
Approximation Algorithms for a Vehicle Routing

Problem

Sven O. Krumke∗ Sleman Saliba∗ Tjark Vredeveld†

Stephan Westphal∗

May 2, 2006

Abstract

In this paper we investigate a real-world large-scale vehicle dispatching
problem with strict real-time requirements, posed by our cooperation partner,
the German Automobile Association (ADAC). Service units starting at their
current positions are to serve at most a given number of requests without
returning to their homepositions.

We show that the problem of finding a feasible dispatch for service units
starting at their current position and serving at most k requests is NP-
complete even for k = 2.

We also present a polynomial time (2k − 1)-approximation algorithm, where
again k denotes the maximal number of requests served by a single servie unit.
If k equals the total number of requests, we provide a

`

2 − 1
k

´

-approximation
which works similar to the Double-Tree-Algorithm for the metric TSP. Fi-
nally, we extend the approximation algorithm to include linear and quadratic
lateness costs, which are of interest with respect to the application at ADAC.

1 Introduction

Currently, the German Automobile Association (ADAC) evaluates an automated
dispatching system for service vehicles (units) and service contractors (contractors)
on the basis of exact cost-reoptimization. This means that a current dispatch is
maintained, which contains all known yet unserved requests and which is near opti-
mal on the basis of the current data; whenever a unit becomes idle its next request
is read from the current dispatch; at each event (new request, finished service, etc.)
the dispatch is updated by a reoptimization run.

A feasible current dispatch for all known requests and available service vehicles
is a partition of the requests into tours for units and contractors such that each
request is in exactly one tour and each unit drives exactly one tour so that the cost
function is minimized. Cost contributions come from driving costs for units, fixed
service costs per requests for contractors, and a strictly convex lateness cost for the
violation of soft time windows at each request (currently quadratic). The latter cost
structure is chosen so as to avoid large individual waiting times for customers. For
details we refer to [KJR02, HKR05, KRT02].

The problem we consider in this paper is of the following form. Given a snapshot
of currently available service units (vehicles) and a set of requests that have to be
served, we are requested to assign up to k requests to a vehicle such that the overall

∗University of Kaiserslautern, Department of Mathematics, P.O.Box 3049, Paul-Ehrlich-Str.

14, 67653 Kaiserslautern, Germany. {krumke,saliba,westphal}@mathematik.uni-kl.de
†Maastricht University, Department of Quantitative Economics, P.O.Box 616, 6200 MD, Maas-

tricht, the Netherlands. t.vredeveld@ke.unimaas.nl

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6750639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

costs are minimized. In order for the problem to be feasible, we assume that the
total number |E| of requests is at most k times the number |U | of units.

This problem is related to metric multi-depot vehicle routing problems (MDVRP)
and to metric k-customer vehicle routing problems. In a multi-depot vehicle routing
problem a fleet of vehicles located at more than one depot are to serve locally
dispersed customers such that the vehicles return to one of the depots and the
transportation costs are minimized. The difference to our problem is that we do
not want our service units to return to their home positions, since by the time the
assigned requests are served, new requests have arrived that are to be assigned to
service units in the next iteration. The multi-depot vehicle routing problem has
been shown to be NP-hard for more than one depot [BCG87].

In the metric k-customer vehicle routing problem(k-VRP) all vehicles are based
at one depot and are required to serve at most k customers each such that the
transportation costs are minimized. It is known that the metric 2-customer vehicle
routing problem is polynomially solvable, since it can be transformed to a minimum
matching problem, whereas for k ≥ 3 the metric k-VRP is NP-hard, which was
shown by Haimovich and Rinnooy Kan [HRK85].

For our problem, we know that serving at most one customer is easy. Again
the problem can be transformed to a matching problem. In contrast, Krumke and
Dischke [Dis04] showed that it is hard for k ≥ 3. The case k = 2 was still open.
In Section 3 we will prove the NP-completeness of finding a feasible dispatch for
vehicles all located at different sites serving at most two customers.

We develop an algorithm that runs in O
(

n3
)

time and gives a (2k − 1) approx-
imation for the metric problem. Extending this approach to linear and quadratic

penalty costs for violating a request’s deadline leads to a
(

2k2r1

r1+1 + 2k − 1
)

and a
(

2k3r2

r2+1 + 2k2r1

r1+1 + 2k − 1
)

approximation respectively, where r1 and r2 are constant

factors associated with the linear and quadratic penalty terms, respectively.
In the next section, the exact setting of the problem and the notation used in this

paper are introduced. In Section 3 we prove the NP-completeness of the underlying
decision problem. The following Section 4 is dedicated to the description of the
approximation algorithm and finally we show in Section 5 that after the introduction
of lateness costs the presented algorithm is still a constant factor approximation.

2 Problem Definition and Notation

We are given a set of vehicles (or units) U that correspond to our service units,
a set of requests E and a metric distance function d : (U ∪ E) × (U ∪ E) → R

+.
A tour consists of a unit u ∈ U and a sequence of requests (eu,1, eu,2, . . . , eu,h(u)),
which are visited by vehicle u in the given order. We will denote such a tour by a
vector

(

u, eu,1, eu,2, . . . , eu,h(u)

)

.
In the case of the basic problem without lateness costs, the cost c(ei, ej) of

driving from ei to ej corresponds to the metric distance d(ei, ej) between the two
points. In the generalized case with lateness costs, the cost function is composed
of the distance between two points plus a lateness term, which denotes the cost of
arriving at a certain time at a request,

c (ei, ej) = d (eu,i, eu,j) + r
(

tej

)

.

In this case, c is not metric anymore.
Let us now define now the problems we will be dealing with in this paper.

Definition 2.1 (Vehicle Dispatching Problem, Vdp-k)
Given requests E, units U , costs c as above and a number k ∈ N such that |E| ≤

2

k|U |, the vehicle dispatching problem Vdp-k consists of finding a tour
(

u, eu,1, eu,2, . . . , eu,h(u)

)

for each unit u ∈ U which serves h(u) ≤ k requests, such that each request is served
in exactly one tour and such that the total cost of the tours is minimized.

