considered.

Insights in dynamic situations of strategic conflict can be acquired by applying
non-cooperative game theory. The conflict situation is modeled as a game and this
game is subsequently solved to find its equilibria. A game-theoretic equilibrium
prescribes self-enforcing behavior of the players in the sense that none of the
players has an incentive to change his behavior unilaterally. Equilibria provide
information about the strategies of players and consequently market outcomes.

A central concept in economics is the functioning of markets. The field of
economics that studies the strategic behavior of firms, the structure of markets
and their interactions is named industrial organization. In this dissertation re-
search in the field of industrial organization is presented. Dynamic settings of
economic interaction in markets are studied by the application of non-cooperative
game theory. The insights gained in market behavior and outcomes are of ut-
most importance when developing regulatory instruments, as these often affect
the underlying incentive structure.
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Introduction

This dissertation consists of two parts and the parts differ in the market setting
that is considered. The first part of this dissertation considers a sequential auction
setting with one seller and multiple buyers who compete (bid) for winning the
objects and experience positive synergies for winning multiple objects. That is,
buyers can benefit from earlier wins in later auctions. The effect of the synergy on
bidding behavior and payoff, auction revenue, and efficiency is studied. The second
part of this dissertation considers a dynamic duopoly setting in which firms adapt
their prices in alternating time periods. In this part, among others, the effect
of exogenous demand shocks on pricing behavior is studied. Both parts of this
dissertation consist of analytical, numerical, and experimental analyses. In the
subsequent two sections the different parts are introduced in more detail.

1.1 Sequential auctions with synergies

Auctions have been used for the sale of various objects since ancient times. Re-
cently, governments all over the world started using auctions for allocating spec-
trum licenses to companies that wish to provide wireless communication services.
The uncoordinated sequence of UMTS (third generation mobile telecommunica-
tion) auctions by Western European governments between 2000 and 2001 drew
a lot of attention, not only from academics and practitioners but also the pub-
lic at large. When analyzing the results of one of these auctions, it should not
be neglected that the auction was only a subgame of one large game, in which
the objectives of players may have been to create a pan-European network (Van
Damme, 2002). Cramton (2002) indeed argues that one reason for the enormous
revenue in the spectrum auction by the United Kingdom is that it was the first
in the sequence of European UMTS auctions. Winners in the United Kingdom
auction were well positioned for subsequent auctions and hence bidders could view
it as a foot-in-the-door to Europe.

In multi-unit procurement auctions winning multiple contracts can lead to cost
advantages due to synergies. These synergies can be material, for instance owning
specialized equipment, or intangible, such as expertise. A notable characteristic
of procurement is its recurrent nature. Construction contracts, military procure-
ment, and public service contracts are all examples of this recurrence. In these
settings, auctions take place sequentially and have some time periods in between.
A consequence of the presence of synergies in such settings, is that bidders’ valu-
ations become stochastically dependent across auctions.

The literature on sequential auctions with synergies focuses completely on price
trends and revenues. Branco (1997) is the first to explain the empirical observation
of declining prices in sequential auctions of homogeneous objects by the presence
of positive synergies. Jeitschko and Wolfstetter (2002) extend this result to a
sequential auction of stochastically equivalent objects. Next to a declining trend,
the presence of positive synergies also leads to higher revenues for the auctioneer,
which appears positive for, for instance, government procurement. That price
trends are not necessarily declining but can also be increasing is shown by Tang
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1.1 Sequential auctions with synergies

Sørensen (2006) for a setting with heterogeneous objects and discrete valuations.
In the first part of this dissertation the focus is on a sequential auction of two

objects with positive synergies. Bidders then face an exposure problem as they
can end up winning contracts that are too expensive if complementary contracts
are not won. Furthermore, the presence of synergies induces future asymmetries
between bidders which makes the bidding environment more complex. Therefore,
we not only consider price trends and revenues but also the consequences of the
presence of synergies for bidders.

In Chapter 2 it is shown that bidders not only dissipate the complete expected
rent of having synergies but also forgo a part of their intrinsic share. Namely,
the bidding in the first auction is so competitive that bidders have lower total
expected payoffs with than without synergies. Positive synergies form a paradox
in this setting in the sense that bidders actually suffer from the presence of positive
synergies, instead of having benefit from them. This effect has not been observed
for auction settings before. Furthermore, in equilibrium serious losses, and hence,
bankruptcy problems can occur. The negative economic consequences caused by
these bankruptcy problems are of importance for auction design when synergies
are present.

The analysis in Chapter 2 is restricted to second-price sealed-bid auctions,
which are auctions in which the winner pays the second-highest bid. The results
of that chapter also hold for first-price sealed-bid auctions, which are auctions in
which the winner pays his bid, if the equilibrium bidding strategies fulfill certain
conditions. These mild conditions are discussed at the end of Chapter 2, but it
cannot be verified whether these are generally fulfilled. Namely, a closed-form
solution for the equilibrium bidding strategies in an asymmetric first-price auction
with more than two bidders is not available for the setting considered in this part
of the dissertation. In the subsequent two chapters, the performance of the first-
and second-price sealed-bid auctions are compared.

Chapter 3 analytically compares the performance of first- and second-price
sealed-bid auctions for the setting in case of two bidders. It is shown that both effi-
ciency and revenues are higher in the second-price format. However, in this auction
format bidders are also more likely to incur losses which can lead to bankrupt-
cies. Considering the welfare consequences these bankruptcies might have, the
first-price auction can well be preferred, in particular for auctions where potential
synergies are high.

The use of laboratory experimental methods in economics has been growing
rapidly. In addition to analytical research, laboratory experiments can be useful
as a ‘testbed’ for possible auction procedures prior to the final selection of auction
rules. The U.S. Federal Communications Commission (FCC) has made use of
experiments on many occasions in order to get some guidance on which auction
rules to implement for spectrum auctions. Many of these experiments explored
situations in which theory gave little guidance (see Plott (1997), and Ledyard et
al. (1997)).

In Chapter 4 of this dissertation, an experimental analysis of the sequential
auction setting with synergies is presented. The performance of the first- and
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second-price auction format in case of four bidders is compared for a baseline
treatment without synergies and for two treatments with positive synergies of
different sizes. By comparing the experimental data both within and between
the two pricing formats, insights are acquired in how actual bidding behavior
is influenced by the presence of an exposure problem and asymmetries between
bidders. The responsiveness of the bidding, and the probability of making losses
in particular, to the presence and the size of the synergy are important for public
policy. Subjects clearly respond to the incentives the presence of synergies provide
and the aggressiveness of bidding in the first auction increases in the synergy factor.
For small synergies, the first-price format performs better in terms of efficiency,
revenue, and the probability on losses. For a large synergy factor, the performance
of the two pricing formats becomes more similar, although the first-price auction
never performs worse than the second-price auction on any item.

1.2 Alternating price competition

Static duopoly settings were first analyzed by Cournot (1838) for quantity com-
petition and by Bertrand (1883) for price competition. In both of these models
it is assumed that firms simultaneously decide on their strategic variable. If firms
compete against each other in either way for an infinite number of periods, any
equilibrium with payoffs above the competitive level can be supported according
to the Folk Theorem (Friedman, 1971). In contrast, when firms compete for a fi-
nite number of periods the subgame-perfect equilibrium consists of the competitive
static equilibrium being played in every period.

The literature on alternating move models started with the pioneering contri-
bution of Cyert and DeGroot (1970). They note that the reaction functions that
are derived by Cournot (1838) are based on a model in which the decision periods
for the two firms alternate. That is, each decision prevails for two periods, the pe-
riod in which it is made and the period during which the rival makes its decision.
Furthermore, the reaction functions are based on the assumption that the rival
will not change his decision in response to a change by the firm. This assumption
is proved false in each period, but the firms continue to use reaction functions
that are based on this false assumption. Cyert and DeGroot (1970) overcome this
by using an alternating move structure. A different motivation for implement-
ing an alternating move structure is that it captures the idea of short-run price
commitments (Maskin and Tirole, 1987).

Cyert and DeGroot (1970) analyze a duopoly with a long but finite time horizon
in which firms select quantities. They show that the backwards induction strategies
differ from a simple repetition of the competitive equilibrium strategies of the static
model. Although they only consider a finite horizon, they do discuss long-run
prices for a lengthy horizon. Maskin and Tirole (1987) consider the same setting
with an infinite time horizon and show, using a contraction mapping argument,
that the finite horizon equilibrium strategies of Cyert and DeGroot (1970) converge
to their infinite horizon counterparts as the time horizon lengthens.
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Maskin and Tirole (1988) consider a comparable model with homogeneous
products where competition is in prices. It is found that an increase in the discount
factor makes it more worthwhile for a firm to sacrifice current clientele by raising
its price today in the expectation of future profit when the other firm follows suit.
Furthermore, they show that two Markov perfect equilibria coexist: a focal price
equilibrium and an equilibrium consisting of Edgeworth cycles. In the focal price
equilibrium both firms split the market at the monopoly price. In an Edgeworth
cycle, firms successively undercut the price of the other until the war becomes too
expensive and one firm increases its price. Next, the other firm responds with a
match or a slight undercut, after which the process of undercutting resumes.

In Chapter 5 an experimental analysis of the model by Maskin and Tirole (1988)
is conducted in order to see whether the focal price equilibrium or the equilibrium
consisting of Edgeworth cycles emerges. The focal price equilibrium is observed
in a strict majority of the observations and hardly any support is found for the
equilibrium consisting of Edgeworth cycles. Furthermore, the setting is analyzed
for a long but finite time horizon. The subgame-perfect equilibrium consists of
Edgeworth cycles and these cycles are different from those of the Markov perfect
equilibrium. Strikingly, the backwards induction strategies do not converge to
the Markov perfect equilibrium for the infinite time horizon when the horizon
lengthens. Experimentally, a focal price is still observed in the majority of the
observations. Nevertheless, price cycles are observed far more often than for the
infinite time horizon.

The techniques used in the analysis of duopolies that compete in prices depend
heavily on whether the goods sold are homogenous or heterogenous. Eaton and
Engers (1990) consider a similar model as Maskin and Tirole (1988) but then
in a differentiated product market. They consider a linear city where half of all
consumers are located at one of the endpoints and the other half at the other
endpoint. They find that two kind of equilibria exist: a disciplined one that
is enforced by threats to undercut and that arises when the products are close
substitutes, and a spontaneous one in which such threats are not needed and that
arises when the products are more differentiated.

Baye and Ueng (1999) consider an alternating move price setting environment
with differentiated products and linear demand functions. Using the techniques of
Maskin and Tirole (1987) they find closed-form solutions for the Markov perfect
equilibrium prices. It is found that in equilibrium prices are strictly higher than
the one-shot Nash equilibrium prices, but lower than fully collusive prices.

Eckert (2004) introduces uncertainty in the model of Maskin and Tirole (1988)
by making the marginal cost stochastic. It is shown that, provided marginal costs
do not fluctuate excessively, equilibria in which firms match the current monopoly
price do not exist when the probability is low that the marginal cost remain in their
current state. However, focal price equilibria in which firms always match their
rival along the equilibrium path do exist. A similar result is found for fluctuating
demand and constant marginal costs.

The basic model of horizontal differentiation was introduced by Hotelling (1929).
For an infinite time horizon, the Hotelling model with linear transportation costs
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is discussed by Rath (1998). However, after the firms have chosen location they
repeatedly set prices simultaneously. Firms have to resort to ‘carrot-and-stick’
strategies in order to sustain the cooperative outcome with prices above the base
level from the static model.

Chapter 6 considers an infinite alternating move Hotelling model in which
consumers are uniformly distributed over the market. The unique linear stationary
subgame-perfect equilibrium is determined analytically by applying the techniques
of Maskin and Tirole (1987). The equilibrium is found to be dynamically stable
as the dynamic reactions converge to a steady state. Moreover, the equilibrium
is found numerically. The steady state price turns out to increase in the discount
factor and thus firms become less aggressive the more patient they are. The model
is then extended by introducing exogenous demand shocks. The introduction of
uncertainty into the model has fundamental consequences as the analytical solution
can not be found anymore via the conventional analysis. However, the equilibrium
can still be found numerically. It is found that in equilibrium, pricing behavior is
more competitive when the demand is high and that, in the long-run, prices are
higher in case of low demand than in case of high demand. Thus, the observed
prices move countercyclically.

In Chapter 7 an alternating move Hotelling setting with exogenous demand
shocks is experimentally analyzed. Market demand can either be low or high and
the probability of a change from one state to the other is constant. Three treat-
ments are tested which differ in the size of the market demand in the high-state
and the transition probability. Both within and between treatments, a comparison
is made between the prices and profits in case of low and high demand. No signif-
icant differences between average prices and profits in mature behavior are found.
The reason for this is that subjects collude in the majority of the observations.

6
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Chapter 2

The paradox of positive
synergies

Winning multiple contracts in multi-unit procurement auctions can lead to cost ad-
vantages due to synergies. In this chapter1 we analyze the effects of the presence of
such synergies on auction outcomes. We find that the presence of positive synergies
on the bidders’ side reduces the bidders’ ex ante expected payoffs. Thus, instead of
benefiting from the presence of synergies, bidders suffer from it. Furthermore, it is
found that serious losses and hence bankruptcy problems can occur. In particular
the negative economic consequences caused by these bankruptcy problems are of
major importance for auction design when synergies are present.

2.1 Introduction

A distinguishing characteristic of procurement auctions is their recurrent nature.
These auctions take place sequentially with time periods between them. Construc-
tion contracts, military procurement and the uncoordinated sequence of European
spectrum auctions during 2000 and 2001 are examples of such sequential settings.
Furthermore, large-scale projects frequently need to be divided into small pieces
or subprojects which are then procured sequentially. This can be due to the fact
that the project as a whole is too complex to auction at once. Also, there may
be too few firms with sufficient resources to complete the project as a whole or
essential facilities cannot be shut down simultaneously (Yildirim, 2004).

In multi-unit procurement auctions winning multiple contracts can lead to
cost advantages due to synergies. These synergies can be material, for instance
owning specialized equipment, or intangible, such as expertise. A consequence for
the settings above is that bidders’ valuations are stochastically dependent across
auctions and this changes the auctions fundamentally.

1This chapter is based on Leufkens, Peeters, and Vermeulen (2006).
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The paradox of positive synergies

Hendricks and Porter’s (1988) study of drainage lease auctions was the first em-
pirical study to show that interdependencies among the values of objects affect the
outcome of a sequential auction. Ausubel et al. (1997) show that synergies asso-
ciated with winning multiple adjacent licenses in the United States spectrum auc-
tions affected bidding strategies. Rusco and Walls (1999) find that in timber auc-
tions spatial correlation of bids induces more aggressive bidding. De Silva (2005)
finds the same for road construction auctions in Oklahoma. De Silva et al. (2005)
show that in sequential construction auctions by the Oklahoma Department of
Transportation previous winners are more likely to win in later auctions. Finally,
Cramton (2002) argues that one reason for the enormous revenue in the spectrum
auction by the United Kingdom is that it was the first in the sequence of UMTS
auctions throughout Europe (see also Van Damme (2002)). Winners in the UK
auction were well positioned for subsequent auctions and hence bidders could view
it as a foot-in-the-door to Europe.

The theoretical literature on auctions is voluminous. Much interest in multi-
unit auctions has been generated by the spectrum auctions that were conducted
all over the world. The literature on sequential auctions with synergies focuses
completely on revenues and price trends. Branco (1997) was the first to attribute
the empirical observation of declining prices in auctions of homogeneous objects
to the presence of positive synergies. Jeitschko and Wolfstetter (2002) extend
this result to a sequential auction of stochastically equivalent objects. Next to a
declining trend, the presence of positive synergies also leads to higher revenues for
the auctioneer, which appears positive for, for instance, government procurement.

In this chapter, we show that for a sequential auction with synergies it is not
only important to consider efficiency and prices, but also the consequences for
bidders. We analyze a sequential auction of two objects, which are stochastically
equivalent in the sense that both valuations are independent draws from the same
distribution, and synergies lead to an increase in the valuation for the second
object. It is found that bidders not only dissipate the complete expected rent
of having synergies but also forgo a part of their intrinsic share. The bidding in
the first auction is so competitive that bidders have lower total expected payoffs
with than without synergies. Thus, bidders are worse off when positive synergies
are present than when this is not the case. This is an effect that has not been
observed in previous studies. We also find that in equilibrium serious losses, and
hence, bankruptcy problems can occur. We study how the probability on losses is
related to the valuation distribution, the synergy factor, and the number of bidders.
The negative economic consequences caused by these bankruptcy problems are of
importance for auction design when synergies are present.

A closed-form solution for the equilibrium bidding strategies in an asymmetric
first-price sealed-bid auction is not always available (see Plum (1992)). Therefore,
we restrict the analysis to the second-price sealed-bid auctions. At the end of this
chapter, we discuss which condition must hold for the equilibrium bidding strategy
in an asymmetric first-price sealed-bid auction for our results to apply also there.

The remainder of this chapter is organized as follows. In Section 2.2 the model
is described. The equilibrium bidding strategies and its properties are given in

10
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Section 2.3. In Section 2.4, we analyze the economic consequences. In particular,
we discuss the bidders’ ex ante expected payoffs, the probability that bidders
make losses, prices and price trends, and efficiency. In Section 2.5, we illustrate
our findings by means of three examples. The chapter ends with a discussion in
Section 2.6.

2.2 The model

We consider a private value auction with n ≥ 2 risk neutral bidders. Two stochas-
tically equivalent objects are auctioned sequentially using the second-price sealed-
bid format.2 Bidders’ valuations are distributed according to the differentiable, cu-
mulative distribution function F (v) with associated density function f(v) on the in-
terval [0,∞). In particular, F (0) = 0, F is non-decreasing, and limv→∞ F (v) = 1.
We assume that the expected valuation is finite, thus E(v) =

∫∞
0

vf(v) dv < ∞.
Valuations are individually uncorrelated, drawn independently from the same iden-
tical distribution at the start of each auction, and private information.

Although no bidder knows his valuation for the second object during the first
auction, it is common knowledge that winning the first auction increases this
valuation by a factor s > 1. This synergy factor only applies to the valuation for
the second object, v2. Winning the first auction then increases the second auction
valuation from v2 to sv2, but does not have any effect on the first auction valuation
v1.

After each auction, the bidders are informed whether or not they won the
auction. Whether the identity of the winner and the winning bid are made public
or not, is irrelevant in this setting. The first auction informs every bidder whether
he or one of his opponents benefits from synergies in the second auction. However,
it does not convey any information on the actual valuations of bidders in the second
auction. We rule out the possibility of a resale of the first object after the second
auction.

As mentioned before, Branco (1997) was the first to attribute declining prices
to the presence of positive synergies. He transformed the model of Krishna and
Rosenthal (1996) into a sequential auction of two identical objects. Winning both
objects increases the payoff for the bidder with a positive constant amount.

Menezes and Monteiro (2004) criticize this way of modeling synergies by noting
that for valuations close to zero the marginal synergy is infinite. The synergy
between two highly valued objects is the same as between two worthless objects.
Therefore they define the valuation for both objects as a function of the value of
one. If this function is larger or smaller than two times the value of one object,
there are respectively positive or negative synergies.

Jeitschko and Wolfstetter (2002) depart from these models by analyzing a
sequential auction of two nonidentical objects. In their model, two bidders are
active in both auctions and a bidder’s valuation in the second auction is uniformly

2Although most applications are in procurement settings, we follow the convention and analyze
‘highest bid wins’ auctions for expositional ease and without loss of generality.
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The paradox of positive synergies

distributed between zero and one without synergy, and between zero and two
with synergy. The focus in this chapter is fundamentally different from theirs.
Furthermore, our approach to a sequential second-price sealed-bid auction with
synergies is more general.

Our approach to modeling positive synergies is comparable to the way Black
and De Meza (1992) model negative synergies. The benefits from synergies are
only attributed to the second project, considering the order in which projects are
executed. For instance, expertise is created during the first project, and this only
gives benefits during the second.

We ensure there is a relationship between the benefits due to synergies and
the intrinsic value of the second object. The actual gain due to synergies depends
on the combination of the synergy factor and the drawn valuation for the second
object. One expects to complete a project at only a fraction of the costs if one has
expertise, but the possible cost reduction then depends on the normal costs of the
second project.

Our model resembles Engelbrecht-Wiggans’ (1994) in having bidders’ valua-
tions drawn independently across objects and only be known at the start of each
auction. This is applicable since there are time periods in between auctions. Then,
the exact valuation for the second object is not known at the time the first auction
takes place.

We end this section by introducing some notation. We write bki and vki for
respectively the bid and valuation in auction k = 1, 2 of bidder i = 1, . . . , n. In the
second auction the winner of the first auction is denoted by w and bidder ` refers to
one of the n− 1 bidders that did not win the first auction. Because of symmetry,
we only have three different expected payoffs in our setting. By π̄1i we denote
the expected instantaneous payoff for bidder i in the first auction, prior to the
realization of the valuations for this auction. By π̄2w (π̄2`) we denote the expected
instantaneous second auction payoff of the winner (a loser) of the first auction,
prior to the realization of the valuations for the second auction. For comparisons
we sometimes refer to the expected instantaneous payoff of a symmetric one-shot
auction, which is denoted by π̄. In our setting, the expected price of auction k,
p̄k, is also prior to the realization of the valuations and thus precisely the seller’s
expected revenue of that auction. The seller’s expected total revenue from the
auction sequence is denoted by R̄ and the expected total payoff for bidder i is
denoted by µ̄i, both are prior to the realization of valuations. Finally, probabilities
are denoted by P and expectations by E.

2.3 The equilibrium bidding strategies

In this section, we give the equilibrium bidding strategies and discuss the conse-
quences of the presence of synergies for bidding behavior.

The equilibrium bidding in the second auction is fairly straightforward. Each
bidder bids his value, where the winner of the first auction takes the synergy factor
into account to determine his value. Therefore, the actual value of winning the
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first auction is not only the value of the first object but also the difference in the
expected instantaneous payoff of the second auction between winning and losing
the first auction. This difference in the expected instantaneous second auction
payoff is denoted by ∆, and will be referred to as the option value. We then
obtain the following equilibrium in weakly dominant strategies.3

Proposition 2.1 Consider a sequential second-price sealed-bid auction with in-
dependent, individually uncorrelated valuations, n risk-neutral bidders, two objects
and synergy factor s. In this auction the bidding strategies given by

b∗1i = v1i + ∆ with ∆ = π̄2w − π̄2`

and

b∗2i =

{
v2i if the first auction is lost;

sv2i if the first auction is won.

constitute a symmetric linear Bayesian Nash equilibrium in weakly dominant stra-
tegies.4

Proof At the beginning of the second auction, all bidders know the outcome of
the first auction. The equilibrium bidding strategies for the second auction then
follow directly from standard auction theory. The actual value of winning the first
auction is then a bidder’s valuation of the object plus ∆. 2

According to the equilibrium bidding strategies of Proposition 2.1, in the first auc-
tion all bidders markup their single-stage bid with the option value ∆. Explicit
expressions for π̄2w, π̄2`, and three useful expressions for ∆ are provided in Sec-
tion 2.7. Lemmas related to some properties of ∆, which will be referred to below,
are given in Section 2.8.

We now discuss the impact of the markup by the option value ∆ on the first
auction bidding.

Theorem 2.2 For any synergy factor s > 1, the option value ∆ is strictly larger
than zero. Moreover, for a fixed number of bidders, ∆ is strictly increasing in s,
and ∆ →∞ as s →∞.

Proof Expression 2.3 for ∆, which is given in Section 2.7, reads

∆ =
∫ ∞

0

f(x)
∫ sx

x

Fn−2(v) dv dx.

This expression is strictly increasing in s. Moreover, it is clear that ∆ = 0 for
s = 1. Finally, by Lemma 2.12, ∆ is divergent in s. 2

We obtain the following corollary.

3For synergy factor s = 2 and uniform distribution of valuations this equilibrium was already
shown in Jeitschko and Wolfstetter (2002).

4By linear we mean linear in valuation.
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Corollary 2.3 Bidding behavior in the first auction becomes more competitive for
increasing values of the synergy factor.

The effect of an increase in the number of bidders is more subtle. Let K > 0 be
the smallest number for which F (K) = 1.5

Theorem 2.4 Suppose the synergy factor s is fixed. Assume that K < ∞. Then

∆ → P[sv ≥ K] · E[sv −K | sv ≥ K] as n →∞.

When K = ∞, then ∆ → 0 as n →∞.

The proofs can be found in Lemma 2.13 and Lemma 2.14. We obtain the following
corollary.

Corollary 2.5 When K < ∞, and the number of bidders increases, competition
in the first auction is enhanced by the presence of synergies. When K = ∞, bidding
behavior in the first auction converges to the bidding behavior in a symmetric one-
shot auction when the number of bidders increases.

Proof For K < ∞, the above assertion follows from the proof to Lemma 2.13
together with the observation that, since sv > K for all v in the interval (K/s, K],
the expression

lim
n→∞

∆ = P[sv ≥ K] · E[sv −K | sv ≥ K]

is strictly positive. The assertion regarding the case K = ∞ is an immediate
consequence of the proof to Lemma 2.14.6 2

We end this section by discussing the properties of the bidding strategies in the
second auction. From the equilibrium bidding strategies, it follows that all bid-
ders bid the synergy-adjusted value. That is, the first auction losers bid their
second auction valuation, and the first auction winner bids his second auction val-
uation multiplied by the synergy factor. The positive synergy factor induces the
first auction winner to upgrade his bid accordingly, and subsequently increase his
probability to win. In fact, when K < ∞ and the first auction winner’s second
auction valuation is above K

s , his bidding will not leave any opportunity for a first
auction loser to win.7

2.4 Economic implications

In this section the economic implications of the presence of synergies in the se-
quential auction setting are discussed. First, the consequences of synergies for the
bidders’ and the auctioneer’s ex ante expected payoffs are analyzed. Then, the
probability that bidders make losses is studied. Next, we focus on prices and price
trends. Finally, the consequences for efficiency are discussed.

5This is a valid definition since F is continuous. We allow for K = ∞.
6Notice that this does not assert monotonic behavior for K = ∞.
7Note that in this case any bid by bidder w above K

s
is rational. This will not influence any

of the results given in the remainder of this chapter.
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2.4.1 Ex ante expected payoffs

The difference between the expected instantaneous payoff of the first auction in
a situation with synergies when compared to the situation without synergies, is
that in the former the winner pays an amount of ∆ in addition to the price of
the latter situation. The winner has to pay the second highest valuation plus the
option value ∆. This means that the synergy has no effect on the probability to
win but only on the price. Consequently, the expected first auction instantaneous
payoff is lower when synergies are present. Moreover, the expected instantaneous
payoff of the first auction is decreasing in the synergy factor, since we know from
Theorem 2.2 that ∆ is increasing in the synergy factor. This leads to the following
theorem on a bidder’s total ex ante expected payoff of the two auctions.

Theorem 2.6 The ex ante expected total payoff for bidders is lower with than
without synergies. Moreover, the ex ante expected total payoff is decreasing in the
synergy factor and convergent to the expected instantaneous payoff of a symmetric
one-shot auction.

Proof The first auction winner pays, besides the price he would pay if there
was only a single auction, the difference in the expected payoff of the second
auction between winning and losing the first auction. This means that the ex ante
expected total payoff, µ̄, of the auction sequence as a whole equals the expected
instantaneous payoff of a single auction without synergies, π̄, plus the expected
payoff in the second auction when the first auction has been lost:

µ̄ = π̄1i + 1
n π̄2w + n−1

n π̄2` = π̄ − 1
n (π̄2w − π̄2`) + 1

n π̄2w + n−1
n π̄2` = π̄ + π̄2`.

