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Abstract. In time series analysis, inference about cause-effect relation-
ships among multiple time series is commonly based on the concept of
Granger causality, which exploits temporal structure to achieve causal or-
dering of dependent variables. One major and well known problem in the
application of Granger causality for the identification of causal relation-
ships is the possible presence of latent variables that affect the measured
components and thus lead to so-called spurious causalities. In this pa-
per, we present a new graphical approach for describing and analysing
Granger-causal relationships in multivariate time series that are possibly
affected by latent variables. We show how such representations can be used
for inductive causal learning from time series and discuss the underlying
assumptions and their implications for causal learning.

1. Introduction

The notion of causality and the identification of new causal relationships
play a central role in scientific research. In time series analysis, inference about
cause-effect relationships is commonly based on the concept of Granger causal-
ity (Granger 1969), which is defined in terms of predictability and exploits the
direction of the flow of time to achieve a causal ordering of dependent variables.
This concept of causality does not rely on the specification of a scientific model
and thus is particularly suited for empirical investigations of cause-effect rela-
tionships. On the other hand, it is commonly known that Granger causality
basically is a measure of association between the variables and thus can lead to
so-called spurious causalities if important relevant variables are not included
in the analysis (Hsiao 1982). Since in most analyses involving time series data
the presence of latent variables that affect the measured components cannot
be ruled out, this raises the question whether and how the causal structure
can be recovered from time series data.

Recent advances in the understanding of such latent variable structures were
based on graphical models, which provide a general framework for describing
and inferring causal relations (e.g. Pearl 2000, Lauritzen 2001). For time series,
this graphical approach for the discussion of causal relationships in systems
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that are affected by latent variables has been first considered in Eichler (2005).
Based on previously developed graphical representations of Granger-causal
relationships in multivariate time series (Eichler 2001, 2007), a new class of
path diagrams for the representation of the interrelationships in multivariate
time series with latent variables has been introduced. These general path
diagrams allow a more complete encoding of the conditional independencies
if the system is affected by latent variables. In Eichler (2005), a multi-step
procedure for the identification of such general path diagrams was proposed
although no definite algorithm has been given.

In this paper, we discuss graphical representations for multivariate dynamic
systems affected by latent variables in more detail. For this, we review in Sec-
tion 2 the concept of Granger causality as originally introduced by Granger
(1969, 1980) and in Section 3 related graphical representation for multivariate
time series and their Markov properties. In Section 4, we discuss some prop-
erties of general path diagram for systems affected by latent variables and
introduce dynamic ancestral graphs. An approach for causal learning from
time series data is presented in Section 5. More details and proofs for the
results presented will be provided in a longer technical version of the paper.
Section 6 contains some concluding remarks.

2. Causality in multivariate time series

While controlled experiments still provide the ideal framework for causal
analysis, many complex phenomena such as information processing in the brain
can only be studied from non-experimental or quasi-experimental data. It is
therefore important to have an operational definition of causality that allows
inference about cause-effect relationships also from observational studies. For
multivariate time series, such a definition has been introduced by Granger
(1969, 1980). In this section, we review this concept and problems related to
it.

2.1. Granger causality

Suppose that X =
(

X(t)
)

t∈Z and Y =
(

Y (t)
)

t∈Z are two stationary time
series that are statistically dependent on each other. When is it justified to
say that the one series X causes the other series Y ? In order to come up with a
general definition, Granger (1969, 1980) evokes the following two fundamental
principles:

1. The effect does not precede its cause in time.

2. The causal series contains unique information about the series being
caused that is not available otherwise.

The first principle of temporal precedence of causes is commonly accepted and
has been also the basis for other probabilistic theories of causation (e.g., Good
1961, 1962, Suppes 1970). In contrast, the second principle is more subtle as
it requires the separation of the special information provided by the former
series X from any other possible information. To this end, Granger considers
two information sets:

• I∗(t) - the set of all information in the universe up to time t;
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• I∗
−X(t) - the same information set except for the values of series X up to

time t.

Here it is assumed that all variables in the universe are measured at equidistant
points in time, namely t ∈ Z. Now, if the series X causes series Y , we expect by
the above principles that the probability distributions of Y (t+1) conditionally
on the two information sets I∗(t) and I∗

−X(t) differ.