3 Complexity

Proof that the decision problem is NP-complete. We will now prove that the deci-
sion version of the problem Vdp-2, is NP-complete. We use a reduction from the
problem 3Dm which is known to be NP-complete [GJ79]:

Definition 3.1 (3-Dimensional Matching, 3Dm)
Given a set M ⊆ X × Y × Z, where X, Y and Z are disjoint sets having the same
number of elements, i. e., |X | = |Y | = |Z| = q, does M contain a matching, that
is a subset M ′ ⊆ M such that |M ′| = q and no two elements of M ′ agree in any
coordinate.

Theorem 3.2 The decision version of Vdp-k is NP-complete even for k = 2.

Proof:

Given an instance of 3Dm, we construct an instance for the decision version of
Vdp-2 such that 3Dm contains a matching M ′ if and only if there exists a feasible
dispatch for Vdp-2 with cost at most B.

Let the sets X , Y , and Z with |X | = |Y | = |Z| = q and M ⊆ X ×Y ×Z denote
an arbitrary instance of 3dm. The metric space of the instance for Vdp-2 is induced
by the graph G = (V, A), which is build by connecting the following subgraphs.

For every triple mi = (xi, yi, zi) ∈ M we construct a subgraph Gi = (Vi, Ai)
with twelve vertices and eighteen edges as shown in Figure 1. A single vertex is
defined for every element of the basic sets X , Y , Z that is not contained in any
triple.

ai1

xi

ai3

ai2 ai4

yi

ai6

ai5 ai7

zi

ai9

ai8

3 3

1

3 3

3 3

1

3 3

3 3

1

3 3

3
3

1

Figure 1: Subgraph Gi = (Vi, Ai)
Squared vertices indicate elements contained in U (available units)
Circular vertices indicate elements contained in E (released requests)

The subgraphs and the single vertices respectively are connected by the edges

Ac = {[xj , xj+1], [yj, yj+1], [zj , zj+1], j = 1, . . . , q − 1}.

3

Note that there is exactly one vertex in G = (V, A) for every element of the
basic sets X , Y , and Z and that these vertices are connected by the edge set Ac.
Thus the graph G = (V, A) is connected and defined by the vertex set

V = X ∪ Y ∪ Z ∪
m
⋃

i=1

{aih : h = 1, . . . , 9}

and the edge set

A = Ac ∪
m
⋃

i=1

Ai.

Notice that |V | = 3q + 9m and |A| = 18m + 3(q − 1).
We now have to construct the set U corresponding to the position of the available

vehicle units and the set E corresponding to the location of the released requests.
Hereto, we set

U = X ∪
m
⋃

i=1

{ai3, ai4, ai7}

and

E = Y ∪ Z ∪
m
⋃

i=1

{ai1, ai2, ai5, ai6, ai8, ai9}.

We assume that all units start their shifts at time t0 = 0 and we do not take
any service time or lateness costs into account. The distance between two points,
i.e., between two requests and unit’s current position, respectively, is defined as
the shortest path on the graph G, where the travel time to traverse an edge e =
[vj , vk] ∈ A is defined as follows

d(vj , vk) =

{

1 if [vj , vk] ∈
⋃m

i=1{[ai1, ai2], [ai4, ai5], [ai6, ai9], [ai7, ai8]},
3 otherwise,

and the driving costs are 1 per traveled time unit.
We claim that 3Dm contains a matching M ′ if and only if there exists a feasible

dispatch for Vdp-2 on the graph G with cost less or equal to B = 4(q + 3m).
By construction, we see that 2|U | = |E|. Therefore every unit is required to

serve exactly two requests in a feasible solution. As each edge of length 1 is incident
only to edges of length 3, each possible tour serving two requests costs at least 4
units. Hence, to meet the cost constraint, the cost of each tour cannot exceed 4,
since the number of vehicles is |U | = q + 3m.

As all edges incident to vertices in Y or Z have length 3, any tour for a unit ai4

or ai7 serving a request outside of subgraph Gi costs at least 6. Moreover, any tour
for a unit xi ∈ X serving two requests from different subgraphs has also cost at
least 6. Hence, to stay within the budget, each tour can only serve requests within
one subgraph.

Therefore, to meet the cost constraint, the only two possible tour combinations
within a subgraph Gi are of the following types:

Type 1: (ai3, ai6, ai9), (xi, ai2, ai1), (ai4, ai5, yi), (ai7, ai8, zi),
Type 2: (ai3, ai2, ai1), (ai4, ai5, ai6), (ai7, ai8, ai9).

The order in which requests ai2 and ai1 are served within a tour can be changed
without altering the type of the tour combination.

To prove our claim, first consider a feasible dispatch D for the instance of Vdp-
2. By the above considerations, we know that each vehicle u ∈ U operates exactly
one tour serving exactly two requests and that the requests in each subgraph, Gi,
are served by tour combinations either of type 1 or of type 2. A matching M ′ for

4

ai4

yi

aj5

3

3

ai7

zi

aj8

3

3

Figure 2: Possible tours between two subgraphs

ai1

xi

ai3

ai2 ai4

yi

ai6

ai5 ai7

zi

ai9

ai8

3

1

3

1

3

1

3 1

Figure 3: Tours of type 1

the instance of 3Dm is obtained by the triples mi = (xi, yi, zi) for which the nodes
{ai3, ai6, ai9} form a tour in the dispatch D, i.e., the tours serving the requests in
subgraph Gi are of type 1. By definition of a dispatch each element in the basic
sets X , Y , and Z occur in at most one tour and therefore in at most one triple
mi. Furthermore, every element of the basic sets are contained in at least one tour.
Assume, to the contrary, that there exists an element w ∈ X ∪ Y ∪ Z that is not
part of a triple m ∈ M ′, then all subgraphs containing w are of type 2, which means
that w is not part of any tour, contradicting the feasibility of a dispatch.