From Section 2.7 we know that

π̄2` =
∫ ∞

0

vFn−2(v)F (v/s)f(v) dv −
∫ ∞

0

svFn−2(sv)f(v)(1− F (sv)) dv

−(n− 2)
∫ ∞

0

vFn−3(v)F (v/s)f(v)(1− F (v)) dv

≤
∫ ∞

0

vFn−2(v)F (v/s)f(v) dv.

Since π̄2` ≥ 0, and the latter expression converges to zero as s →∞ by Lebesgue’s
Monotone Convergence Theorem, we obtain that π̄2` → 0 as s →∞. 2

The ex ante expected total payoff is decreasing in the synergy factor. This means
that the larger the possible benefit from synergies becomes, the smaller the ex-
pected total payoff of the bidders will be. The ex ante expected total payoff of the
bidders converges to the expected payoff of a symmetric one-shot auction. Since
the ex ante expected total payoff is always larger than the possible expected payoff
of a single auction, bidders will participate in both auctions.

It is well known that (part of) a possible rent is dissipated during the competi-
tion for that rent. However, in our model not only the possible rent is completely
dissipated, bidders are even worse off than in a setting without synergies. When
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the synergies are large, bidders have half the ex ante expected total payoff they
would have if there were no synergies (the sequence would then consist of two
one-shot auctions). Given the fact that the total surplus that is divided between
the seller and the bidders is larger with than without synergies, Theorem 2.6 is
surprising. Instead of benefiting from the presence of synergies bidders suffer from
it. Positive synergies form a paradox in this setting in the sense that bidders actu-
ally suffer from the presence of positive synergies, instead of having benefit from
them.8

Next, we determine the effect of the synergy factor on the seller’s revenue.
The seller’s ex ante expected revenue from the auction sequence is the sum of the
expected prices of the two auctions: R̄ = p̄1 + p̄2. The expected prices of both the
first and second auction are increasing in the synergy factor. For the first auction,
we know from Theorem 2.2 that ∆ is increasing in the synergy factor and it then
follows from Proposition 2.1 that the expected price is increasing in the synergy
factor. In the second auction, the n− 1 losers bid as if there are no synergies and
the winner bids sv. Consequently, the expected price in the second auction must
also be increasing in the synergy factor. This leads to the following theorem.

Theorem 2.7 The expected total revenue for the seller is increasing in the synergy
factor.

Theorem 2.6 shows that the increase in the revenue of the seller is not only due
to the increased surplus that is divided. The seller also captures a part of the
payoffs bidders originally had. The gain from synergies for the seller is more than
the value of the synergies itself.

2.4.2 Probability of losses

The uncertainty concerning the benefits from synergies leads to an exposure prob-
lem in the sequential auction. Bidders bid above their valuation in the first auction,
and consequently it is possible that the instantaneous payoff of the first auction
is negative. The winner of the first auction may not win the second auction, or
win it but still not recover the loss of the first auction. The total payoff of the
sequential auction as a whole is then negative. We compute the probability that
this event happens; in particular, in two limit cases: one where the synergy factor
is large, and one where the number of bidders is large.

We start with an analysis of the probability that the bidders make a loss when
the synergy factor becomes large. Given a synergy factor s, let P (s) denote the
ex ante probability in the auction that the winner of the first auction makes a loss
when the synergy factor is s. We prove the following statement.

Theorem 2.8 lim inf
s→∞

P (s) ≥ P[v < E(v)].

Proof Notice that, due to the bidding strategies, the winner of the first auction
pays at least ∆. Now, suppose that bidder i won the first auction. When the

8By paradox we do not mean a paradox in the purely mathematical sense, but the counter-
intuitive fact that positive synergies are in fact a burden instead of a blessing for the bidders.
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realization of valuations for bidder i is (v1i, v2i) and v1i + sv2i < ∆, bidder i
certainly makes a loss, no matter whether he wins or loses the second auction.
Thus,

P (s) ≥ P[v1i + sv2i < ∆ | i wins the first auction ].

Consequently, it suffices to show that, given ε > 0,

P
[

v1i

s + v2i < ∆
s | i wins the first auction

] ≥ P[v < E(v)]− ε

for s sufficiently high. Take ε > 0. Since limv→∞ F (v) = 1 we can take V > 0
such that F (V ) > 1− ε. Then, P[v1i < V ] ≥ 1− ε. Take s̄ such that, for all s > s̄,
V
s < ε and ∆− V

s ≥ E(v)− ε. Then for s > s̄,

P
[

v1i

s + v2i < ∆
s | i wins

]

= P[v1i ≥ V ] · P [
v1i

s + v2i < ∆
s | i wins, v1i ≥ V

]

+ P[v1i < V ] · P [
v1i

s + v2i < ∆
s | i wins, v1i < V

]

≥ (1− ε) · P [
v1i

s + v2i < ∆
s | i wins, v1i < V

]

≥ (1− ε) · P [
V
s + v2i < ∆

s | i wins, v1i < V
]

= (1− ε) · P [
v2i < ∆−V

s | i wins, v1i < V
]

= (1− ε) · P [
v < ∆−V

s

]

≥ (1− ε) · P [v < E(v)− ε] .

The proof is complete once we observe that the probability P[v < E(v) − ε] con-
verges to P[v < E(v)] as ε → 0. 2

Theorem 2.8 roughly states that, for large synergy factors s, the probability that
the winner of the first auction makes a loss is at least P[v < E(v)]. Thus, the loss
effect is particularly severe for distributions where a bidder has a high probability
of a relatively low valuation, and a rather small probability to have an extremely
high valuation.

Next, we analyze the probability that the bidders make a loss when the number
of bidders becomes large. Given the number of bidders n, let P (n) denote the ex
ante probability in the auction that the winner of the first auction makes a loss.
The asymptotic behavior of the probability P (n) is different for K < ∞ and
K = ∞. We treat both cases separately.

Theorem 2.9 Suppose that K < ∞. Then,

lim inf
n→∞

P (n) ≥ P
[
sv < P[sv ≥ K] · E[sv −K | sv ≥ K]

]
.

Proof Assume without loss of generality that bidder i won the first auction. The
probability that bidder i makes a loss is larger than or equal to the probability
that v1i + sv2i < p1 + ∆, where p1 denotes the price in the first auction. Now,
take ε > 0 and δ > 0. Notice that,

P[v1i + sv2i < p1 + ∆ | i wins ] ≥ P[v1i < p1 + δ | i wins ] · P[sv2i ≤ ∆− δ].
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Now notice that, keeping δ fixed,

P[v1i < p1 + δ | i wins ] → 1 as n →∞
Thus, it suffices to show that, for δ sufficiently small,

P[sv ≤ ∆− δ] ≥ P
[
sv < P[sv ≥ K] · E[sv −K | sv ≥ K]

]
− ε as n →∞

By Lemma 2.13 we know that, for fixed δ,

P[sv ≤ ∆− δ] → P
[
sv ≤ P[sv ≥ K] · E[sv −K | sv ≥ K]− δ

]
as n →∞

Now, we can take a δ sufficiently small so that

P
[
sv ≤ P[sv ≥ K] · E[sv −K | sv ≥ K]− δ

]

≥ P
[
sv < P[sv ≥ K] · E[sv −K | sv ≥ K]

]
− 1

2ε

and, given this δ, we can take a N such that for all n > N we have

P[sv ≤ ∆− δ] ≥ P
[
sv ≤ P[sv ≥ K] · E[sv −K | sv ≥ K]− δ

]
− 1

2ε.

Combined, these two choices give the result. 2

For s > 1 the expression P[sv ≥ K] · E[sv −K | sv ≥ K] is strictly positive, and
therefore Theorem 2.9 implies that for a large number of bidders the probability
that a bidder makes a loss is strictly positive as well. Thus, the probability of
losses is also present in this setting with a large number of bidders, although the
effect is not as drastic as in the case we discussed earlier where the synergy factor
is large.

Theorem 2.10 Suppose that K = ∞. Then P (n) → 0 as n →∞.

Proof Notice that P (n) is smaller than or equal to the expression

1−
n∑

i=1

P[sv2i ≥ ∆]
n

= 1− P[sv ≥ ∆].

However, by Lemma 2.14, P[sv ≥ ∆] → 1 as n →∞. 2

Apparently, when K = ∞ the probability of losses vanishes when the number of
bidders becomes sufficiently large. The intuition is that, for a fixed synergy factor
s, even when a bidder wins the first auction the probability of winning the second
auction as well becomes very small when the number of bidders increases. This is
due to the fact that, when K = ∞, arbitrarily high valuations are possible. This
lowers the value of ∆, and hence increases the probability that sv > ∆.

In this subsection, we analyzed the probability that bidders make losses in
relation to the valuation distribution, the synergy factor and the number of bidders.
In any case, the ex ante expected total payoff of the sequential auction is, of course,
nonnegative for bidders. Therefore, the losses that bidders can make in equilibrium
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are not a major concern when these bidders enter many similar settings. However,
some projects may be much larger than others and typically such projects are not
auctioned regularly. The spectrum auctions, special military procurement, and
large building projects are all examples of this. Then, losses made on one project
are difficult to be recovered and bankruptcy problems are likely to occur.

2.4.3 Prices

We now turn to price trends. There is ample empirical evidence of declining price
trends in sequential auctions, which is known as the declining price anomaly or af-
ternoon effect. For instance, declining prices are observed in wine auctions (Ashen-
felter, 1989), real estate auctions (Ashenfelter and Genesove, 1992), and impres-
sionist and modern paintings auctions (Beggs and Graddy, 1997). Branco (1997)
was the first to attribute the declining price anomaly to the presence of posi-
tive synergies, a theoretical finding that was extended to heterogenous objects by
Jeitschko and Wolfstetter (2002). For heterogeneous objects with discrete valu-
ations Tang Sørensen (2006), on the other hand, shows that prices can both be
increasing or decreasing.

In our setting, all bidders increase their first auction bids with the aim of
obtaining an advantage for the second auction. The only change in the bids of
the second auction is the increased bid of the participant of type w. Therefore,
it can be that the expected price is higher in the first auction than in the second
auction. The expected price for the first object equals the expected second highest
valuation plus ∆. The expected price in the second auction is the sum of the
expected payments made by each of the n − 1 bidders of type ` and the single
bidder of type w. The expected prices in both auctions are then

p̄1 = n(n− 1)
∫ ∞

0

(v + ∆)Fn−2(v)f(v)(1− F (v)) dv

and

p̄2 = (n− 1)
∫ ∞

0

vFn−2(v)f(v)(1− F (v/s)) dv

+ (n− 1)
{∫ ∞

0

svFn−2(sv)f(v)(1− F (sv)) dv

+ (n− 2)
∫ ∞

0

vFn−3(v)F (v/s)f(v)(1− F (v)) dv
}

.

Declining prices will be observed if

p̄1 > p̄2 ⇐⇒
∫ ∞

0

vf(v)G(v) dv > 0

where

G(v) = (n− 1)[sFn−1(sv)− nFn−1(v) + (n− 1)Fn−2(v)F (v/s)]

− (n− 2)[sFn−2(sv)− (n− 1)Fn−2(v) + (n− 2)Fn−3(v)F (v/s)].
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Rewriting the above expression for G(v) yields

p̄1 > p̄2 ⇐⇒
∫ ∞

0

f(v)
∫ sv

v

[
(n− 1)Fn−1(x)− (n− 2)Fn−2(x)

]
dx dv > 0.

In Section 2.5, we show that in case of uniformly distributed valuations, prices are
declining for any number of bidders and any synergy factor. Moreover, for any
distribution function declining prices are found if the synergy factor is sufficiently
large.

Theorem 2.11 For any F (v) and n ≥ 2 there exists some s̄ such that for any
s > s̄ a declining price trend will be observed.

Proof From Lemma 2.12 it follows that p̄1 diverges as s →∞. However, for any
synergy factor s, p̄2 is smaller than or equal to the expected value of the high-
est valuation in the single auction without synergies, that is, the expected value
of the random variable maxi{vi}. To see this, observe that, for any realization
(v21, . . . , v2n) in the second auction, in case the winner of the first auction wins
the second auction, we have p2 ≤ maxi{v2i} and also in case another bidder, say
j, wins the second auction we have p2 ≤ maxi{v2i}, because p2 ≤ v2j . Finally,
recall that in our model E(v) < ∞. Now, the above statement follows from the
observation that E(maxi{vi}) ≤ nE(v). 2

Nevertheless, within our model declining prices are in general not guaranteed. In
Section 2.5 an example is given where prices are increasing.

2.4.4 Efficiency

In the first auction the bidder with the highest valuation wins. The winner of
the second auction is the bidder with the highest valuation for the second object,
taking positive synergies into account. The sequential auction is therefore efficient
ad interim.

Ex post it might have been better if a different bidder had won the first auction
and there are two types of inefficiencies that may occur. First, two different bidders
win one object whereas it would have been better that a single bidder (not the
first auction winner) had won both objects. Second, a bidder wins both objects
whereas it would have been better had a different bidder won both auctions.

Under the first type of ex post inefficiency, bidder i has the highest valuation
in the first auction and thus wins that auction. However, his synergy-adjusted
second auction valuation is not sufficient to win the second auction and therefore
it might have been better had a different bidder won the first auction. This bidder
could be the winner of the second auction or a bidder that originally does not win
any auction. This type of ex post inefficiency occurs if there exist bidders i and k
(i 6= k), such that v1i > v1j for all j 6= i, v2k > sv2i and v2k > v2j for all j 6= i, k,
but there exists a bidder j 6= i such that v1j + sv2j > v1i + v2k.

The second type of ex post inefficiency can occur if the second auction valuation
of bidder i is lower than the valuation of at least one other bidder j, but bidder
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i still wins the second auction due to the synergies. For instance, a bidder’s first
auction valuation could be marginally below that of bidder i and his synergy-
adjusted second auction valuation could more than offset this. This type of ex
post inefficiency occurs if there exists a bidder i, such that v1i > v1j for all j 6= i
and sv2i > v2j for all j 6= i, but there exists a bidder j 6= i such that v1j + sv2j >
v1i + sv2i.

Without synergies the sequential auction is efficient ex post. Due to the syner-
gies the valuations are stochastically dependent across auctions and only then the
lack of information can give rise to an ad interim efficient but ex post inefficient
allocation. When the synergies become large, the probability of a non-optimal ex
post allocation converges to n−1

n . In the limit the allocation is only optimal if the
bidder that wins the first auction also draws the highest valuation in the second
auction.

2.5 Examples

In this section we illustrate our findings by means of three examples. The first
example considers a (trivial) case where there are no losses possible, even though
the synergy induces increased competition in the auction for the first object. Next,
we present the typical example of valuations being uniformly drawn from the unit
interval. Finally, we present an example with an increasing price trend.

2.5.1 No losses

First, consider the trivial case with each bidder having a value of v in each auction,
such that the winner of the first object will win the second object with certainty.
The excess surplus that a win of the first object generates in the auction for the
second object is then ∆ = (s− 1)v. In the first auction all bidders upgrade their
truthful bid of v with this option value effect, whereas in the second auction they
just bid their value. This guarantees a decreasing price trend (p̄1 = sv and p̄2 = v).
Moreover, all bidders end up with an overall payoff of 0. This means that there
is no bankruptcy problem and the seller roams off precisely the excess surplus (no
more and no less) that is generated by the synergy. All these properties, both
qualitatively and quantitatively, are independent of the number of bidders, n.

The absence of bankruptcy problems in this example is not driven by the fact
that the winner of the first object, wins the second object with certainty. In
case the values are drawn from the interval [v, v] with v < v < sv, the latter
property is satisfied whereas bankruptcies may occur. It is precisely the lack
of uncertainty about current and future valuations of all bidders, and hence the
complete information structure, that guarantees absence of bankruptcies.

2.5.2 Uniform distribution

Let for each bidder the valuation be a random draw from the interval [0, 1] accord-
ing to a uniform distribution. The symmetric linear equilibrium gives then rise to

21



The paradox of positive synergies

the following specification:

b∗1i = v1i + ( 1
2 s− n−1

n + 1
2

n−2
n

1
s )

b∗2i =

{
v2i if auction 1 is lost

sv2i if auction 1 is won

π̄1i = 1
n(n+1) − 1

n (1
2 s− n−1

n + 1
2

n−2
n

1
s )

π̄2i =

{
1

n(n+1)
1
s if auction 1 is lost

1
2 s− n−1

n + 1
2

n−1
n+1

1
s if auction 1 is won

µ̄i = 1
n(n+1) + 1

n(n+1)
1
s

p̄1 = n−1
n+1 + ( 1

2 s− n−1
n + 1

2
n−2

n
1
s )

p̄2 = n−1
n − n−1

n(n+1)
1
s

R̄ = 1
2 s + n−1

n+1 + 1
2

n−3
n+1

1
s .

It can easily be verified that the effect of the synergy factor, s, on the payoff in the
second auction, π̄2i, is positive in case the first auction is won, but negative if the
first auction is lost. Hence, the option value and the bids in the first auction are
increasing in s. This implies that the synergy enhances competition in the first
auction and the expected payoff in the first auction, π̄1i, is consequently decreasing
in s. Moreover, we see that the overall payoff, µ̄i, is decreasing in s, indicating that
(in expectation) bidders suffer from the synergy. Both auctions’ prices, p̄1 and p̄2,
and consequently the auction revenue, R̄, are increasing in s. Finally, the first
auction’s price, p̄1, is always larger than the second auction’s price, p̄2, such that
for valuations uniformly distributed over the unit interval, prices are declining.

The payoff in the second auction, π̄2i, is decreasing in the number of bidders,
n, regardless of the outcome of the first auction. The option value, though, is
strictly decreasing in n. Consequently, the bidding in the first auction becomes
less aggressive the more bidders are present. The effect of n on the payoff in the
first auction, π̄1i, is however ambiguous. For instance, for s = 1.7 this payoff is
decreasing when the number of bidders increases from 3 to 4, but increasing when
the number of bidders increases from 5 to 6. Despite this ambiguity, the overall
payoff, µ̄i, is decreasing in n. Where the expected price in the second auction,
p̄2, is clearly increasing in n, this is ambiguous for the price in the first auction,
p̄1. The derivative of p̄1 with respect to n is given by dp̄1

dn = 2
(n+1)2 − (1 − 1

s ) 1
n2

and can be negative as well as positive. For instance, for s = 9 and n = 2
the derivative is equal to zero, such that for any lower (larger) s the derivative
is positive (negative). Nevertheless, the expected revenue, R̄, is unambiguously
increasing in n. This implies that the increase of p̄2 dominates an eventual decrease
of p̄1.
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2.5.3 Increasing prices

Let for each bidder the value be v with probability θ and v with probability 1− θ
with v > v. Moreover, let the synergy factor be such that v > s v, such that
winning the first item does not automatically lead to winning both objects.

The expected prices for the first and second object are given by

p̄1 = (1− θ)nv + nθ(1− θ)n−1v + [1− (1− θ)n − nθ(1− θ)n−1]v + ∆

and

p̄2 = (1− θ)nv + nθ(1− θ)n−1[ 1
nv + n−1

n sv]

+ [1− (1− θ)n − nθ(1− θ)n−1]v,

where ∆ indicates the expected benefit from having the synergy and is given by

∆ = θ (1− θ)n−1[(sv − v)− (sv − v)] + θ[1− (1− θ)n−1](sv − v)

+ (1− θ)n(sv − v)

= θ (s− 1) v + (1− θ)n−1 (s− 1) v.

In expectation there is an increasing price trend if p̄2 > p̄1. This is the case if

sv < v < (1− θ)n−1[(n− 1)− 1
θ ]v.

A configuration for which both these inequalities are satisfied is: v = 0.5, v = 0.6,
θ = 0.1, n = 21, and s = 1.1.

2.6 Discussion

In this chapter, it was shown that even though positive synergies on the bidders’
side appear beneficial for them, this is not necessarily the case. The equilibrium
bidding strategies result in such a fierce competition that bidders lose all the
benefits from synergies, and on top of that part of their intrinsic expected payoff.
The larger the possible benefits due to synergies are, the smaller the expected
payoff of the bidders will be, which is paradoxical.

The sequential auctions are efficient ad interim. However, due to the uncer-
tainty concerning the valuation for the second object during the first auction and
the stochastic dependence between the valuations for both auctions, inefficiencies
can occur ex post.

Only the seller benefits from positive synergies. He captures all the gains from
synergies and on top of that part of the share bidders would have had without
synergies. In our setting, it would be profitable for the auctioneer to announce
future auctions well in advance. However, a transparent procurement policy can
be a two-edged sword. The winner of the first auction can make a loss and conse-
quently go bankrupt. Especially for large governmental procurement projects this
can be a severe problem.9

9See, for instance, the problems caused when MobilCom returned its UMTS-license in Ger-
many.
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The probability of making a loss is particularly severe for valuation distribu-
tions where a bidder has a high probability of a relatively low valuation, and a
rather small probability on having an extremely high valuation. Even when the
number of bidders is large, the probability on a loss remains strictly positive in
case the expected valuation is finite.

Finally, we find that positive synergies always lead to declining prices in case
of uniformly distributed valuations. Furthermore, there always exists a critical
synergy factor above which prices are declining.

A closed-form solution for the equilibrium bidding strategies in an asymme-
tric first-price sealed-bid auctions is not generally available. Therefore, we have
to restrict our formal analysis to the second-price sealed-bid format. Neverthe-
less, if for an asymmetric first-price sealed-bid auction there exists a positive ∆,
that is π̄2w > π̄ > π̄2`, our main results also hold there. Then, the equilibrium
bidding strategy in the first auction will be the bidding strategy in an auction
without synergies plus ∆. The bidding in the first auction is more competitive
with than without synergies and for ∆ large enough bidders bid above their value
and possibly incur losses. It is known that these conditions hold for an asymmetric
first-price sealed-bid auction with two bidders and uniformly distributed valuations
(see Chapter 3). The paradox then also applies: the ex ante expected payoff for
bidders is given by π̄ + π̄2` which is lower than the payoff without synergies.

2.7 Appendix A: Formulas

In this section we will provide explicit expressions for the expected payoffs. Fur-
thermore, we will give three useful expressions for ∆.

In the first auction all bidders are symmetric. Without synergies (s = 1) the
expected instantaneous payoff of each auction is given by

π̄ =
∫ ∞

0

vFn−1(v)f(v) dv − (n− 1)
∫ ∞

0

vFn−2(v)f(v)(1− F (v)) dv.

When synergies are present, so s > 1, the expected instantaneous payoff for a
bidder i is then given by

π̄1 =
∫ ∞

0

vFn−1(v)f(v) dv − (n− 1)
∫ ∞

0

(v + ∆)Fn−2(v)f(v)(1− F (v)) dv.

The bidder of type w wins the second auction if his synergy-adjusted bid is higher
than that of all the other bidders and the price he has to pay is determined by the
highest bid among the n − 1 bidders of type `. Thus the expected instantaneous
second auction payoff for the winner of the first auction is given by

π̄2w =
∫ ∞

0

svFn−1(sv)f(v) dv − (n− 1)
∫ ∞

0

vFn−2(v)f(v)(1− F (v/s)) dv.

A bidder of type ` only wins if his bid is above that of all other losers and the bid
of bidder w. There are two possibilities to consider for the expected instantaneous

24



2.7 Appendix A

second auction price a bidder of type ` has to pay; one of the remaining n − 2
bidders of type ` has the second highest bid (third term) or bidder w has the second
highest bid (second term). Thus the expected instantaneous second auction payoff
for a loser is given by

π̄2` =
∫ ∞

0

vFn−2(v)F (v/s)f(v) dv −
∫ ∞

0

svFn−2(sv)f(v)(1− F (sv)) dv

− (n− 2)
∫ ∞

0

vFn−3(v)F (v/s)f(v)(1− F (v)) dv.

A bidder’s ex ante expected total payoff of the auction sequence is given by

µ̄i = π̄1i + 1
n π̄2w + n−1

n π̄2`.

This follows from the fact that all bidders are symmetric ex ante and hence bidder
i wins the first auction with probability 1

n .
Since ∆ = π̄2w − π̄2`, we can substitute the above formulas for π̄2w and π̄2`.

The result can be rewritten to

∆ = s

∫ ∞

0

vFn−2(sv)f(v) dv + (n− 2)
∫ ∞

0

vf(v)Fn−3(v)F (v/s) dv

− (n− 1)
∫ ∞

0

vf(v)Fn−2(v) dv
(2.1)

or alternatively

∆ = s

∫ ∞

0

vFn−2(sv)f(v) dv

− (n− 2)
∫ ∞

0

vf(v)Fn−3(v)(F (v)− F (v/s)) dv

−
∫ ∞

0

vf(v)Fn−2(v) dv.

(2.2)

We focus on the second term of this latter expression for ∆. This term can be
rewritten as follows.

(n− 2)
∫ ∞

0

vf(v)Fn−3(v)(F (v)− F (v/s)) dv

= (n− 2)
∫ ∞

0

vf(v)Fn−3(v)
∫ v

v/s

f(x) dx dv

= (n− 2)
∫ ∞

0

∫ v

v/s

vf(v)Fn−3(v)f(x) dx dv

= (n− 2)
∫ ∞

0

∫ sx

x

vf(v)Fn−3(v)f(x) dv dx

= (n− 2)
∫ ∞

0

f(x)
∫ sx

x

vf(v)Fn−3(v) dv dx

=
∫ ∞

0

f(x)
∫ sx

x

vdFn−2(v) dx
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=
∫ ∞

0

f(x)
[
sxFn−2(sx)− xFn−2(x)−

∫ sx

x

Fn−2(v)dv

]
dx

=
∫ ∞

0

f(x)sxFn−2(sx) dx−
∫ ∞

0

f(x)xFn−2(x) dx

−
∫ ∞

0

f(x)
∫ sx

x

Fn−2(v) dv dx.

Plugging this back into the expression for ∆ and canceling equal terms yields

∆ =
∫ ∞

0

f(x)
∫ sx

x

Fn−2(v) dv dx. (2.3)

2.8 Appendix B: Analysis of ∆

In this section we state and prove some technical facts regarding the option value
∆.

Lemma 2.12 lims→∞ ∆
s = E(v).

Proof We separately analyze the behavior of the three terms of Expression 2.1
for ∆. Regarding the first integral, define the function G: [0,∞) → [0,∞) by

G(v) =

{
0 if v = 0

vf(v) else.

Since F (0) = 0, and for any v > 0 the value sv becomes large when s becomes large,
it can be seen that vFn−2(sv)f(v) is non-decreasing in s and converges pointwise
to G as s → ∞. Thus, by Lebesgue’s Theorem of Monotone Convergence, we
know that

∫ ∞

0

vFn−2(sv)f(v) dv →
∫ ∞

0

G(v) dv = E(v) as s →∞.

Regarding the second integral, recall that F is continuous, non-decreasing, and
F (0) = 0. Thus, f(v)Fn−3(v)F (v/s) ↓ 0 pointwise as s →∞. Hence,

∫ ∞

0

vf(v)Fn−3(v)F (v/s) dv → 0 as s →∞.

Finally observe that the third integral does not depend on s. The result now
follows. 2

The asymptotic behavior of ∆ when the number of bidders becomes large is more
complicated. First we consider the case where K < ∞.

Lemma 2.13 Assume that K < ∞. Then

lim
n→∞

∆ = P[sv ≥ K] · E[sv −K | sv ≥ K].
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Proof Since K < ∞, Expression 2.1 for ∆ becomes

∆ = s

∫ K

0

vFn−2(sv)f(v) dv + (n− 2)
∫ K

0

vf(v)Fn−3(v)F (v/s) dv

− (n− 1)
∫ K

0

vf(v)Fn−2(v) dv.