Granger’s definition of causality (1969, 1980). We say that the series
X causes the series Y ifP(

Y (t + 1) ∈ A | I∗(t)
)

6= P(

Y (t + 1) ∈ A | I∗
−X(t)

)

for some measurable set A ⊆ R and all t ∈ Z.

It is important to note that this concept of causality covers only direct
causal relationships. For example, if X affects Y only via a third series Z, then
I∗
−X(t) comprises the past values of Z and Y (t+1) is independent from the past

values of X given I∗
−X(t). Implicitly, the separation of the two information

sets I∗(t) and I∗
−X(t) is based on the assumption that the universe considered

is discretized not only in time but also in space.
Because of the metaphysical character of the information set I∗(t), the

above definition cannot be used with actual data. In practice, only the back-
ground knowledge available at time t can be incorporated into an analysis.
Therefore, the definition must be modified to become operational.

In the sequel, suppose that we have observed variables Xv, v ∈ V , and let
XV =

(

XV (t)
)

t∈Z be the corresponding multivariate time series. Substitut-

ing the information set I∗(t) by the information set IV (t) generated by the
values of XV up to time t and, similarly, I∗

−X(t) by IV \{b}(t), the information
set generated by the values of XV \{b} up to time t, we obtain the following
modified version of the above definition (Granger 1980, 1988).

Definition 2.1. Let a, b ∈ V .

(i) The series Xb is said to be a prima facie cause of the series Xa with
respect to IV ifP(

Xa(t + 1) ∈ A | IV (t)
)

6= P(

Xa(t + 1) ∈ A | IV \{b}(t)
)

for some measurable set A ⊆ R and all t ∈ Z.

(ii) The series Xb does not cause the series Xa with respect to IV ifP(

Xa(t + 1) ∈ A | IV (t)
)

= P(

Xa(t + 1) ∈ A | IV \{b}(t)
)

for all measurable sets A ⊆ R and all t ∈ Z.

The condition in (ii) is equivalent to that Xa(t + 1) and IV (t) are indepen-
dent conditionally on IV \{b}(t), abbreviated as Xa(t + 1)⊥⊥IV (t) | IV \{b}(t).
In that case, we say that Xb is Granger-noncausal for Xa with respect to IV ;
otherwise we say that Xb Granger-causes Xa with respect to IV . We note
that besides this strong version of Granger causality the notions of Granger

causality in mean (Granger 1980, 1988) and linear Granger causality (Hosoya
1977, Florens and Mouchart 1985) exist.

It is clear from the general definition given above that Granger intended
the information to be chosen as large as possible including all available and
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possibly relevant variables. Despite of this, most (econometric) textbooks
(e.g., Lütkepohl 1993) introduce Granger causality only in the bivariate case.
This has lead to some confusion about a multivariate definition of Granger
causality (e.g., Kamiński et al. 2001)

2.2. The problem of spurious causality

One major drawback of the above operational definition of causality is its
dependence on the information set IV . If two or more variables are jointly
affected by variables that are not included in the analysis and hence in the
information set, this can induce conditional dependences among the observed
variables that are wrongly interpreted as causal relationships. It therefore
becomes necessary to find criteria to distinguish such spurious causalities from
true cause-effect relationships.

A first step in this direction is the paper by Hsiao (1982), who discussed
causal patterns for vector time series of three variables. The general idea is that
direct causes—described by Granger’s general definition—persist regardless of
the background information used for the analysis whereas indirect as well as
spurious causes can be identified by either adding new variables to the analysis
or removing already included variables from the information set.

Patterns of causality (Hsiao 1982)

(a) X1 is a direct cause of X2 if X1 Granger-causes X2 with respect to X{1,2}

as well as with respect to X{1,2,3}.

(b) X1 is an indirect cause of X2 if

• X1 Granger-causes X2 with respect to X{1,2} but not with respect to
X{1,2,3} and

• X1 Granger-causes X3 and X3 Granger-causes X2 both with respect
to X{1,2,3}.

(c) X1 is a spurious cause of type II for X2 if

• X1 Granger-causes X2 with respect to X{1,2} but not with respect to
X{1,2,3} and

• X3 Granger-causes X1 and X2 with respect to X{1,2,3}.

(d) X1 is a spurious cause of type I for X2 if

• X1 Granger-causes X2 with respect to X{1,2,3} but not with respect
to X{1,2} and

• X1 Granger-causes X3 and X3 Granger-causes X2 both with respect
to X{1,2,3}.

