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ABSTRACT
In this paper bargaining solutions are considered,which assign
to each 2-person bargaining game one or more points of the
weak Pareto boundary. All those solutions and multisolutions
are descrited, which have the property of independence of ir-
relevant alternatives. Also all closed multisolutions with
the restricted monotonicity property are characterized with
the aid of monotonic multicurves.
Keywords: Bargaining game, independence of irrelevant alterna-
tives, restricted monotonicity.

1. INTRODUCTICN
A barcaining game is a pair (S,d), where S is a compact and

convex subset of 312 (the payoff space) and d is an element
of S (the disagreement point) with the property that there is
an x ¢ S with Xy > d1 and Xy > dz. The set of all bargaining
games is denoted by B. An element (s,d) ¢ B corresponds to
the following game situation: two players may cooperate and

agree upon choosing a point s ¢ S, which has utility S; for
player i (i=1,2), or they may not cooperate. In the latter
case they are punished by getting point 4, which has utility
di for player i. The theory of bargaining games started with
the paper of Nash (1950). His solution for the bargaining
problem is a function ¢ : B » Biz with some nice properties,
including the following one: for each (S,d) ¢ B, ¢$(S,d) is an
element of the Pareto set

P(S) := {x € S; V ES[y 2 x =y = x]}
of S. The paper of Nash was followed by many other ones in
which alternative solutions for the bargaining problem have
been proposed. We only mention here the papers of Harsanyi
and Selten (1972) and of Kalai and Smorodinsky {1975). For
more background information we refer to the books of Rauhut,
Schmitz and Zachow (1979) and Roth (1979). In this paper we
are interested in multifunctions ¢ : B + le, which assign to
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each bargaining game (s,d) a non-empty subset ¢(S,d) of the
weak Pareto set

W(S) := {x ¢ 8; V 2[y > X =y &S]} of s,
velR .
DEFINITION 1l.1. A multifunction ¢ : B - Rr? is called a multi-

solution of the bargaining problem if the following proper-

ties hold:

(P.1) For each (S,d) ¢ B and each x ¢ ¢(5,d), we have x > d
(Individual rationality).

(P.2) For each (S,d) ¢ B and each x ¢ ¢(S,d), we have x e W(S)
{(Pareto optimality).

(P.3) If (5,d4) « B and A : Blz - 312 is a map of the form

1t bl' ayX, + b2)
where al,az,bl,b2 ¢ IR and al > 0, a, > 0, then
»(A(S) ,A(d)) = A(¢(S,d)) (Independence of equivalent
utility representations).
A multisolution ¢ : B R 2 with the property that ¢(S,d)
consists of exactly one point for each (s,d) ¢ B is called a
solution. If 4(5,d) < P(S) for each (s,d) ¢ B, then ¢ is cal-
led a strong multisolution.

(xl,x2)»+ (alx

In section 2 of this paper we consider solutions and in sec-
tion 3 multisolutions $ with the following so called IIA-pro-
perty [Cf. Nash (1950), Kaneko (1980)7:

(P.4) For all (s,d) and (T,d) in B with S ¢ T and ¢ (T,d)nS#@
we have 4(8,d) = $(T,d) n S (Independence of irrelevant
alternatives).

The solution given by Nash (1950) is the unigue solution,

having the IIA-property and the symmetry property.

De Koster, Peters, Tijs and Wakker (1982) characterized all

strong solutions having the IIA-property. These include the

non-symmetric Nash solutions, introduced by Harsanyi and

Selten (1972). One of the main purposes of this paper is to
characterize all solutions and all multisolutions with the
IIA-property. This is done in the sections 2 and 3 of this
paper. For (8,4d) ¢ B, let Sd = {Xx ¢ 8; x > d}, and let
ufsy) = ("1(Sd)' u2(Sd)) be the utopia-point of Sq+ defined
by ui(Sd) 1= max(xi; (xl,xz) € Sd} for i=1,2. Interesting
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are multisolutions ¢ with the restricted monotonicity proper-
ty or RM-property, which we state now.
(P.5) For all (S,d) and (T,e) in B with d = e, u(Sd) = u(Te)
and S ¢« T we have ¢(S,d) < ¢(T,e) - I{i and
s(T,e) < »(S,d) + nzi (Restricted monotonicity).
Note that ¢(S,d) < ¢(T,e) - Hli means that foxr each x e ¢ (5,d)
there is a point y ¢ ¢(T,e), which is at least as good for
both players i.e. y 2 x.