Conversely, let M ′ ⊆ M with |M ′| = q such that no two triples in M ′ agree in
any coordinate, that is, M ′ is a feasible matching for the instance of 3Dm. The
corresponding dispatch is given by choosing tours of type 1 in subgraph Gi whenever
mi ∈ M ′ and choosing tours of type 2 in subgraph Gi whenever mi 6∈ M ′. We claim
that this dispatch serves each request at a total cost of 4(q + 3m). First, we show
that each request is served. Within a subgraph Gi every request Vi \ (U ∪ {yi, zi})
is served by as well tours of type 1 as tours of type 2. For each request y ∈ Y there
is one subgraph Gi with y = yi that is traversed by tour combination of type 1, as
otherwise M ′ cannot be a matching. Hence, each request y ∈ Y is served. In the
same way, we can show that each request z ∈ Z is served. Moreover, none of the
requests is served more than once. Again, for requests in V \ (U ∪Y ∪Z) this holds
by construction. Suppose that w ∈ Y ∪ Z is served by two vehicles. As requests in
Y ∪Z can only be served by tours of type 1, these tours were generated by two triples
of the subset M ′ both containing w, but this is a contradiction to the definition of
the matching M ′. In the same way we can show that every vehicle serves at least
and at most one tour. It remains to show that the total cost of the tours is bounded
by B = 4(q + 3m). By construction, we have q subgraphs corresponding to the q

5

ai1

ai3

ai2 ai4

ai6

ai5 ai7

ai9

ai81

3

1

3

1

3

Figure 4: Tours of type 2

triples of the matching M ′, therefore having tour combinations of type 1 with four
tours each of length 4. Moreover, we have (m − q) subgraphs corresponding to the
remaining triples of M that are not contained in M ′. These subgraphs are traversed
by tour combination of type 2 which contain three tours of length 4. Hence, the
total cost is 4q · 4 + 3(m − q) · 4 = 4(3m + q).

�

4 A constanct factor approximation algorithm

In this section we present a (2k−1)-approximation to approximately solve the metric
VDP-k in O(n3) time. If k is constant, this gives a constant factor approximation.
Moreover, for k = n = |E| we provide an 2− 1

n
-approximation which works similar

to the Double-Tree Algorithm for metric TSPs.

4.1 k < |E|

We define the auxiliary graph G = (V, A) with V = U ∪ E ∪ {s, t} and A =
A1 ∪ A2 ∪ A3, with A1 := {s} × U A2 := U × E A3 := E × {t}. Define capacities
u : A → R with u(a) := k for all a ∈ A1 and u(a) := 1 for all a ∈ A2 ∪ A3.
Define costs c : A → R with c((u, e)) := d(u, e) for all a ∈ A2 and c(a) = 0 for
all a ∈ A1 ∪ A3. We can find an integral maximal s − t−flow of minimum cost in
O(n3) time. This flow corresponds to an assignment of units to events such that
every request is assigned to at most one unit and that each unit is assigned to at
most k requests. For all u ∈ U let Eu := {eu,1, eu,2, · · · , eu,h(u)} ⊆ E be the set of
requests assigned to u ordered such that d (u, eu,i) ≤ d(u, eu,i+1)i = 0, · · · , h − 1.
Our heuristic assigns these requests in the given order to u.

Algorithm 1 Match-Dispatch

1: Input: A set of units U , a set of requests E, a metric weight function c :
(U ∪ E) × (U ∪ E) → R

+.
2: Output: a set of tours T
3: T := ∅
4: Construct auxiliary graph G

5: Compute maximal s − t−flow of minimum cost
6: for all u ∈ U do

7: Let Eu := {eu,1, eu,2, · · · , eu,h(u)} be the set of requests assigned to u

8: T := T ∪ (eu,1, eu,2, · · · , eu,h(u))
9: end for

10: Return T

Let M := {(u, e)|∀u ∈ U, e ∈ Eu} ⊆ A2 be the set of arcs corresponding to the

6

assignment chosen by Match-Dispatch, D ⊆ A be the set of arcs corresponding
to the solution obtained thereby and O ⊆ A be the set of arcs chosen by the optimal
solution. Then, we can state the following propositions:

Lemma 4.1

c(D) ≤ (2 −
1

k
) · c(M)

Proof: For all u ∈ U let Eu = (eu,1, eu,2, · · · , eu,h(u)) be the events covered by u

in the given order. Recall that h(u) ≤ k.

c(D) =
∑

u∈U

(

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i)

)

≤
∑

u∈U

(

d (u, eu,1) +

h(u)
∑

i=2

(

d (u, eu,i−1) + d (u, eu,i)
)

)

=
∑

u∈U

(

d (u, eu,1) +

h(u)
∑

i=2

d (u, eu,i−1) +

h(u)
∑

i=2

d (u, eu,i)

)

=
∑

u∈U

(

2 · (

h(u)−1
∑

i=1

d (u, eu,i)) + d
(

u, eu,h(u)

)

)

= 2 · cOPT (M) −
∑

u∈U

(

d
(

u, eu,h(u)

)

)

≤ (2 −
1

k
) · c(M)

�

Lemma 4.2

k · c(O) ≥ c(M)

Proof: For all u ∈ U let Eu = (eu,1, eu,2, · · · , eu,h(u)) be the events covered by u

in the given order. Recall that h(u) ≤ k.

k · c(O) = k ·
∑

u∈U

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i)

≥ ·
∑

u∈U

h(u)
∑

j=1

(

d (u, eu,1) +

j
∑

i=2

d (eu,i−1, eu,i)

)

≥ ·
∑

u∈U

h(u)
∑

j=1

d (u, eu,j)

≥ c(M)

�

Theorem 4.3 Match-Dispatch is a 2k−1− approximation of the metric VDP-k.