First notice that, concerning the second term,

(n− 2)
∫ K

0

vf(v)Fn−3(v)F (v/s) dv

= (n− 2)
∫ K

0

vf(v)Fn−3(v)
∫ v/s

0

f(x) dx dv

= (n− 2)
∫ K/s

0

∫ K

sx

vf(v)Fn−3(v) dv f(x) dx

=
∫ K/s

0

∫ K

sx

v dFn−2(v) f(x) dx.

Using integration by parts for the inner integral, this expression can be rewritten
to

KF (K/s)− s

∫ K/s

0

xFn−2(sx)f(x) dx−
∫ K/s

0

∫ K

sx

Fn−2(v) dvf(x) dx.

Furthermore, the third term of this expression for ∆ can be rewritten as

(n− 1)
∫ K

0

vf(v)Fn−2(v) dv =
∫ K

0

v dFn−1(v) = K −
∫ K

0

Fn−1(v) dv.

Plugging all this into the formula for ∆ we obtain

∆ = s

∫ K

K/s

vFn−2(sv)f(v) dv −K(1− F (K/s))

−
∫ K/s

0

∫ K

sx

Fn−2(v) dvf(x) dx

−
∫ K

0

Fn−1(v) dv.

Since by Lebesgue’s Monotone Convergence Theorem the latter two integrals con-
verge to zero, and since Fn−2(sv) = 1 for K/s ≤ v ≤ K, we see that

∆ → s

∫ K

K/s

vf(v) dv −K(1− F (K/s)) as n →∞.

Finally notice that

s

∫ K

K/s

vf(v) dv −K(1− F (K/s)) = P[sv ≥ K] · E[sv −K | sv ≥ K].
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This concludes the proof. 2

The intuition for this expression for ∆ is the following. When the number of bid-
ders is large, the additional value of obtaining the second object is approximately
s times the expected value, given that the value is larger or equal to K/s, this
being the minimum value for which winning is guaranteed when you bid s times
your valuation, and the others bid their valuation. The price you pay in that case
when the number of bidders is large is approximately K. The difference between
these two gets multiplied by 1 − F (K/s), which is the probability of having a
value higher than K/s, which is for a large number of bidders approximately the
probability of winning the second auction, knowing that you won the first auction.

Lemma 2.14 Assume that K = ∞. Then limn→∞∆ = 0.

Proof Expression 2.3 for ∆ yields

∆ = s

∫ ∞

0

vFn−2(sv)f(v) dv

− (n− 2)
∫ ∞

0

vf(v)Fn−3(v)(F (v)− F (v/s)) dv

−
∫ ∞

0

vf(v)Fn−2(v) dv

≤ s

∫ ∞

0

vFn−2(sv)f(v) dv.

Since K = ∞ we know that F (v) < 1 for all v. Thus, by Lebesgue’s Monotone
Convergence Theorem and Theorem 2.2, ∆ converges to zero as n →∞. 2

The explanation for Lemma 2.14 is that when the probability of winning the
second auction converges to zero, the possibility to benefit from a synergy vanishes.
Consequently, the option value converges to zero.
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Chapter 3

A reason to prefer first-price
auctions

Theoretically, second-price sealed-bid auctions are often preferred to first-price
sealed-bid auctions in private value settings. In this chapter1 a comparison is
made between these two auction formats for a sequential auction of two objects
with synergies. We find that the second-price auction performs better in terms of
efficiency and revenue. However, the first price auction performs much better on
a so far neglected dimension. Namely, the likelihood that the winner of the first
object goes bankrupt is larger when using the second-price format.

3.1 Introduction

In private value settings second-price sealed-bid auctions are generally preferred to
first-price sealed-bid auctions due to the desirable properties they have. First of all,
the dominant bidding strategy is truth-revealing and therefore does not require any
information on the situation or intention of competitors. Second, in equilibrium
the auction is guaranteed to be efficient. Besides, the revenue-equivalence theorem
(Myerson, 1981) shows that the expected revenues from both auction formats are
identical under certain assumptions.

Still, second-price auctions are hardly observed in practice and several theo-
retical explanations have been given for this. Rothkopf et al. (1990) argue that
bidders might be reluctant to reveal their true valuation, since this can have neg-
ative implications for future auctions. Both in one-shot and repeated settings,
collusion among bidders is less stable in first-price auctions than in second-price
auctions (see for instance Robinson (1985), Fehl and Güth (1987), and Skrzypacz
and Hopenhayn (2004)). Finally, when bidders are risk-averse or when their val-
uations are asymmetrically distributed, the revenue-equivalence theorem does not
hold anymore. Holt (1980) shows that when bidders are risk-averse the first-price

1This chapter is based on Leufkens and Peeters (2007).
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auction generates higher revenues since bidders then shade their bids less. When
the valuation distribution of one type of bidders stochastically dominates that of
the other type of bidders, Maskin and Riley (2000) show that a first-price auction
generates more revenue than a second-price auction. However in such a situation
the first-price auction is not guaranteed to be efficient anymore.

This chapter discusses asymmetries between the valuation distributions of two
bidders, but here the asymmetry is not exogenously given. We analyze a sequen-
tial auction of two stochastically equivalent objects in which positive synergies
are present and compare the first- and second-price format. We find that both
efficiency and revenue are higher for the second-price auction format. However,
bidders are more likely to receive losses under this auction format. These losses can
ultimately lead to bankruptcy, in particular for auctions where potential synergies
are high, and therefore induce disastrous welfare consequences for society.

This chapter is organized as follows. In Section 3.2 the model is described
and the equilibrium bidding strategies are derived for the first- and second-price
auction. In Section 3.3 the two auction formats are compared. The chapter ends
with a discussion in Section 3.4.

3.2 The model

Two objects, indexed by k = 1, 2, are auctioned sequentially among two risk-
neutral bidders, indexed by i = 1, 2, who participate in both auctions. Valuations
are private information and independently drawn across bidders and objects from
the interval [0, 1] according to the uniform distribution. The valuation for the
second object is not known during the auction of the first object. After each
auction bidders are informed whether or not they won the object. We incorporate
the presence of positive synergies by multiplying the second auction valuation with
a factor s > 1 if the first auction is won. Although the valuation for the second
object is not known during the first auction, bidders know that winning the first
object increases this valuation from vi

2 to s vi
2 and thus increases their expected

payoff of the second auction.
As mentioned in Chapter 2, a closed-form solution for the equilibrium strategies

in an asymmetric first-price auction is not generally available. For a first-price
auction with uniformly distributed valuations and the present type of asymmetry,
a solution is only known in case of two bidders (see Plum (1992)). Consequently,
the analysis in this chapter has to be restricted to a setting with two bidders.

The present setting represents a recurring auction like the annual auctioning of
contracts for public services. The exact details of future contracts are not specified
yet and therefore contracts are considered as a priori identical. The benefits from
synergies are only attributed to the second object as the result of the order in
which projects are executed. For instance, expertise is created during the first
project and this gives benefits for the second, or specialized equipment is needed
which then does not need to be acquired for a possible second project. Our setting
can also find its application in other situations such as spectrum auctions where

30



3.2 The model

bidders benefit from a win in one area in the creation of a domain consisting of
multiple contiguous areas.

Similar auction settings have been studied in Jeitschko and Wolfstetter (2002)
and Tang Sørensen (2006). In both articles the focus is only on revenues and price
trends whereas in this chapter the focus is on the wider (social) consequences the
presence of positive synergies has.

Proposition 3.1 For the first-price sealed-bid auction format, the bidding strate-
gies given by

bi
1(v

i
1) = 1

2vi
1 + ∆1

with ∆1 = s2

s2−1

{
1
2s− 1− 1

s + 1
2

1
s2 + 1

2

arcsinh(
√

s2−1)+arcsin( 1
s

√
s2−1)√

s2−1

}
,

and

bi
2(v

i
2) =





vi
2

1+
√

1−(1− 1
s2

)(vi
2)

2
if auction 1 is lost;

s vi
2

1+
√

1+(1− 1
s2

)(s vi
2)

2
if auction 1 is won

constitute a unique symmetric Bayesian Nash equilibrium.

Proof See Section 3.5. 2

The factor ∆1 in the proposition is the option value of winning the first auction.
This option value is the difference in expected instantaneous payoffs for the second
auction, before knowing the second auction valuation, between winning and losing.
In line with intuition, the option value is positive and increasing in the synergy
factor.

Proposition 3.2 For the second-price sealed-bid auction format, the bidding stra-
tegies given by

bi
1(v

i
1) = vi

1 + ∆2 with ∆2 = 1
2s− 1

2

and

bi
2(v

i
2) =

{
vi
2 if auction 1 is lost;

s vi
2 if auction 1 is won

constitute a unique symmetric linear Bayesian Nash equilibrium in weakly domi-
nant strategies.

Proof See Proposition 2.1. 2

Again the factor ∆2 represents the option value effect of winning the first auction
and equals the difference in expected instantaneous payoffs for the second auction
between winning and losing the first auction before the second auction valuation is
known. Also here the option value is positive and increasing in the synergy factor.
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3.3 Comparing the first- and second-price format

The option value may cause bidders to overbid their valuation in the first auc-
tion. In the first-price format bidders overbid if the option value exceeds half the
valuation for the first object. In the second-price format bidders always overbid.
As a consequence of the overbidding, the winner of the first auction can make an
instantaneous loss in the first auction.

Losses that are made in the first auction can, but are not guaranteed to, be
recovered in the second auction. In case the first auction winner is not able to
recover its loss in the second auction, bankruptcy results in our setting. Especially
for large procurement contracts a loss that is not recovered could well lead to
bankruptcy of the firm. Figure 3.1 displays the likelihood that bankruptcy occurs
in both the first-price and the second-price sealed-bid sequential auction with
positive synergies for different values of the synergy factor. We see that for most
values of s bankruptcy is more likely to occur in the second-price format than in
the first-price format.

-
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Figure 3.1: The probability of bankruptcy for the first-price (•) and the second-price (◦)
format.

The presence of synergies causes the second auction to be asymmetric. Asymme-
tric first-price sealed-bid auctions are known to possess inefficiencies, even when
bidders are risk-neutral. The second-price counterpart never possesses such inef-
ficiencies. As a consequence, in addition to possible ex post inefficiencies due to
absence of hindsight in future valuations, even ex ante inefficiencies can be ob-
served for the first-price format. To be more specific, the inefficiency that can
occur is that the loser of the first auction can win the second auction although
that the synergy-adjusted value of the first auction winner is higher. Figure 3.2
displays the likelihood by which inefficiencies occur in the two auction formats.
We see that the probability on an inefficient outcome is bounded from above by
8.6% for the first-price auction format.

From the two figures we can conclude that for only a small region of the synergy
factor the second-price auction performs better on both efficiency and bankruptcy.
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Figure 3.2: The probability of inefficiency for the first-price (•) and the second-price (◦)
format.

For all remaining values of the synergy factor the first-price auction performs better
regarding bankruptcy but is outperformed by the second-price auction regarding
efficiency.

The smaller probability on bankruptcy in a first-price auction is a consequence
of the inefficiency in the second auction. As already mentioned, the only kind of
ex ante inefficiency that can occur is that the loser of the first auction wins even
though the (synergy adjusted) valuation of the first auction’s winner is higher. This
inefficiency has a negative impact on the option value effect of winning the first
auction. In a second-price auction this inefficiency does not exist and consequently
the option value in the second-price format is larger than for the first-price format
(see Güth et al. (2005)). Hence in the first-price auction the bidding competition
will be less fierce in the first auction and consequently decreases the probability
on bankruptcy.

As predicted by Maskin and Riley (2000), the expected revenue from the second
auction is higher for the first-price format. The expected revenue from the first
auction is higher for the second-price format owing to the larger option value. The
total revenue from both auctions is larger for the second-price format but can be
shown to be never more than 4% above that from the first-price format.

3.4 Discussion

In sequential auctions with synergies, the second-price sealed-bid auction format
guarantees efficiency in contrast to the first-price sealed-bid auction format. Also,
the total revenue resulting from the second-price auction is higher. Still, the first-
price format can be preferred since the probability that the winner of the first
object goes bankruptcy is smaller for most synergy levels. Our findings support
the common use of the first-price auction format when synergies are present, most
notably for procurement settings.
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3.5 Appendix

The expected instantaneous payoff in auction 1 for bidder i prior to the realization
of the valuations for this auction is denoted by π̄1i. The expected instantaneous
payoff in auction 2 for bidder i, π̄2i, is prior to the realization of the valuations
for this auction but given the outcome of the first auction. The winner and loser
of the first auction are referred to as respectively bidder w and ` in the second
auction.

Proof to Proposition 3.1
1. Second auction bid functions. The bid functions for this asymmetric auction
follow directly from Plum (1992).
2. The factor ∆1. Note that both second auction bid functions are strictly in-
creasing functions on [0, 1] with minimum value 0 and maximum value s

s+1 . The
first auction winner’s bid coincides with the first auction loser’s bid if and only if

b∗w(vw) = b∗` (v`) ⇐⇒ vw = 1
s

v`√
1−(1− 1

s2
)v2

`

or v` = s vw√
1+(1− 1

s2
)(s vw)2

Therefore, in equilibrium, the expected instantaneous payoffs for the second auc-
tion after having learned the second auction valuation are

π̄∗w(vw) = (s vw − b∗w(vw)) · Pr{b∗w(vw) ≥ b∗` (v`)} = (s vw)2

1+
√

1+(1− 1
s2

)(s vw)2

for the first auction winner, and

π̄∗` (v`) = (v` − b∗` (v`)) · Pr{b∗` (v`) ≥ b∗w(vw)} = v2
`

1+
√

1−(1− 1
s2

)v2
`

1
s

for the first auction loser. Hence, the expected instantaneous payoffs for the second
auction before knowing the second auction valuation are

π̄∗w =
∫ 1

0

π̄∗w(vw) dvw =
∫ 1

0

(s vw)2

1+
√

1+(1− 1
s2

)(s vw)2
dvw

3=
∫ 1

0

(s vw)2
[
1−

√
1+(1− 1

s2
)(s vw)2

]

1−(1+(1− 1
s2

)(s vw)2)
dvw

=
∫ 1

0

√
1+(1− 1

s2
)(s vw)2−1

(1− 1
s2

)
dvw = s2

s2−1

{∫ 1

0

√
1 + (s2 − 1)v2

w dvw − 1
}

6= s2

s2−1

{[
1
2vw

(√
1 + (s2 − 1)v2

w + arcsinh(
√

s2−1)√
s2−1

)]1

0
− 1

}

= s2

s2−1

{
1
2s + 1

2
arcsinh(

√
s2−1)√

s2−1
− 1

}
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for the winner,2 and

π̄∗` =
∫ 1

0

π̄∗` (v`) dv` =
∫ 1

0

v2
`

1+
√

1−(1− 1
s2

)v2
`

1
s dv`

3=
∫ 1

0

v2
`
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√
1−(1− 1

s2
)v2

`

]

1−(1−(1− 1
s2

)v2
` )

1
s dv`

=
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0
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√
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)v2
`
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)
1
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√
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s2−1

}

for the loser.3

The option value effect of winning the first auction ∆1 is therefore equal to the
difference in expected instantaneous payoffs for the second auction before knowing
the second auction valuation between winning and losing. Hence,

∆1 = π̄∗w − π̄∗` = s2

s2−1

{
1
2s− 1− 1

s + 1
2

1
s2 + 1

2

arcsinh(
√

s2−1)+arcsin( 1
s

√
s2−1)√

s2−1

}

3. First auction bid functions. The effective first auction valuation has two com-
ponents: (1) the value of the first object, and (2) the option value of winning.
This means that the effective valuations are uniformly distributed over the inter-
val [∆1, ∆1 + 1]. The bid functions stated in the theorem follow directly from
here.

2Here, equality 3 is obtained by multiplying the nominator and denominator by 1 −√
1 + (1− 1

s2 )(s vw)2 and equality 6 is obtained by realizing that 1
2
x(
√

1 + ax2 +
arcsinh(

√
a)√

a
) is

the antiderivative of
√

1 + ax2.
3Here, equality 3 is obtained by multiplying the nominator and denominator by 1 −√
1− (1− 1

s2 )v2
` and equality 6 is obtained by realizing that 1

2
x(
√

1− ax2 +
arcsin(

√
a)√

a
) is the

antiderivative of
√

1− ax2.
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Chapter 4

An experimental comparison
of first- and second-price
auctions

The presence of synergies in recurrent procurement auctions leads to asymmetries
among bidders and an exposure problem for bidders. This chapter1 considers
sequential first- and second-price auctions with synergies in a setting with four
bidders. Such a setting cannot be solved analytically for the first-price auction
format. In a series of experiments, the performance of the two pricing formats is
compared for three different sizes of the synergy. We find that for small synergies,
the first-price auction performs better in terms of efficiency, revenue, and the
probability on losses. However, once the synergy factor becomes very large the
performance of the two pricing formats becomes more similar. We also find that
even though the potential total surplus that can be divided between buyers and
seller increases in the synergy factor, subjects’ earnings do not significantly change
in the synergy factor. Finally, we observe that the two pricing formats give rise to
different price trends within the auction sequence.

4.1 Introduction

Research on multi-object auctions has mainly focussed on objects that are auc-
tioned within a short period of time. The auctions take place either simultaneously
or in a sequence immediately after each other. However, a notable characteristic
of procurement is its recurrent nature. Construction contracts, military procure-
ment, and service contracts are all examples of this recurrence. In these settings,
auctions take place sequentially but with time periods in between. A consequence
of the presence of synergies in such settings, is that bidders’ valuations are stochas-

1This chapter is based on Leufkens, Peeters, and Vorsatz (2007).
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tically dependent across auctions. Bidders then face an exposure problem as they
can end up winning contracts that are too expensive if complementary contracts
are not won. Furthermore, the presence of synergies induces future asymmetries
between bidders which makes the bidding environment more complex.

In Chapter 2 the consequences for the bidders due to the presence of positive
synergies in sequential second-price auctions were analyzed. It was shown that
bidders’ expected total payoffs from the auction sequence decreases in the syn-
ergy factor and that there is a serious probability of making losses. In Chapter 3
a comparison was made between sequential first- and second-price auctions with
synergies and two bidders. It was found that although expected revenue and ef-
ficiency are higher in second-price auctions, first-price auctions may be preferred
based on a less severe exposure problem. However, theoretical research on sequen-
tial auctions with synergies is seriously restricted by the absence of an explicit
closed-form expression for the equilibrium bidding functions in an asymmetric
first-price auction with more than two bidders. A comparison between sequential
first- and second-price auctions with synergies has to be restricted to a setting
with two bidders. For more than two bidders, it is not clear how the two pricing
formats will perform.

In this chapter, we experimentally analyze a sequential auction with synergies
with four bidders. Based on the aforementioned sequentiality of procurement
auctions, we consider a sequential auction of two stochastically equivalent objects
where the valuation of the second object is uncertain during the first auction. The
winner of the first auction receives an upgrade for his valuation in the second
auction. We compare sequential first- and second-price auctions for a baseline
treatment without synergies and for two treatments with positive synergies of
different sizes.

The setting analyzed in this chapter cannot be solved analytically for a first-
price auction. By comparing the experimental data both within and between
the two pricing formats, we gain insights in how bidding behavior is influenced
by the presence of an exposure problem and asymmetries between bidders. The
responsiveness of the bidding, and the probability of making losses in particular,
to the presence and the size of the synergy are important for public policy.

Experimental research on multi-object auctions was spurred by the spectrum
auctions, for which guidance on the auction rules was needed. Still, few in depth
experimental analyses on the exposure problem in sequential auctions have been
conducted. Février et al. (2007) analyze sequential auctions of two identical objects
with a buyer’s option, which means that the winner of the first object has the
option to buy the second object at the winning price. They consider a setting in
which the valuation for the second object increases if the first is won, and compare
the revenue and usage of the buyer’s option in the four main auction institutions.
They note that subjects bid too conservatively compared to theory which can be
attributed to the presence of the exposure problem.

In our setting, the upgrade for the valuation of the winner of the first auction
makes the second auction asymmetric. Güth et al. (2005) experimentally analyze
asymmetric first- and second-price auctions with two bidders in which the role of
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strong and weak bidder are assigned exogenously and remain fixed. They find that
in first-price auctions a weak bidder bids more aggressively than a strong bidder.
Furthermore, they test bidders’ preference for first- versus second-price auctions
and find that a strong bidder is willing to pay more than a weak bidder to dictate
the auction rule.

Grimm et al. (2006) consider an asymmetric setting comparable to Güth et
al. (2005). They randomly select one of the two bidders prior to an auction and
give him an investment opportunity to become the strong bidder. When the
investment opportunity is given, the auction valuation is not known yet. They
find that bidders invest more often prior to second-price auctions than to first-
price auctions. However, by not having a competition for the possibility and the
cost at which one can become the strong bidder, their setting differs fundamentally
from ours.

We find that the aggressiveness of bidding in the first auction increases in the
synergy factor. For small synergies, the first-price auction performs better in terms
of efficiency, revenue, and the probability on losses. However, once the synergy
factor becomes very large the performance of the two different pricing formats
becomes more similar, although the first-price auction never performs worse than
the second-price auction on all three aspects. Although we observe differences in
bid shading between strong and weak bidders in asymmetric first-price auctions,
this difference is too small to cause significant inefficiencies. The average first
auction payoff decreases in the synergy factor and is negative for large synergies.
Furthermore, we observe that even though the potential total surplus that can
be divided between buyers and seller increases in the synergy factor, subjects’
earnings within a pricing rule do not significantly change in the synergy factor.
Finally, we find that the two pricing formats give rise to different price trends
within the auction sequence.

This chapter is organized as follows. In Section 4.2, we discuss the setting and
theoretical insights. In Section 4.3, the experimental design and the laboratory
procedures are described. The analysis of the data is presented in Section 4.4.
The chapter ends with a discussion in Section 4.5.

4.2 The model

We consider a private value auction of two stochastically equivalent objects. The
objects are auctioned sequentially under identical auction rules, and the same four
bidders participate in both auctions. Valuations are individually uncorrelated
and drawn independently according to a uniform distribution between 0 and 100.
Furthermore, the valuation for the second object is not yet known during the first
auction.

If the first auction is won, the drawn second auction valuation will be multiplied
with a synergy factor s ≥ 1. That is, if bidder i wins the first object, his valuation
in the second auction (weakly) increases from v2i to s v2i. Since the second auction
valuation is not yet known during the first auction, winning the first auction leads
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to an increase in the expected valuation for the second object. After each auction,
bidders are instantly informed whether or not they won the object, the price at
which the object was sold, and their payoff, which is the difference between the
valuation and the price in case the auction is won and zero otherwise.

Before we discuss the theoretical insights, we need to introduce some notation.
We write bki and vki for respectively the bid and valuation in auction k of bidder
i. With π̄ki we denote the expected instantaneous payoff of auction k for bidder
i prior to the realization of the valuations for this auction and, for k = 2, given
the history of the previous auction. The expected price of auction k, p̄k, is also
prior to the realization of the valuations and thus the seller’s expected revenue of
that auction. In the second auction, bidder w and bidder ` are a bidder i that,
respectively, won or lost the first auction.

The symmetric equilibrium for a sequential second-price auction with four risk-
neutral bidders is given by:

b∗1i = v1i + (50 s− 75 + 25 1
s )

b∗2i =

{
v2i if auction 1 is lost

s v2i if auction 1 is won

π̄1i = 5− 1
4 (50 s− 75 + 25 1

s )

π̄2i =

{
5 1

s if auction 1 is lost

50 s− 75 + 30 1
s if auction 1 is won

p̄1 = 60 + (50 s− 75 + 25 1
s )

p̄2 = 75− 15 1
s

The intuition for the equilibrium bidding strategies is straightforward. The second
auction is a one-shot asymmetric second-price auction, in which truthful bidding
is (weakly) dominant. When positive synergies are present, the expected instan-
taneous payoff of the second auction is larger if the first auction is won than if the
first auction is lost. The actual value of winning the first auction is then not only
the value of the first object, but also the difference in the expected instantaneous
payoff of the second auction between winning and losing the first auction. For the
remainder of this chapter we refer to this difference in the expected instantaneous
second auction payoff as the option value. It then immediately follows that bid-
ding the valuation plus the option value forms a (weakly) dominant strategy in the
first auction. Notice that the option value, and hence the first auction bidding,
increases in the synergy factor.

For a first-price auction, the present setting cannot be solved analytically for
its equilibrium when there are more than two bidders. This is due to the absence
of a closed-form expression for the equilibrium bidding functions in the asymme-
tric auction of the second object. Consequently, we provide a discussion on the
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qualitative impact the presence of positive synergies is expected to have on the
bidding in this auction format.

Winning the first auction leads to an increase in the expected valuation for
the second object. Therefore, suppose that the expected instantaneous second
auction payoff of the winner of the first auction increases in the synergy factor and
decreases for the loser of the first auction.2 The option value is then positive and
increases in the synergy factor. In the first auction, bidders not only bid for the
object but also for the option value. This shifts the supports of the distribution up
by the option value, and, consequently, in equilibrium all bidders add the option
value to the bid they would make in a one-shot auction (assuming risk-neutrality).

Based on the equilibrium bidding strategies for the second-price auction and
the suppositions for the first-price auction, we conclude that the bidding behavior
in the first auction increases in the synergy factor in both pricing formats. In a
second-price auction, bidders bid above their valuation as soon as s > 1, which can
lead to an instantaneous loss when the first object is won. In a first-price auction,
bidders bid above their valuation if the synergy factor is sufficiently large to offset
the bid-shading. Then, winning the auction always results in an instantaneous
loss. The valuation of the second object is uncertain during the first auction.
Bidders face an exposure problem, since a (possible) instantaneous loss in the first
auction might not be recovered during the second auction.

In the first auction, a bidder bids the same as in a one-shot auction plus the
option value. The expected probability of winning the first auction is one fourth.
Therefore, the expected instantaneous first auction payoff equals the payoff of a
one-shot auction, minus one fourth times the option value. It then follows that
the ex-ante expected total payoff of the auction sequence as a whole, equals the
expected payoff of a one-shot auction plus the expected instantaneous payoff in
the second auction when the first auction has been lost:

µ̄i = π̄1i + 1
4 π̄2w + 3

4 π̄2` = π̄ − 1
4 (π̄2w − π̄2`) + 1

4 π̄2w + 3
4 π̄2` = π̄ + π̄2`.

The ex-ante expected total payoff is thus decreasing in the synergy factor for both
pricing formats. This means that the larger the possible benefit from synergies
becomes, the smaller the expected total payoff of the bidders will be.

It is well known that (part of) a possible rent is dissipated during the competi-
tion for that rent. However, in this setting not only the possible rent is completely
dissipated, bidders are even worse off than in a setting without synergies. When
the synergies are large, bidders have half the ex-ante expected total payoff they
would have if there were no synergies. Given the fact that the total surplus that
can be divided between the seller and the bidders is larger with than without
synergies, this is especially surprising. Instead of benefiting from the presence of
synergies bidders suffer from it.