For a solution with the RM-property the inclusions in (P.5)
are equivalent to ¢(S,d) < ¢(T,e) (if we identify the one-
point set »(S,d) with the contained point). In Peters and
Tijs (1982) it is proved that the RM-property is equivalent
to individual monotonicity. The solution proposed by Kalai
and Smorodinsky (1975) is the unique symmetric solution with
the RM-property. In Peters and Tijs (1982) all strong RM-so-
lutions were characterized. The second main purpose of this
paper is to characterize all closed multisolutions with the
RM-property, where we call a multisolution ¢ : B - le
closed, if :(S,d) is a closed subset of H!z for each (S5,d)¢B.
It appears that there exist only strong RM-multisolutions
(Proposition 4.1) and that the closed RM-multisolutions coxr-

respond to certain monotonic multicurves.

2. THE SOLUTICNS WITH THE TIA-PROPERTY
For t < {0,1), let Ft 3 B - Elz be the strong solution,

which assigns to an (S,d) ¢ B the unlque po;nt of P(S4 )
where the function (xl,x ) (x -d ) (x2 -d ) -t on Sd
attains its maximum. Let Fo : B+ nzz (rl : B > 322) be the
strong solution, which assigns to (S, d) ¢ B the unique point
in P(Sd) with maximal second coordinate (maximal first coor-
dinate). One of the results in de Koster, Peters, Tijs and
wakker (1982) is the following

THEOREM 2.1. (1) (FE : t e [0,11} is the family of all
strong bargaining solutions with the IIA—pronerty.

(ii) A strong IIA-solution ¢ : B =+ Elz equals FC iff

5(T,0) = (t,1-t), where T := conv{ (0,0),(1,0),(0,1)1}.

Now we want to introduce some new (weak) IIA-solutions.
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Therefore we need the following notation. For (s,d) ¢ B, let
p(8,d) := the point in P(Sd) with maximal second coordinate,
p(s,d) := the point in P(S4) with maximal first coordinate,
w(S,d) := the point in W(Sd) with minimal first coordinate,

w(s,d) := the point in W(S ) w1th minimal second coordinate.

Note that F (s,d) = p(S d) and F (8,d) = p(s,d) for (8,d) ¢ B.

et Ul = ((s,4) ¢ B w,(5,0) = a,}, v* = Byu?,

2= ((5,d) « B W (s,d) = a}, v2 := pud

Now let Wo,wl,Mo Ml be the solutlons defined by

(S d) := w(S,d) for each (§,d) ¢ B,
l(s d) := w(s,d) for each (5,d) ¢ B,

i

c

4%(s,d) = W(s,d) 1f (5,d) ¢ u? ana
w0s,q) := 5(s,a) if (s,q) « v?,
M'(s,d) := w(s,d) 1f (5,4) e gt ana
wl(s d) := p(s,d) if (s,d) ¢ vl
1 MO,Ml are IIA-~solu-

It is straightforward to show that WO,V
tlons. Hence, the famlly of IIA—solutlons contains the set
{F 0 <t <1}y {W wl,MO mt }. The main purpose of this
section is to prove the following theorem with the aid of a
string of lemmas,

THEOREM 2.2. (F% 0 < £ < 1} v (w®,w!, M%)} is the family of
all bargaining solutions with the IIA-property.

LEMMA 2.3. Let ¢ : B » R > be an IIA-solution. Let (S,d) « B.
Then ¢(S,d) « P(Sd) v {w(s,d), w(s,d)}.