This characterization of causal patterns could be generalized to higher di-
mensions although the formulation of the appropriate conditions seems tech-
nical. In the following sections, we discuss an alternative approach based on
graphical representations of Granger-causal relationships.

3. Graphical representations for multivariate time series

Let XV =
(

XV (t)
)

t∈Z with XV (t) =
(

Xv(t)
)′

v∈V
be the vector time series

of interest. For simplicity, we assume that XV is stationary Gaussian process
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with mean zero and covariances Γ(u) = EXV (t)XV (t − u)′. Throughout the
paper, we make the following assumption.

Assumption 3.1. The spectral density matrix

f(λ) =
1

2π

∞
∑

u=−∞
Γ(u) e−iλu

of XV exists, and its eigenvalues are bounded and bounded away from zero
uniformly for all λ ∈ [−π, π].

Under this assumption, the process XV has a mean-square convergent au-
toregressive representation

XV (t) =
∞
∑

u=1

Φ(u)XV (t − u) + εV (t), (3.1)

where Φ(u) is a square summable sequence of V × V matrices and {εV (t)} is
a Gaussian white noise process with non-singular covariance matrix Σ.

3.1. Path diagrams and Granger causality

The autoregressive structure of the time series XV can be visualized by a path
diagram, in which the vertices correspond to the variables of XV while the
edges—arrows and lines—between vertices indicate non-zero coefficients in the
autoregressive representation of XV (Eichler 2006a, 2007).

Definition 3.2. Let XV be a stationary Gaussian process with autoregressive
representation (3.1). Then the path diagram associated with XV is the graph
G with vertex set V and edge set such that for distinct a, b ∈ V

(i) a� b not in G if and only if Φba(u) = 0 for all u ∈ N;

(ii) a � b not in G if and only if Σab = Σba = 0.

Since path diagrams of this form may contain two types of edges, they
will be referred to as mixed graphs. Furthermore, we note that, unlike in
graphs commonly used for graphical modelling, two vertices a and b may be
connected by up to three edges, namely a� b, a� b, and a � b. Similar
path diagrams have been used to represent linear structural equation models
(Wright 1934, Goldberger 1972, Koster 1999)1.

1In path diagrams for structural equation systems, correlated errors commonly are rep-
resented by bi-directed edges (�) instead of dashed lines (� ). Since in our approach
directions are associated with temporal ordering, we prefer (dashed) undirected edges to
indicate correlation between the error variables. Dashed edges with a similar connotation
are used for covariance graphs (e.g. Cox and Wermuth 1996), whereas undirected edges �
are commonly associated with nonzero entries in the inverse of the variance matrix (e.g.
Lauritzen 1996).
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1 3 5

2 4

Figure 3.1. Path diagram associated with the process XV in (3.2).

As an example, consider a vector autoregressive process given by the equa-
tions

X1(t) = Φ11 X1(t − 1) + Φ13 X3(t − 1) + ε1(t),

X2(t) = Φ22 X2(t − 1) + Φ24 X4(t − 1) + ε2(t),

X3(t) = Φ33 X3(t − 1) + Φ31 X1(t − 1) + Φ32 X2(t − 1) + ε3(t),

X4(t) = Φ44 X4(t − 1) + Φ43 X3(t − 1) + Φ45 X5(t − 1) + ε4(t),

X5(t) = Φ55 X5(t − 1) + Φ53 X3(t − 1) + ε5(t).

(3.2)

Additionally, we assume that ε{1,2,3}(t), ε4(t), and ε5(t) are pairwise uncor-
related. Then the path diagram associated with this process is given by the
graph in Fig. 3.1.

It is well known that the pairwise Granger-causal relationships among the
variables of a process XV are reflected in the autoregressive coefficients of the
process and, thus, in the presence and absence of edges in the associated path
diagram. More precisely, we have the following result.

Lemma 3.3. Let G be the path diagram associated with a stationary Gaussian

process XV satisfying Assumption 3.1. Then for distinct a, b ∈ V

(i) a � b not in G if and only if Xa is Granger-noncausal for Xb with

respect to IV ;

(ii) a � b not in G if and only if Xa and Xb are contemporaneously inde-

pendent with respect to IV , that is, Xa(t + 1)⊥⊥Xb(t + 1) | IV (t) for all

t ∈ Z.

Because of this result, the path diagram associated with a process XV is
also called the Granger causality graph of the process XV .

