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In this article, we analyze issues of pooling models for a given set of NV individual units observed
over T periods of time. When the parameters of the models are different but exhibit some similar-
ity, pooling may lead to a reduction of the mean squared error of the estimates and forecasts. We
investigate theoretically and through simulations the conditions that lead to improved performance
of forecasts based on pooled estimates, We show that the superiority of pooled forecasts in small
samples can deteriorate as the sample size grows. Empirical results for postwar international real
gross domestic product growth rates of 18 Organization for Economic Cooperation and Devel-
opment countries using a model put forward by Garcia-Ferrer, Highfield, Palm, and Zellner and
Hong, among others illustrate these findings. When allowing for contemporaneous residual corre-
lation across countries, pooling restrictions and criteria have to be rejected when formally tested,
but generalized least squares (GLS)-based pooled forecasts are found to outperform GLS-based
individual and ordinary least squares-based pooled and individual forecasts.
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Panel data are used more and more frequently in busi-
ness and economic studies. Sometimes a given number of
entities is observed over a longer period of time, whereas
traditionally panel data are available for a large and vari-
able number of entities observed for a fixed number of time
periods (e.g., see Baltagi 1995 for a recent overview; Mad-
dala 1991; Maddala, Trost, and Li 1994). In this article, we
analyze issues of pooling models for a given set of N in-
dividual units observed over T' periods of time. Large T
asymptotics, with N fixed, provide the benchmark against
which to evaluate the methods considered. Pooling esti-
mates in panel-data models is appropriate if parameters are
the same for the individual units observed. When the param-
eters are different but exhibit some similarity, pooling may
also lead to a reduction of the mean squared error (MSE)
of the estimates. A reduction of the MSE will be achieved
when the square of the bias resulting from imposing false
restrictions is outweighed by the reduction of the variance
of the estimator due to restricted estimation. The existence
of this trade-off has generated the literature on MSE cri-
teria and associated tests for the superiority of restricted
over unrestricted least squares estimators {e.g., see Wallace
and Toro-Viz¢arrondo 1969; Wallace 1972; Goodnight and
Wallace 1972; McElroy 1977).

Pooling techniques have been successfully applied, for
instance, to test the market efficiency hypothesis (e.g., see
Bilson 1981) and to forecast multicountry output growth
rates (e.g., see Mittnik 1990). In a study of real gross na-
tional product (GNP) growth rates of nine Organization for

Economic Cooperation and Development (OECD) coun-
tries for the period 1951-1981, Garcia-Ferrer, Highfield,
Palm, and Zellner (1987) showed that pooled estimates of
an (autoregressive) AR(3) model with leading indicator (LI)
variables, denoted by AR(3)LI, provided superior forecast-
ing results. Forecasting results for an extended time period,
19741984, and an extended number of countries, 18 OECID
countries, provided by Zellner and Hong (1989) were in
favor of the earlier findings. Leading economic indicators
have come to play a dominant role in forecasting business-
cycle turning points on a single-country level {Stock and
Watson 1989) as well as on a multicountry level {Zell-
ner, Hong, and Min 1991). Cross-country, cross-equation
restrictions have also been imposed successfully to analyze
convergence of annual log real per capita output for 15
OECD countries from 1900 to 1987 (Bernard and Durlauf
1995).

The objective of this article is threefold. First, in Sec-
tion 1, we investigate theoretically whether the improve-
ment of forecasting performance using pooling techniques
instead of single-country forecasts remains valid as 7" grows
large(r) while N remains constant. The model that we in-
vestigate consists of a set of dynamic regression equations
with contemporaneously correlated disturbances. It nests
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the specifications put forward by Garcia-Ferrer et al. (1987)
and used in many studies since (e.g., see Zellner 1994). Sec-
ond, in Section 2 we present simulation results that give
some insights into the importance of the gains from pool-
ing data when the sample size is small. The simulations also
provide evidence on the statistical properties of some test
procedures for pooling restrictions. Third, the theoretical
results are investigated empirically. The Zellner, Hong, and
Min (1991) data, slightly modified to have a consistent set
of real gross domestic product (GDP) growth rates of 18
OECD countries for an extended period of 1948 to 1990,
are used to forecast international growth rates using indi-
vidual and pooled estimates of the AR(3)LI model. Section
3 concludes.