Proof:
c(D)

c(O)
≤

(2 − 1
k
) · c(M)

1
k
· c(M)

= 2k − 1

�

7

Lemma 4.4 For k = 2 the Approximation ratio of Theorem 4.3 is tight.

Proof: Consider the example shown in Figure 5. The heuristic assigns the events
e1, e2 to u1 and e3, e4 to u2 causing costs of 2 · 3 = 6, whereas an optimal solution
would assign the events e1, e3 to u1 and e2, e4 to u2 causing costs of 2·(1+ǫ) = 2+2·ǫ.
For ǫ → 0 the approximation rate converges to 3. �

u1

u2

e1 e2

e3 e4
11

11

ǫ ǫ

Figure 5: The graph for the proof of Theorem 4.4

Observe, that this example works for the special case of Euclidean distances,
too. Lemma 4.4 can be generalized for arbitrary k and therefore it is not possible
to analyze it more tightly.

Lemma 4.5 The Approximation ratio of Theorem 4.3 is tight for arbitrary k.

Proof: Let U := {ui|i = 1, · · · , k} be the set of units and E := {ui,j |i, j = 1, · · · , k}
the set of requests. Let c be the metric closure induced by the weight function c′,
with c′(ui, ei,j) = 1 and c′(ej,i, ej+1,i) = ǫ for all j = 1, · · ·k − 1, i = 1, · · ·k (see
Figure 6). Analogously to the proof of Lemma 4.4 Match-Dispatch chooses to
assign ei,j to ui for all i, j = 1, · · ·k incurring costs of k · (2 · k − 1) whereas it is
possible to get hand on a better solution by assigning ei,j to uj for all i, j = 1, · · ·k
incurring costs of k · (1 + (k − 1) · ǫ). Thus, Match-Dispatch is not better than
(2k − 1)-approximative on arbitrary metric systems. �

...

...

...

...
...

...

......
...

u1 u2 uk

e1,1 e1,2 e1,k e2,1 e2,2 e2,k ek,1 ek,2 ek,k

111 1 1 1 1 11

ǫ
ǫǫǫ ǫ

Figure 6: The graph for the proof of Lemma 4.5

4.2 k = |E|

In this case, we can provide another algorithm derived from the double-tree ap-
proximation for the metric TSP, which is much better than the one of the previous
section.

Therefore, we construct an undirected simple graph G = (V := U ∪E, R := V ×
V) with a cost function c : A → R

+ with c(i, j) = 0 if i, j ∈ U and c(i, j) := d(i, j)
else. After computing a minimum spanning tree T in G, we remove the edges U ×U

obtaining |U | connected components Tu with exactly one element u ∈ U in each of
them. These connected components form the tours. For each u let vu ∈ Tu be the

8

event with the maximum distance from u within Tu. Let T ′
u be the Graph obtained

by doubling the edges of Tu. Find an Eulerian tour S in T ′
u such that vu is the last

event being served for the first time within this tour. Since all of the other events
have already been served u can stop at vu.

Algorithm 2 Tree-Dispatch

1: Input: A set of units U , a set of requests E, a metric weight function c :
(U ∪ E) × (U ∪ E) → R

+.
2: Output: a set of tours T
3: T := ∅
4: G = (V := U ∪ E, R := V × V)
5: for all ui, uj ∈ U do

6: c((ui, uj)) := 0
7: end for

8: Compute minimum spanning tree T in G w.r.t c

9: A := A \ U × U

10: for all u ∈ U do

11: Let Tu be the connected component of T with u ∈ Tu

12: Let vu be the event with maximum distance from u within Tu

13: Find Eulerian Tour Su in T ′
u with vu being the last element served

14: Let Pvu
be the simple u − vu-path in Tu

15: T := T ∪ (Su \ Pvu
)

16: end for

17: Return T

For this algorithm we need to show, that:

Lemma 4.6 It is always possible to find an Eulerian tour Su in T ′
u such that vu is

the last event being served for the first time within this tour.

Proof: Since c is a nonnegative function, we can assume vu to be a leaf. Let Pvu

be the simple ou − vu-path in Tu. We can find an Eulerian tour Su by applying a
depth-first-search to Tu and whenever there is a decision to be made which vertex
to visit next we rather pick one which is not an element of Pvu

than one which is
an element of Pvu

. This way, we will have reached all other nodes in Tu prior to
vu. �

Lemma 4.7 For all u ∈ U it holds that

c(Pvu
) ≥

1

|Tu|
c(Tu)

Proof:

c(Tu) ≤
∑

v∈Tu

c(Pv) ≤
∑

v∈Tu

c(Pvu
) ≤ |Tu| · c(Pvu

)

�

Let O ⊆ R be the set of arcs chosen by the optimal solution.

Lemma 4.8

c(T) ≤ c(O)

9

Proof: By adding |U | − 1 edges to O such that all elements of |U | are connected,
we can express O as a spanning tree in G. Since T is a minimum spanning tree the
proposition follows directly. �

Theorem 4.9 For k = |E| Tree-Dispatch is a 2 − 1
|E| approximation of the

metric VDP-k

Proof: Due to Lemma 4.8 we can conclude:

c(T)

c(O)
≤

∑

u∈U c(Su) − c(Pvu
)

c(T)

Lem.4.7
≤

∑

u∈U 2 · c(Tu) − 1
|Tu|

c(Tu)

c(T)

≤
(2 − 1

|E|)
∑

u∈U c(Tu)

c(T)

= 2 −
1

|E|

�

5 Extension to lateness costs

The overall goal in the problem posed by our cooperation partner is not only to
minimize the incurred driving costs but also to maximize service quality, which
means that requests should not be arbitrarily delayed. Therefore we introduce a
penalty term punishing deferral of requests. These additional costs will be called
lateness costs.