PROOF. In view of (P.3) we suppose w.l.o.g. that d = 0. Let

s e W(Sq), s ¢ P(55) u {w(s,d),w(S,d)}. We want to prove that
s # ¢(5,d). There are two cases: (i) 52 = Ez(s,d),o < Wl(s,d)
<5 < pl(S d), (ii) $; =1 (8,d4),0 < (S dl : 5, < Ez(S,d).
We consider only the first case. Let o := 5 pl(S d) if
(5,0) ¢ U?, and o := min{ (w, (S,d)) 1y Sy+ Il p,(8,d)} if
(5,0) « !2. Let A : R2 o 322 be the map with

A(xl,xz) = (axl,xz). Note that « > 1. Let T be the triangle
with vertices d = 0, w(S,d) and s. Then T < S and

A(T) = conv{0,A(w(S,d)), A(s)) c S and s ¢ A(T). Suppose for
a moment that ¢(S,0) = s. Then, by the IIA-property,
$(A(T),0) = 4(S,0) = s and $(T,0) = ¢(s,0) = s. But by (P.3),

s
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we obtain »(A(T),0) = A(e(T,0)) = A(s) = (asl,sz) # (51,52),
a contradiction. Hence, ¢(S,0) # s. 0
For each g ¢« [0,1) the triangle with vertices (0,0), (l,q)
and (1,1) will be denoted by Tl(q) in the following and
conv{(0,0),(a,1),(1,1))} by Tz(q). In view of lemma 2.3 we
have for all g ¢ [0,1):
(T2 (q),0) = (q,1) or ¢(T?(q),0) = (1,1). (2.1)
LEMMA 2.4, Let 3 : B » R2 be an IIA-solution. Then
(i) if for some q ¢ (0,1), ¢(T (q),0) = (1,q), then
s(Tl(r),O) = (1l,r) for all r ¢ (0,1),
(ii) if for some g ¢ (0,1), ¢(T2(a),0) = (g,1), then
5(T°(r),0) = (r,1) for all r ¢ (0,1).
PROOF. We only nrove (ii). Let q ¢ (0,1) and ¢(T2(q),0)=(q,l).
First take r - (0,q). Then T2(q) c Tz(r). So IIA and
S(T2(q),0) # (1,1) imply: ¢(T%(x),0) # (1,1). But then, by
(2.1), o(Tz(r),O) = (r,1). Now take r ¢ {(qg,l) and define
A 312 -> H!Z by A(xl,x2) = (r-lq xl,xz). Then
(q,1) = Alr,1) « A(T2(r)) « Tz(q). Hence, by the IIA-property:
#(A(T%(2)) ,A(0)) = ¢(T?(q),0) = (g,1) and by (P.3):
S (A(T2(2)),A00)) = A(s(T2(x),0)).
Then A(s(T(r),0)) = (q,1), so ¢(P2(r),0) = a™Y(q,1) = (r,1).
So we have proved that for all re(O,l):¢(T2(r),0)=(r,1). O
LEMMA 2.5. Let ¢ be an IIA-solution. Then
(1) if s(rr(a),0) W,
(i1) if 3(T%(q),0) = (q,1) for some g ¢ (0,1), then ¢ = WC.
PROOF. We only prove (ii). Suppose ¢(T2(q),0) = (g,1). We
want to prove that ¢(S,d) = w(S,d) for each (S,d) ¢ B.
Take (5,d) « B. Let v := (ul(sd) + 1, u2(sd)) and put
S := conv(Sd v {v}). Then Sd < S. Hence, if we can show that
$(S,d) = w(s,d) then the IIA-property guarantees that
$(8,d) = 4(54,d) = ¢(§,d£ = w(s,d).
since W(S) = ((s),s,)eR"; W(S,d)ssls?l(sd)+_1_, s,=u, (S )},
we can conclude by lemma 2.3, that ¢(S,d) = w(5,d) if
¢(§,d) # v. There is an e > 0, such that t := (vi=e,v,) eW(S).

i

(1,q) for some q ¢ (0,1), then ¢

1
]

Let D := conv(d,v,t}. Then there is an r ¢ (0,1) and an af-
fine map A : R2 » RZ as in (P.3) such that A(0) = 4,
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A(r,1) = t and A(l,1) = v. Now ¢(T2(r),0) = (r,1) by lemma
2.4. So by (P.3): ¢(D,d) = ¢(A(T2(r)),A(0)) = A(¢(T2(r),0)) =
A(r,l) = t # v. Since D ¢ §, by the IIA-property we have:
3(8,d) # v. S0 3(8,d) = w(s,d), ¢(S,d) = w(s,d), ¢ = Wwo. O
LEMMA 2.6. Let 3 be an IIA-solution.