3.2. Markov properties

Under the assumptions imposed on XV , more general Granger-causal rela-
tionships than those in Lemma 3.3 can be derived from the path diagram
associated with XV . This global Markov interpretation is based on a path-
oriented concept of separating subsets of vertices in a mixed graph, which has
been used previously to represent the Markov properties of linear structural
equation systems (e.g. Spirtes et al. 1998, Koster 1999). Following Richardson
(2003) we will call this notion of separation in mixed graphs m-separation.

Let G be a mixed graph and a, b ∈ V . A path π in G is a sequence π =
〈e1, . . . , en〉 of edges ei in G with an associated sequence of nodes v0, . . . , vn

such that ei is an edge between vi−1 and vi. The vertices v0 and vn are the
endpoints while v1, . . . , vn−1 are the intermediate vertices of the path. Notice
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that paths may be self-intersecting since we do not require that the vertices
vi are distinct.

An intermediate vertex c on a path π is said to be an m-collider on π if
the edges preceding and suceeding c both have an arrowhead or a dashed tail
at c (i.e. � c�, � c � , � c�, � c � ); otherwise c is said to be
an m-noncollider on π. A path π between a and b is said to be m-connecting

given a set C if

(i) every m-noncollider on π is not in C and

(ii) every m-collider on π is in C;

otherwise we say that π is m-blocked given C. If all paths between a and b are
m-blocked given C, then a and b are said to be m-separated given C. Similarly,
two sets A and B are said to be m-separated given C if for every pair a ∈ A
and b ∈ B, a and b are m-separated given C.

With this notion of separation, it can be shown that path diagrams for mul-
tivariate time series have a similar Markov interpretation as path diagrams
for linear structural equation systems (cf Koster 1999). For disjoint subsets
A,B,C ⊆ V , the subprocesses XA and XB are said to be conditionally in-

dependent given IC if E(

g(XA)|IB∪C

)

= E(

g(XA)|IC

)

for all real-valued

measurable functions g(·) on RA×Z, where IB∪C (IB) is the informaton set
(σ-algebra) generated by the complete series XB∪C (XB). In this case, we
write XA ⊥⊥XB | IC . Then separation in the path diagram can be translated
into conditional independence among complete subprocesses of XV (Eichler
2007).

Proposition 3.4. Let XV be a stationary Gaussian process that satisfies As-

sumption 3.1, and let G be its path diagram. Then, for all disjoint A,B, S ⊆ V ,

A ⋊⋉m B |S in G then XA ⊥⊥XB | IS .

Derivation of such conditional independence statements requires that all
paths between two sets are m-blocked. For the derivation of Granger-causal
relationships, it suffices to consider only a subset of these paths, namely those
having an arrowhead at one endpoint. For a formal definition, we say that a
path π between a and b is b-pointing if it has an arrowhead at the endpoint
b; furthermore, a path between sets A and B is said to be B-pointing if it is
b-pointing for some b ∈ B. Then, to establish Granger noncausality from XA

to XB , it suffices to consider only all B-pointing paths between A and B. Sim-
ilarly, a graphical condition for contemporaneous correlation can be obtained
based on bi-pointing path, which have an arrowhead at both endpoints.

Definition 3.5. A stationary Gaussian process XV is Markov for a graph G
if, for all disjoint subsets A,B,C ⊆ V , the following two conditions hold:

(i) if every B-pointing path between A and B is m-blocked given B ∪ C,
then XA is Granger-noncausal for XB with respect to IA∪B∪C ;

(ii) if the sets A and B are not connected by an undirected edge (� ) and
every bi-pointing path between A and B is m-blocked given A ∪B ∪C,
then XA and XB are contemporaneously uncorrelated with respect to
IA∪B∪C .
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Figure 4.1. Graphical representations of the four-dimensional VAR(2)
process in (4.1): (a) path diagram associated with X{1,2,3,4}; (b) path
diagram associated with X{1,2,3}; (c) general path diagram for X{1,2,3}.

With this definition, it can be shown that path diagrams for Gaussian vector
autoregressive processes can be interpreted in terms of such global Granger-
causal relationships (cf Eichler 2007).

Theorem 3.6. Let XV be a stationary Gaussian process that satisfies As-

sumption 3.1, and let G be the associated path diagram. Then XV is Markov

for G.