Consider Algorithm 1 Match-Dispatch. The metric weight function c : A →
R

+ was defined as

c (u, e) =

{

d (u, e) ∀a ∈ A2,

0 ∀a ∈ A1 ∪ A3.
(1)

We manipulate the weight function in such a way that it additionally contains
a lateness term despite the obvious travel cost. Therefore the weight function c :
A → R

+ reads as follows:

c (u, e) =

{

d (u, e) + r (t (e)) ∀a ∈ A2,

0 ∀a ∈ A1 ∪ A3,
(2)

where t (e) denotes the vehicle’s arrival time at request e. The lateness term
r (t (e)) is a linear function depending on the travel time in case of linear penalties
and a quadratic function in case of quadratic penalties.

5.1 Linear Lateness Costs

As mentioned above, the penalty function r (t (e)) depends on the time a service
vehicle arrives at a request e. Since we assume the travel time equals the travel
distance, we have to take the sequence of the requests within a tour into account.
We will do so by multiplying the time used for traveling to a request with a constant
factor r1 and add a constant term r0. If request e is the l-th request served within
a tour, the lateness function reads as follows

r (t (e)) = r1

(

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i)
)

+ r0. (3)

10

Considering the new weight function (2) with the lateness term (3), we get the
following weights for arcs a ∈ A2 of the auxiliary graph G

c (u, e) = d (u, eu,) + r1d (u, eu,) + r0. (4)

Since the cost of a tour is defined as

c
`

u,eu,1, eu,2, . . . , eu,h(u)

´

= d (u, eu,1) +

h(u)
X

i=2

d (eu,i−1, eu,i) +

+

h(u)
X

i=1

“

r1

`

d (u, eu,1) +
i

X

j=2

d (eu,j−1, eu,j)
´

+ r0

”

,

(5)

the solution of a dispatch according to Algorithm 1 reads as follows

c (D) =
∑

u∈U

(

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i) + r1

h(u)
∑

i=1

(

d (u, eu,1) +

i
∑

j=2

d (eu,j−1, eu,j)
)

+ h(u)r0

)

.

(6)
Note that h(u) ≤ k is the actual number of events in a particular tour.

The Minimal Cost Flow Problem (MCF), which is solved in Algorithm 1 Match-

Dispatch to assign at most k requests to a service vehicle u ∈ U , does not take
any sequencing of the assigned requests into account. Therefore every single event
is seen as the first request served in a tour. Hence, the objective value of the
MCF-Problem is

c (M) =
∑

u∈U

(

h(u)
∑

i=1

(

d (u, eu,i) + r1d (u, eu,i) + r0

)

)

. (7)

Prior to proving the approximation ratio we will state an observation that will
be useful in the following computations.

Observation 5.1

h(u)
X

i=1

“

d (u, eu,1) +
i

X

j=2

d (eu,j−1, eu,j)
”

≤ 2

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) +

h(u)
X

i=1

d (u, eu,i)

Proof:

h(u)
X

i=1

“

d (u, eu,1) +

i
X

j=2

d (eu,j−1, eu,j)
”

=

h(u)−1
X

i=1

(h(u) − i) d (eu,i, eu,i+1) + h(u)d (u, eu,1)

≤

h(u)−1
X

i=1

(h(u) − i)
`

d (u, eu,i) + d (u, eu,i+1)
´

+ h(u)d (u, eu,1)

=

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) +

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i+1) + h(u)d (u, eu,1)

=

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) +

h(u)
X

i=2

(h(u) − i + 1) d (u, eu,i) + h(u)d (u, eu,1)

=

h(u)−1
X

i=1

(2h(u) − 2i + 1) d (u, eu,i) + d
`

u, eu,h(u)

´

= 2

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) +

h(u)
X

i=1

d (u, eu,i)

�

11

Lemma 5.2

c (D) ≤

(

2 −
1

k
+

2kr1

r1 + 1

)

· c (M)

Proof: For all u ∈ U let Eu = (e1, · · · , eh(u)) be the events covered by u in the
given order.

c (D) =
X

u∈U

„

d (u, eu,1) +

h(u)
X

i=2

d (eu,i−1, eu,i) + r1

h(u)
X

i=1

“

d (u, eu,1) +
i

X

j=2

d (eu,j−1, eu,j)
”

+ hr0

«

≤
X

u∈U

„

2 ·

h(u)−1
X

i=1

d (u, eu,i) + d
`

u, eu,h(u)

´

+ r1

h(u)
X

i=1

“

d (u, eu,1) +

i
X

j=2

d (eu,j−1, eu,j)
”

+ h(u)r0

«

Obs.(5.1)

≤
X

u∈U

„

2 ·

h(u)−1
X

i=i

d (u, eu,i) + d
`

u, eu,h(u)

´

+ 2r1

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) + r1

h(u)
X

i=1

d (u, eu,i) + h(u)r0

«

= 2c (M) +
X

u∈U

„

− d
`

u, eu,h(u)

´

− r1

h(u)
X

i=1

d (u, eu,i) − h(u)r0 + 2r1

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i)

«

≤

„

2 −
1

k

«

c (M) +
X

u∈U

„

− r1

h(u)−1
X

i=1

d (u, eu,i) − (h(u) − 1) r0 + 2r1

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i)

«

=

„

2 −
1

k
+ 2k

«

c (M) +
X

u∈U

„

− r1

h(u)−1
X

i=1

d (u, eu,i) − (h(u) − 1) r0 − 2k

h(u)
X

i=1

d (u, eu,i)−

2kr1d
`

u, eu,h(u)

´

− 2kh(u)r0 − 2r1

h(u)−1
X

i=1

id (u, eu,i)

«

Since
X

u∈U

2k

h(u)
X

i=1

d (u, eu,i) =
2k

r1 + 1
c (M) −

X

u∈U

“ 2k

r1 + 1
h(u)r0

”

,

we have

c (D) ≤

„

2 −
1

k
+ 2k −

2k

r1 + 1

«

c (M) +
X

u∈U

„

− r1

h(u)−1
X

i=1

d (u, eu,i) − (h(u) − 1) r0−

2kr1d
`

u, eu,h(u)

´

+
2k

r1 + 1
h(u)r0 − 2kh(u)r0 − 2r1

h(u)−1
X

i=1

id (u, eu,i)

«

and

c (D) ≤

„

2 −
1

k
+

2kr1

r1 + 1

«

c (M) ,

because

−r1

h(u)−1
X

i=1

d (u, eu,i)−(h(u) − 1) r0−2kr1d
`

u, eu,h(u)

´

+
2k

r1 + 1
h(u)r0−2kh(u)r0−2r1

h(u)−1
X

i=1

id (u, eu,i) ≤ 0.