2For an asymmetric first-price auction, this does not necessarily hold for certain special cases
with common supports but differences in the cumulative distribution functions of the bidders’
valuations (Lebrun, 1998). This is not the case in the present setting, and Table 4.9 shows that
the supposition does hold for our experiment.
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4.3 Experimental design and procedures

In order to analyze the impact positive synergies have on a sequential sealed-bid
auction of two objects we implemented a 3×2 between-subjects design, which is
depicted in Table 4.1. The dimensions relate to the size of the synergy factor
and the pricing rule of the auctions. For both pricing-rules we conducted a base-
line treatment without synergies and two treatments with two different positive
synergy factors. Subjects were randomly assigned to a group of four bidders. Al-
though it was common knowledge that group composition did not change during
the experiment, collusion is not a concern for this setting with four bidders. All
groups played fifty rounds and a round consisted of two sequential auctions. In
total, there are ten independent observations per treatment.

First-price Second-price
No synergy FP1.0 SP1.0
Synergy factor 1.5 FP1.5 SP1.5
Synergy factor 2.0 FP2.0 SP2.0

Table 4.1: The experimental treatments.

In the first auction of each round, the valuation of a bidder was given by 50
plus an independently drawn and individually uncorrelated integer between 0 and
100. The constant of 50 is introduced in order to allow for underbidding at all
valuations.3 In each auction, the random component of the valuation and the total
valuation were listed below each other on the screen. In the baseline treatments,
the procedure in the second auction was identical to that in the first. Hence,
subjects played two one-shot auctions per round.

In the treatments with positive synergies, the second auction valuations of the
losers of the first auction were again determined by 50 plus a randomly drawn
integer between 0 and 100. For the winner of the first auction, the second auction
valuation was determined by multiplying the randomly drawn integer with the
synergy factor and then adding 50. In the second auction, the winner of the
first auction observed both the drawn random component, the upgraded random
component and the valuation. Thus, in the first auction of a round, all bidders’
valuations lay between 50 and 150. In the second auction, the valuations of the
losers lay between 50 and 150. The valuation of the winner lay between 50 and 200
in treatments with synergy factor 1.5 and between 50 and 250 in treatments with
synergy factor 2.0. Via control questions we tested whether subjects understood
this composition of their valuation and that their auction payoff would be based
on the valuation.

Subjects did not know their second auction valuation during the first auction.
In the treatments with synergies, subjects were informed during the first auction
of a round that the random component of the second auction valuation would be

3See Kirchkamp and Reiss (2004) for a discussion on the importance of allowing bidding below
valuation at all valuations in first-price auctions.
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upgraded by the synergy factor, s, if this auction was won. After an auction,
each subject received an overview of the auction outcome; the valuation, the bid
submitted, whether or not the auction was won, the price at which the object
was sold and the payoff from the auction. Subjects never (directly) observed the
valuations and bids of others. At the end of each round, subjects also received an
update on their total payoff.

To maximize the comparability of the treatments, series of valuations were in-
dependently drawn for forty bidders and then used in all treatments with the same
group compositions. Bidders’ valuations were expressed in Experimental Currency
Units (ECU). Subjects could submit any bid between 0 and 999 ECU. Bids did
not have to be integers. In case of tied highest bids, the winner was randomly
selected from these bidders. The experiments were conducted in the experimental
laboratory of the Faculty of Economics and Business Administration at Maastricht
University in March 2007. In total, 240 undergraduate students participated, and
sessions lasted approximately 90 minutes. We conducted two sessions of twenty
subjects per treatment which resulted in ten independent observations per treat-
ment. The groups were formed randomly and group members were anonymous to
each other. Subjects earned ECU during the experiment that were converted into
Euros at a known exchange rate at the end of the experiment. Since we only had
theoretical predictions for the second-price treatments and the revenue ranking be-
tween first- and second-price auctions was ambiguous, we used the same exchange
rates in both pricing formats. For the baseline treatments, synergy factor 1.5, and
synergy factor 2.0, the exchange rate for 1 ECU were respectively 2.2, 2.4, and
2.4 Eurocents. The average payoff was e 11.34 including an initial endowment of
e 5.-. None of the subjects received a negative payoff.

The experiment was announced via email and subjects could register online
using their matriculation number. This ensured that students could participate
only once. When students arrived at the laboratory, they had to draw a card from
a deck that determined at which computer terminal they were placed. In case
more than twenty students showed up for a session, we included blank cards in the
deck. Students that drew a blank card could not participate and were paid e 3.-
as compensation.

All interactions took place via computers that were connected to a network
and the computer terminals were placed in such a way that subjects could neither
see the screens of others nor make eye contact with them. The experiment was
programmed and conducted with the software z-Tree (Fischbacher, 2007). Before
the start of a session, subjects read the instructions and were allowed to privately
ask questions that were then privately answered. After reading the instructions,
subjects had to answer control questions, which tested their understanding of the
instructions.4 One of the experimenters checked the answers, and the experiment
only started after all subjects answered each question correctly. Payment took
place privately, and subjects had to leave the laboratory immediately after receiv-
ing their payment.

4See Section 4.6 for the instructions and control questions.
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4.4 Results

In this section, we discuss the results for efficiency, revenue, and bidders’ payoffs.
Thereby, we concentrate on the results in the last 25 rounds.5 The game played
is rather complex, and we are interested in mature behavior only. The results are
robust to adding or dropping a couple of rounds.

4.4.1 Bid functions

The presence of positive synergies should lead to higher bidding in the first auction
of a round. To see whether this is indeed the case, the first auction bid functions
are estimated using a generalized least squares random-effect model with valuation
as independent variable and a constant. Each group is treated as an independent
unit in order to correct for dependency within groups. The estimation results per
treatment are reported in Table 4.2.6 The estimated bid function, β̂0 + β̂1v, can
been seen in Figure 4.1.

FP1.0 FP1.5 FP2.0
β̂0 5.85 (0.55) 8.07 (1.24) 7.80 (1.78)

β̂1 0.88 (0.01) 0.90 (0.01) 0.94 (0.01)

SP1.0 SP1.5 SP2.0
β̂0 2.05 (1.07) 7.51 (1.63) 14.04 (3.17)

β̂1 1.02 (0.01) 1.04 (0.02) 1.06 (0.02)

Table 4.2: Estimated parameters of the bid functions with standard errors in brackets.

The estimation results in Table 4.2 show that the effect of the synergy factor on
the bid function in the first-price auctions is not completely as predicted. The
constant is lower in FP2.0 than in FP1.5, and the coefficient of the valuation
increases in the synergy factor. Within the second-price treatments, the constant
increases in the synergy factor. Still, this increase is well below the theoretical
prediction in case of risk neutrality. Furthermore, we observe that the coefficient
of the valuation is always above one and increases slightly in the synergy factor.

From Figure 4.1 we can conclude that, for both price rules, the bidding increases
in the synergy factor. In the first-price treatments, bids are above valuation in
FP2.0 over almost the complete domain, and in FP1.5 for low valuations. In the
second-price treatments, bids are always above valuation.

5This choice was made upfront and is based on Leufkens, Peeters, and Vorsatz (2006).
6Bids that were more than 1.5 times the interquartile range above the third quartile, were

omitted from the analysis. For the first-price treatments we also omitted a small number of bids
of (almost) zero. The pattern of the estimated bid functions in Figure 4.1 does not change if we
include all observations.
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Figure 4.1: The estimated bid functions. Bids equal to valuation are shown by the thin
solid line in the figure.

4.4.2 Efficiency

The presence of positive synergies should not affect the efficiency of the first auction
of a round. Within a treatment, all bidders should add the same positive constant
to the equilibrium bid of a one-shot auction, and, hence, the bidder with the
highest valuation still wins. The second auction of a round is an asymmetric
auction with four bidders. Bidding truthfully is still a weakly dominant strategy
in a second-price auction. However, it has been shown for two bidders that an
asymmetric first-price auction is not guaranteed to be efficient (Plum, 1992). The
reason is that the bidder that draws from the more favorable valuation distribution
shades his bid more at a given valuation than the other bidder.

We measure efficiency by (vwin− 50)/(vmax− 50), where vwin denotes the val-
uation of the winner of the auction and vmax corresponds to the highest valuation
within the group. We subtract the constant for normalization.7 We also report
the relative occurrence of an efficient auction.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Occurrence 89.60 89.60 86.40 82.00 83.60 77.20
Efficiency 99.10 99.07 98.65 96.65 98.02 94.67

(0.971) (0.280) (0.015)

Table 4.3: The efficiency and occurrence of an efficient auction in percentages for auction
1. In brackets are the exact two-sided p-values for Mann-Whitney tests on the average
efficiency per group.

In the upper part of Table 4.3, it can be seen that the results are (almost) the same
for the baseline treatments of both pricing-rules. However, for a given positive
synergy factor, the first-price auction appears to perform better than the second-
price auction. The last row of Table 4.3 contains the significance levels of a two-
sided Mann-Whitney test based on average efficiency per independent observation.

7See Ledyard et al. (1997) for a discussion on efficiency measurement in auctions.

45



An experimental comparison of auctions

The difference is only significant between FP2.0 and SP2.0. Mann-Whitney tests
based on the relative occurrence of an efficient auction lead to the similar results.

It can also be seen in Table 4.3 that, within both the first- and second-price
treatments, the efficiency decreases the larger the synergies are. For the first-
price treatments, we find by means of two-sided Mann-Whitney tests, that the
efficiency in FP1.0 is significantly higher than in FP2.0 (p = 0.024), but not than
in FP1.5 (p = 0.190). Similarly, for the second-price treatments, the efficiency
in SP1.0 is significantly higher than in both SP1.5 (p = 0.043) and SP2.0 (p =
0.000). Comparisons between the efficiency for the two different positive synergy
factors within a pricing rule does not lead to any significant result. Thus, for both
pricing-rules the presence of positive synergies leads to a lower efficiency in the
first auction, which conflicts with theory.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Occurrence 88.80 88.80 90.80 89.20 90.00 88.40
Efficiency 98.99 99.24 99.32 98.93 98.45 97.44

(0.739) (0.342) (0.247)

Table 4.4: The efficiency and occurrence of an efficient auction in percentages for auction
2. In brackets are the exact two-sided p-values for Mann-Whitney tests on the average
efficiency in a group.

In Table 4.4, the efficiency measures are presented for the second auction in a
round. In the upper part of the table, it can be seen that the efficiency and
occurrence of an efficient auction are again (almost) the same for the baseline
treatments of both pricing-rules. In contrast to expectation, the efficiency in the
first-price auction is not lower than that in the second-price auction for a given
positive synergy factor. The last row of the table contains the significance levels
of a two-sided Mann-Whitney test based on the average efficiency per indepen-
dent observation. We do not find any significant differences. The results for the
second auction in a round are surprising since Güth et al. (2005) found that for
two bidders, the efficiency in an asymmetric first-price auction is lower than in a
second-price auction.

We cannot compare the efficiency within the first-price (or second-price) treat-
ments with the efficiency measure defined above. The reason is that given there
is an inefficiency, the expected efficiency is lower the larger the synergy factor.
Consequently, we conducted the two-sided Mann-Whitney tests on the relative
occurrence of an efficient auction per independent observation.

Based on the theory by Plum (1992) for two bidders, we would expect the
efficiency in FP1.0 to be significantly higher than in FP1.5 and FP2.0. However,
Table 4.4 shows that the relative occurrence of an efficient auction is higher when
synergies are present. We cannot conclude that the efficiency in the second auction
of FP1.0 is significantly different from FP1.5 (p = 0.509) or FP2.0 (p = 0.896).

Within the second-price treatments, there should not be any difference in the
efficiency, since truthful bidding is still a weakly dominant strategy. Therefore,
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we conduct Mann-Whitney tests based on the relative occurrence of an efficient
auction per independent observation. From this we cannot conclude that the
efficiency in the second auction of SP1.0 significantly differs from SP1.5 (p = 0.914)
or SP2.0 (p = 0.977).

The theoretical cause of inefficiencies in an asymmetric first-price auction is the
difference in the bid shading for the two types of bidders. Güth et al. (2005) indeed
observe this in their experiment, and, by applying the same analysis, we will now
investigate whether this property also holds in our experiment with four bidders.
In Table 4.5, we compare the median degree of bid shading between the two types
of bidders for valuations that lay within the stated intervals.8 The degree of bid
shading is defined as (v − b(v))/v.

FP1.5 FP2.0
Losers Winners Losers Winners

v ∈ [ 50, 75] 0.028 0.028 0.020 0.034
v ∈ ( 75, 100] 0.034 0.026 0.024 0.046
v ∈ (100, 125] 0.035 0.059 0.039 0.052
v ∈ (125, 150] 0.069 0.082 0.042 0.076

Table 4.5: Median degree of bid shading in the second auction.

In general, we observe that, for both types of bidders, the median degree of bid
shading increases in the valuation. In FP1.5, the winner shades more than the
losers when the valuations are in the two upper intervals. In FP2.0, the first
auction winner always shades his second auction bid more than the losers. The
finding that the efficiency does not decrease for an asymmetric first-price auction is
therefore not caused by the absence of a distinction in bid shading by the two types
of bidders. Compared to Güth et al. (2005), we find much lower shading which
can be explained by the fact that we have four bidders of which three are of the
unfavorable type. The differences in shading of winners and losers are small and,
therefore, as well the probability of an inefficient auction caused by this difference.

In this subsection we discussed the efficiency results. We observed that in the
first auction of a round, the average efficiency within a pricing rule decreases in
the synergy factor. When positive synergies are present, the efficiency is lower in
the second-price auctions than in the first-price auctions, although this difference
is only significant in a comparison between FP2.0 and SP2.0. For the second
auction of a round, we do not observe any significant decrease in efficiency within
either of the two pricing rules. Surprisingly, the efficiency in the asymmetric first-
price auction is not lower than that in a second-price auction for the same positive
synergy factor. A possible explanation for this is that the difference in bid-shading
between a first auction winner and loser is rather small.

8We take the median instead of the average because subjects with low valuations occasionally
submitted a bid of zero. Removing these bids and then taking the average leads to the same
insights as Table 4.5.
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4.4.3 Revenue and price trends

The seller’s revenue consists of the prices received in each auction of a round. In
Table 4.6, the average prices in the first and second auction are presented and
compared for a given synergy factor. In the last two rows of the table, the same
is done for the revenue. The exact two-sided Mann-Whitney statistics are based
on average prices per group.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Price 1 120.38 115.20 124.77 123.30 131.90 132.41

(0.035) (0.631) (1.000)
Price 2 119.16 113.32 128.84 119.24 137.75 127.74

(0.015) (0.000) (0.002)
Revenue 239.53 228.51 253.61 242.54 269.66 260.15

(0.003) (0.000) (0.105)

Table 4.6: The average price of each auction in a round and the revenue for all treatments.
In brackets are the exact two-sided p-values for Mann-Whitney tests on the averages per
group.

Within both the first- and second-price treatments, average prices significantly
increase in the synergy factor.9 The underlying forces at work are similar for both
pricing formats. Namely, in the first auction, the option value effect increases in
the synergy factor. In the second auction, the valuation of one of the four bidders
increases (in expectation).

For both the first and second auction, a comparison between average prices in
FP1.0 and SP1.0 shows that prices are significantly higher in the first-price auc-
tions. Although it opposes to the revenue-equivalence theorem, this is a common
experimental finding.

When positive synergies are present, the prices in the first auction of a round
do not differ significantly, for a given synergy factor, between the first- and second-
price treatments. The increase in the average price for the different synergy factors
is larger in the second-price treatments. This suggests that bidders value the option
value more in a second-price auction than in a first-price auction.

The prices in the second auction of a round are significantly higher in the first-
price auction for a given synergy factor. Maskin and Riley (2000) showed that with
this kind of asymmetry, indeed the expected revenue from a first-price auction is
higher than from a second-price auction. It appears then that this finding also
holds experimentally for four bidders.

Average revenue in FP2.0 is not significantly higher than in SP2.0. We already
observed that average prices do not differ in the first auction and that average
prices in FP2.0 are higher in the second auction. Still, the overall effect on revenue

9One-sided Mann-Whitney tests show that all differences within pricing rules are significant.
Price 1: FP1.0 <.018 FP1.5 <.001 FP2.0 and SP1.0 <.003 SP1.5 <.014 SP2.0
Price 2: FP1.0 <.000 FP1.5 <.000 FP2.0 and SP1.0 <.003 SP1.5 <.000 SP2.0
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is indeterminate. When comparing first auction prices in FP1.5 and SP1.5 we also
do not find a significant difference, but total revenue in FP1.5 is significantly
higher.

There has been a lot of interest in price trends in sequential auctions. We-
ber (1983) shows that if bidders demand a single unit, the prices in a sequen-
tial auction of identical objects are a martingale; that is, in expectation prices
drift neither up nor down. However, there is ample empirical evidence of de-
clining price trends in sequential auctions, which is known as the declining price
anomaly or afternoon effect. For instance, declining prices are observed in wine
auctions (Ashenfelter, 1989, and McAfee and Vincent, 1993), real estate auctions
(Ashenfelter and Genesove, 1992), and impressionist and modern paintings auc-
tions (Beggs and Graddy, 1997). Declining prices have also been observed in
experimental settings (Burns, 1985, Keser and Olson, 1996, and Neugebauer and
Pezanis-Christou, 2007).

Jeitschko and Wolfstetter (2002) conclude that, in case of two bidders, the
expected price in the second auction is below that in the first auction for both
first- and second-price auctions. From the average prices in Table 4.6, it can be
seen that we indeed observe a higher average price in the first auction in SP1.5
and SP2.0. However, for both FP1.5 and FP2.0 the average price is lower in the
first auction than in the second auction.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Declining 1 1 0 3 0 2
No difference 9 9 7 7 6 8
Increasing 0 0 3 0 4 0

Table 4.7: Price trends over the auctions within a round.

Within each independent observation, we analyze the price trend by comparing
the prices in the first and second auction of a round using a one-sided Wilcoxon
signed-rank test. Table 4.7 shows for each treatment the number of independent
observations in which the prices significantly decline or increase within a round,
at a significance level of five percent. The pricing format appears to influence
the observed price trend when positive synergies are present. For both baseline
treatments, we do not observe any difference between the price trends. However,
once positive synergies are present, there are more observations with significantly
declining prices in SP1.5 and SP2.0 and with significantly increasing prices in
FP1.5 and FP2.0. Performing a sign-test or increasing the significance level to ten
percent results in the same insight.

In this subsection, we discussed revenues and price trends. When positive
synergies are present, the prices in the first auction of a round do not differ signif-
icantly between the first- and second-price treatments for given positive synergies.
In contrast, the prices in the second auction of a round are always significantly
higher in the first-price treatments. The overall revenue is also always higher in
the first-price treatments, although this is not significant at five percent signifi-
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cance level for synergy factor 2.0. Finally, it appears that the presence of positive
synergies gives rise to opposing price trends for both pricing-formats.

4.4.4 Payoffs

The average auction payoffs for a bidder are shown in Table 4.8. Within both the
first- and second-price treatments, the first auction payoff decreases in the synergy
factor whereas the second auction payoff increases in the synergy factor.10 In both
FP2.0 and SP2.0, the average first auction payoff is even negative. In the bottom
part of the table, we compare the average round payoffs between the two pricing
formats for a given synergy factor.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Auction 1 2.33 3.63 1.17 1.14 -0.74 -1.39

(0.003) (0.579) (0.393)
Auction 2 2.58 4.08 3.73 6.58 5.96 8.69

(0.004) (0.002) (0.000)
Round 4.91 7.71 4.90 7.73 5.22 7.30

(0.001) (0.015) (0.089)

Table 4.8: The average payoff in ECU per auction for each treatment. The exact two-
sided p-values of Mann-Whitney tests on average payoffs per group are given between
brackets.

The test results in the table are in line with what was previously observed for
prices. For both the first and second auction, a comparison between average
payoffs in FP1.0 and SP1.0 shows that payoffs are significantly lower in the first-
price auctions. When positive synergies are present, the payoffs in the first auction
of a round do not differ significantly for a given synergy factor. The payoffs in the
second auction are significantly lower in the first-price auction for a given synergy
factor. Finally, note that the difference in average round payoff is smaller between
FP2.0 and SP2.0 than between FP1.0 and SP1.0.

Although the possible surplus that can be divided between bidders and seller
increases in the synergy factor, we showed in Section 4.2 that the expected round
payoff decreases in the synergy factor. Within both the first- and second-price
treatments, the realized average round payoff remains approximately the same
when the synergy factor increases. For the second-price treatments, the average
round payoff is even lowest in SP2.0. Comparing the payoffs between treatments
with the same pricing rule using a one-sided Mann-Whitney test based on average
round payoffs per group never leads to the rejection of equality.11 Thus, subjects

10One-sided Mann-Whitney tests show that all differences within pricing rules are significant.
Payoff 1: FP1.0 <.007 FP1.5 <.001 FP2.0 and SP1.0 <.000 SP1.5 <.014 SP2.0
Payoff 2: FP1.0 >.004 FP1.5 >.000 FP2.0 and SP1.0 >.001 SP1.5 >.004 SP2.0

11FP1.0 ∼.434 FP1.5, FP1.0 ∼.485 FP2.0, FP1.5 ∼.485 FP2.0,
SP1.0 ∼.485 SP1.5, SP1.0 ∼.427 SP2.0, SP1.5 ∼.427 SP2.0
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do not bid aggressive enough to suffer from the presence of positive synergies. Still,
the seller always reaps the increase in surplus that is due to the positive synergies.

In the first auction of a round, subjects do not only bid for the object but also
to be the strong bidder in the second auction. In Table 4.9, we show the average
second auction payoff for a bidder, depending on whether he won or lost the first
auction of a round. The average option value of winning the first auction is then
the difference between the payoffs of both types.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Winner 2.70 4.47 10.62 19.51 21.95 31.00
Loser 2.54 3.94 1.43 2.27 0.64 1.25
Option value 0.16 0.53 9.20 17.24 21.31 29.75

(0.986) (0.003) (0.000)

Table 4.9: The average second auction payoff for the winner and a loser of the first
auction in a round. The exact two-sided p-values of Mann-Whitney tests on average
payoffs per group are given between brackets.

Given the synergy factor, the average second auction payoffs are lowest for both
types in the first-price treatments. When positive synergies are present, the pay-
off of the winner increases in the synergy factor, whereas that of the loser de-
creases. Consequently, the option value increases in the synergy factor. Based on
a two-sided Wilcoxon signed-rank test on the average option value per indepen-
dent observation, we cannot reject that the option value equals zero in both FP1.0
(p = 0.770) and SP1.0 (p = 1.000). As can be seen in Table 4.9, the option value
is always significantly larger in the second-price treatment for a given positive
synergy factor.

The larger the option value, the higher bidders should bid for it. For the
first auction of a round, the larger option value then explains the more rapid
decrease of payoffs in the second-price treatments. Without positive synergies, the
option value is zero and we observe significantly higher payoffs in the second-price
treatments. When positive synergies are present, the option value is higher in the
second-price treatment, and, as a consequence, the payoff difference between the
two pricing formats disappears. The same reasoning applies for the first auction
prices.

In this auction setting, bidders face an exposure problem as they can end up
winning one object that is too expensive if the second object is not also won. We
already observed that average first auction payoffs decrease in the synergy factor
and even become negative. In order to analyze the consequences of the exposure
problem, we count the number of times a bidder receives a negative payoff from
a round. We only count round losses that are caused by a loss made in the first
auction of a round. This measure excludes round losses that are caused by the
second auction in a round, since such losses are not stemming from the presence
of positive synergies.12 In Table 4.10, the average and relative number of round

12Our findings are robust to counting all negative round payoffs.
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losses are listed per treatment. The one-sided Mann-Whitney statistics are based
on the number of round losses per independent observation.

FP1.0 SP1.0 FP1.5 SP1.5 FP2.0 SP2.0
Average 0.30 3.40 2.30 5.90 6.10 7.50
Percentage 1.20 13.60 9.20 23.60 24.40 30.00

(0.000) (0.006) (0.171)

Table 4.10: The average and relative number of round losses for each treatment. The
p-values of Mann-Whitney tests are given between brackets

The average number of round losses is always larger in the second-price treatments.
In SP1.0 and FP1.0, losses can only be caused by irrational bidding behavior. As is
often observed in experiments, bidding above valuation occurs in the second-price
auction but not in the first-price auction.

When positive synergies are present, the option value makes the value of win-
ning the first auction higher than just the bidder’s valuation for the object. For
a second-price auction this immediately implies that it is optimal to bid above
one’s valuation for the object. In a standard first-price auction, bidders shade
their bids, and therefore, the presence of the option value does not immediately
imply bidding above one’s valuation. In Chapter 3 it was shown that, for two
bidders, the number of round losses tends to be lower in first-price auctions, but
that the difference almost vanishes when the synergy factor becomes large. When
comparing FP1.5 with SP1.5 we observe a significant negative difference that is
larger than between the baseline treatments. For synergy factor 2.0, there is no
significant difference between the number of round losses. It is interesting to note
that given that a loss was made, the average loss was 14.43 in FP2.0 and 21.84 in
SP2.0.

In this subsection we discussed the payoffs of subjects. We clearly observe
differences in the average second auction payoff for the winner and the loser of
the first auction. The option value is always significantly larger in the second-
price treatments. The presence of a positive option value leads to more aggressive
bidding in the first auction of a round. Consequently, the average first auction
payoff decreases in the synergy factor and is even negative for large synergies.
Still, the average earnings per subject over a round remain approximately constant
within a pricing rule for the different sizes of the synergy factor. The occurrence
of losses increases in the synergy factor, and with the exception of synergy factor
2.0, is always significantly smaller in the first-price auction.

4.5 Discussion

Winning multiple contracts in multi-unit auctions can lead to cost advantages due
to synergies. In recurrent procurement auctions, the presence of synergies leads
to an exposure problem and asymmetries among bidders. We consider sequential
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first- and second-price auctions in which winning the first auction leads to an
increase in the valuation of the second object. In a series of experiments, we
compare the performance of the two auction formats for three different sizes of the
synergy.

We find that subjects indeed respond to the incentives provided by the presence
of positive synergies. The average second auction payoff of a first auction winner is
much larger than that of a first auction loser when positive synergies are present.
The first auction is then not only about winning the first object, but also about
increasing the expected second auction payoff. Consequently, the presence of a
positive option value leads to more aggressive bidding in the first auction. The
average first auction payoff decreases in the synergy factor and is even negative
for large synergies.

Bidders face an exposure problem, since an instantaneous loss in the first auc-
tion might not be recovered during the second auction. For subjects, the faced
exposure problem differs between the two pricing formats. In a second-price auc-
tion, bidders bid above their valuation as soon as the option value is positive,
which can, but does not necessarily, lead to an instantaneous loss when the first
object is won. In a first-price auction, bidders bid above their valuation if the
option value is sufficiently large to offset the bid-shading. Then, winning the auc-
tion always results in an instantaneous loss. Furthermore, for a given positive
synergy factor, the option value is always significantly larger in the second-price
treatments. Both factors explain why the first auction bidding increases more in
the synergy factor for the second-price treatments. However, the average earning
of a subject remains approximately constant within a pricing rule, which contrasts
the theoretical prediction. The occurrence of losses increases in the synergy factor,
and with the exception of synergy factor 2.0, is always significantly smaller in the
first-price auction.

When positive synergies are present, the prices in the first auction do not dif-
fer significantly between the first- and second-price treatments for given positive
synergies. In contrast, the prices in the second auction are always significantly
higher in the first-price treatments. The overall revenue is also always higher in
the first-price treatments, although this is not significant at five percent signifi-
cance level for synergy factor 2.0. Finally, it appears that the presence of positive
synergies gives rise to opposing price trends for both pricing-formats. Within the
first-price treatments, we observe an increase in the number of observations with
an increasing price trend, whereas within the second-price treatments we observe
an increase in the number of observations with a declining price trend.