(1) Let (T,e) < V' and ¢(T,e) = w(T,e) # p(T,e).Then ¢ = W'.
(i1) Let (T,e) : Vv and ¢(T,e) = w(T,e) # B(T,e).Then ¢ = W'.
PROOF. Ve only prove (ii). Let E := conv{e,w(T,e),p(T,e)}.

Then there is an A : 112 - 112 as in (P.3) and a Tz(r)

(0 < r < 1) such that A(E) = Tz(r). Then, by the IIA-property
and (P.3): :(72(r),0) = A(¢(E,e)) = A(W(T,e)) = (r,1). By
lemma 2.5 we conclude that ¢ = WO. 0
LEMMA 2.7, Let & be an IIA-solution.
(1) I£ 5(r'(0),0) = (1,0) and ¢ # W', then o
(i1) T€ ;(T2(0),0) = (0,1) and ¢ # W°, then &
PROOF. We only prove (ii). So we suppose that
5(12(0),0) = (0,1) and ¢ # W'. (a) Take (S,d) ¢ U°. Let
v i= (0 (5g)+1, uy(84)) and § := conv(8y U {v}). Then by
lemma 2.3, $(S5,d) e {w(s,d),v}. If ¢(5,d) = v, then by IIA
also ;{convid,w(s,d),v},d) = v. But then, by (P.3),
;(T2(0),0) = (1,1}, and that is impossible. Hence,
2(S,d) = w(s,d). But then, by IIA,

5(s,d) = ¢(5,a) = W(s,a) = m0(s,a).
(b) Take (S,d) ¢ V2. Let z := (u) (84)+1,5(d,+u, (S,)) and
S = conv(Sd v {z}). Then, by lemma 2.3,¢(S,d)e{w(S,d) JuP(S).
2(s,d) = w(s,d) would imply that also
#(convid,w(s,d),p(S,d)},d) = w(S,d). But then, by (P.3),
ﬁ(Tz(q),O) = (q,1) for some g ¢ (0,1). This imolies, by
lemma 2.5, that ¢ = W0 and that is not true. So
$(8,d) # w(s,d). Let p ¢ P(8), p # p(3,d) = p(S,d). Define
§" s= conv(§ v ((d,,B,) ). By (P.3) and 4(T%(0),0) = (0,1),
we have p(conv(d,(dl,ﬁz),ﬁ},d) = (dl,ﬁz). Then IIA implies
that p # 5(s*,d) = ¢(§,d). But then ¢(8,d) = p(S,d). Hence,
by IIA: #(s,d) = ¢(8,d4) = p(s,d) = m%(s,d). &
PROOF OF THEOREM 2.2. Let ¢ be an IIA-solution. We have to
prove that ¢ ¢ {Ft ; 0t 1Yu {WO,Wl,MO,Ml}.

1
=
.

]
=




(i) Suppose first that ¢ : B » 312 is a strong solution. Then,
by theorem 2.1, 5 ¢ (Ft; 0 =t < 1}.

(ii) Suppose now that ¢ is not strong. Then there is an

(s,d) : B such that §(s,d) = w(S,d) # p(S,d) (or

5(5,d) = w(S,d) # p(S,d)). If (S,d) ¢ V2, then ¢ = W' by lemma

2,6 (ii). Suvppose (S,d) ¢ 92. If ¢ = WO, then there is nothing

left to prove. So suppose ¢ # WO. Since
s{convid,w(s,d),p(s,d)},d) = w(sS,d), it follows from (P.3)
that ;(T2(0),0) = (0,1). By lemma 2.7 (il), we have ¢ = MO.
(In case :(S5,d) = w(5,d) # p(5,d) it follows, similarly, that

s = M1 or : = wl). Hence ¢ ¢ {Ft;OStSl} u {wo,wl,Mo,Ml}. a] )