�

Lemma 5.3

kc (O) ≥ c (M)

12

Proof: For all u ∈ U let Eu = (e1, · · · , eh(u)) be the events covered by u in the
given order.

k · c (O) = k
X

u∈U

„ h(u)
X

i=1

d (eu,i−1, eu,i) + d (u, eu,1) +

h(u)
X

i=1

r1

“

i
X

i=2

d (eu,j−1, eu,j) + d (u, eu,1)
”

+ h(u)r0

«

≥
X

u∈U

„ h(u)
X

j=1

“

j
X

i=2

d (eu,i−1, eu,i) + d (u, eu,1) +

h(u)
X

i=1

r1

i
X

j=1

“

j
X

l=2

d (eu,l−1, eu,l) + d (u, eu,1)
”

+ h(u)r0

«

≥
X

u∈U

„ (u)
X

i=1

d (u, eu,i) + r1

(u)
X

i=1

d (u, eu,i) + h(u)r0

«

= c (M)

�

Theorem 5.4 Match-Dispatch with linear lateness cost is a
(

2k2r1

r1+1 +2k−1
)

−approximation
of VDP-kmin.

Proof:

c(D)

c(O)
≤

(

2kr1

r1+1 + 2 − 1
k

)

· c(M)
1
k
· c(M)

=
2k2 (r1)

r1 + 1
+ 2k − 1

�

5.2 Quadratic Lateness Costs

The case of quadratic lateness penalties is especially important, since our cooper-
ation partner utilizes such functions to ensure quality of service. Hence, extending
the linear case to the quadratic is crucial for the success of our work. We model
this requirement by squaring the driving time needed to reach a request and mul-
tiplying this term with a constant factor r2 ≥ 0. Adding the linear and constant
lateness terms lead to the following penalty function for request e awaiting service
at position l in a tour

r (t (e)) = r2

(

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i)
)2

+ r1

(

d (u, eu,1) +

h(u)
∑

i=2

d (eu,i−1, eu,i)
)

+ r0.

(8)
Therefore we

c (u, eu) = d (u, eu,) + r2d (u, eu,) + r1d (u, eu,) + r0 (9)

get as new weight function for arcs a ∈ A2 in the auxiliary graph G.

13

The cost of a tour, the solution of a dispatch and the objective value of the
MCF-Problem according to Algorithm 1 Match-Dispatch are composed in the
same way as in the linear case by adding the appropriate quadratic terms

c
`

u, eu,1, . . . , eu,h(u)

´

= d (u, eu,1) +
h

X

i=1

d (eu,i−1, eu,i) +

+ r2

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,j−1, eu,j)
”2

+ r1

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,j−1, eu,j)
”

+ hr0,

(10)

c (D) =
X

u∈U

„

d (u, eu,1) +

h(u)
X

i=2

diji − 1i + r2

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,i−1, eu,i)
”2

+

+ r1

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,i−1, eu,i)
”

+ h(u)r0

«

(11)

c (M) =
X

u∈U

„ h(u)
X

i=1

“

d (u, eu,i) + r2d (u, eu,i)
2 + r1d (u, eu,i) + r0

”

«

(12)

We can now show that Algorithm 1 Match-Dispatch is still a constant factor
approximation independent of the number of service vehicle |U | and the number of
requests |E|. It only depends on the maximal number of requests of a tour and the
constant factors r2, r1 and r0.

Lemma 5.5

c (D) ≤

(

2 −
1

k
+

2kr1

r1 + 1
+

2kr2

r2 + 1

)

· c (M)

Proof: We will assume that d (u, eu,i)
2 ≥ d (u, eu,i). This is always the case, if

d (u, eu,1) ≥ 1, otherwise scale the distances appropriately. Moreover, we need some
important observations to prove the lemma.

“

j
X

i=1

d (u, eu,i)
”2

≤ j

j
X

i=1

d (u, eu,i)
2 (13)

and
h(u)
X

j=1

d (u, eu,j)

j−1
X

i=1

d (u, eu,i) ≤

h(u)
X

j=1

(j − 1) d (u, eu,j)
2
. (14)

14

Using these equations, we can show for the quadratic term

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,i−1, eu,i)
”2

≤

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

(d (u, eu,i−1) + d (u, eu,i))
”2

=

h(u)
X

j=1

“

2

j−1
X

i=1

d (u, eu,i) + d (u, eu,j)
”2

=

h(u)
X

j=1

„

4
“

j−1
X

i=1

d (u, eu,i)
”2

+ 4d (u, eu,j)

j−1
X

i=1

d (u, eu,i) + d (u, eu,j)
2

«

by(13)&(14)

≤ 4

h(u)
X

j=1

(j − 1)

j−1
X

i=1

d (u, eu,i)
2 + 4

h(u)
X

j=1

(j − 1) d (u, eu,j)
2 +

h(u)
X

j=1

d (u, eu,j)
2

= 4

h(u)−1
X

i=1

„

k (k − 1)

2
−

i (i − 1)

2

«

d (u, eu,i)
2 + 4

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 +

h(u)
X

i=1

d (u, eu,i)
2

= 2

h(u)−1
X

i=1

`

k (k − 1) − i (i − 1)
´

d (u, eu,i)
2 + 4

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 +

h(u)
X

i=1

d (u, eu,i)
2
.