We observe that in the first auction, the average efficiency within a pricing
rule decreases in the synergy factor. When positive synergies are present, the
efficiency is lower in the second-price auctions than in the first-price auctions,
although this difference is only significant for a comparison with synergy factor
2.0. For the second auction, we do not observe any significant decrease in efficiency
within either of the two pricing rules. Surprisingly, the efficiency in the asymmetric
first-price auction is not lower than that in the second-price auction for the same
positive synergy factor. A possible explanation for this is that the difference in
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bid-shading of a first auction winner and loser is rather small.
For small synergies, the first-price auction performs better in terms of efficiency,

revenue and the probability on losses. Once the synergy factor becomes very
large, the performance of the two different pricing formats becomes more similar,
although the first-price auction never performs worse than the second-price auction
on all three aspects. Our results provide support for the common use of first-
price rather than second-price auctions when the exposure problem is present, in
particular for recurrent procurement settings.
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4.6 Appendix

The instructions of treatment FP1.5 are provided here. Trivial modifications were
made for the instructions of other treatments.

Dear participant,

welcome to this experiment. This experiment will last about 1.5 hours and you
will be compensated according to your performance. In order to ensure that the
experiment takes place in an optimal setting, we would like to ask you to follow
the general rules during the whole experiment:

• Read these instructions carefully! It is important that you understand the
rules of this experiment. These instructions are identical for all students
that participate together with you. If something is not explained well, please
raise your hand. Do not ask the question out loud, but wait until one of the
experimenters approaches you to answer the question privately.

• Switch off your mobile phone!

• Do not communicate with your fellow students! Even though the experiment
may get exiting at times, it is very important that you remain silent through
the proceedings.

• Focus on your own computer screen and not on other participants!

• There is paper and a pen on your table, which you can use during the
experiment.

• After the experiment, please remain seated until you are paid off.

• If you do not obey the rules, the data becomes useless for us. Therefore we
will have to exclude you from this experiment and you will not receive any
compensation.

Your decisions and earnings in this experiment will remain anonymous.

General set-up In this experiment all of you are buyers of a fictitious object
that is auctioned off. You can earn ECU (Experimental Currency Units) which
will be exchanged into Euros at the end of the experiment. The exchange rate will
be given in the instructions below.
If you win an auction you do not receive the object but you receive an amount of
ECU equal to your value of the object v. In return you have to pay the price p
resulting from the auction. Thus you receive a payoff of v − p ECU. The rules of
the auction will be discussed below.
Before the experiment starts, you will be randomly divided into groups of 4 po-
tential buyers. You will not know the identity of the 3 potential buyers you are
matched with. The groups remain unchanged throughout the whole experiment.
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This experiment consists of 50 rounds. Each round consists of 2 auctions which
are held after each other. Now we will explain the procedures in each round.

Auction rules In each auction you and the 3 other potential buyers in your
group will be bidding for a single object that is auctioned off. In each auction the
following happens. First you observe your value of the object. Then all of you are
asked to submit a bid. Your bid can be any nonnegative number below 1000.
Within each group, the winner is the subject who submitted the highest bid. The
price the winner has to pay equals his bid. The payoff to the winner will be the
difference between his value v and the price he has to pay p. The payoff to the
winner is thus given by the difference between his value and his bid. All other
subjects get a payoff of 0. In case the highest bid was submitted by more than
one subject, the computer will randomly select a winner among those subjects.

Auction 1 Each round consists of two auctions and the proceedings in the first
auction of each round are as follows.
First the value of the object will be determined for each subject. This value will
be v1 = 50+x1 where x1 is a randomly determined integer between 0 and 100 with
each number being equally likely. Notice that x1 is determined independently for
each subject. Consequently the value of the object, v1, will be a number between
50 and 150 for each bidder.
After observing your value, all of you are asked to submit a bid. Thus you will
submit this bid after observing your value of the object but without observing the
values or bids of the other subjects. To submit a bid you can fill in a number in
the box and click on submit. Notice that your bid is not restricted to the interval
[50,150] but can be any nonnegative number below 1000.
The bidding procedure in the first auction is illustrated in Figure 1 below. Note
that the numbers are omitted in the illustration.
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If you win this auction, the random component of your value of the object

in the second auction will be upgraded by factor 1.5

This is the first out of two auctions in this round.

The random component of your value of the object is:

Your value of the object in this auction is:

Please, place your bid:

X1

V1

Submit

round

1 out of 50 remaining time [sec]: 12

total payoff

your total payoff so far is ECU 209

Figure 1: illustration of bidding in auction 1. On your screen you can see how your value of

the object was constructed. The random component of your value is x1 and consequently your

value of the object in the first auction is v1. To make a bid you can enter a number in the

corresponding box and click on submit. The screen also shows that this is the first out of 50

rounds and that your total payoff so far is 209.

The meaning of the sentence ‘If you win this auction, the random component of
your value of the object in the second auction will be upgraded by factor 1.5 ’ will
be clarified below.

After all of you submitted a bid, the winner and the price will be determined
according to the rules mentioned above. The feedback on the result of the auction
that will then appear on your screen is illustrated in Figure 2. Click on continue
when you are ready for the second auction of this round.
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These are the results of the first auction in this round.

Your value of the object was:

Your bid was:

The object was sold at the following price:

Did you win the auction?

Your payoff from the first auction is:

V1

B1

P1

Yes

V1−P1

Continue

round

1 out of 50 remaining time [sec]: 5

total payoff

your total payoff so far is ECU 209

Figure 2: illustration of the results of auction 1. Your value was v1 and your bid was b1. You

won the auction and the price you have to pay is p1 (which hence equals b1). Consequently your

payoff from the first auction in this round is the difference between your value and the price,

namely v1 − p1.

Auction 2 The proceedings in the second auction of each round are as follows.
A new value of the object will be determined for each subject. In case the first
auction was not won, the value will be v2 = 50 + x2 where, x2 is a randomly
determined integer between between 0 and 100 with each number being equally
likely. In case the first auction was won, the value will be v2 = 50+1.5 ·x2 where,
again, x2 is a randomly determined integer between between 0 and 100 with each
number being equally likely. Thus, for the subject that won the first auction the
random component of the value of the object is multiplied by 1.5. Notice that x2

is determined independently for each subject.
Consequently, the values of the 3 subjects that did not win the first auction lie
between 50 and 150 and the value of the subject that won the first auction lies
between 50 and 200. Again notice that your bid is not restricted to the interval
[50,150] or [50,200] but can be any nonnegative number below 1000.
The bidding procedure in the second auction is illustrated in Figure 3 below.
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If you won the first auction, the random component of your value of the object

in this auction will be upgraded by factor 1.5

This is the second out of two auctions in this round.

The random component of your value of the object is:

Did you win the first auction in this round?

The upgraded random component of your value of the object is:

Your value of the object in this auction is:

Please, place your bid:

X2

Yes

1.5×X2

V2

Submit

round

1 out of 50 remaining time [sec]: 8

total payoff

your total payoff so far is ECU 209

Figure 3: illustration of bidding in auction 2. On your screen you can see how your value of the

object was constructed. Since you won the first auction, the random component of your value

is multiplied by 1.5. Your value of the object after this upgrade is v2. To make a bid you can

enter a number in the corresponding box and click on submit.

In case the first auction was not won, the number that appears on your screen
behind ‘The upgraded random component of the object in this auction is:’ is just a
repetition of your random component of the value, since no upgrade takes place.
After all of you submitted a bid, the winner and the price will be determined
according to the rules mentioned above. The feedback on the result of the auction
and the round that will then appear on your screen is illustrated in Figure 4.

59



An experimental comparison of auctions

These are the results of the second auction in this round.

Your value of the object was:

Your bid was:

The object was sold at the following price:

Did you win the auction?

Your payoff from the second auction is:

V2

B2

P2

No

0.0

Continue

Round

1

Your payoff

V1−P1

Your total payoff

209+V1−P1

round

1 out of 50 remaining time [sec]: 8

total payoff

your total payoff so far is ECU 209+V1-P1

Figure 4: illustration of the results of auction 2. Your value of the object object was v2. Your

bid was b2 and you did not win the auction. Consequently your payoff from the second auction

in this round is zero. Your payoff from the round is the sum of the payoffs of both auctions and

thus in this case v1 − p1. This was the first round and therefore the total payoff in the upper

right corner changes from 209 into 209 + (v1 − p1).

This ends the round and the first auction of a new round starts after all of you
clicked Continue. In total you will participate in 50 rounds of 2 auctions each.
After the last round of the experiment, we would like to ask you to complete a
short questionnaire that will appear on your screen. Payments will be made by
the experimenters afterwards.

ECU are transformed into Euros according to the following conversion rate: 1
ECU = 0.024 Euro. You will get an initial endowment of 5 Euro (209 ECU).
Just like a profit is automatically added to your total payoff at the end of a round,
a loss will be automatically deducted. If at the end of the experiment your total
payoff is negative we will ask you to pay this amount of money to us. This situation
is very unlikely to occur and under your control.

Before we start with the experiment we would like you to answer the questionnaire
on the next page. One of the experimenters will go around and check the answers
and discuss any problems.
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Control questions

Please answer the following questions. When you are finished, please raise your
hand. One of the experimenters will come to you and check whether everything is
correct.

1.) How many subjects are bidding in an auction (including yourself)?

2.) Suppose that in the first auction the random component of your value is 82.
What is your value in the first auction?

3.) Suppose that you have a value of 86 for the object in the first auction. What
can you conclude about the values of the three other potential buyers?

Their value is for sure 86.

Their values might be 86 and might be different from that but all
lie between 50 and 150 for sure.

Their values lie between 50 and 150 and are for sure different from
86.

4.) Suppose the four participants A, B, C, D submitted the following bids: A
submitted 101, B submitted 93, C submitted 74, and D submitted 137. Who
wins the auction?

A B C D

5.) What price does this subject have to pay?

101 93 74 137

6.) Suppose the random component of your value is 45 in the first auction. What
can you conclude about the random component of your value in the second
auction before upgrading?

The random component will be 45 for sure.

The random component might be 45 and might be different from
that but lies between 0 and 100 for sure.

The random component lies between 0 and 100 and is different from
45 for sure.
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7a.) Suppose you did not win the first auction and the drawn random component
of your value in the second auction is 80. What is the upgraded random
component of your value?

7b.) and what is your value in the second auction?

8a.) Suppose you won the first auction and the drawn random component of your
value in the second auction is 80. What is the upgraded random component
of your value?

8b.) and what is your value in the second auction?

9.) Suppose you buy the object for a price of 100. Your value of the object is
121. What is your payoff from this auction?

10.) Suppose you buy the object for a price of 120. Your value of the object is
101. What is your payoff from this auction?
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Chapter 5

An experimental analysis of
focal prices and price cycles

In this chapter1 we experimentally analyze the alternating price setting game
of Maskin and Tirole (1988). When the time horizon is infinite, a focal price
equilibrium and an equilibrium consisting of Edgeworth cycles coexist. We test
which of these two equilibria emerges in an experiment. It is found that in 20 out
of 27 observations the focal price equilibrium emerges. Price cycles are observed in
only one observation. Furthermore, we analyze the game in case of a long but finite
horizon and find that the corresponding subgame-perfect equilibrium consists of
Edgeworth cycles. Experimentally, we still observe a focal price in the majority of
the observations. Nevertheless, price cycles are observed far more often than for
the infinite horizon setting.

5.1 Introduction

In oligopolistic markets, prices often fluctuate even though demand and supply
conditions are stable. Frequently, the rocket-feather pricing pattern is observed,
where a series of small price decrements is followed by a sudden substantial in-
crement, after which prices start declining again, possibly after a period of stable
prices. Empirical studies have found such a pattern for local gasoline markets in
the United States (Castanias and Johnson, 1993, and Doyle et al., 2007), Canada
(Eckert, 2003, and Noel, 2007), and Australia (Wang, 2005). Similarly, a price
pattern consisting of periods of stability followed by gradual undercutting of com-
petitors’ prices have been observed for the commercial airline industry (Ross, 1997,
and Busse, 2002).

The traditional price setting model for an oligopolistic market was introduced
by Bertrand (1883). For homogeneous objects this model predicts that, in equi-
librium, prices equal marginal cost. Consequently, prices are stable and firms do

1This chapter is based on Leufkens and Peeters (2008b).
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not make any profit. Edgeworth (1925) showed that the static price equilibrium of
Bertrand does not arise when firms face capacity constraints and set prices repeat-
edly, but prices would cycle. In this so-called Edgeworth cycle, firms successively
undercut each others’ prices until the ‘war’ becomes too expensive and one firm in-
creases its price. Next, the other firms respond with a match or a slight undercut,
after which the process of undercutting resumes. This result, however, is induced
by the competitors’ mutual irrational expectation that opponents maintain their
prices from the previous period.

In opposition, Chamberlain (1933) claims that a small number of firms will not
start undercutting but rather charge the monopoly price. The firms will realize
their interdependence and that competitors will retaliate a price cut by also cutting
their prices. Therefore, the result of a price cut will be a decrease in its own profits.
Hall and Hitch (1939) and Sweezy (1939) formalize this conjecture by showing that
a focal price equilibrium can be sustained for a kinked demand curve.

Maskin and Tirole (1988) show that the equilibria envisioned by Edgeworth
and Chamberlain can coexist for an infinite time horizon. They show that when
firms face short-run price commitments, which is modeled via alternating price
setting, both a focal price equilibrium and an equilibrium consisting of Edgeworth
cycles emerge as a Markov perfect equilibrium. In the focal price equilibrium,
prices are stable at the monopoly price. In the Edgeworth cycles equilibrium,
prices decline to marginal cost from which one of the firms raises it again after
which the undercutting starts again.

A different line of theoretical explanations for periods of stable prices and
periods of successive undercutting concerns tacit collusion. Price wars can erupt
due to uncertainty related to the market conditions. Green and Porter (1984)
consider a model in which firms face uncertainty about current demand such that
price cutting detection is hindered. Optimal punishment is not to resort to the
Bertrand equilibrium forever but involves a finite number of periods after which a
collusive price is again adopted. Furthermore, Rotemberg and Saloner (1986) show
that collusive prices move countercyclically in case market demand is stochastic.

Evidence of price cycles in experiments is rather limited. Cason et al. (2005)
find that for some variations of the Edgeworth hypothesis, the data of repetitive
posted price offers displays a cycle in a setting with six sellers. Furthermore, Kruse
et al. (1994) observe price cycles when capacity is restricted and there are four
players. Guillén (2004) finds price cycles for an experiment involving simultaneous
price and quantity setting. However, in the same setting, price cycles are not
observed in case of two or three sellers (Brandts and Guillén, 2007).

In this chapter we investigate the potential to observe price cycles in the al-
ternating price setting of Maskin and Tirole (1988) with two players by means
of a laboratory experiment. We consider the infinite and the finite time horizon
versions of this model. For the infinite time horizon there exists a Markov perfect
equilibrium with stable prices besides a Markov perfect equilibrium that displays
price cycles. For the finite time horizon, the subgame-perfect equilibrium induces
prices that cycle. Strikingly, the backwards induction strategies do not converge
to the Markov perfect equilibrium for the infinite time horizon when the horizon
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lengthens. In our experiment, we find that in an infinite horizon setting, the focal
price equilibrium emerges in 20 out of 27 observations and price cycles in only
one observation. For the finitely repeated setting, we also observe the focal price
outcome in the majority of the observations, even though it is not an equilibrium.
However, we observe clear price cycles in three and price wars in two out of the
fifteen observations.

The remainder of this chapter is organized as follows. In Section 5.2, we present
the basic model and the Markov perfect equilibria for the infinite time horizon of
the model and the subgame-perfect Nash equilibrium in case the time horizon ver-
sion is finite. In Section 5.3, the experimental design and procedures are described.
The analysis of the data is presented in Section 5.4. The chapter ends with some
concluding thoughts in Section 5.5.

5.2 The setting

The setting that we consider is precisely the illustrating example of the exogenous-
timing duopoly model of Maskin and Tirole (1988). The two firms compete in
a homogenous product market with prices being the strategic variable. Firms
interact dynamically in discrete time and can adapt their prices alternately. So, in
the periods in which a firm cannot adapt its price, the price remains equal to the
price set in the previous period. Consequently, firms set prices for two periods.
This alternating move structure captures the idea of short-run price commitments.
Without loss of generality, we assume that firm A can adapt its price in odd periods
and firm B in even periods.

The prices the firms can charge are the seven integers between (and including)
0 and 6. Given the firms prices at a certain period, pA and pB , the market price for
that period equals p∗ = min{pA; pB}. The market demand for that period is given
by D(p∗) = 6−p∗. We assume that the firms do not incur any costs for production.
Consequently, the market profit equals Π(p∗) = p∗ ·D(p∗). Table 5.1 summarizes
the possible market prices and the resulting market demand and market profit.
The products are homogeneous and therefore only the firm with the lowest price

Market price 0 1 2 3 4 5 6
Market demand 6 5 4 3 2 1 0
Market profit 0 5 8 9 8 5 0

Table 5.1: The output and profit for the seller with the lowest price.

sells output. This means that if a firm has the unique lowest price, this firm
receives the full market profit, and the profit of the other firm equals zero. In case
both firms charge the same price, the market output and the market profit are
split equally among them.

Next, we consider this setting with an infinite and a finite time horizon.
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5.2.1 Infinite horizon

Suppose that the time horizon is infinite and future profits are discounted by a
factor δ. It is assumed that this discount factor is sufficiently close to, and strictly
smaller than one. Firms maximize the present value of the infinite stream of
profits. Maskin and Tirole (1988) solve this setting for strategies that only depend
on the payoff relevant state, which is in this case the price set by the other firm in
the previous period. Consequently, strategies are dynamic reaction functions that
give a response price for each price set by the other firm. There are two Markov
perfect equilibria (MPE) that coexist: a focal price equilibrium and an equilibrium
that consists of Edgeworth cycles.2

In the focal price equilibrium, the firms always set prices equal to 3 which is
then also the market price. Hence, the market demand and profit is continuously
split equally and each firm makes a profit of 4.5 in all periods. The symmetric
equilibrium strategy and the prices set along the equilibrium path are illustrated
in Figure 5.1. As soon as one of the two firms sets a price of 3, prices remain there

Price Response price
6 3
5 3
4 3
3 3
2 1
1 1 with probability β(δ)

3 with probability 1− β(δ)
0 3

β(δ) ≡ (5 + δ)/(5δ + 9δ2)

Selected price

0

1

2

3

4

5

6

Time

-

• • • • • • • • • •◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 5.1: Focal price equilibrium. Left panel: symmetric MPE strategy. Right panel:
selected price by the respective firm in the respective period (• = firm A; ◦ = firm B).

ever after. From any price above 3, the best response brings the price immediately
down to 3. From prices below 3, prices are not instantly changed to 3, but do
end up there with probability one. Bringing the price up from 1 to 3 is costly
and therefore each firm wants the other firm to do so. The probability β(δ) is
determined in such a way that the opponent firm is indifferent between raising
and not raising the price.

The other Markov perfect equilibrium induces a cyclical pricing pattern on the
equilibrium path. The symmetric equilibrium strategy and the prices set along
the equilibrium path are illustrated in Figure 5.2. The firms undercut each other’s
price successively until the price equals zero and neither firm makes a positive
profit. At that price, each firm has an incentive to raise its price. Furthermore,
each firm prefers the other firm to raise its price first, so that it can start under-
cutting in the subsequent period. The probability α(δ) is determined in such a

2For proofs see Maskin and Tirole (1988). They refer to the focal price equilibrium as a kinked
demand curve. For our experimental context it is more intuitive to interpret it as the focal price
equilibrium.

68



5.2 The setting

Price Response price
6 4
5 4
4 3
3 2
2 1
1 0
0 0 with probability α(δ)

5 with probability 1− α(δ)
α(δ) ≡ (3δ2 − 1)(1 + δ2 + δ4)/(8 + 7δ2 + 2δ4 + 3δ6)

Selected price

0

1

2

3

4

5

6

Time

-

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

Figure 5.2: Edgeworth cycle equilibrium. Left panel: symmetric MPE strategy. Right
panel: price set by the respective firm in the respective period (• = firm A; ◦ = firm B).

way that the opponent firm is indifferent between raising and not raising the price.
After one firm has raised the price, the undercutting starts again. The price cycles
consist of two phases: an undercutting phase and a coordination phase concerning
which firm is going to raise the price when the price equals zero. In equilibrium,
all prices except 6 are observed.

5.2.2 Finite horizon

In this subsection, we consider a similar setting but then with a finite time hori-
zon without discounting. For a fixed horizon, the resulting game can be solved by
application of the backwards induction procedure. Obviously, the best response
in the last period is to undercut the opponent if possible. Considering the profit
structure of the game, this still does not imply that for long horizons prices con-
stant at 1 are observed. It appears that when the horizon lengthens, the backwards
induction outcome converges to a pricing pattern that contains recurrent cycles
(as long as the final stage is not too near). The best responses within a cycle
not only depend on the current price of the opponent, but also on the number of
periods that have elapsed since the start of the cycle. The non-stationary pricing
behavior within a cycle is illustrated in Figure 5.3.

The seven boxes represent periods 1 to 7 of a price cycle. In each box, an arrow
shows the best response for each current price of the opponent. The price that will
be set along the equilibrium path is shown in boldface in each box. In box 1, the
best response is to set the price equal to 1, regardless of the opponent’s current
price. Note that the actual period in time at which this behavior is observed is
not specified, we take it as the first of the cycle since the resulting price is 1 in any
case. Next, in box 2, the price of 1 is responded with one of the prices 4, 5 and 6.
By overshooting the current market price, the opponent foregoes any immediate
profit in exchange for future profits. In box 3, no matter which of the three prices
were chosen in box 2, the response is to undercut this price by setting the price
equal to 3. Thereby the maximum immediate profit of 9 is gained. Consequently,
in the previous box the opponent is indeed indifferent between setting a price of 4,
5, or 6. Next, in box 4, the opponent undercuts this price by setting its price equal
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Figure 5.3: Best responses for large finite horizons.

to 2, and this price is again undercut by a price of 1 in box 5. Then, the price
remains at 1 in box 6, 7 and 1 in order to be brought up in box 2 and subsequently
to start the gradual undercutting.

Although the figure only presents seven boxes, the cycle has a length of fourteen
periods. Namely, if it is the one firm that played according to the action displayed
in box 1, after having reached box 7, it is the other firm that continues with
the action that is depicted in box 1. Nevertheless, the dynamics of the prices
being selected over periods follows a cyclical pattern with cycle length of seven.
A graphical illustration of the cycle is given in Figure 5.4. The figure does not
contain prices observed in initial periods or the endgame effects that are observed
for any finite horizon.

5.3 Experimental design and procedures

In our experiment, we study subjects’ behavior in the alternating price setting
model for the infinite and the finite (but lengthy) time horizon. Our experimental
design, hence, consists of two treatments that are equal apart from the way the
number of periods is determined. In the first treatment we implemented a ran-
dom continuation rule, whereas in the other treatment we have a fixed number of
periods.

In the treatment with random ending, for each period there was a probability
of two percent that the experiment ended after that period. Of course, it requires
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Figure 5.4: Cyclical pattern of selected prices (• = firm A; ◦ = firm B).

a sufficiently long horizon in order to be able to find mature behavior. In order
to increase the chance on having a session with a sufficiently long horizon, we
scheduled two sessions for this treatment. Within a session, all subjects faced the
same horizon. In the end, the experiment consisted of 67 periods in the first session,
and of 40 periods in the second session. 3 In the treatment with fixed ending, the
experiment ended after 80 periods. In both treatments, subjects were perfectly
informed about the determination of the number of periods. The treatments are
summarized in Table 5.2.

Random ending Fixed ending
Session 1 Session 2

Periods 67 40 80
Observations 15 12 15

Table 5.2: The experimental treatments.

At the beginning of the session, subjects were randomly matched and it was com-
mon knowledge that the matching did not change throughout the experiment.
Before the first period started, for each matched pair of subjects, it had to be de-
cided which of the two subjects could adapt its price in the first (and hence each
odd) period and what price was responded to in this first period. Therefore, the
experiment started with a pre-stage phase in which both subjects simultaneously
had to select an initial price. Next, it was randomly decided which of the two
subjects could adapt the price in the first period. In the first period, this subject
responded to the price that the other had set in the pre-stage phase. The initial
price selected by the subject that could adapt its price in the first period was never
revealed.

Every period, the subjects that were able to adapt their prices could observe
the current period price of their opponent. Prices were selected by marking one of
the seven possibilities. At the end of each period, subjects received an overview

3See Selten et al. (1997) and Dal Bó (2005) for discussions on approximating infinitely repeated
games in experiments.
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of the results of that period, which consisted of both prices, own profit, and own
total profit so far. In periods where subjects could not adapt their price, they only
observed the result screen of that period.

The experiment was conducted in the behavioral and experimental laboratory
(BeeLab) of the Faculty of Economics and Business Administration at Maastricht
University in November 2007. The laboratory has a capacity of 32 students and
we allowed precisely 32 students to register for each of the three sessions. The
experiment was announced via email and subjects could register online using their
matriculation number, which ensured that students could participate only once.
When students arrived at the laboratory, they had to draw a card from a deck
that determined at which computer terminal they were placed. In case an odd
number of students showed up for a session, we included a blank card in the deck.
Students that drew the blank card could not participate and were paid e 3.- as
compensation. In total, 84 undergraduate students participated in the experiment.
Students not showing up or canceling on short notice led to the dispersion in the
number of independent observations.

All interactions took place via computers that were connected to a network
and the computer terminals were placed in such a way that subjects could neither
see the screens of others nor make eye contact with them. The experiment was
programmed and conducted with the software z-Tree (Fischbacher, 2007). Before
the start of a session, subjects read the instructions and were allowed to privately
ask questions that were then privately answered. After reading the instructions,
subjects had to answer control questions, which tested their understanding of the
instructions.4 One of the experimenters checked the answers, and the experiment
only started after all subjects answered each question correctly. During the exper-
iment, subjects earned ECU that were converted into Euros at a known exchange
rate at the end of the experiment. We used the same exchange rates in both treat-
ments and 20 ECU was exchanged for 1 Euro. The average payoff was e 17.78
including a show-up fee of e 5.-. Sessions lasted, depending on the treatment,
between 45 and 70 minutes. Payment took place privately, and subjects had to
leave the laboratory immediately after payment.

5.4 Results

In this section we analyze the experimental price setting behavior. All prices set
over time are displayed in Section 5.6 for all observations in this experiment. For
both treatments, it is found that the major share of the groups coordinated on a
price of 3 (the focal point equilibrium for the infinite time horizon). Groups where
the price settled down at 2 form a small minority. Finally, there is a large minor-
ity of groups where prices did not converge and displayed some kind of cyclical
behavior. For the groups in the latter category, we pursue a deeper investigation
into the underlying pricing dynamics. In doing so, we neglect premature decision
making in both treatments and endgame effects in the fixed ending treatment.

4See Section 5.7 for the instructions and control questions.
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Consequently, we always omit the prices set in the first fourteen periods and, if
applicable, the last six periods.5

5.4.1 Random ending

For this treatment we have in total 27 independent observations spread over two
sessions. In the first session, 15 pairs of subjects played for 67 periods. The
remaining 12 pairs of subjects played in the second session which consisted of
40 periods. If subjects’ behavior would be consistent with common belief in se-
quential rationality and Markovian behavior, we should observe one of the two
equilibria of Subsection 5.2.1. That is, prices are constantly 3, or would follow the
rocket–feather pattern of prices gradually falling to 0, where at some point the
price rockets to 5. All decisions made throughout these experimental sessions are
presented in Subsection 5.6.1.