4. Representation of systems with latent variables

As pointed out above, the notion of Granger causality is based on the as-
sumption that all relevant information in included in the analysis (Granger
1969, 1980). The omission of important variables can lead to temporal cor-
relations among the observed components that are falsely detected as causal
relationships. The detection of such so-called spurious causalities becomes a
major problem when identifying the structure of systems that may be affected
by latent variables.

Of particular interest will be spurious causalities of type I, where a Granger-
causal relationship with respect to the complete process vanishes when only a
subprocess is considered. Since the path diagrams from the previous section
are defined, by Lemma 3.3, in terms of the pairwise Granger-causal relation-
ships with respect to the complete process, they provide no means to distin-
guish such spurious causalities of type I from true causal relationships. To
illustrate this remark, we consider the four-dimensional vector autoregressive
process XV with components

X1(t) = α X4(t − 2) + ε1(t),

X2(t) = β X4(t − 1) + γ X3(t − 1) + ε2(t),

X3(t) = ε3(t),

X4(t) = ε4(t),

(4.1)

where εi(t), i = 1, . . . , 4 are uncorrelated white noise processes with mean
zero and variance one. The true dynamic structure of the process is shown
in Fig. 4.1(a). In this graph, the 1-pointing path 3 � 2 � 4 � 1 is m-
connecting given S = {2}, but not given the empty set. By Theorem 3.6, we
conclude that X3 is Granger-noncausal for X1 in a bivariate analysis, but not
necessarily in an analysis based on X{1,2,3}.
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Now suppose that variable X4 is latent. Simple derivations show (cf Eichler
2005) that the autoregressive representation of X{1,2,3} is given by

X1(t) =
α β

1 + β2
X2(t − 1) +

α β γ

1 + β2
X3(t − 2) + ε̃1(t),

X2(t) = γ X3(t − 1) + ε̃2(t),

X3(t) = ε3(t),

where ε̃2(t) = ε2(t) + β X4(t − 1) and

ε̃1(t) = ε1(t) −
αβ

1 + β2
ε2(t − 1) +

α

1 + β2
X4(t − 2).

The path diagram associated with X{1,2,3} is depicted in Fig. 4.1(b). In con-
trast to the graph in Fig. 4.1(a), this path diagram contains an edge 3� 1
and, thus, does not entail that X3 is Granger-noncausal for X1 in a bivariate
analysis.

As a response to such situations, two approaches have been considered in
the literature. One approach suggests to include all latent variables explicitly
as additional nodes in the graph (e.g., Pearl 2000, Eichler 2007); this leads
to models with hidden variables, which can be estimated, for example, by
application of the EM algorithm (e.g., Boyen et al. 1999). For a list of possible
problems with this approach, we refer to Richardson and Spirtes (2002, §1).

The alternative approach focuses on the conditional independence relations
among the observed variables; examples of this approach include linear struc-
tural equations with correlated errors (e.g. Pearl 1995, Koster 1999) and the
maximal ancestral graphs by Richardson and Spirtes (2002). In the time series
setting, this approach has been discussed by Eichler (2005), who considered
path diagrams in which dashed edges represent associations due to latent vari-
ables. For the trivariate subprocess X{1,2,3} in the above example, such a path
diagram is depicted in Fig. 4.1(c).

Following this latter approach, we consider mixed graphs that may contain
three types of edges, namely undirected edges (� ), directed edges (�), and
dashed directed edges (�). For the sake of simplicity, we also use a � b
as an abbreviation for the triple edge a��� b. Unlike path diagrams for au-
toregressions, these graphs in general are not defined in terms of pairwise
Granger-causal relationships, but only through the global Markov interpreta-
tion according to Definition 3.5. To this end, we simply extend the concept of
m-separation introduced in the previous section by adapting the definition of
m-noncolliders and m-colliders. Let π be a path in a mixed graph G. Then
an intermediate vertex n is called an m-noncollider on π if at least one of the
edges preceding and suceeding c on the path is a directed edge (�) and has
its tail at c. Otherwise, c is called an m-collider on π. With this extension, we
leave all other definition such as m-separation or pointing paths unchanged.

4.1. Marginalization

The main difference between the class of mixed graphs with directed (�) and
undirected (� ) edges and the more general class of mixed graphs that has
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Table 4.1. Creation of edges by marginalizing over i.

Subpath π in G Associated edge eπ in G{i}

a� i� b a� b
a� i� b a� b
a � i� b a� b
a� i� b a� b
a� i� b a� b

been just introduced is that the latter class is closed under marginalization.
This property makes it suitable for representing systems with latent variables.