(15)

15

Therefore we have

c (D) =
X

u∈U

„

d (u, eu,1) +

h(u)
X

i=2

d (eu,i−1, eu,i) + r1

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,j−1, eu,j)
”

+

+ r2

h(u)
X

j=1

“

d (u, eu,1) +

j
X

i=2

d (eu,i−1, eu,i)
”2

+ h(u)r0

«

≤
X

u∈U

„

2

h(u)−1
X

i=1

d (u, eu,i) + d
`

u, eu,h(u)

´

+ 2r1

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) + r1

h(u)
X

i=1

d (u, eu,i) +

+ 2r2

h(u)−1
X

i=1

`

k (k − 1) − i (i − 1)
´

d (u, eu,i)
2 + 4r2

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 + r2

h(u)
X

i=1

d (u, eu,i)
2 + h(u)r0

«

≤

„

2 −
1

k

«

c (M) +

+
X

u∈U

„

− 2r1

h(u)−1
X

i=1

d (u, eu,i) − r1d
`

u, eu,h(u)

´

− 2r2

h(u)−1
X

i=1

d (u, eu,i)
2 − r2d

`

u, eu,h(u)

´2
− (h(u) − 1) r0+

+ 2r1

h(u)−1
X

i=1

(h(u) − i) d (u, eu,i) + r1

h(u)
X

i=1

d (u, eu,i)+

+ 2r2

h(u)−1
X

i=1

`

k (k − 1) − i (i − 1)
´

d (u, eu,i)
2 + 4r2

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 + r2

h(u)
X

i=1

d (u, eu,i)
2

«

=

„

2 −
1

k
+ 2k + 2k

2

«

c (M) +

+
X

u∈U

„

− 2r1

h(u)−1
X

i=1

d (u, eu,i) − r1d
`

u, eu,h(u)

´

− 2r2

h(u)−1
X

i=1

d (u, eu,i)
2 − r2d

`

u, eu,h(u)

´2
− (h(u) − 1) r0−

− 2k

h(u)
X

i=1

d (u, eu,i) − 2kr2

h(u)
X

i=1

d (u, eu,i)
2 − 2kr1d

`

u, eu,h(u)

´

− 2kh(u)r0

− 2k
2

h(u)
X

i=1

d (u, eu,i) − 2k
2
r1

h(u)
X

i=1

d (u, eu,i) − 2k
2
r2d

`

u, eu,h(u)

´2
− 2k

2
h(u)r0

+ 2r1

h(u)−1
X

i=1

(−i) d (u, eu,i) + r1

h(u)
X

i=1

d (u, eu,i) +

+ 2r2

h(u)−1
X

i=1

`

− k − i (i − 1)
´

d (u, eu,i)
2 + 4r2

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 + r2

h(u)
X

i=1

d (u, eu,i)
2

«

Since we assumed that d (u, eu,i)
2 ≥ d (u, eu,i), we get

−2k
2

h(u)
X

i=1

d (u, eu,i)
2 ≤ −2k

2

h(u)
X

i=1

d (u, eu,i) = −
2k2

r2 + 1
c (M)+

2k2r1

r2 + 1

h(u)
X

i=1

d (u, eu,i)+
2k2

r2 + 1
h(u)r0

(16)
and

−2k

h(u)
X

i=1

d (u, eu,i) = −
2k

r1 + 1
c (M) +

2kr2

r1 + 1

h(u)
X

i=1

d (u, eu,i)
2 +

2k

r1 + 1
h(u)r0. (17)

16

Therefore

c (D) ≤

„

2 −
1

k
+ 2k + 2k

2 −
2k

r1 + 1
−

2k2

r2 + 1

«

c (M) +

+
X

u∈U

„

− 2r1

h(u)−1
X

i=1

d (u, eu,i) − r1d
`

u, eu,h(u)

´

− 2r2

h(u)−1
X

i=1

d (u, eu,i)
2 − r2d

`

u, eu,h(u)

´2
− (h(u) − 1) r0−

− 2kr2

h(u)
X

i=1

d (u, eu,i)
2 − 2kr1d

`

u, eu,h(u)

´

− 2kh(u)r0 +
2kr2

r1 + 1

h(u)
X

i=1

d (u, eu,i)
2 +

2k

r1 + 1
h(u)r0

− 2k
2
r1

h(u)
X

i=1

d (u, eu,i) − 2k
2
r2d

`

u, eu,h(u)

´2
− 2k

2
h(u)r0 +

2k2r1

r2 + 1

h(u)
X

i=1

d (u, eu,i) +
2k2

r2 + 1
h(u)r0

+ 2r1

h(u)−1
X

i=1

(−i) d (u, eu,i) + r1

h(u)
X

i=1

d (u, eu,i) +

+ 2r2

h(u)−1
X

i=1

`

− k − i (i − 1)
´

d (u, eu,i)
2 + 4r2

h(u)
X

i=1

(i − 1) d (u, eu,i)
2 + r2

h(u)
X

i=1

d (u, eu,i)
2

«

Since

2kr2

h(u)
X

i=1

d (u, eu,i)
2 + 2kh(u)r0 ≥

2kr2

r1 + 1

h(u)
X

i=1

d (u, eu,i)
2 +

2k

r1 + 1
h(u)r0,

2k
2
r1

h(u)
X

i=1

d (u, eu,i) + 2k
2
h(u)r0 ≥

2k2r1

r2 + 1

h(u)
X

i=1

d (u, eu,i) +
2k2

r2 + 1
h(u)r0,

2r1

h(u)−1
X

i=1

id (u, eu,i) + r1d
`

u, eu,h(u)