Apart from five groups, denoted by R1.6, R2.5, R2.6, R2.7 and R2.11, subjects
managed to coordinate on a common price. Groups R1.15 and R2.1 settled down at
a price of 2. The remaining 20 groups settled down at a price of 3. So, a majority
of the groups played according to the focal price equilibrium. Four of these 20
groups, R1.9, R1.10, R1.13, and R2.9, needed more than 15 periods for getting to
this equilibrium. The other 16 groups managed to get to this equilibrium rather
quickly. Next, we study the dynamics of pricing behavior for those five groups
that did not settle down at a single common price in more detail.

One property of a price cycle is that a range of prices is observed. In addition,
subjects should gradually undercut each other’s price until the prices reach a cer-
tain bottom level. Undercutting behavior above the bottom price can be identified
by the conditional probability that pt+1 = pt − 1. When prices have reached the
bottom, they are likely to stay there for some periods due to the coordination
problem for bringing prices up. Consequently, having the mode at the bottom of
the price range may indicate some form of cycling behavior.6

For the relevant five groups, Table 5.3 displays the conditional switching prob-
abilities for the observations after period 15. For Group R1.6 these probabilities
are based on 52 decisions, and for Groups R2.5, R2.6, R2.7 and R2.11 on 25 de-
cisions each. Each entry in the table shows the probability that a current price
of pt is followed by a price of pt+1 in the subsequent period. The last row shows
the number of observations on which the probabilities are based for each of the
possible current prices.

All five observations share the common property that once a price larger or
equal to 4 is set, it will immediately be undercut. In Group R2.5 a price of 3 is as

5Changing the categories by a couple of periods does not lead to different conclusions.
6In empirical studies a negative median price change is sometimes taken as an indication of

cycling prices (see Lewis (2006) and Doyle et al. (2007)). In these studies prices are set on a much
finer grid and therefore hardly ever the same in subsequent periods. For the present experiment
this is not a suitable classification measure since the coordination stage at the bottom of the
cycle can take quite long and hence the median price change will be zero even if prices do cycle.
Actually, the median price change equals zero in the backwards induction equilibrium of the
finite horizon setting which clearly consists of price cycles.
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likely being undercut as being matched. In the other four out of five observations,
also a price of 3 is immediately undercut. Apart from Group R2.7, prices of 2
and 1 are matched with high probability. These groups therefore do not display
active cyclical behavior as the price often tends to stagnate at 1 or 2. In these
observations prices larger or equal to 3 are not frequently observed. In Group R2.7,
a price of 2 is undercut with certainty. One period later, when the price has reached
the bottom of the price cycle at price 1, in this group, the price is matched with
probability 0.33 and brought up with probability 0.67 in order to continue the
process of gradual undercutting.

The only observation, out of the 27 in total, that comprises the conditions
of a price cycle is Group R2.7. All prices higher than 1 are followed by a price
that is one below it in the subsequent period. After the price has dropped to 1,
it either remains there or it is (substantially) increased. Even though prices do
clearly cycle, the behavior does not completely match the price cycle equilibrium
of Maskin and Tirole (1988). Namely, in this equilibrium, prices are brought up
to 5 and coordination takes place at a price of 0. A reason for the coordination to
take place at price 1 may be that undercutting to 0 would induce zero profit for
at least two periods, whereas matching at 1 results in a profit of at least 2.5.

In the other four observations that do not coordinate at a common price, no
real cycling behavior is observed over the mature periods. In Groups R1.6, R2.5,
and R2.6 undercutting mainly takes place before period 28. Moreover, in these
groups and in Group R2.11 prices fluctuate instead of cycle between 0 and 3 or
between 1 and 3.

To summarize, for 20 of the 27 observations, the subjects’ behavior is con-
sistent with the focal price equilibrium, possibly after some learning. Cyclical
behavior appears to persist in only one observation: Group R2.7. The remaining
six observations are difficult to classify as being in line with either the focal price
equilibrium or the equilibrium involving price cycles. Among these there are two
observations where the price settled at 2. Although this is not an equilibrium,
there is some logic behind prices stabilizing at 2. At that price the immediate
benefit from undercutting the other firm is much lower that at a price of 3, while
the resulting per period profit is only a halve lower. Moreover, it would take (at
least) eight periods, to compensate for the immediate loss of inducing a switch to
the focal price.

5.4.2 Fixed ending

For this treatment we have 15 independent observations that are gathered in one
single session. Within this session, subjects interacted in pairs for 80 periods. The
only behavior that is consistent with common belief of rationality results in the
cyclical price pattern of Figure 5.4. So, unlike for the treatment with random
ending, there is no (subgame-perfect) equilibrium with prices settling down at 3.
Nevertheless, in experiments with long time horizons behavior is often observed
to be more in line with an infinite than with a finite horizon until shortly before
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the end.7 Hence, in line with the previous subsection, prices constant 3 are not
unlikely to be observed. All decisions made throughout this session are presented
in Subsection 5.6.2.

In ten out of the 15 groups, subjects coordinated on a common price. One of
these ten groups (Group F.13) settled down at a price of 2, the other nine at a
price of 3. From the latter nine, seven of the groups managed to coordinate on
price within 10 periods. The other two groups needed more than 25 periods. In
all observations with stable prices from some point on, an endgame effect with
length of at most three periods is observed. To be precise, in two observations
there is an endgame effect of length one, in five observations of length two, and in
three observations of length three. This signals that subjects seemed to apply the
procedure of backwards induction only when the end of the session was very near.

The other five groups (Groups F.2, F.7, F.8, F.9 and F.10) seem to behave
more in line with the notion of common belief in sequential rationality. In order to
see how close these groups matched equilibrium behavior, we study the dynamics
of their pricing behavior in more detail. Table 5.4 displays for each group the
conditional switching probabilities for the observations after period 15 and before
period 74. Each entry in the table shows the probability that a current price of
pt is followed by a price of pt+1 in the subsequent period. The last row shows
the number of observations on which the probabilities are based for each of the
possible current prices.

In Group F.7 the price never got above 3. In the other observations the price
quickly declined towards 3 when it was above it. A price of 3 was undercut with
certainty in Groups F.2 and F.10, and in Group F.9 with a probability of 0.78. In
Groups F.7 and F.8 a price of 3 was matched with high probability, but this price
stability is most prominent in the periods between 15 and 45. In all groups a price
of 2 was likely to be followed by a price of 1, although in quite some cases the
price of 2 was matched. Once the price was 1, with high probability the price was
either matched or (substantially) brought up. In Group F.10 the price frequently
further decreased to 0, before being brought up.

The switching probabilities indicate that the price dynamics in Groups F.2,
F.9 and F.10 seem to closely follow the subgame-perfect equilibrium prediction.
Also the mode price being equal to 1, is in line with the equilibrium prediction. In
Groups F.7 and F.8, another kind of cycle is observed. Prices are rather stable at
3, with only a small probability on an undercut. At some point, an undercut takes
place and is likely to be followed by another undercut. Next, the price stabilizes at
1, until it is brought up in order to stabilize once more at 3. This pricing pattern
has the structure of the classical price war of alternations between periods of gentle
and periods of severe price competition.

To summarize, nine of the 15 groups behave according to the focal price equilib-
rium of the infinite horizon counterpart. Of the remaining five observations, three
observations clearly display price cycles. The other two show cyclical behavior
that is comparable to that of the classical price war.

7See for instance Selten and Stoecker (1986), Engle-Warnick and Slonim (2004), and Normann
and Wallace (2006).
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5.5 Discussion

We experimentally analyzed the alternating price setting game of Maskin and
Tirole (1988). When the time horizon is infinite, two Markov perfect equilibria
coexist; one consisting of a focal price and one consisting of Edgeworth cycles.
We experimentally find that the focal price equilibrium emerges in 20 out of 27
observations. Only in a single observation subjects’ behavior displays price cycles.

We also analyze the alternating move price setting game in case the number of
periods is fixed. We find that the subgame-perfect equilibrium consists of prices
that cycle. Experimentally, we still observe the focal price in nine out of 15 obser-
vations, even though this is not a subgame-perfect equilibrium. Of the remaining
five observations, three clearly display price cycles. The other two observations
show cyclical behavior that is comparable to that of the classical price war. Con-
sequently, there is less cooperative behavior in the treatment with fixed ending
than in the treatment with random ending, although it is impossible to validate
it by means of statistical tests.

It has been difficult to find undercutting behavior, and hence price cycles, in
the laboratory so far. Especially for settings with few players there had been no
experimental observations of them. In our experiments we were able to find cycling
prices in a dynamic setting with only two players, although in many instances
the players seemed to collude. From this we conclude that the alternating move
structure has the potential to enhance undercutting behavior.

Even though it is quite a strong result to find cycling prices for the present
setting, future research is needed to see whether prices cycle more often if some of
the settings of the alternating move game are changed. For instance, the number
of players and hence the number of periods for which prices are committed could
be increased. Furthermore, the addition of exogenous demand shocks would make
undercutting in periods of high demand more profitable and hence could lead to
more cycling behavior. Finally, the structure of the profit table could be altered
to make undercutting the focal price more profitable, although the coexistence of
the two equilibria needs to be retained.

78



5.6 Appendix A: Figures

5.6 Appendix A: Figures

5.6.1 Treatments with random ending
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Figure 5.5: Group R1.1
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Figure 5.6: Group R1.2
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Figure 5.7: Group R1.3
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Figure 5.8: Group R1.4
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Figure 5.9: Group R1.5
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Figure 5.10: Group R1.6
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Figure 5.11: Group R1.7
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Figure 5.12: Group R1.8
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Figure 5.13: Group R1.9
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Figure 5.14: Group R1.10
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Figure 5.15: Group R1.11
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Figure 5.16: Group R1.12
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Figure 5.17: Group R1.13
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Figure 5.18: Group R1.14
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Figure 5.19: Group R1.15
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Figure 5.20: Group R2.1
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Figure 5.21: Group R2.2
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Figure 5.22: Group R2.3
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Figure 5.23: Group R2.4
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Figure 5.24: Group R2.5
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Figure 5.25: Group R2.6
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Figure 5.26: Group R2.7
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Figure 5.27: Group R2.8
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Figure 5.28: Group R2.9
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Figure 5.29: Group R2.10
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Figure 5.30: Group R2.11
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Figure 5.31: Group R2.12
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5.6.2 Treatment with fixed ending
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Figure 5.32: Group F.1
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Figure 5.33: Group F.2

p

0

1

2

3

4

5

6 6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Period

-

•• • •

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •◦ ◦ ◦

◦

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 5.34: Group F.3
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Figure 5.35: Group F.4
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Figure 5.36: Group F.5
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Figure 5.37: Group F.6
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Figure 5.38: Group F.7
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Figure 5.39: Group F.8
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Figure 5.40: Group F.9
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Figure 5.41: Group F.10
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Figure 5.42: Group F.11
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Figure 5.43: Group F.12
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Figure 5.44: Group F.13

p

0

1

2

3

4

5

6 6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Period

-

•

•

• •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•◦
◦

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Figure 5.45: Group F.14
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Figure 5.46: Group F.15
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5.7 Appendix B: Experimental instructions

The instructions that students received before the experiment started are given
here. In case the instruction differed for the two treatments, the text for the treat-
ment with random ending is reported between [ ].

Dear participant,

welcome to this experiment. You will be compensated according to your perfor-
mance. In order to ensure that the experiment takes place in an optimal setting,
we want to ask you to follow the general rules during the whole experiment:

• Read these instructions carefully! It is important that you understand the
rules of this experiment. These instructions are identical for all subjects
that participate together with you. If something is not explained well, please
raise your hand. Do not ask the question out loud, but wait until one of the
experimenters approaches you to answer the question in private.

• Switch off your mobile phone!

• Do not communicate with your fellow students! Even though the experiment
may get exiting at times, it is very important that you remain silent through
the proceedings.

• Focus on your own computer screen and not on other participants!

• There is paper and a pen on your table which you can use during the exper-
iment.

• After the experiment, please remain seated until you are paid off.

• If you do not obey the rules, the data becomes useless for us. Therefore we
will have to exclude you from this experiment and you will not receive any
compensation.

Your decisions and earnings in this experiment will remain anonymous.

General set-up

In this experiment all of you are sellers of a fictitious commodity. You can earn
ECU (Experimental Currency Units) which will be exchanged into Euros at the
end of the experiment. The exchange rate will be given in the instructions below.

Before the experiment starts, you will be randomly divided into groups of two
sellers. You will not know the identity of the seller you are matched with. The
groups remain unchanged throughout the whole experiment.
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Procedures

This experiment consists of 80
[
multiple

]
periods. In each period, only one of the

two sellers can adapt its price. The price of the seller that cannot adapt its price
remains equal to its price in the previous period. The seller that can adapt its
price switches after each period. Consequently, one seller can adapt its price only
in the odd periods, whereas the other seller can adapt its price only in the even
periods.

Before setting your price for the current and the subsequent period, you observe
the price of the other seller for the current period. Remember that the other seller
can adapt its price in the next period, after having observed your price. This
procedure of alternating price-adaptation continues until the experiment ends.

Possible prices are the integers between (and including) 0 and 6. To decide on a
price you can select a price on your screen and then click on OK (see the figure
below).

You can now adapt your price for the current and the next period.

The current price of the other seller is: 2

For the current and the next period, select your price:

d
d
d
d
d
d
d

0

1

2

3

4

5

6
OK

Period

1 out of 80 remaining time [sec]: 28

Total Profit

your total profit so far is ECU 0.0

Figure 1: Screenshot of price adaptation screen.

After the seller that could adapt its price has made its decision, the profits for that
period are determined. Only the seller that has the lowest price sells output. The
amount of output depends on its price. There are no production costs. Hence, the
profit for the seller that has the lowest price is equal to the output multiplied by
its price. Table 1 shows the output and profit at each possible price for the seller
that has the lowest price. The other seller has a profit equal to zero in this period.

91



Focal prices and price cycles

Price 0 1 2 3 4 5 6
Output 6 5 4 3 2 1 0
Profit 0 5 8 9 8 5 0

Table 1: The output and profit for the seller with the lowest price.

In case both sellers have the same price, output is split equally. The profit for
each seller is then half of the profit reported in Table 1 at that price.

At the end of each period, both sellers receive an overview of the results of that
period. You can observe your price, the price of the other seller, your profit, and
your total profit so far. In a period in which you cannot adapt your price, you
only observe the result screen of that period.

This procedure continues until the end of the experiment.

[ Number of periods

The number of periods in this experiment is unknown until the experiment has
ended. After each period, the experiment ends with a probability of 2 percent.
This means that with a probability of 98 percent the experiment continues with
the next period. The decision to continue or not, is made by a computer. Notice
that although you are matched with one other seller, the number of periods played
will be the same for all subjects in the current session.

]

The first period

Before the procedures above start, it has to be decided who of the sellers is able
to adapt its price in the first (and all odd) periods and to which price this seller
responds. Therefore, the first period contains an initial period in which both sellers
are asked to set an initial price. Next the computer randomly decides which of
the two sellers can adapt its price in the odd periods. In the first period this seller
will respond to the other’s initial price.

Closing

After the last period of the experiment, we would like you to complete a short
questionnaire that will appear on your screen. Payments will be made by the
experimenters afterwards.

ECU are transformed into Euros according to the following conversion rate: 20
ECU = 1 Euro. In addition to your earnings during the course of the experiment,
you will also receive a show up fee of 5 Euro.

Before we start with the experiment we want you to answer the questionnaire on
the next page. One of the experimenters will go around and check the answers
and discuss any problems.
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Questionnaire

Please answer the following questions. When you are finished, raise your hand.
One of the experimenters will come to you and check whether everything is correct.

1. How many sellers are in your group (including yourself)?

2. Suppose that you can adapt your price in period 4. What does this imply
for your price in period 5?

My price in period 5 will be equal to my price in period 4.

My price in period 5 can be any integer between (and including) 0 and
6.

3. Suppose that you can adapt your price in period 4. What do you know about
the price of the other seller in period 5?

The other’s price in period 5 will be equal to its price in period 4.

The other’s price in period 5 can be any integer between (and including)
0 and 6.

4. Suppose that you can adapt your price in period 4. What does this imply
for your price in period 6?

My price in period 6 will be equal to my price in period 4.

My price in period 6 will be equal to my price in period 5.

My price in period 6 can be any integer between (and including) 0 and
6.

5. Suppose you can adapt your price in the current period and the price of the
other seller is 5.

(a) What will be your profit in this period when you set a price of 6?

(b) What will be your profit in this period when you set a price of 5?

(c) What will be your profit in this period when you set a price of 4?

[
6. Suppose you are currently in period 17, what is the probability that the

experiment continues with period 18?
]
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Chapter 6

Price competition with
exogenous demand shocks

In this chapter1 we consider an infinite alternating move Hotelling model in which
consumers are uniformly distributed over the market. The analytic solution for
this setting is given and the unique linear stationary subgame-perfect equilibrium
is computed for different values of the discount factor. The base model is then
extended by the introduction of exogenous demand shocks, which makes it im-
possible to find an analytical solution using the conventional analysis. For this
extended model, the bounds between which long-run prices fluctuate are deter-
mined via numerical computations for different values of the shock probability. It
is found that the presence of exogenous demand shocks leads to countercyclical
pricing behavior.

6.1 Introduction

When a competitive situation is modeled in a static setting, firms are found to
behave very competitively. For instance, in an oligopoly with homogeneous prod-
ucts the equilibrium prices equal marginal cost and firms do not make any profits
(Bertrand, 1883). However, in a dynamic setting firms might act mutually nonag-
gressive in order to ensure higher profits to all of them (Chamberlain, 1933). Such
behavior cannot be observed in a static model due to a lack of opportunities to
reward nonaggressive behavior and to punish aggressive behavior.

For a homogeneous product market, Maskin and Tirole (1988) show that in
an alternating move setting, pricing behavior becomes less competitive when the
discount factor increases. The reason for this is that an increase in the discount
factor makes it more worthwhile for a firm to sacrifice current demand by raising
its price today in the expectation of future profit when the other firm follows suit.
Eaton and Engers (1990) consider a similar setting for a linear city where half of

1This chapter is based on Leufkens and Peeters (2008a).
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all consumers are located at one of the endpoints and the other half at the other
endpoint. For this model of a differentiated product market two kind of equilibria
exist: a ‘disciplined’ one that is enforced by threats to undercut and that arises
when the products are close substitutes, and a ‘spontaneous’ one in which such
threats are not needed and that arises when the products are more differentiated.

This chapter presents a model with two firms located at the end points of a
linear city. Consumers are uniformly distributed over the market and the firms set
prices in alternating periods. We determine the unique linear stationary subgame-
perfect equilibrium (SSPE) which is found to be dynamically stable as the dynamic
reactions converge to a steady state. The SSPE is also found numerically by
applying backwards induction after truncation of the horizon. Namely, Maskin
and Tirole (1987) show that the finite horizon equilibrium strategies converge to
the unique linear SSPE of the infinite horizon model if the truncation of the horizon
lengthens. It is found that the steady state price increases in the discount factor
and hence firms become less aggressive the more patient they are.

Then, the model is extended by the introduction of exogenous demand shocks.
There are two levels of demand and given the current level there is a probability
that the demand changes in the next period. The introduction of uncertainty
into the model has fundamental consequences as the analytical solution can not
longer be found via the conventional analysis. Therefore, the SSPE is computed
numerically by applying backward induction after truncating the horizon. We
determine the margin in which long-run prices fluctuate and the dependency of
this margin on the shock probability and the discount factor. It is found that in
equilibrium, pricing behavior is more competitive when the demand is high and
that in the long-run prices are higher in case of low demand. Our results are
therefore in line with the often observed countercyclical pricing (see for instance
Rotemberger and Saloner (1986)). However, in contrast to most models for which
countercyclical prices are found, our results do not depend on (tacit) collusion.

This chapter is organized as follows. In the next section the static model and its
solution are presented. Section 6.3 contains the infinite alternating move variant of
this model and presents the dynamic reaction functions that constitute a stationary
subgame-perfect equilibrium. The reaction functions are computed numerically
and the movement of prices in the long-run are discussed. In Section 6.4 the
model is extended by including exogenous demand shocks. The chapter ends with
a discussion in Section 6.5.

6.2 The model

The basic model of horizontal differentiation was introduced by Hotelling (1929).
Let there be two firms, each located at one of the endpoints of a unit interval
on which consumers are uniformly distributed. We assume that firm A is located
at x = 0 and firm B is located at x = 1. Furthermore, consumers have unit
demands and the basic utility consumers achieve by consumption of the product,
β, is sufficiently high and equal for each consumer, which guarantees that all
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consumers acquire a product. Moreover, consumers are assumed to incur linear
transportation costs of τ per unit of distance from the chosen firm. Finally, we
assume that the firms’ production costs are equal to zero.

The situation described above is a two-stage model, where in the first stage
both firms determine prices and in the second stage the consumers make their
decisions. Consumers select from which firm to buy on the basis of their location
on the unit interval and the firms’ prices, and thereby determine the sales of the
two firms. The model can be solved by applying backwards induction.

In the second stage, given prices pA and pB , the consumer located at x has a
utility of

Ux =
{

β − pA − τ · x if the consumer buys from firm A,
β − pB − τ · (1− x) if the consumer buys from firm B.

The indifferent consumer is then located at

x̂ = 1
2 + pB−pA

2τ .

Then, given the prices pA and pB , firm A attracts qA = x̂ consumers and firm B
the remaining qB = 1− x̂ consumers.

In the first stage, knowing the reaction of the potential consumers, both firms
simultaneously decide on prices. The profits of the firms are given by

πA(pA, pB) = pB−pA+τ
2τ η pA and πB(pA, pB) = pA−pB+τ

2τ η pB ,

where η represents the total mass of consumers and hence the fixed total demand.
Given pB , firm A’s profit is maximized by setting pA = pB+τ

2 . Given pA, firm

B’s profit is maximized by setting pB = pA+τ
2 . In equilibrium both firms must

be optimally responding to each other and therefore both equations have to be
satisfied. This leads to the equilibrium prices, quantities and profits given by

pA∗ = pB∗ = τ, qA∗ = qB∗ = 1
2 and πA∗ = πB∗ = 1

2τ.

Although this solution could give a good prediction for market prices when the
firms set their prices only once, in reality firms interact and set prices over time,
and are able to react on each other’s prices.

6.3 Equilibrium strategies and price dynamics

In order to capture the dynamic feature of reality in combination with short-run
price commitments, we assume that the firms move alternately over an infinite
horizon. The alternating structure ensures that firms react on the price set by
the opponent while knowing that this price remains constant in the subsequent
period.2 Assume that firm A adapts its price in odd periods and firm B adapts

2Maskin and Tirole (1987 and 1988) consider endogenous timing of the firms’ moves and
show that in many cases the equilibrium behavior is exactly as in the imposed alternating timing
framework.
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its price in even periods. After having adapted the price, a firm is committed to
this price for two periods. The prices set are perfectly observable for both firms.
Consumers purchase the product every period anew and do not incur any costs of
switching. Given prices pA and pB in a period, the temporal profits are determined
according to the Hotelling model of the previous section.

At any period in time, given the opponent’s present price, firms maximize the
present value of the complete stream of future profits by application of the discount
factor δ ∈ (0, 1). Consequently, in each period in which a firm can adapt its price,
it does not only take into account the current profits but also anticipates on the
possible reaction of the opponent in the next period and its own reaction on that
and so on. In comparison to Eaton and Engers (1990) our model assumes more
heterogeneity among consumers such that the concept of undercutting, which plays
an important role in their study, has no longer a sensible meaning.

A strategy for a firm is a specification of its price setting behavior depending
on the opponent’s current price, time, and the full history of events. A pair of
strategies constitutes an equilibrium if no firm is able to improve the present value
of the stream of profits by a unilateral (one-shot) deviation. A strategy is called
stationary if it is independent of time and history and consequently only depends
on the current state. In this model the current state is specified by the price the
opponent is committed to. Hence, in a stationary strategy firm A specifies its
response-price pA(pB) for each possible price pB . Therefore, stationary strategies
can be seen as dynamic reaction functions. Once a pair of stationary strategies
(pA(·), pB(·)) constitutes an equilibrium, this equilibrium is called a stationary
subgame-perfect equilibrium (SSPE).3

In the remainder of this chapter, the analysis is restricted to the use of station-
ary strategies.4 Several technical and pragmatic motivations for this restriction
can be found in Maskin and Tirole (2001). An experimental motivation for this
restriction can be found in McKelvey and Palfrey (1995).

Theorem 6.1 For any discount factor δ there exists a unique linear stationary
subgame-perfect equilibrium.

Proof See Theorem 6.7 and its proof in Section 6.6. 2

The SSPE is found analytically by applying the techniques used in Maskin and
Tirole (1987). The stationary equilibrium can be computed numerically by grad-
ual truncation of the horizon and applying backwards induction to the truncated
games. In all maximization problems during the backwards induction procedure,
the objective function is quadratic in the decision variable. Then, the finite hori-
zon equilibrium strategies converge uniformly to the SSPE of the infinite horizon

3Following Maskin and Tirole (2001) we do not name this equilibrium a Markov perfect
equilibrium. The reason is that we impose the payoff relevant state exogenously and therefore
cannot guarantee that it is the coarsest partition of histories.

4As in Maskin and Tirole (1987), we only consider linear dynamic reaction functions. That
is, they are affine functions of the opponent’s current price. Consequently, we cannot rule out
nonlinear equilibria.
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model when the horizon lengthens (see Maskin and Tirole (1987) and Lau (2002)).5

Moreover, the backwards induction procedure will lead to a linear SSPE. For dif-
ferent values of the discount factor δ, Table 6.1 displays the symmetric unique
SSPE strategies of the two firms which are found numerically and appear to be
symmetric. It can be verified that these strategies coincide with those from the
analytical solution in Section 6.6.

δ pi∗(pj) δ pi∗(pj)
0.00 0.500000 · pj +0.500000 · τ 0.50 0.384410 · pj +0.762062 · τ
0.05 0.487578 · pj +0.525226 · τ 0.55 0.374173 · pj +0.787992 · τ
0.10 0.475316 · pj +0.550867 · τ 0.60 0.364228 · pj +0.813566 · τ
0.15 0.463221 · pj +0.576861 · τ 0.65 0.354584 · pj +0.838725 · τ
0.20 0.451304 · pj +0.603136 · τ 0.70 0.345245 · pj +0.863419 · τ
0.25 0.439579 · pj +0.629612 · τ 0.75 0.336213 · pj +0.887605 · τ
0.30 0.428063 · pj +0.656206 · τ 0.80 0.327489 · pj +0.911251 · τ
0.35 0.416772 · pj +0.682833 · τ 0.85 0.319070 · pj +0.934329 · τ
0.40 0.405723 · pj +0.709406 · τ 0.90 0.310952 · pj +0.956821 · τ
0.45 0.394931 · pj +0.735842 · τ 0.95 0.303130 · pj +0.978714 · τ

Table 6.1: Stationary subgame-perfect equilibrium strategies.

When δ equals zero, the dynamic reaction functions coincide with their static
counterparts which were given in Section 6.2. If δ converges to 1, these linear
dynamic reaction functions converge to pi∗(pj) = 0.295598 pj + τ . The decrease in
the coefficients in front of pj for increasing values of δ indicates that the sensitivity
to each other’s prices is less when the firms are more patient. The increase in
the coefficients in front of τ for increasing values of δ indicates that the firms’
willingness to coordinate on a higher price increases when the firms are more
patient.