3. THE MULTISOLUTIONS WITH THE ITA-PROPERTY.

We define the multisolutions ui,vi,ai (i=1,2) by
W05, =02(s,a)=50(s,d) :=conv(@(s,d) ,B(s,d) ) if (S,d)ev?,
0(s,d) :=conv(w(s,d),p(s,d) 1, v°(s,d) := (w(s,d)} and

20(s,a) i=ip(s,0) 1o (s, WOis, ) if (5,4 « u?.
wHs,d)=vt(s,d)=01(5,d) :=conv{w(S,d) ,p(S,d)} if (§,d) e V',
11 (s,d) r=conv(w(s,d),p(s,d)}, v (s,d) :={w(S,d)} and

1

ol (s,dar=ip(s,d) v ul(s, @ vls,@)) if (5,4) e Uut.
The easy proof of the following theorem is left to the reader.

THEOREM 3.1, uo,ul,vo,vl,oo,ol are IIA-multisolutions.

For the characterization of all IIA-multisolutions we need
LEMMA 3.2, Let 3 be an IIA-multisolution, Let a,b ¢ ¢(S,d)
and a # b. Then a,
PROOF. Suprose that a, # bl and a, # b
suppose that d = 0, a

= b1 or a, = b2.
Then w.l.0.9. we

< b1 and a, > b We distinguish two

L < bi, (ii) 0 < a; <
In case (i) consider the map A : R2 » R with

A(xl,xz) = (%xl,xz). Let T := conv{0,b,a}. Then A(T) < T and
a e A(T) n »(T,0) # §. So ¢(A(T),0) = A(T) n ¢(T,0) by IIA.
By (P.3), A(b) = (%bl,bz) ¢ ¢(A(T),0). But then

(%bl,bz) ¢ #(T,0), which is in contradiction with (P.2). So
in case (i): a; = bl or a, =2b2. 5

For case (ii) we take A + R° - IR“ of the form as in (P.3),
with A(0) = 0 and A{%(a+b)) = a. Let T be as above and

E := conv{0,b,%(at+b)}. Then a simple calculation shows that

9

5
cases: (i) 0 = a b,.
2
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A(E) < T and A(b) ¢ W(T). Since a ¢ A(E) n ¢(T,0), by IIA:
¢(A(E),0) = ¢(T,0) n A(E). By (P.3), A(b) ¢ ¢(A(E),0) because
b e ¢$(E,0). Then A(b) ¢ ¢(T,0), but that is, by (P.2), in
contradiction with A(b) /¢ W(T). Hence, also in case (ii):

1= bl or a, = bz. 0
The main result of this section is

THEOREM 3.3. Let ¢ : B ~» ﬂiz be an IIA-multisolution. Then

¢ € {Ft; 0 <t <1} v {WO,Wl,MO,Ml) u (uo,pl,vo,vl,oo,ol}.
PROOF SKETCH. (i) If ¢ is a solution, then by theorem 2.2:

b e {Ft; 0stsl}tu {WO,Wl,MO,Ml}.

(ii) Suppose there is an (8,d) ¢ B and a,b ¢ Hiz, a # b such
that a ¢ ¢(s,d) and b ¢ ¢$(S,d). Then, by lemma 3.2:

¢(s,d) < conv{w(s,d),p(s,d)} or ¢(S,d) < conv{w(S,d),p(s,d)).
Suppose that the first inclusion holds. We distinguish two
cases.

a

(a) Let (S,d) ¢ V2

Suppose there is a z ¢ conv{w(S,d),p(8,d)} with z ¢ ¢(S,d).
Let V := convi{d,a,z}, then by arguments similar to those in
the proof of lemma 2.4, we obtain z ¢ ¢(V,d). But IIA and

z ¢ $(5,d) imply z £ ¢(v,d) = $(S,d) n V, a contradiction.
8o, by an argument as in lemma 2.6,¢(S,d)=conviw(S,d),p(S,d)}

for each (S,4d) ¢ 22.
(b) Let (s,d) « gz. If ¢ = uo, then there is nothing to
prove. If ¢ # uo, then we can prove that ¢ = WO or ;= co.