´

≥ r1

h(u)
X

i=1

d (u, eu,i) ,

2r2

h(u)−1
X

i=1

kd (u, eu,i)
2 ≥ 4r2

h(u)
X

i=1

(i − 1) d (u, eu,i)
2
,

2r2

h(u)−1
X

i=1

d (u, eu,i)
2 + r2d

`

u, eu,h(u)

´2
≥ r2

h(u)
X

i=1

d (u, eu,i)
2

and all remaining terms are negative, we finally get

c (D) ≤

„

2 −
1

k
+

2kr1

r1 + 1
−

2k2r2

r2 + 1

«

c (M) . (18)

�

Lemma 5.6

k · c(O) ≥ c(M) (19)

Proof: For all u ∈ U let Eu = (eu,1, · · · , eu,h(u)) be the events covered by u in the

17

given order.

k · c (O) = k
X

u∈U

„ h(u)
X

j=1

d (eu,j−1, eu,j) + d (u, eu,1) +

h(u)
X

j=1

r2

“

j
X

i=2

d (eu,i−1, eu,i) + d (u, eu,1)
”2

+

h(u)
X

j=1

r1

“

j
X

i=2

d (eu,i−1, eu,i) + d (u, eu,1)
”

+ h(u)r0

«

≥
X

u∈U

„ |Eu|
X

j=1

“

j
X

i=2

d (eu,i−1, eu,i) + d (u, eu,1) +

|Eu|
X

j=1

r2

j
X

i=1

“

i
X

l=2

d (eu,l−1, eu,l) + d (u, eu,1)
”2

+

|Eu|
X

j=1

r1

j
X

i=1

“

i
X

l=2

d (eu,l−1, eu,l) + d (u, eu,1)
”

+ h(u)r0

«

≥
X

u∈U

„ |Eu|
X

i=1

d (u, eu,i) + r2

|Eu|
X

i=1

d (u, eu,i)
2 + r1

|Eu|
X

i=1

d (u, eu,i) + |Eu|r0

«

= c (M)

�

Putting lemmas 5.5 and 5.6 together we can finally prove the constant approxi-
mation ratio of Algorithm 1 Match-Dispatch.

Theorem 5.7 Match-Dispatch with quadratic lateness cost is a
(

2k3r2

r2+1 + 2k2r1

r1+1 +

2k − 1
)

−approximation of VDP-kmin.

Proof:

c(D)

c(O)
≤

(

2k2r2

r2+1 + 2kr1

r1+1 + 2 − 1
k

)

· c(M)
1
k
· c(M)

=
2k3r2

r2 + 1
+

2k2 (r1)

r1 + 1
+ 2k − 1

�

6 Conclusions and further research

In this paper, we proved NP-completeness for the vehicle dispatching problem Vdp-
k even for the case when the length of the tours is restricted to k = 2. We also
developed an approximation algorithm for the metric version of the problem and
extended it to the cases of linear and quadratic lateness functions.

As we have seen in an example, the approximation factor of (2k − 1) in the metric
version results from the minimum cost flow problem solved in Algorithm Match-

Dispatch. In terms of worst-case analysis, it does not matter whether afterwards
we sequence requests optimally, by Match-Dispatch or by a traveling salesman
heuristic. However, in practice this sequencing should matter. This is subject to
further research and evaluation on real-world problems. An implementation of our
algorithms with an extensive evaluation is in progress.

18

A direction of further research could be an average-case analysis of the problem
under a reasonable probabilistic model. As recent results in [COKN05a, COKN05b]
about the average-case complexity of dial-a-ride problems indicate, there is hope
that a “typical instance” of the problem might be polynomially solvable. Another
starting point for further research could be the sequencing subproblem occuring for
each vehicle in our algorithm: We are given a vehicle and k customers with soft
time windows in which service should be accomplished. Violating the time windows
incur additional costs that may be modeled by linear or quadratic functions. Find
the tour with minimal operational costs. This problem can be seen as a TSP with
soft time windows and lateness penalties.

References

[BCG87] A A Bertossi, P Carraresi, and G Gallo. On some matching problems arising
in vehicle scheduling models. Networks, 11, 1987.

[COKN05a] A. Coja-Oghlan, S. O. Krumke, and T. Nierhoff. A hard dial-a-ride problem
that is easy on average. Journal on Scheduling, 8(3):197–210, 2005.

[COKN05b] A. Coja-Oghlan, S. O. Krumke, and T. Nierhoff. A heuristic for the stacker
crane problem on trees which is almost surely exact. Journal of Algorithms,
2005. A preliminary version appeared in the Proceedings of the 14th In-
ternational Symposium on Algorithms and Computation, 2004, vol. 2906 of
Lecture Notes in Computer Science.

[Dis04] I. Dischke. Disposition von Einsatzfahrzeugen: Startheuristiken, Branching-
Regeln und Rundungstechniken. Diplomarbeit, TU Berlin, 2004.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability (A guide to the
theory of NP-completeness). W.H. Freeman and Company, New York, 1979.

[HKR05] B. Hiller, S. O. Krumke, and J. Rambau. Reoptimization gaps versus model
errors in online-dispatching of service units. Discrete Applied Mathemat-
ics, 2005. A preliminary version appeared in the Proceedings of the Latin-
American Conference on Combinatorics, Graphs and Algorithms, 2004.

[HRK85] M Haimovich and Alexander H G Rinnooy Kan. Bounds and heuristics for
capacitated routing problems. Mathematics of Operations Research, 10, 1985.

[KJR02] S. O. Krumke and L. M. Torres J. Rambau. Online dispatching of automobile
in real-time. ZIB Report 02-18, Konrad-Zuse-Zentrum für Informationstech-
nik Berlin, 2002.

[KRT02] S. O. Krumke, J. Rambau, and L. M. Torres. Real-time dispatching of guided
and unguided automobile service units with soft time windows. In Proceed-
ings of the 10th Annual European Symposium on Algorithms, volume 2461 of
Lecture Notes in Computer Science, pages 637–648. Springer, 2002.

19