1. THE MODEL AND THE FORECASTING
PROCEDURES

Consider a linear regression model for N units/countries
and T successive observations:

Yie = L3081 + Eit, i=12,...N,t=12,...T, (1)
or

Xi B + &,
(T'xk) (kx1) TX1

i=1,2,...,N, (2

Yi
Tx1
where y;; denotes the value of the endogenous variable y for
country ¢ in period ¢, z; is a vector of explanatory variables,
B; is a vector of k regression coefficients for country ¢, and
g;; denotes a disturbance term. Alternatively, the model (2)
for N countries can be written as

Y =

nxl

X £ 3
(ank)(N[Zil)-I_nxl’ ( )

with Yy = (yllayéa s :y§V)I’X* = diag(X1:X27 s )XN)v
Bo=(B1,05,....,0%) 6= (e, en,....€), and n=TN.

We allow the vector z; to contain lagged values of
yit. The disturbances e;; are assumed to be normally dis-
tributed with mean O and zero serial correlations, possi-
bly contemporaneously correlated; that is € ~ N(0, ) with
Q = & ® I, where ¥ denotes the contemporaneous covari-
ance matrix of dimension N. The regressors z; are pre-
determined: E(zuel|Ti-1,...,0=1,2,.. .,N) =0 for all
i,jand t < s,

The system of seemingly unrelated regressions (SUR) in
(3) has been extensively studied in the literature, both from
a classical and a Bayesian point of view. For instance, Hay-
tovsky (1990) generalized Zellner’s (1971) Bayesian analy-
sis of the SUR, using a linear hierarchical structure similar
to that in the Lindley and Smith (1972) pooling model. Chib
and Greenberg (1995) carried out a hierarchical analysis
of SUR models with serially correlated errors and time-
varying parameters. Nandram and Petruccelli (1997) con-
sidered pooling autoregressive time series panel data using
a hierarchical framework for a model with a highly struc-
tured covariance matrix ¥, with off-diagonal elements that
depend on one unknown parameter.

For ¥ = o2[y, assuming a hierarchical structure, Gar-
cia et al. (1987), Zellner and Hong (1989), and Min and
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Zellner (1993) considered shrinkage forecasts based on an
estimate of 3, in (3), which is a matrix-weighted average
of the equation-by-equation least squares estimates 3; and
a pooled estimate [i.e., the least squares estimate of ;3 re-
stricting the /3;’s in (3) to be the same].

A scalar-weighted average of these estimators results,
with the scalar weight depending on the ratio of #? and
the prior variance of the 3;’s, if the “g-prior” approach of
Zellner (1986) is adopted (see Zellner and Hong 1989).

In this article, we consider the problem of choosing
among forecasts based on various estimators of /3, in (3)
from a sampling theory point of view using an F statistic
that has been proposed to test for pooling. Note that there is
a direct link between an F statistic for linear restrictions on
the coefficients of a linear regression model and the poste-
rior odds used to choose among the models associated with
the hypothesis to be tested, although their interpretations
will differ (see Zellner 1984).

The reasons for considering the problem of choosing
among forecasts are fourfold.

First, under a diagonal loss structure, it is optimal to se-
lect a forecast rather than to combine forecasts (e.g., see
Min and Zellner 1993).

Second, as described previously, the problem of com-
bining forecasts has been extensively studied in the liter-
ature, using a hierarchical structure, whereas the problem
of choosing among forecasts based on alternative estima-
tors for an SUR has received less attention. In particular,
SUR models for NV as large as 18 have not been extensively
used.

Third, adopting a full-fledged hierarchical Bayesian pro-
cedure in a model with unrestricted covariance matrix X,
when N is large, requires integration in high dimensions
[at least N(NV +1)/2]. For applications with N as large as
18, this requirement may make it prohibitive to use such
procedures if it is not appropriate to impose some structure
on L.