Let G be a mixed graph and i ∈ V . For every subpath π = 〈e1, e2〉 of length
2 between vertices a, b ∈ V \{i} such that i as an intermediate vertex and an

m-noncollider on π, we define an edge eπ according to Tab. 4.1. Let A{i} the
set of all such edges eπ. Furthermore, let E{i} be the subset of edges in E
that have both endpoints in V \{i}. Then we define G{i} =

(

V \{i}, E{i} ∪

A{i}
)

as the graph obtained by marginalizing over {i}. Furthermore, for L =

{i1, . . . , in} we set GL = ((G{i1}){i2} · · · ){in}, that is, we proceed iteratively
by marginalizing over ij , for j = 1, . . . , n. Similarly as in Koster (1999), it can
be shown that the order of the vertices does not matter and that the graph
GL is indeed well defined.

We note that the graph GL obtained by marginalizing over the set L in
general contains self-loops. Simple considerations, however, show that GL is
Markov-equivalent to a graph G̃L with all subpaths of the form a � b� b
and a� b� replaced by a�� b and a� b, respectively, and all self-loops
deleted, that is, the graphs GL and G̃L encode exactly the same Granger-
causal and contemporaneous independence relations. It therefore suffices to
consider mixed graphs without self-loops. We omit the details.

Now suppose that, for some subsets A,B,C ⊆ V \L, π is an m-connecting
path between A and B given S. Then all intermediate vertices on π that are
in L must be m-noncolliders. Removing these vertices according to Table 4.1,
we obtain a path π′ in GL that is still m-connecting. Since the converse is also
true, we obtain the following result.

Proposition 4.1. Let G be a mixed graph, and L ⊆ V . Then it holds that,

for all distinct a, b ∈ V \L and all C ⊆ V \L, every path between a and b
in G is m-blocked given C if and only if the same is true for the paths in

GL. Furthermore, the same equivalence holds for all pointing paths and for all

bi-pointing paths.

It follows that, if a process XV is Markov for a graph G, the subprocess
XV \L is Markov for the smaller graph GL, which encodes all relationships
about XV \L that are also encoded in G.

We note that insertion of edges according to Tab. 4.1 is sufficient but not
always necessary for representing the relations in the subprocess XV \L. This
applies in particular to the last two cases in Tab. 4.1. For an example, we
consider again the process (4.1) with associated path diagram in Fig. 4.1(a).
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Figure 4.2. Two Markov equivalent graphs: (a) non-ancestral graph and
(b) corresponding ancestral graph.

By Tab. 4.1, the subpath 1� 4� 2 should be replaced by 1� 2, which
suggests that X1 Granger-causes X2 (as does the path 1� 4� 2 in the
original path diagram), while in fact the structure can be represented by the
graph in Fig. 4.1(c).

4.2. Markov equivalence and dynamic ancestral graphs

The operation of marginalization is of theoretical importance as it shows that
the class of general path diagrams is rich enough to represent causal structures
of systems with latent variables. It is of much less use for the identification
of such structures as the relations determining the complete system are not
available. Here, we face the problem that the set of Granger-causal relation-
ships and contemporaneous independences that hold for the observed process
does not uniquely determine a graphical representation within the class of
general path diagrams. As an example, Fig. 4.2 displays two graphs that are
Markov equivalent, that is, they encode the same set of Granger-causal and
contemporaneous independence relations among the variables. Therefore, the
corresponding graphical models—models that obey the conditional indepen-
dence constraints imposed by the graph—are statistically indistinguishable.

In order to simplify the identification problem, the search for a suitable
graphical representation can be restricted to a smaller class of graphs pro-
vided that this class contains at least one representative from every Markov
equivalence class. Following Richardson and Spirtes (2002), we consider graphs
that satisfy an ancestrality property. More precisely, we say that a vertex a
is an ancestor of another vertex b if a = b or there exists a directed path
a� . . .� b in G. The set of ancestors of b is denoted by an(b). Then a
graph G is called a dynamic ancestral graph if it satisfies the condition

a ∈ an(b) then a� b not in G (4.2)

for all distinct a, b ∈ V . We note that, in contrast to the ancestral graphs
introduced by Richardson and Spirtes (2002), we do not require acyclicity
(which is hidden in the time ordering) nor that edges are joined by at most
one edge. The above condition (4.2) does imply, however, that two vertices a
and b can be connected by the two edges a� b and a� b at the same time.