The proof of this fact is rather elaborate, but follows si-
milar lines of reasoning as the proof of theorem 2.2 (with
the aid of analogous lemmas).We leave this to the reader. =

4. RESTRICTEDLY MONOTONIC MULTISOLUTIONS
In this section we want to characterize all closed multiso-
lutions with the RM-property! We start with two propositicns

.about RM-solutions. The first proposition shows that each

RM-multisolution is a strong multisolution.

PROPOSITION 4.1. Let ¢ : B » Eiz be an RM-multisolution.
Then ¢(T,d) < P(T) for all (T,d) ¢ B.

PROOF. Let (T,d) ¢ B and suppose that a ¢ W(T) P(T). We want
to show that a ¢ ¢(T,d). Let S := conv{d,p(S,d),p(s,d)}.
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Since S < T and u(Sd) = u(Td), the RM-property guarantees that
$(T,d) < $(5,d) + R2. Now a £ $(5,d) + R2, so a / ¢(T,d). C
PROPOSITION 4.2. Let ¢ : B ~+ 312 be an RM-multisolution. Let
(s,d) ¢ B and (T,d) ¢ B with u(Sd) = u(Td). Then

$(S,d) n P(T) < ¢(T,d).

PROOF. Let S* := (x ¢ R%; x > d, 3 .glxsy1), and
*

T := {x ¢ Iiz; x 2 d, ayeT[xsy]]. Then by the RM-property
and proposition 4.1: ¢(S,d) = ¢(S4,d) = ¢(s*,d) and

#$(T,d) = ¢(T",d). Let D := 8" n T". Then u(Dy) = U(S:l) = u(ry).
Now take y ¢ ¢(8,d) n P(T). Then y ¢ P(D). By the RM-property
there is an x ¢ ¢(D,d) with x £ y. Since x,y ¢ P(D) by propo-
sition 4.1, we have y = x ¢ ¢(D,d). Again it follows from the
RM-property that there is a z ¢ @(T*,d) with y <€ z. Since

v:2 ¢ P(T) we have y = 2z ¢ ¢(T*,d), y € ¢(T,d). Hence,

¢(8,d) n P(T) ¢ ¢(T,d). =

Let &4 := conv{{(1,0),(0,1),(1,1)}. We look at multifunctions
A : [1,21 » A with the following properties:

(C.1) For all t ¢ [1,2], A(t) is a non-empty closed subset of
{x e A X, tox, = t}.
(C.2) For all s,t e [1,2] with s s t: A(t) c M(s) + nzi,
Ms) < a(t) - RZ.
The family of multifunctions with these properties is denoted
by A and the elements of A are called monotonic multicurves.

For X ¢ A, D(Ar) :=

t%[l,zj*‘t)- In the following we characte-~
rize the closed RM-multisolutions with the aid of monotonic
multicurves. We need some lemmas,The proof of lemma 4.3 is
straightforward and left to the reader.

LEMMA 4.3. Let ) ¢ A. Then A is an upper semicontinuous and
lower semicontinuous multifunction and D(A) is a closed sub-
set of A.

LEMMA 4.4. Let (S,0) ¢ B, u(So) = (1,1) and » ; L.
(1) If a ¢ D(A) and (a-R 2)nP(S)#f,then (a-T ;) ~P(S):D{\)=0.
(i1) If b e D(}) and (b+R2)nP(S)##,then (b+R2)rP(S)nD(2)#0.
PROOF. We only prove (ii). If b e P(S) or (1,1) < P(S), then

there is nothing to prove. So, suppose b ¢ P(S) and
(1,1) £ P(S). Let X := {x ¢ 4; b £ x = (1,1)]) and let



474

B := b, + b,. Let X : [B8,2] ~ & be the multifunction with

3(s) = A(s) n K for all s ¢ [8,2]. In view of (C.2), %(s) # @

for each s ¢ [8,2) and X is upper and lower semicontinuous in

view of lemma 4.3. Now let

V = {xeK; XKP(S),(x—Iii) n P(S)#0}, I, := {telB,21;%(t) eV},

W oi= {xeK; x¢P(S), (x+R2) n P(S)#P)}, I,:=(tel6,21;7(t)nWrg}.