Fourth, unpooled and pooled forecasts are the ingredients
required for combining forecasts in a hierarchical structure.
Qur results can be interpreted as a benchmark against which
combined forecasts can be judged.

We consider the following one-step-ahead forecasts of
YiT+1, BiT+1 = Tipy1Bir with 3; being an estimate of ;:

1. The individual forecast is based on the least squares
estimator of 3;,

Bi=(XIX:) Xigs. (4)

2. The pooled (p) forecast is based on the OLS estimator
for the pooled data,

AP = (X' X)Xy,

where X = (X{, X35,..., Xy)".

3. The forecast (g) is based on a feasible SUR estimator
of ﬁi,B{-’, being the ith subvector of the generalized least
squares (GLS) estimator of 3, in (3),

Ag _ (X*'Q‘IX*)"IX*’Q"ly,

(5)

(6)

with {2 being a consistent estimate of €.
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4. The forecast (py) is based on a pooled feasible GLS
estimator of ;.

AP = (X' X)Xy @)

The predictors based on the estimators (4)(5) were used
by Garcia-Ferrer et al. (1987) and Zellner and Hong (1989)
to obtain point forecasts of GNP growth rates and by Zell-
ner et al. (1991) to forecast turning points in GNP growth.
We investigate the behavior of the four previously men-
tioned predictors when the time dimension of the sample
becomes large. We compare the performance of individual
forecasts with the pooled forecasts when T’ grows while ¥
remains fixed and investigate the conditions under which
pooling leads to improved forecast performance.

To compare the forecast performance, we use the mean
squared forecast error (MSFE) criterion

MSFE(jir41) = 2ip MSE(B)zirs1 + 07, (8)

where 3; denotes an estimator of 3; [one of the estima-
tors (4)~7)] and o? is the ith diagonal element of X. The
cross-term xip 1 (3 ~ 3;)eir+1 has been deleted from the
rightside of (8) as it vanishes asymptotically. Comparing the
MSFE of various forecasts basically reduces to comparing
the MSE's of the estimators used to compute the forecasts.

The results obtained by McElroy (1977) can be applied
to compare the GLS estimator 3¢ (6) for 3, with the pooled
GLS estimator (7) 379 = (1 @ /3P9), with ¢ being an N x 1
unit vector. When 2 is unknown and a consistent estimate
is used, the results of McElroy (1977) hold for a large sam-
ple. When Q = ¢?I,,, McElroy’s (1977) results specialize
accordingly and can be used to compare the OLS estima-
tors J; in (4) with the pooled estimator 47 in (5). When Q
is known, the restricted GLS estimator 329 is preferred to
3¢ by the strong MSE criterion defined by McElroy if

UIMSE(VRAZ) - MSE(/RBE 20 ()

holds for all Nk x 1 vectors [ # 0. Notice that the con-
dition (9) implies superiority of the pooled estimator for
each country. Imposing restrictions erroneously produces a
biased estimator. When the condition (9) holds, the size of
the bias is outweighed by the reduction of the variance of
the estimator.

Using the results of McElroy, Expression (9) can be
shown to hold iff A, < 1/2 with X, = &, (RV,R)~14,/2
and d,, = /n(RB,). Notice that R3, = 0 denotes the re-
strictions on J, when we pool across countries, and the
g x Nk matrix R with ¢ = (N - 1)k is

"= [LN—I @Iy, ~In-1 ®[k]a (10)

with 1x_; being an (N — 1) unit vector, V,, = n(X*
(71X *)~! is the covariance matrix of \/njy.