In order to obtain a Markov-equivalent ancestral graph for a general path
diagram we have to substitute a dashed directed edge a� b by a directed
edge a� b whenever a is an ancestor of b. Furthermore, if G contains the
path c� a� b, an additional edge c� b needs to be inserted; similarly,
the edges c� a, c� a, and c � a lead to the insertion of edges c� b,
c � b, and c � b, respectively. Iterating over all edges, we finally obtain



12 MICHAEL EICHLER

a graph that satisfies condition (4.2) and is Markov-equivalent to the original
graph.

Proposition 4.2. Let G be a general path diagram. Then there exists a dy-

namic ancestral graph G̃ that is Markov-equivalent to G.

From Tab. 4.1 and the way we have constructed dynamic ancestral graphs, it
is clear that two vertices a and b are connected by a directed path a� . . .� b
in a dynamic ancestral graph if and only if the same holds true in the path
diagram associated with the underlying complete system. This leads us to the
following general definition of causal effects in multivariate time series.

Definition 4.3. A series Xa is said to have a causal effect—direct or indirect—
on another series Xb if there exists some multivariate process XV with a, b ∈ V
such that every graph in the Markov equivalence class of dynamic ancestral
graphs for XV contains a directed path a� . . .� b.

A further distinction between different causal patterns such as direct, indi-
rect, or spurious causality is only possible with respect to a given information
set IV and requires to consider all graphs in the Markov equivalence class of
general path diagrams for XV . We omit further details.

5. Learning latent variable structures

There are two major approaches for learning causal structures: One ap-
proach utilizes constraint-based search algorithms such as the Fast Causal
Inference (FCI) algorithm (Spirtes et al. 2001) while the other consists of
score-based model selection. In the following, we briefly discuss the former
approach for the identification of dynamic ancestral graphs. The latter ap-
proach has been investigated in Eichler (2006b).

The constraint-based search tries to find a graph that matches the empiri-
cally determined conditional independences. It usually consists of two steps:

1. identification of adjacencies of the graph;

2. identification of the type and the orientation of edges whenever possible.

In the case of ancestral graphs, the first step makes use of the fact that for
every ancestral graph there exists a unique Markov-equivalent maximal ances-
tral graph (MAG), in which every missing edge corresponds to a conditional
independence relation among the variables. Here an ancestral graph G is said
to be maximal if addition of further edges would change the Markov equiv-
alence class. MAGs are closely related to the concept of inducing paths; in
fact, Richardson and Spirtes (2002) used inducing paths to define MAGs and
then showed the maximality property.

Definition 5.1. In a (dynamic) ancestral graph, a path π between two vertices
a and b is called an inducing path if every intermediate vertex on π is, firstly,
a collider on π and, secondly, an ancestor of a or b.

Figures 5.1(a,b) give two examples of dynamic ancestral graphs, in which
2� 3� 4 resp. 2� 3� 4 are inducing 4-pointing paths. The graph in (b)
shows that—unlike in the case of ordinary ancestral graphs—inducing paths
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1 2 3 4(a) 1 2 3 4(b)

1 2 3 4 1 2 3 4

Figure 5.1. Inducing paths: (a) Dynamic ancestral graph with an in-
ducing 4-pointing path between 2 and 4 and its corresponding Markov
equivalent maximal dynamic ancestral graph. (b) Maximal dynamic an-
cestral graph with an inducing 4-pointing path between 2 and 4; the graph
with additional edge 2� 4 is not Markov equivalent.

may start with a tail at one of two vertices. As a consequence, insertion of an
edge 2� 4 or 2� 4 changes the encoded Granger-causal relationships: while
the upper graph implies that X1 is Granger-noncausal for X4 with respect to
X{1,2,3,4}, this is not true for the lower graph. It follows that the method
used for identifying adjacencies in ordinary MAGs do not apply to dynamic
ancestral graphs.

The problem can be solved by observing that m-connecting pointing paths
not only encode Granger-causal relationships but—depending on whether they
start with an a� c or a� c—also a related type of conditional indepen-
dences. More precisely, we have the following result.