In Figure 6.1, impressions of the shape of the equilibrium strategies (linear
dynamic reaction functions) are given. Notice that even though the lines in the
figure have a similar shape as the best-response curves of the static model, they
do not represent best-response curves. Here, the complete lines correspond to
equilibrium behavior. Given that firm B plays the stationary strategy pB∗(·), the
whole line pA∗(·) depicts the best response for firm A and pA∗(pB) is just the
present stage’s price realization when in the previous stage firm B has set the
price pB . So, the only best response drawn for firm A in this figure, is the best
response against firm B’s strategy pB∗(·).6

Let the initial state (pA
0 , pB

0 ) be given by point 0 in the figure. In the first stage
firm A will face the price pB

1 := pB
0 and react with pA

1 = pA∗(pB
1 ), which leads to

the price pair (pA
1 , pB

1 ) in point 1. In the next stage firm A is committed to its
first stage price: pA

2 := pA
1 . Given the state pA

2 , firm B’s decision as specified by

5The convergence of the strategies (reaction functions) when the horizon lengthens was already
pointed out by Cyert and DeGroot (1970), which is the pioneering contribution on alternating
move models.

6Cyert and DeGroot (1970) point out that in the best-response dynamics of the static model
the underlying assumption is that the rival will not change his decision in response to a change
by the firm. This assumption is proved false in each period, but firms continue to use reaction
functions that are based on this false assumption.
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Figure 6.1: SSPE strategies.

its stationary strategy pB∗(·) is pB
2 = pB∗(pA

2 ), which brings the system to point 2.
Repeating this procedure, we see that the state dynamics converges to one single
point where both firms apply the steady-state price p̄. The SSPE is dynamically
stable if for any initial pair of prices, the dynamic process induced by the firms
pricing behavior converges to the steady-state prices.

Theorem 6.2 For any discount factor δ, the stationary subgame-perfect equilib-
rium is dynamically stable. Each firm’s steady state price is equal to p̄ = b

1−a τ ,
where b τ is the intercept and a the slope of the stationary subgame-perfect equilib-
rium strategy.

Proof See Theorem 6.7 and its proof in Section 6.6. 2

Regardless of the price-pair (pA
0 , pB

0 ) in which the procedure starts, the price dy-
namics converges to the point (p̄, p̄). Hence, in the long-run prices converge to p̄.
For different values of δ, Table 6.2 lists the values of the corresponding long-run
price. The long-run price can be computed to converge to p̄ = 1.419643 · τ when
δ converges to 1.

δ p̄ δ p̄
0.00 1.000000 · τ 0.50 1.237938 · τ
0.05 1.024988 · τ 0.55 1.259121 · τ
0.10 1.049904 · τ 0.60 1.279651 · τ
0.15 1.074672 · τ 0.65 1.299511 · τ
0.20 1.099216 · τ 0.70 1.318690 · τ
0.25 1.123463 · τ 0.75 1.337184 · τ
0.30 1.147340 · τ 0.80 1.354997 · τ
0.35 1.170782 · τ 0.85 1.372136 · τ
0.40 1.193729 · τ 0.90 1.388612 · τ
0.45 1.216129 · τ 0.95 1.404444 · τ

Table 6.2: Long-run prices.
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Proposition 6.3 The steady state price p̄ is equal to the static Hotelling solution
for δ = 0, and grows with the discount factor.

The positive correlation between the discount factor and the long-run prices reveals
that by increasing patience the firms become mutually less aggressive. For any
discount factor larger than zero, the long-run prices are higher than in the static
model.

6.4 Exogenous demand shocks

We extent the alternating move Hotelling model of the previous section by intro-
ducing exogenous shocks in the total demand. Let there be two states of demand;
a high-demand state (H) and a low-demand state (L). In the low-demand state,
the mass of consumers, ηL, is normalized to one and the high-demand state the
mass, ηH , equals h > 1. The probability of a transition from the one state of
demand in a certain period to the other state of demand in the subsequent period
is equal to α. Hence, the state of demand remains unchanged from one period to
the other with probability 1− α. In a stationary strategy for this setting, firm A
specifies its response-price pA(D, pB) for each state of demand D ∈ {L,H} and
each possible price pB firm B can be committed to.

An example of the present setting is two ice cream vendors that are located
at the ends of a beach and both are selling the same brand of ice cream. The
seaside visitors, which are the potential customers, are uniformly distributed over
the beach. Depending on the prices of the vendors, each visitor decides to which
vendor to go, taking into account the transportation cost over the distance from
their blanket to the chosen vendor. The weather changes on a daily basis between
sunny and cloudy with probability α (hence, tomorrow’s weather is related to
today’s weather) and demand for ice creams is high when it is sunny.

For α = 0, α = 1 or h = 1, there is no uncertainty on the next period’s
demand and the model is analytically solvable by application of the techniques
used in Maskin and Tirole (1987). For all other parameter configurations these
techniques are no longer applicable. Namely, in their analysis Maskin and Tirole
(1987) use the optimal response to the opponent’s optimal response to one’s price
set (see also Equation (6.2) and Equation (6.3) in Section 6.6). Due to the ex-
ogenous demand shocks the optimal response of the opponent to one’s price is no
longer uniquely defined. Still, the stationary equilibrium can be computed numer-
ically by gradual truncation of the horizon and applying backwards induction to
the truncated games. The reason for this is that the demand shocks are exogenous.
The alternating move game is still linear-quadratic such that the equilibrium stra-
tegies of the finite horizon converge uniformly to the linear SSPE of the infinite
horizon when the horizon lengthens.

For the relative demand difference fixed at h = 1.50, the discount factor fixed
δ = 0.95, and for different values of the exogenous demand shock parameter α,
Table 6.3 contains the symmetric linear SSPE strategies (second and third col-
umn). The first term of the elements in the second column indicate that in the

101



Price competition with demand shocks

α pi∗(H, pj) pi∗(L, pj) p̃j

0.00 0.303130 · pj +0.978714 · τ 0.303130 · pj +0.978714 · τ ∞ · τ
0.10 0.307865 · pj +0.965787 · τ 0.296352 · pj +0.997095 · τ 2.719361 · τ
0.20 0.312373 · pj +0.954155 · τ 0.290446 · pj +1.012004 · τ 2.638254 · τ
0.30 0.316682 · pj +0.943610 · τ 0.285230 · pj +1.024266 · τ 2.564416 · τ
0.40 0.320817 · pj +0.934019 · τ 0.280573 · pj +1.034417 · τ 2.494732 · τ
0.50 0.324797 · pj +0.925291 · τ 0.276375 · pj +1.042831 · τ 2.427409 · τ
0.60 0.328638 · pj +0.917369 · τ 0.272559 · pj +1.049774 · τ 2.361205 · τ
0.70 0.332357 · pj +0.910180 · τ 0.269065 · pj +1.055441 · τ 2.295093 · τ
0.80 0.335965 · pj +0.903716 · τ 0.265843 · pj +1.059976 · τ 2.228402 · τ
0.90 0.339475 · pj +0.897945 · τ 0.262856 · pj +1.063485 · τ 2.160561 · τ
1.00 0.342898 · pj +0.892857 · τ 0.260068 · pj +1.066042 · τ 2.090849 · τ

Table 6.3: Stationary subgame-perfect equilibrium strategies.

high-demand state the sensitivity to each others prices increases in the likeliness of
a transition to the low-demand state. Moreover, the second terms signal a decreas-
ing willingness to coordinate on high prices if the probability on a low demand
increases. For the low-demand state exactly the opposite effects are observed.

The optimal response-price in the low-demand state pi∗(L, pj) is larger than
the response-price in the high-demand state pi∗(H, pj) if and only if pj is less than
the value p̃j that is depicted in the fourth column of Table 6.3. The second and
third column of Table 6.4 indicate where prices converge to in the long run if
the system would be continuously in the high-demand state and the low-demand
state respectively, regardless of initial prices. From this we learn that prices will

α p̂(H) p̂(L) p̌(H) p̌(L)
0.00 1.404444 · τ 1.404444 · τ 1.404444 · τ 1.404444 · τ
0.10 1.395374 · τ 1.417037 · τ 1.402043 · τ 1.410617 · τ
0.20 1.387605 · τ 1.426254 · τ 1.399678 · τ 1.415028 · τ
0.30 1.380924 · τ 1.433001 · τ 1.397416 · τ 1.418147 · τ
0.40 1.375210 · τ 1.437835 · τ 1.395301 · τ 1.420264 · τ
0.50 1.370389 · τ 1.441121 · τ 1.393363 · τ 1.421572 · τ
0.60 1.366416 · τ 1.443105 · τ 1.391628 · τ 1.422207 · τ
0.70 1.363273 · τ 1.443960 · τ 1.390090 · τ 1.422250 · τ
0.80 1.360946 · τ 1.443800 · τ 1.388782 · τ 1.421774 · τ
0.90 1.359441 · τ 1.442710 · τ 1.387709 · τ 1.420822 · τ
1.00 1.358780 · τ 1.440730 · τ 1.386880 · τ 1.419417 · τ

Table 6.4: Bounds on the prices in the long run.

gradually decrease below p̃j once they are above p̃j and that once prices are below
p̃j there is no force that will push the price above this critical value. Hence, in the
long run prices will always be below the value p̃j and we can state the following
proposition.

Proposition 6.4 In the long run, the response-price in the low-demand state is
larger than in the high-demand state.

The intuition behind these countercyclical price-dynamics is that when the demand
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is high, competition for the market gets fiercer, resulting in lower prices. This effect
is reinforced by a coordination on higher prices in the low-demand state in order
to be able to reap higher profits once the high-demand state emerges.

The highest and lowest price that can be observed in the long run are the values
p̂(H) and p̂(L) that are indicated in the second and third column of Table 6.4.
These values result if the system remains continuously in the same state of demand,
either in the high-demand or in the low-demand state. This means that the highest
price that can ever be observed in the high-demand state is when responding to
p̂(L). Similarly, the lowest price that can be observed in the low-demand state
is when responding to p̂(H). These two price-bounds are listed in the fourth
and fifth column of Table 6.4 that are indicated by p̌(H) = pi∗(H, p̂(L)) and
p̌(L) = pi∗(L, p̂(H)). It can be concluded that in the long run prices will be
between p̌(H) and p̂(H) in the high-demand state and between p̂(L) and p̌(L) in
the low-demand state. The price-bounds are graphically illustrated in Figure 6.2.

-
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Figure 6.2: Bounds on long run prices.

The figure reveals that the lower bound on the prices in the low-demand state is
always above the upper bound on the prices in the high-demand state. Extensive
numerical computations demonstrate that this property is found to hold true for
all different values of the discount factor δ and the relative demand difference h
(with h > 1). Supported by these extensive numerical simulations, we formulate
the following proposition.

Proposition 6.5 In the long run, prices in the low-demand state are larger than
prices in the high-demand state.

The figure indicates a downward trend in the price-bounds in the high-demand
state for increasing values of the shock probability. The intuition is that when
the probability to leave the high-demand state increases, the incentive to reap the
immediate profits at stake becomes larger. For the low-demand state the price-
bounds increase until the shock probability attains a certain level (in the figure
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at a point close to α = 0.75) and decrease thereafter.7 The intuition is that when
the probability of getting to the high-demand state gets larger, the incentive to
give up immediate rewards for the future rewards in the stages to come. But if
the probability gets above a certain threshold, the return to the low-demand state
in two periods time becomes too probable, resulting in a diminishing incentive for
such a nonaggressive behavior. In the end, it would be the opponent firm that
benefits from one’s leniency.

6.5 Discussion

In this chapter an alternating move Hotelling model is analyzed. It is found that
the long-run prices in the alternating move model are higher than for the static
model. These long-run prices grow with the discount factor, since the firms become
more patient. The presence of exogenous demand shocks leads to countercyclical
price behavior for this setting. It can be shown that the introduction of exogenous
demand shocks into an infinite horizon alternating move homogenous Cournot
model leads to the same insights. However, with respect to quantities the findings
are mirrored.

6.6 Appendix

The proofs in this appendix are similar to the proofs of Maskin and Tirole (1987).
We are interested in pairs of dynamic reaction functions (RA, RB) that form an
SSPE. In order to show that a pair of dynamic reaction functions forms an SSPE,
it is enough to rule out profitable one-shot deviations (see Herings and Peeters
(2004) for an explanation of the one-deviation property). Hence, (RA, RB) is an
SSPE if and only if there exist value functions ((V A,WA), (V B ,WB)) such that
for any pair of prices (pA, pB):

V A(pB) = maxp {πA(p, pB) + δ ·WA(p)}
RA(pB) ∈ argmaxp {πA(p, pB) + δ ·WA(p)}
WA(pA) = πA(pA, RB(pA)) + δ · V A(RB(pA))

and similar expressions for firm B’s value functions and dynamic reaction func-
tion. Here V A(pB) is firm A’s present discounted profit if it is about to move,
the other firm’s price is pB and the firms use (RA, RB) forever; WA(pA) is firm
A’s present discounted profit if firm B is about to move and when firm A is cur-
rently committed to price pA and the firms continue with strategies RA and RB

stationarily.

Lemma 6.6 When they exist, the dynamic reaction functions are upward sloping.

7Numerical simulations show that for low discount factors the influence of future periods is
too small and the bending point in the price-bound is not observed. For larger values of h the
bending point is located at a lower value of α.
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Proof Assume, to the contrary, that pA > p̄A and RB(pA) < RB(p̄A). By
definition, RB(pA) is a best response to pA, thus

πB(pA, RB(p̄A)) + δ ·WB(RB(p̄A)) ≤ πB(pA, RB(pA)) + δ ·WB(RB(pA)),

and RB(p̄A) is a best response to p̄A,

πB(p̄A, RB(pA)) + δ ·WB(RB(pA)) ≤ πB(p̄A, RB(p̄A)) + δ ·WB(RB(p̄A)).

Combining these two inequalities we find that

πB(pA, RB(p̄A))− πB(pA, RB(pA)) + πB(p̄A, RB(pA))− πB(p̄A, RB(p̄A)) ≤ 0,

which is equivalent to
∫ pA

p̄A

∫ RB(p̄A)

RB(pA)

∂2

∂x ∂y πB(x, y) dy dx ≤ 0.

But ∂2

∂x∂y πB(x, y) = 1
2τ > 0. We have a contradiction. 2

The first-order condition for the optimization problem is
∂
∂xπA(RA(pB), pB) + δ · d

dpWA(RA(pB)) = 0.

Since pA = RA(pB), we have
∂
∂xπA(pA, (RA)−1(pA)) + δ · d

dpWA(pA) = 0, (6.1)

and since pB = RB(pA), we have
∂
∂xπA(RA(RB(pA)), RB(pA)) + δ · d

dpWA(RA(RB(pA))) = 0. (6.2)

Moreover, from the maximization problem we can formulate the following Bellman
equation

WA(pA) = πA(pA, RB(pA)) + δ · πA(RA(RB(pA)), RB(pA))

+ δ2 ·WA(RA(RB(pA))).

Differentiation of the Bellman equation gives
d
dpWA(pA) = ∂

∂xπA(pA, RB(pA)) + ∂
∂y πA(pA, RB(pA)) · d

dpA RB(pA)

+δ · ∂
∂xπA(RA(RB(pA)), RB(pA)) · d

dpB RA(RB(pA))

· d
dpA RB(pA)

+δ · ∂
∂y πA(RA(RB(pA)), RB(pA)) · d

dpA RB(pA)

+δ2 · d
dpWA(RA(RB(pA))) · d

dpB RA(RB(pA)) · d
dpA RB(pA).

Substitution of (6.2) gives

d
dpWA(pA) = ∂

∂xπA(pA, RB(pA)) + ∂
∂y πA(pA, RB(pA)) · d

dpA RB(pA)

+δ · ∂
∂y πA(RA(RB(pA)), RB(pA)) · d

dpA RB(pA)
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and subsequent substitution of (6.1) gives

− 1
δ · ∂

∂xπA(pA, (RA)−1(pA)) = ∂
∂xπA(pA, RB(pA)) + ∂

∂y πA(pA, RB(pA))

· d
dpA RB(pA)

+δ · ∂
∂y πA(RA(RB(pA)), RB(pA))

· d
dpA RB(pA).

The latter expression can be simplified to

d
dpA RB(pA) =

− ∂
∂xπA(pA, (RA)−1(pA))− δ · ∂

∂xπA(pA, RB(pA))
δ · ∂

∂y πA(pA, RB(pA)) + δ2 · ∂
∂y πA(RA(RB(pA)), RB(pA))

. (6.3)

Next, we look for linear dynamic reaction functions:

RA(pB) = αA + βApB and RB(pA) = αB + βBpA.

Moreover, we know that

∂
∂pA πA = 1

2 + pB−2pA

2τ and ∂
∂pB πA = pA

2τ .

Therefore condition (6.3) boils down to

βB = (−[ 12 + (pA−αA)/βA−2pA

2τ ]− δ · [ 12 + αB+βBpA−2pA

2τ ])

/ (δ · pA

2τ + δ2 · αA+βA(αB+βBpA)
2τ ),

or equivalently

[δ2(βA)2(βB)2 + 2δβAβB − 2(1 + δ)βA + 1]pA =

−δ2αB(βA)2βB − δ2αAβAβB − δαBβA + αA − (1 + δ)βAτ.
(6.4)

As a constant times pA is constant, the first constant must be zero, thus

δ2(βA)2(βB)2 + 2δβAβB − 2(1 + δ)βA + 1 = 0.

By symmetry we also have

δ2(βA)2(βB)2 + 2δβAβB − 2(1 + δ)βB + 1 = 0.

From these two equations it is clear that βA = βB = β. Hence, we can drop the
superscripts:

δ2β4 + 2δβ2 − 2(1 + δ)β + 1 = 0.

This equation has four solutions of which two of them are real. One of these lies
in the interval (0, 1

2 ) and the other in the interval ( 1√
δ
, 1

δ ). The root in the second
interval can be shown to give rise to a dynamically unstable path (see Maskin and
Tirole (1987)). The root in the first interval is relevant for the present purpose.
This root leads to dynamic reaction functions for which there is a steady-state
price and that are therefore dynamically stable.
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But, also the right-hand side of (6.4) has to be equal to zero, thus

δ2β3αB + δ2β2αA + δβαB − αA = −(1 + δ)βτ,

and again by symmetry

δ2β3αA + δ2β2αB + δβαA − αB = −(1 + δ)βτ.

Combining these two equalities gives

(δ2β3 − δ2β2 + δβ + 1)(αB − αA) = 0,

from which we see that αA = αB and again we can drop the superscripts:

δ2β3α + δ2β2α + δβα− α = −(1 + δ)βτ.

Solving this equation for α gives

α =
−(1 + δ)τβ

δ2β3 + δ2β2 + δβ − 1
.

Theorem 6.7 For any discount factor δ: (1) there exists a unique linear SSPE,
(2) this SSPE is dynamically stable, and (3) each firm’s steady state price is equal
to p̄ = α

1−β , is equal to the static Hotelling solution for δ = 0, and grows with the
discount factor.

Proof (1) Since the dynamic reaction functions are linear and the profit functions
quadratic, the valuation functions are quadratic. From this it is easily found that
the objection function is concave. This means that the first-order conditions are
not only necessary but also sufficient. All candidate linear SSPEs satisfy the fourth
degree polynomial equation that determines β. But, only the dynamics associated
with one of the roots is consistent with an SSPE. Thus, the symmetric pair of
dynamic reaction functions that are determined by the α and β above form a
unique linear SSPE.

(2) Dynamic stability is obtained by the slope of the dynamic reaction curves
that have a slope larger than 0 and less than 1

2 and thus less than 1 in absolute
value.

(3) The behavior of the equilibrium dynamic reaction functions and of the
steady state are subject in Sections 6.3 and 6.4. 2
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Chapter 7

An alternating Hotelling
experiment

This chapter contains an experimental analysis of an alternating move Hotelling
setting with exogenous demand shocks. We compare the prices set in case of low
and high demand. The consumer mass in the high-demand state and the transition
probability are varied between treatments. We compare the prices and profits in
case of low and high demand both within and between treatments. We do not find
any significant differences in average prices and profits in mature behavior. The
reason is that subjects collude in many observations.

7.1 Introduction

The movement of prices in the presence of exogenous shocks to market demand
has received much interest. Prices that fall during demand booms and rise when
market demand shrinks have been termed countercyclical. Rotemberg and Sa-
loner (1986) show that if firms tacitly collude, prices move countercyclically in
case of stochastic market demand. They apply their findings to empirical obser-
vations for the cement industry, the automobile industry between 1954 and 1956
(Bresnahan, 1981), and the railroad cartel which operated in the 1880’s on the
Chicago-New York route (Porter, 1983). Furthermore, Yoeli (2003) validates the
findings of Rotemberg and Saloner (1986) for De Beers diamonds. The theoretical
finding of countercyclical pricing also applies when the demand shocks are serially
correlated (Kandori, 1991). In contrast, Haltiwanger and Harrington (1991) show
that if demand shocks are cyclical, and hence expected, pricing can be procyclical.

Not all explanations for countercyclical pricing rely on the presence of tacit
collusion between producers. Bagwell (2004) finds countercyclical pricing for a
model where consumers select from which firm to buy without knowing its actual
current price due to high search costs. Consumer decisions are based on price
reputations, and market demand alternates stochastically between fast growth and
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slow growth. Another model that does not rely on tacit collusion was presented
in Chapter 6. There it was shown that in an alternating move model of horizontal
differentiation with two demand states, countercyclical prices are observed in the
competitive outcome.

In this chapter we attempt to induce countercyclical pricing in an experiment.
We experimentally test an alternating move Hotelling model that is comparable to
that of Chapter 6. Market demand can either be low or high and the probability
of a change from one state to the other is constant. We consider three treatments
which differ in the market demand for the high-state and the transition probability.
Between the two demand states, we do not find any significant difference in average
prices and profits. The reason for this is that subjects collude in the majority of
the observations in all treatments.

This chapter is organized as follows. In Section 7.2 the model used in the
experiment is presented. In Section 7.3 we describe the experimental design and
the procedures. The results are discussed in Section 7.4. The chapter ends with a
discussion in Section 7.5.

7.2 The model

We consider an alternating move Hotelling model with demand shocks which is
slightly different from the one presented in Chapter 6. Two firms compete in a
heterogenous product market with prices being the strategic variable. Firms can
adapt their prices alternately and in the periods in which a firm cannot adapt its
price, the price remains equal to the price set in the previous period.

Each of the two firms is located at one of the endpoints of a unit interval and
consumers are uniformly distributed over this interval. We assume that firm A
is located at x = 0 and firm B is located at x = 1. The consumers have unit
demands and the basic utility consumers achieve by consumption of the product is
given by β = 50. Consumers incur linear transportation costs per unit of distance
from the chosen firm, which are given by τ = 10. Finally, we assume that the
firms’ production costs are equal to zero and that the prices that firms can set are
restricted to be between 0 and 50.

Given prices pA and pB , a consumer located at x has a utility of

Ux =





0 if the consumer does not buy,
50− pA − 10x if the consumer buys from firm A,
50− pB − 10(1− x) if the consumer buys from firm B.

It then follows that for a given pA and pB , firm A’s temporal market share, sA, is
given by

sA =





1 if pA ≤ pB − 10,
1
2 + 1

20 (pB − pA) if pB − 10 ≤ pA ≤ pB + 10 and pA ≤ 90− pB ,
5− 1

10pA if pB − 10 ≤ pA ≤ pB + 10 and pA ≥ 90− pB ,
0 if pA ≥ pB + 10.
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A similar expression can be given for the temporal market share of firm B. In case
the price of one firm is at least 10 below that of the other firm, the former captures
the whole market. If the price difference is less than 10 and the sum of the prices
does not exceed 90, each firm serves halve of the market plus 0.05 times the price
difference. In case the sum of the prices exceeds 90, each firm has a market share
of 0.5 minus one tenth of its price. In this case the market is not fully served.

There are two states of market demand, namely a high-demand state (H) and
a low-demand state (L). In the low-demand state, the mass of consumers, ηL,
is normalized to one and in the high-demand state the mass, ηH , equals h > 1.
The probability of a transition from the one state of demand in a period to the
other state of demand in the subsequent period is given by α. Hence, the state of
demand remains unchanged from one period to the other with probability 1− α.

The temporal profits of the firms are then given by

πA = pA · sA · η and πB = pB · sB · η,

where η ∈ {ηL, ηH} is the temporal total mass of consumers.

7.3 Experimental design and procedures

We want to study subjects’ behavior for the alternating price setting model with
demand shocks. As was discussed in Chapter 6, differences between prices set in
case of low and high demand are influenced by the high-demand state consumer
mass and the transition probability. A larger difference between the mass for
low and high demand can result in more aggressive pricing in the high-demand
state. A larger transition probability α, means that demand is more likely to
change for the subsequent period. In order to see how this influences pricing
behavior, we implemented a between-subjects design with three treatments, which
are summarized in Table 7.1. We have a benchmark treatment (BE), a treatment
with increased demand (ID) in the high-demand state, and a treatment with an
increased transition probability (IT).

BE ID IT
h 1.5 2.0 1.5
α 0.2 0.2 0.5
periods 80 80 80
observations 14 12 14

Table 7.1: The experimental treatments.

In all three treatments, the experiment consisted of 80 periods which was common
knowledge. Although the experiment consisted of a finite number of periods, we
still approximate the infinite horizon. Namely, the finite horizon subgame-perfect
equilibrium strategies converge to the unique linear stationary subgame-perfect
equilibrium of the infinite horizon model if the horizon lengthens (See Chapter 6
and Maskin and Tirole (1987)). The usage of a fixed instead of a random ending
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reduces the amount of uncertainty that the subjects have to deal with and was
therefore preferred for this experiment.

The state of demand in a period was independently drawn for each indepen-
dent observation. In treatment BE and ID the same realizations were used. For
treatment IT this was not possible, but overall the number of periods with low
and high demand was similar to the other two treatments.

At the beginning of the session, subjects were randomly matched and it was
common knowledge that the matching did not change throughout the experiment.
Before the first period started, for each matched pair of subjects, it had to be
decided who of the two subjects could adapt the price in the first (and hence each
odd) period and what price was responded to in this first period. Therefore, the
experiment started with a pre-stage phase in which both subjects simultaneously
had to set an initial price. Next, it was randomly decided which of the two subjects
could adapt the price in the first period. In this first period, this subject responded
to the other’s price set in the pre-stage phase.

Every period, the subjects that were able to adapt their prices could observe
the current price of their opponent and the state of demand. Prices were restricted
to the integers between and including 0 and 50. At the end of each period, subjects
received an overview of the results of that period, which consisted of the state of
demand, both prices and market shares, own profit, and own total profit so far. In
periods where subjects could not adapt their price, they only observed the result
screen of that period. The results of all previous periods could be reviewed at the
bottom of the result screen.

The experiment was conducted in the behavioral and experimental laboratory
(BeeLab) of the Faculty of Economics and Business Administration at Maastricht
University in March 2008. The experiment was announced via email and subjects
could register online using their matriculation number. The laboratory has a
capacity of 32 students and we allowed precisely 32 students to register for each
of the three sessions. Students not showing up or canceling on short notice led
to some dispersion in the number of independent observations. When students
arrived at the laboratory, they had to draw a card from a deck that determined
at which computer terminal they were placed. In case an odd number of students
showed up for a session, we included a blank card in the deck. Students that drew
the blank card could not participate and were paid e 3.- as compensation. In
total, 80 undergraduate students participated in the experiment.