The null hypothesis R4, = 0 is true iff A, = 0. The re-
stricted estimator 2 is preferred to Bg by the first weak
MSE criterion, which requires that the trace of the differ-
ence of the MSE matrices in (9) be nonnegative. This holds
whenever

An < O, (11)
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with 8, = 1/2untr[Vo R (RV,R') "' RV,] and p, being the
smallest characteristic root of V,~1. Finally, the pooled GLS
estimator is better than the GLS estimator by the second
weak MSE criterion defined by McElroy (1977) as

E[n(Bg — B)' Vi (B2 — Ba)
— n(BE9 — B) Vi H(BET — Ba)] 2 0, (12)

which holds iff )\, < g/2—that is, iff 2\, is smaller than
the number of restrictions on regression coefficients in the

system.
As shown by McElroy (1977), when the X;’s are strictly
exogenous (standard regression model) the test statistic

wren_ (RBY)(RVLR)TU(RBS) /4
PO = ") (n - )

~ F(Qan"'Qa)\T)) (1?’)

where SSE(39) = (y — X*B9Y Q" (y — X*B9) has a non-
central F distribution. It can be used to test hypotheses
about . Rejecting the null hypothesis when the statistic is
large provides a uniformly most powerful test for A, < \*
against )\, > )*, where \* = 1/2,6,, or ¢/2 depending on
the chosen MSE criterion.

As n = o (&g, for T — oo and fixed N), ¢F* in
(13) converges to a (non)central x*(g, \) distribution with
A = limp 400 An, When the sequence of alternative hypothe-
ses is chosen in such a way that ), converges to a finite limit
A. When ) is replaced by a consistent estimator and/or in
the presence of predetermined variables among the regres-
sors, the same limiting distribution for g/ results. More-
over, as n — oo the covariance matrices for both \/ﬁﬁg
and \/ﬁBgQ converge to constant matrices. If the restrictions
Rf, = 0 do not hold, é,, and hence the bias of \/ﬁﬁgg ,
increases without bound while the unrestricted estimator
/1B remains unbiased. Therefore, for each of the three
MSE criteria, there exists a sufficiently large n to make
P9 worse than 3¢ in terms of MSE. In the case in which
the restrictions are false, the noncentrality parameter A, in-
creases without bound. As a result, the power of a test of
Hy : Ay < )* tends to 1 and the test is consistent.

In Section 2, we shall report the findings of an empirical
analysis of the MSFE of forecasts based on unrestricted and
pooled estimators. In particular, we shall investigate under
which conditions and for which sample size it pays to use
a pooled estimator rather than an unrestricted estimator.

2. EMPIRICAL ANALYSES

In this section we investigate an AR(3) model and an
AR(3)LI model used by Garcia-Ferrer et al. (1987) and Zell-
ner and Hong (1989). The dataset consists of the post-World
War II real GDP growth rates of 18 OECD countries. The
parameters of the individual countries are estimated using
samples for which the starting date varies between 1949 and
1957 and ends in 1990 (see Appendix A). In Subsection 2.1,
we present the models, estimate, and test them. Subsection
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2.2 is devoted to a simulation study of the finite-sample
properties of McElroy’s criteria for pooling. The empirical
models for a subset of the 18 OECD countries are used
in the simulations. Finally, in Subsection 2.3 we check the
pooling restrictions for the 18 countries using McElroy’s
criteria.

2.1 The Models

The following AR(3)LI model was employed to generate
one-year-ahead forecasts of the growth rate of real GDP,
for the period 1981-1990, for 18 OECD countries:

Yit = Poi + PraYss—1 + B2ilit—2 + Bailit—s + BaiSRiz—1
+ B5iSRit—2 + BeiGMip—1 + PriW Riz—1 + i, (14)

where y;; denotes the first difference of the logarithm of
real output, SR;; denotes the first difference of the log of
a stock price index divided by a general price index, G M;;
denotes the first difference of the log of the nominal money
supply divided by a general price index, and W R;; denotes
world return, which equals the median of countries’ real
stock return in period .

The AR(3) model arises as a special case of Model (14)
when By; = Bs; = fei = Pri = 0.

To illustrate the gains from pooling when T is small,
we performed the actual one-step-ahead forecasts for the
period 1983-1990 using an AR(3) model. The results are
shown in Table 1, in which columns 1 and 2 are based on
models estimated by all data, columns 3 and 4 are from
models estimated by excluding the first 5 observations for
each country, columns 5 and 6 are from models estimated
by excluding the first 10 observations, and finally columns
7 and 8 are from models estimated by excluding the first 15
observations. As expected, as 7" gets smaller, the forecasting
performance of the pooled forecast dominates the individ-
ual predictor. This is apparent in two ways in Table 1. First,
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the number of countries for which the individual forecast is
better declines as 7" becomes smaller. Second, the difference
in median root mean squared errors (RMSE’s) increases as
T decreases.