Note that 2 ¢ Il, that B ¢ I, because b ¢ 3(8) and that

Il n I2 = f. Since V and W are open subsets of K (in the re-

lative topology) it follows from the continuity of the multi-

function %, that Ii and I are open subsets of [g,2]. Now

Il ul, = [B,2] if (b+IR ) n P(8) n D()X) = @ and that is in

contradiction with the connectedness of [B,2]. Hence,

(b+R2) 0 D(A) n B(S) # g. 0
Now we associate with each A ¢ A a bargaining multisolu-

tion 1'. Let (s,d) < B. If d = (0,0) and u(Sy) = (1,1), then

put 1% (s,d) := D(A) a P(S). If d # (0,0) or u(s,) # (1,1),
then construct a map A : :IR2 - ]R2 as in (P.3) such that
a(d) = (o0, 0) and u(A(S) ) = (1,1) and put

1 (s,d) := a"tnt(a(s) A(d))

THEOREM 4.5. Let A ¢ A. Then nx is a closed RM~multisolution.
PROOF. By lemma 4.4, 1°(S,d) # § for all (S,d). Since D(})

is closed in view of lemma 4.3 and also P(S) is closed, we
have HA(S,d) is closed for all (S,d) « B. Furthermore, it is
obvious that 1" satisfies (P.1), (P.2) and (P.3). Hence, 1’
is a closed multisolution. To prove that HA satisfies the RM-
property, let (5,0) and (T,0) be bargaining games with

u(Sg) = u(Ty) = (1,1) and §  T. Take a ¢ 1*(T,d). Then

(a- Il ) n P(S) # @. By lemma 4.4 (1)

g # (a—IR 3 P(S) A D() = (a-R2) n 17(S). This implies
that 1°(T, T e (s, a) + ®2. analogously, it follows with
lemma 4.4 (ii) that 1'(s,d) ¢ 1’ (T,d) -~ R2. But then 1’ is
a closed RM-multisolution. 0
The main result of this section is that each closed RM-mul-
tisolution corresponds to a monotonic multicurve.

THEOREM 4.6. Let ¢ : B - Blz be a closed RM-multisolution.

Then there exists a A ¢ A such that ¢ = HA.
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PROOF. Let V(t) := conv{(0,0),(1,0),(1,t-1),(t~1,1),(0,1)}
for each t ¢ [1,2]. Define the multifunction A : [1,2] + R 2
by A(t) := ¢(V(t),0) for all t ¢ [1,2]. Then A(t) is a non-
empty closed subset of P(V(t)) {x ¢ b; X+, = t} and for
1 £ 8 <€t < 2 we have in view of the RM-property of ¢:

AE) = 6(V(E),0) < §(V(s),0) + RZ = x(s) + RZ,

A(s) = $(V(s),0) < #(V(t),0) = RZ =2(t) - RZ.
Hence, » ¢ A. We want to prove that ¢ = HA. In view of (P.3)
it is sufficient to show that

4(8,0) = 1'(s,0) if (5,0) ¢ B and u(s,) = (1,1).
Note that ¢ (V(t),0) = I*(V(t),0) for all t ¢ [1,2]. Take
X € HA(S,O). Let s := xl+x2. Then, by applying proposition

4.2 we obtain:
X e 11(S,0) n P(V(s)) = x ¢ 1" (V(s),0) = ¢(V(s),0),
X e ¢(V(s),0) n P(8) = x ¢ ¢(S5,0).
Hence, HX(S,O) c ¢(S,0). For the converse, take an y ¢ ¢(S5,0)
and let t := yl+y2. Then, in view of proposition 4.2:
v e $(5,0) 0 P(V(E)) =y e ¢(V(E),0) = MM (V(£),0),
y e 1M (V(£),0) n BP(S) =y e N'(5,0).
So, ¢(8,0) < 1*(8,0). We have proved that T"(S,0) = $(S,0).0
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