All interactions took place via computers that were connected to a network.
The experiment was programmed and conducted with the software z-Tree (Fisch-
bacher, 2007). Before the start of a session, subjects read the instructions and
were allowed to privately ask questions that were then privately answered. After
reading the instructions, subjects had to answer control questions, which tested
their understanding of the instructions.1 One of the experimenters checked the
answers, and the experiment only started after all subjects answered all questions
correctly. During the experiment, subjects earned ECU that were converted into
Euros at a known exchange rate at the end of the experiment. The average payoff

1See Section 7.6 for the instructions and control questions.
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was e 23.22 including a show-up fee of e 6.-. Sessions lasted approximately 90
minutes. Payment took place privately, and subjects had to leave the laboratory
immediately after payment.

7.4 Results

In this section we discuss the results for the prices set in the different states of
demand and the realized profits. We neglect the decisions made in the first 14
periods in order to have settled down behavior. The experiment consisted of a fixed
number of periods and endgame effects are then likely to be observed. Therefore,
we also neglect the last six periods. Unless specifically stated, the results reported
in this section are based on periods 15 to 74.

We compare the prices set in the low and high state of demand, both within
and between treatments. For all treatments, the average prices in both demand
states are reported in Table 7.2.

BE ID IT
pL pH pL pH pL pH

Average 37.40 36.86 40.45 39.24 41.17 40.79
(0.452) (0.133) (0.213)

Table 7.2: The average prices in both demand states for all treatments. In brackets are
the exact p-values of one-sided Wilcoxon signed-ranks tests.

In case pricing is countercyclical, the prices set in the low-demand state should
be higher than those set in the high-demand state. For all three treatments, it
is indeed observed that the average price in case of low demand is above that for
high demand. Within each treatment, the prices are compared using one-sided
Wilcoxon signed-ranks tests with corrections for ties and which are based on the
average prices in each independent observation. From the table it can be concluded
that although a price difference is observed, it is not significant.

A possible reason for the lack of a significant difference is the fact that many
groups of bidders coordinate on a high price. Both subjects tacitly agreed on a
price of 44 or 45 which was kept constant throughout the experiment. In treat-
ments BE and IT this behavior is observed for respectively 8 and 10 out of 14
groups. In treatment ID it is observed for 7 out of 12 groups.

The subjects that managed to coordinate on a high price, often needed quite
some periods to do so. When we compare the average prices in both demand states
for all periods, a significant difference is found within treatment ID (p = 0.039)
and IT (p = 0.012). Thus by including the first and last couple of periods, the price
differences become significant. The reason for this is that the number of periods
in which collusion is observed is then seriously reduced. Furthermore, the effect
of coordination on high prices can also be mitigated by taking the first quartile
instead of the average price over the mature periods. For treatment ID it is again
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found that the difference between the first quartile in case of low and high demand
is significant (p = 0.013).

The larger consumer mass for the high-demand state, the more aggressive the
pricing might get in that state. Similarly, it could well be that the pricing in the
low-demand state responds in the other direction to a change in the difference
between the consumer masses. A higher transition probability may lead to more
aggressive pricing when demand is high, since it is very likely that demand is
low in the subsequent period. Furthermore, even if in the subsequent period
demand is still high, the opponent might reasons that it is likely to be low in the
subsequent period and hence price aggressively which makes it again better to
price aggressively now. Therefore we compare the average prices set in the two
demand states between BE and ID, and between BE and IT. In Table 7.2 it can
be seen that the average prices in both demand states are lower in BE than in ID
and IT. We compare the average prices between the treatments using two-sided
Mann-Whitney tests and we do not find any significant differences.2

BE ID IT
πL πH πL πH πL πH

Average 18.70 28.42 19.97 38.02 20.23 30.16
(0.990) (0.002) (0.591) (0.811)

Table 7.3: The average profits and in brackets the p-values of a comparison with the
profit for that demand state in BE.

In Table 7.3 the average temporal profits in the two states of demand are reported.
In all treatments, the profits are much higher in case of high demand. For BE and
IT, the average profit in the high-demand state is about 1.5 times that in the
low-demand state. In ID the average profit for high demand is about double of
that in case of low demand.

Displayed in brackets in the table are the two-sided p-values of a comparison
with the profit in BE for the same state of demand. Between BE and the other
two treatments, the average profit does not significantly differ for low demand. For
high demand, the average profit in ID is significantly higher than in BE, whereas
in IT this is not the case.

The results for the profits are in line with those observed for the prices. The
pricing behavior does not differ much between the states and consequently subjects
fully profit from the increased consumer mass in the high-demand state. When
looking at the non-collusive groups, particularly in ID it appears that the average
profit in case of high demand is above but less than double of the profit for low de-
mand. Still, there are too few observations without collusion to draw unambiguous
results on this.

Although we observe collusion in all treatments, it could be that there are
differences in the time it takes to arrive at collusive prices. The median period

2For pL: BE ∼.337 ID, BE ∼.153 IT.
For pH : BE ∼.475 ID, BE ∼.235 IT.
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number after which prices are constant at a collusive level is 11 for BE, 14 for ID,
and 17 for IT. It could well be that endgame effects are initiated earlier in certain
treatments and are related to the state of demand. Especially since Rotemberg and
Saloner (1986) have shown that cartels are harder to preserve in periods of high
demand than in periods of low demand. The median period in which the collusion
breaks down is 79 for BE, 77.5 for ID, and 78 for IT. Furthermore, the breakdown
cannot clearly be linked to the demand state. Overall we cannot conclude that
clear differences are observed between the treatments for the groups that collude.

7.5 Discussion

In this chapter we analyzed an alternating move Hotelling model with demand
shocks by means of an experiment. Due to collusion in the majority of the obser-
vations, we do not observe significantly lower prices in the high-demand state than
in the low-demand state. Furthermore, no significant differences between prices
are found for treatments that differ in the size of market demand in the high state
and the transition probability between states. Finally, we do not observe apparent
differences in the evolution of the collusion between treatments.

We cannot conclude that we observe countercyclical pricing in this experiment.
Still, in the observations in which there is no collusion, prices appear to move
countercyclical. Especially, for treatment ID this is observed. Further research
is needed to get more insights on this. It is crucial to reduce the number of
observations in which subjects collude, which is difficult since rematching is not
possible in this setting. One line of research that could facilitate this is by having
more than two firms competing on a circle instead of a line.
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7.6 Appendix

The instructions for the benchmark treatment (h=1.5, α=0.2) are provided here.
In addition to these instructions, a table with the profits for all possible price
combinations and each state of demand was provided to the subjects. Furthermore,
subjects received a one page summary of these instructions. Trivial modifications
were made to these instructions for other treatments.

Dear participant,

welcome to this experiment. This experiment will last about approximately two
hours and you will be compensated according to your performance. In order to
ensure that the experiment takes place in an optimal setting, we want to ask you
to follow the general rules during the whole experiment:

• Read these instructions carefully! It is important that you understand the
rules of this experiment. These instructions are identical for all subjects
that participate together with you. If something is not explained well, please
raise your hand. Do not ask the question out loud, but wait until one of the
experimenters approaches you to answer the question in private.

• Switch off your mobile phone!

• Do not communicate with your fellow students! Even though the experiment
may get exiting at times, it is very important that you remain silent through
the proceedings.

• Focus on your own computer screen and not on other participants!

• It is prohibited to use the computer for anything else than this experiment!
Thus, do not open a webbrowser or any other application.

• There is paper and a pen on your table which you can use during the exper-
iment.

• After the experiment, please remain seated until you are paid off.

• If you do not obey the rules, the data becomes useless for us. Therefore we
will have to exclude you from this experiment and you will not receive any
compensation.

Your decisions and earnings in this experiment will remain anonymous.

General set-up In this experiment all of you are sellers of a fictitious commod-
ity. You can earn ECU (Experimental Currency Units) which will be exchanged
into Euros at the end of the experiment. The exchange rate will be given in the
instructions below.

Before the experiment starts, you will be randomly divided into groups of two
sellers. You will not know the identity of the seller you are matched with. The
groups remain unchanged throughout the whole experiment.
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Alternating moves This experiment consists of 80 periods. In each period,
only one of the two sellers can adapt its price. The price of the seller that cannot
adapt its price remains equal to its price in the previous period. The seller that
can adapt its price switches after each period. Consequently, one seller can adapt
its price only in the odd periods, whereas the other seller can adapt its price only
in the even periods.

Before setting your price for the current and the subsequent period, you observe
the price of the other seller for the current period. Remember that the other seller
can adapt its price in the next period, after having observed your price. This
procedure of alternating price-adaptation continues until the experiment ends.

Prices Possible prices are the integers between (and including) 0 and 50. To
decide on a price you can enter a price in the box on your screen and then click
on OK (see the figure below). You have 60 seconds to enter a price.

You can now adapt your price for the current and the next period.

Demand in the current period is: low

The current price of the other seller is: 21

For the current and the next period, select your price:

OK

Period

1 out of 80 remaining time [sec]: 24

Total Profit

your total profit so far is ECU 0.0

Figure 1: Screenshot of the price adaptation screen.

Market share After the seller that could adapt its price has made its decision,
the market shares for that period are determined. Your current market share
depends on your current price and the current price of the other seller. We will
now give the formula that is used to calculate market shares. We explain its
meaning in words below.

When your current price is p and the current price of the other seller is p′, then
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your current market share in percentage is given by

s =





100% if p ≤ p′ − 10

50 + 5(p′ − p)% if p′ − 10 ≤ p ≤ p′ + 10 and p ≤ 90− p′

10 (50− p)% if p′ − 10 ≤ p ≤ p′ + 10 and p ≥ 90− p′

0% if p ≥ p′ + 10

Now, we explain each row of the formula above.
If in a certain period your price is at least 10 ECU below the other’s price (first line
in formula), you will serve the complete market in that period. Exactly opposite
to this, when your price exceeds the other’s price by at least 10 ECU in a certain
period (fourth line in formula), all potential customers are served by the other
seller in that period.
None of these two events apply once the difference (positive or negative) between
the prices is less than 10 ECU. In that case there are two possible scenarios.
In case the sum of the two prices is below 90 ECU (second line in formula), each
seller will have a market share of fifty percent plus five times the price difference.
Here, the price difference is defined as the price of the other seller minus your
price. Notice that the seller with the higher (lower) price will serve less (more)
than fifty percent of the market. Furthermore, the larger the price difference, the
larger the difference in market share.
In the other case, when the sum of the two prices exceeds 90 ECU (third line in
formula), each seller has a market share of 10 times the difference between 50 and
its price. Notice that in this scenario the market will not be fully served, since the
market shares do not add up to 100 %.
A short summary of the way in which the market share is determined, is provided
on the last sheet of these instructions. You are advised to keep this in front of you
while making your decisions throughout the experiment.

Market demand In this experiment there are two possible market demands.
Market demand can be low (equals 1) or high (equals 1.5). While deciding on a
price, you can see whether the demand in the current period is low or high (see
the screenshot on the previous page). However, there is a 20% probability that
the demand will change for the next period. To clarify, if current demand is low,
there is a 80 % chance that it remains low in the next period and a 20 % chance
that it is high in the next period. If current demand is high, there is a 80% chance
it remains high in the next period and a 20 % chance that it changes to low.

Profit Your current period profit is given by:

price x market share
100 % x market demand.

That is, your profit equals your relative market share (that is your market share
in percentage divided by 100) multiplied with your price and that then multiplied
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with the market demand. Notice that for a given price and market share, profits
are a factor 1.5 higher in case of high demand than in case of low demand. Also
observe that there are no costs, so you can never make losses. Furthermore, we
provided two tables, one for low market demand and one for high market demand,
that gives the profits for different possible price combinations.

Overview at end of period At the end of each period, both sellers receive
an overview of the results of that period. You can observe, the state of market
demand, your price, the price of the other seller, your market share, the other’s
market share, your profit, and your total profit so far. The result screen also shows
the history of all previous periods. In a period in which you cannot adapt your
price, you only observe the result screen in that period. After you observed the
screen, click on OK.

These are the results of period: 1

Demand in the current period was: low

Your price is: 24

The price of the other seller is: 21

Your market share (%) is: 35

The market share of the other seller (%) is: 65

Your profit is: 8.40 OK

Period

1

Demand

low

Price

24

Price of

other seller

21

Your market

share (%)

35

Market share of

other seller (%)

65

Your

profit

8.40

Total

profit

8.40

Period

1 out of 80 remaining time [sec]: 17

Total Profit

your total profit so far is ECU 8.40

Figure 2: Screenshot of the results screen.

This ends the current period and this procedure continues until the last period.

The first period Before the procedures above start, it has to be decided who of
the sellers is able to adapt its price in the first (and all odd) periods and to which
price this seller responds in the first period. Therefore, the first period contains
an initial period in which both sellers are asked to set an initial price. Next the
computer randomly decides which of the two sellers can adapt its price in the odd
periods. The state of demand for the first period will already be shown in the
initial period. In the first period this seller will respond to the other’s initial price.
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An alternating Hotelling experiment

Closing After the last period of the experiment, we would like you to complete
a short questionnaire that will appear on your screen. Payments will be made by
the experimenters afterwards.
ECU are transformed into Euros according to the following conversion rate: 100
ECU = 1 Euro. In addition to your earnings throughout the experiment, you will
also receive a show up fee of 6 Euro.

Final remarks In order to allow for a smooth running of this session, we would
like to point out the following. Use the waiting time in the periods in which you
cannot alter your price to consider your future play. Also, when you are in a period
in which you can adapt your price, please do so within the 60 seconds. Finally,
please pay attention to your screen so that no unnecessary waiting times arise.
Before we start with the experiment we want you to answer the questionnaire on
the next page. One of the experimenters will go around and check the answers
and discuss any problems.

Questionnaire

Please answer the following questions. When you are finished, raise your hand.
One of the experimenters will come to you and check whether everything is correct.

1. How many sellers are in your group (including yourself)?

2. Suppose that you can adapt your price in period 4. What does this imply
for your price in period 5?

My price in period 5 will be equal to my price in period 4.

My price in period 5 can be any integer between (and including) 0 and
50.

3. Suppose that you can adapt your price in period 4. What do you know about
the price of the other seller in period 5?

The other’s price in period 5 will be equal to its price in period 4.

The other’s price in period 5 can be any integer between (and including)
0 and 50.

4. Suppose that you can adapt your price in period 4. What does this imply
for your price in period 6?

My price in period 6 will be equal to my price in period 4.

My price in period 6 will be equal to my price in period 5.

My price in period 6 can be any integer between (and including) 0 and
50.
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7.6 Appendix

5. Suppose current market demand is low. What is the probability that it will
be low in the next period?

6. Suppose current market demand is high. What is the probability that it will
be high in the next period?

7. Suppose your current price equals 20. Determine your current period profit
for the following questions. You can use the profit tables provided to you.

(a) Demand is low and the price of the other seller is 32.

(b) Demand is low and the price of the other seller is 8.

(c) Demand is low and the price of the other seller is 26.

(d) Demand is high and the price of the other seller is 26.
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(Summary in Dutch)

Een centraal thema binnen de economie is het functioneren van markten. Het
vakgebied genaamd industriële organisatie bestudeert het strategisch gedrag van
bedrijven, de structuur van markten, en de interactie tussen beide. In dit proef-
schrift worden dynamische interactiesituaties bestudeerd door niet-coöperatieve
speltheorie toe te passen. De conflictsituatie wordt gemodelleerd als een spel en
voor dit spel worden vervolgens evenwichten gezocht. Een evenwicht is een sta-
biele situatie waarin geen speler op zichzelf een reden heeft om zijn strategie te
wijzigen. Zulke evenwichten geven informatie over de strategische keuzes van de
spelers en vervolgens over het marktgedrag en marktresultaat. De inzichten die op
deze manier worden verkregen zijn uiterst belangrijk bij het bepalen van marktre-
gulerende instrumenten.

Dit proefschrift bestaat uit twee delen. De delen verschillen in de marktsituatie
die bestudeerd wordt. Het eerste deel van dit proefschrift betreft sequentiële vei-
lingen met één verkoper en meerdere bieders. De bieders profiteren van positieve
synergieën indien ze meerdere objecten winnen. Het effect van de synergiemoge-
lijkheden op het biedgedrag, verkoopprijs, en efficiëntie wordt geanalyseerd. Het
tweede deel van dit proefschrift bestudeert een dynamische duopolie waarin be-
drijven hun prijzen alternerend kunnen aanpassen. Onder andere het effect van
exogene schokken in de marktvraag wordt bestudeerd in dit deel. Beide delen
van dit proefschrift bestaan uit analytische, numerieke, en experimentele analyses.
Hieronder worden beide delen uitgebreider samengevat.

Sequentiële veilingen met synergieën

Veilingen worden al sinds de oudheid gebruikt als marktmechanisme. Overhe-
den maken steeds meer gebruik van veilingen, bijvoorbeeld voor de allocatie van
frequenties voor draadloze communicatie services. De UMTS veilingen (mobiele
communicatie van de derde generatie) van verschillende West-Europese overheden

129



Nederlandse samenvatting

in 2000 and 2001 trokken niet alleen de aandacht van vakmensen en academici,
maar ook van een breder publiek. De meest succesvolle UMTS veiling was die van
het Verenigd Koninkrijk. Eén van de redenen hiervoor is dat deze veiling de eerste
was in de reeks van veilingen door verschillende landen. De meeste bieders in de
veiling van het Verenigd Koninkrijk waren van plan om een netwerk te creëren dat
heel Europa omvat (Van Damme, 2002). Winnaars in de veiling van het Verenigd
Koninkrijk waren daarom goed gepositioneerd voor de latere veilingen van andere
landen.

Openbare aanbestedingsprojecten hebben de eigenschap dat ze herhalend van
aard zijn. Wegwerkzaamheden, bouwprojecten, frequenties voor draadloze com-
municatie en militaire uitrustingen worden met regelmaat aanbesteed. Dit gebeurt
tegenwoordig meestal door middel van veilingen. Daardoor ontstaan reeksen van
veilingen van vergelijkbare projecten met mogelijk lange tijdsperiodes tussen op-
eenvolgende veilingen. In zulke sequentiële veilingen kan het winnen van meerdere
objecten resulteren in kostenvoordelen door synergieën. Deze synergieën kunnen
tastbaar zijn, bijvoorbeeld het bezitten van speciale apparatuur, of niet-tastbaar,
zoals ervaring. Een gevolg van de aanwezigheid van synergieën in sequentiële vei-
lingen is dan dat de waarde van objecten in latere veilingen afhangen van de uitslag
van eerdere veilingen.

Het eerste deel van dit proefschrift bestudeert een sequentiële veiling van twee
objecten waar het winnen van beide objecten leidt tot voordelen door positieve
synergieën. Bieders hebben dan in de eerste veiling van de reeks het probleem dat
het onzeker is of ze kunnen profiteren van positieve synergieën aangezien ze nog
geen informatie hebben over hun winkansen in de tweede veiling. Verder zijn de
bieders in de tweede veiling asymmetrisch aangezien de bieder die de eerste veiling
heeft gewonnen positieve synergiemogelijkheden heeft en de andere bieders niet.
Daarom wordt bekeken wat de gevolgen van positieve synergiemogelijkheden in
sequentiële veilingen zijn voor zowel de bieders als de verkoper.

In Hoofdstuk 2 wordt aangetoond dat de verwachte uitbetaling van bieders in
de veilingreeks lager is met synergieën dan zonder. Door de synergiemogelijkheden
wordt het biedgedrag in de eerste veiling zo agressief dat bieders slechter af zijn
dan wanneer er geen synergiemogelijkheden zijn. Verder lopen bieders het risico
op ernstige verliezen, wat zou kunnen leiden tot een faillissement. De aanwezigheid
van positieve synergieën in sequentiële veilingen heeft dus negatieve gevolgen voor
bieders.

Hoofdstuk 3 bestudeert twee verschillende veilingmechanismen voor de se-
quentiële veiling met positieve synergieën. De prestaties van een gesloten veiling
waarin de winnaar zijn bod moet betalen (een eerste-prijs veiling) worden verge-
leken met die van een gesloten veiling waarin de winnaar het één na hoogste bod
moet betalen (een tweede-prijs veiling). Normaal gesproken heeft een tweede-prijs
veiling een aantal aangename eigenschappen ten opzichte van een eerste-prijs vei-
ling (Vickrey, 1961). In dit hoofdstuk wordt aangetoond dat in de veilingreeks
de efficiëntie en de verkoopopbrengst hoger zijn in het geval van een tweede-prijs
veiling. Echter, de kans dat winnaars een verlies maken is ook een stuk groter
dan in een eerste-prijs veiling. Gezien de catastrofale gevolgen die zulke verliezen
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kunnen hebben, is het goed mogelijk dat eerste-prijs veilingen worden verkozen
boven tweede-prijs veilingen voor sequentiële veilingen met synergieën.

De analyses in Hoofdstuk 2 en 3 zijn beperkt in het aantal bieders dat actief
kan zijn in een veiling. Namelijk, een asymmetrische eerste-prijs veiling kan alleen
worden opgelost voor twee bieders. Daarom richt Hoofdstuk 2 zich hoofdzakelijk op
tweede-prijs veilingen met (on)eindig veel bieders. De milde voorwaarden waaraan
de strategieën in een eerste-prijs veiling zouden moeten voldoen voor generalisatie
van de resultaten naar zulke veilingen met meer dan twee bieders, worden ook
besproken in dit hoofdstuk. Hoofdstuk 3 vergelijkt beide veilingmechanismen in
het geval van twee bieders.

In Hoofdstuk 4 worden eerste- en tweede-prijs veilingen met vier bieders ver-
geleken door middel van een experiment. Voor beide veilingmechanismen worden
experimenten uitgevoerd voor sequentiële veilingen zonder synergieën, met milde
synergieën, en met sterke synergieën. Door de resultaten van de verschillende
experimenten zowel binnen als tussen de twee veilingmechanismen te vergelijken,
worden inzichten verkregen in de effecten van positieve synergieën op het daad-
werkelijke biedgedrag.

De proefpersonen reageren duidelijk op de aanwezigheid van synergieën en
het biedgedrag in de eerste veiling van de reeks wordt agressiever naarmate de
synergie groter wordt. Voor milde synergieën leidt een eerste-prijs veiling tot
betere resultaten op het gebied van efficiëntie, veilingopbrengst en de kans dat
winnaars verliezen maken. Voor sterke synergieën zijn de resultaten van beide
veilingmechanismen ongeveer gelijk, hoewel de eerste-prijs veiling op geen van de
voorgenoemde aspecten slechtere resultaten genereert dan de tweede-prijs veiling.

Alternerende prijs competitie

Statische modellen voor markten met twee bedrijven zijn gëıntroduceerd door
Cournot (1838) voor competitie in hoeveelheden en door Bertrand (1883) voor
competitie in prijzen. In beide duopolie modellen wordt verondersteld dat de
bedrijven tegelijk en onafhankelijk van elkaar beslissen over hun strategische va-
riabele en dit slechts eenmalig doen. Voor beide vormen van competitie geldt
dat wanneer het aantal periodes waarin de bedrijven met elkaar concureren eindig
is, het unieke deelspel perfecte Nash-evenwicht bestaat uit een herhaling van de
statische oplossing in iedere periode. Echter, indien het aantal periodes oneindig
is dan kunnen vele evenwichten met uitbetalingen boven het competitieve niveau
gerealiseerd worden via het ‘Folk Theorem’ (Friedman, 1971).

De modellen van Cournot en Bertrand gaan ervan uit dat de bedrijven hun
strategische variabele op hetzelfde moment aanpassen. Het is echter zeer waar-
schijnlijk dat bedrijven niet op hetzelfde moment hun strategische variabele kunnen
aanpassen door rigiditeiten. Daarom gaan alternerende duopolie modellen ervan
uit dat bedrijven om en om hun strategische variabele kunnen aanpassen. De
strategische variabele van bedrijven blijft dan minstens twee tijdsperiodes gelijk.
Door deze structuur krijgen bedrijven de mogelijkheid om daadwerkelijk te rea-
geren op de huidige hoeveelheid of prijs van hun concurrent.
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Cyert en DeGroot (1970) waren de eerste die een alternerende duopolie ana-
lyseerden en deden dit voor competitie in hoeveelheden. Baanbrekende weten-
schappelijke bijdragen werden later geleverd door Maskin en Tirole (1987) voor
competitie in hoeveelheden en Maskin en Tirole (1988) voor competitie in prijzen.
In dit proefschrift worden alleen alternerende duopolies met competitie in prijzen
geanalyseerd.

In Hoofdstuk 5 wordt een alternerende duopolie met homogene goederen be-
studeerd. Maskin en Tirole (1988) hebben aangetoond dat er twee evenwichten
bestaan in het geval van een oneindige tijdshorizon: een evenwicht bestaande
uit de middelpuntsprijs en een evenwicht bestaande uit prijscyclussen. De mid-
delpuntsprijs bevindt zich halverwege het prijsinterval en maximaliseert de som
van de winsten van de bedrijven. De prijscyclus van het andere evenwicht bestaat
uit periodes waarin de bedrijven elkaars prijzen onderbieden totdat de prijzen zo
laag zijn dat er geen winst meer wordt gemaakt. Vervolgens worden de prijzen
in één keer fors verhoogd, waarna het onderbieden weer begint. In dit hoofdstuk
wordt met behulp van een experiment geanalyseerd welk van deze twee evenwichten
daadwerkelijk wordt gespeeld. Het middelpuntsprijs evenwicht wordt in de meeste
observaties waargenomen en er zijn bijna geen prijscyclussen. Met behulp van
een numerieke analyse wordt aangetoond dat het unieke deelspel perfecte Nash-
evenwicht voor een (lange) eindige tijdshorizon bestaat uit prijscyclussen. Echter,
experimenteel wordt ook voor deze tijdshorizon vooral de middelpuntsprijs geob-
serveerd, hoewel dit geen evenwicht is voor deze situatie. Desondanks worden
prijscyclussen nu veel vaker waargenomen dan voor de oneindige tijdshorizon.

Voor competitie in hoeveelheden tonen Maskin en Tirole (1987) aan dat de
evenwichtsstrategieën van Cyert en DeGroot (1970) voor de eindige tijdshorizon
convergeren naar die van de oneindige tijdshorizon naarmate de tijdshorizon langer
wordt. Baye en Ueng (1999) bewijzen dat dit ook geldt voor prijscompetitie met
gedifferentieerde goederen en een lineaire vraagfunctie. In Hoofdstuk 6 wordt
aangetoond dat dit ook geldt voor een alternerend Hotelling model. Vervolgens
wordt het Hotelling model uitgebreid door de vraag van consumenten onderhevig
te laten zijn aan exogene schokken. Door de schokken in de vraag is het onmogelijk
om het model analytisch op te lossen voor de oneindige tijdshorizon. Echter, de
convergentie van de evenwichtsstrategieën van de eindige horizon naar die van
de oneindige horizon geldt nog steeds. Daarom worden de evenwichtsstrategieën
voor dit model bepaald door een numerieke analyse van de eindige tijdshorizon.
De resulterende strategieën leiden tot lagere prijzen indien de vraag hoog is dan
wanneer de vraag laag is. Hieruit kan geconcludeerd worden dat prijzen zich
countercyclisch bewegen in dit model.

In Hoofdstuk 7 wordt een experimentele analyse gedaan van het alternerende
Hotelling model met schokken in de vraag uit Hoofdstuk 6. Drie situaties worden
onderzocht en de situaties verschillen in de kans op een schok in de vraag en de
toe- en afname van de vraag in het geval van een dergelijke schok. Voor de drie
situaties worden er geen significante verschillen gevonden tussen de gemiddelde
prijzen en winsten voor volwassen gedrag. Dit wordt veroorzaakt doordat er in de
meeste observaties een samenzwering optreedt.
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