Proposition 5.2. Suppose that a and b are not connected by a b-pointing

inducing path starting with a � c, a � c, or a � c. Then there exist

disjoint subsets S1, S2 with b ∈ S1 and a /∈ S1 ∪ S2 such that

Xa(t − k)⊥⊥Xb(t + 1) | IS1
(t) ∨ IS2

(t − k) ∨ Ia(t − k − 1)

for all k ∈ N and all t ∈ Z.

The proof is based on the fact that inducing paths starting with an edge
a� c or a� c only induce an association between the Xa(t−k) and Xb(t+1)
if one conditions on Xc(t− k +1), . . . ,Xc(t). To block any other paths, we set
S2 to be the set of all intermediate vertices on all b-pointing inducing paths
connecting a and b, and S1 to be the set of all ancestors of a and b except a
and b.

This leads us to the following algorithm for the identification of the Markov
equivalence classes of dynamic ancestral graphs. Here, we use dotted directed
edges� to indicate that the tail of the directed edge is (yet) undetermined.

Identification of adjacencies:

1. insert a � b whenever Xa and Xb are not comtemporaneously indepen-
dent with respect to IV ;

2. insert a� b whenever

• Xb Granger-causes Xa with respect to IS for all S ⊆ V with a, b ∈ S
and

• Xa(t − k)⊥⊥Xb(t + 1) | IS1(t) ∨ IS2(t − k) ∨ Ia(t − k − 1) for some
k ∈ N, all t ∈ Z, and all disjoint S1, S2 ⊆ V with b ∈ S1 and
a /∈ S1 ∪ S2



14 MICHAEL EICHLER

(a) (b)

(c)

3 4

2

5

1

3 4

2

5

1

3 4

2

5

1

Figure 5.2. Identification of dynamic ancestral graphs: (a) underlying
structure; (b) adjacencies; (c) identification of tails.

Identification of tails:

1. Colliders:

Suppose that G does not contain a� b, a� b, or a� b. If a� c� b
and Xa is Granger-noncausal for Xb with respect to IS for some set S
with c /∈ S, replace c� b by c� b.

2. Non-colliders:

Suppose that G does not contain a� b, a� b, or a� b. If a� c� b
and Xa is Granger-noncausal for Xb with respect to IS for some set S
with c ∈ S, replace c� b by c� b.

3. Ancestors:

if a ∈ an(b) replace a� b by a� b;

4. Discriminating paths:

A fourth rule is based on the concept of discriminating paths. For details,
we refer to Ali et al. (2004).

We note that in contrast to the case of ordinary ancestral graphs only
the tails of the dotted directed edges need to be identified. The positions of
the arrow heads are determined by the time ordering of the Granger-causal
relationships. The above algorithm probably can be complemented by further
rules, see also Zhang and Spirtes (2005).

To illustrate the identification algorithm, we consider the graphs in Fig. 5.2.
The original general path diagram is depicted in (a). Since 4 is an ancestor of
5, this graph is not ancestral. The adjacencies determined by the algorithm
are shown in (b). Since X1 does not Granger-cause X5 with respect to XV , we
find that 2 and 5 are connected by 2� 5. Similarly, X3 is Granger-noncausal
for X2 with respect to X{2,3,4}, which implies that the graph contains also the
edge 4� 2. No further tails can be identified; the final graph is given in (c).

6. Conclusion

The concept of Granger causality is widely used for inference about causal
relationships from time series observations. One of the main problems in its
application, however, is the possible presence of latent variables that affect the
measured variables and thus can lead to so-called spurious causalities.
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In this paper, we have presented a graphical approach for analysing cause-
effect relationship in multivariate time series based on general path diagrams
and dynamic ancestral graphs. In particular, we provided (a sketch of) an
constraint-based search algorithm that allows identifying Markov equivalence
classes of a dynamic ancestral graphs. The causal interpretation of the re-
sulting graph is based on two fundamental. Firstly, the causal Markov as-

sumption requires that all observed dependences are due to causal influences;
this is a key assumption underlying all approaches to causal inference from
observation data. Secondly, the faithfulness assumption states that the inde-
pendences observed are structural and not to chance cancellation of several
causal influences. This assumption allows to detect spurious causes of type II
when observing spurious causes of type I. Under these assumptions, directed
edges can be interpreted as causal links although not as direct causes in the
original sense of Granger. Due to identifiabilty up to Markov equivalence only
edges that are invariant in a equivalence class—and have their tail identified
by the search algorithm—allow an definite interpretation as causes if it is a
directed edge and a spurious cause is the edge is a dashed directed edge.
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