Next we compare the forecasting performance for differ-
ent periods of time. Table 2 reports RMSE’s for forecasts
(RMSFE’s) based on country-specific OLS parameter esti-
mates and pooled parameter estimates for the forecasting
periods 1974-1987, 1974-1990, and 1983-1990. For the
three forecast periods and for both models, the pooled fore-
casts dominate the individual forecasts in most instances.
Moreover, the median of the RMSFE’s is lowest for the
pooled forecasts in the six cases. This finding is in line with
those of Garcia-Ferrer et al. (1987) for a forecast period
19741981 and Zellner and Hong (1989) for the periods
1974-1981 and 1974-1984. Notice also that for the forecast
period 1983-1990, surprisingly the AR(3) model performs
better than the AR(3)LI model in terms of RMSFE. For the
forecast period 1974-1987, the AR(3)LI clearly performs
better than the AR(3) model in most instances. There are
small differences with results reported by Min and Zell-
ner (1993) for the same forecast period. These are because
they used GNP and GDP data and an estimation period
1954-1973 with data for 1951-1953 serving as initial val-
ues whereas in the present study strictly GDP data are used
for all countries and the estimation period is 1961-1973
with data for 1958-1960 serving as initial values.

The finding that, as 7" grows, the difference between the
MSFE’s of forecasts based on OLS and pooled forecasts
becomes larger suggests that the restrictions of identical
parameters across countries are not literally true. Before
testing these restrictions, we shall examine the presence of
contemporaneous correlation between the disturbances for
the 18 countries in the AR(3) and AR(3)LI models, respec-
tively.

Table 1. The Root Mean Squared Forecast Error for the Indjvidual Country Forecast and for the Pooled Forecast
Using the AR(3) Model When up to 15 Observations Are Excluded From the Estimation Period

Number of observations excluded

0 5 10 15
Unpooled Pooled Unpooled Pooled Unpooled Pooled Unpooled Pooled
Australia 3.66 3.36 3.66 3.41 3.60 3.35 3.26 3.30
Austria 1.53 92 1.30 .89 02 T4 1.03 .75
Belgium 1.38 1.79 1.54 1.71 1.59 1.69 1.97 1.74
Canada 3.90 3.47 4.26 3.44 4,39 3.43 4.59 3.35
Denmark 1.86 1.81 2.04 1.77 2.45 i.81 2.66 1.72
Finland 1.49 1.37 1.29 1.38 1.23 1.52 1.26 1.69
France 1.44 1.59 1.67 1.52 1.69 1.47 1.70 1.46
Germany 4.27 4.50 4.40 4.30 4.47 4.39 4.37 4.34
Ireland 2.23 1.68 2.48 1.67 3.78 1.64 3.95 1.74
italy 2.40 1.55 2.39 1.47 242 1.52 2.43 1.52
Japan 1.09 .99 1.05 .98 114 1.06 1.32 1.23
Netherlands 1.67 1.46 1.60 1.42 1.42 1.26 1.61 1.27
Norway 4.95 3.98 5.00 3.91 5.52 3.86 5.66 3an
Spain 1.03 119 2.03 1.22 2.00 1.34 1.79 1.54
Sweden 1.41 1.19 1.47 1.16 1.72 1.20 1.69 1.22
Switzerland 1.54 1.48 1,56 1.48 1.65 1.40 2.00 1.43
UK. 2.38 1.80 2,51 1.88 2.77 1.93 2.90 1.96
u.s. 3.15 274 3.59 2.64 4.20 2.76 413 2.75
Median 1.76 1.63 2.04 1.59 2.21 1.58 2.22 1.71
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Table 2. Eighteen Countries AMSFE’s of One-Year-Ahead Forecasts, 1974—1987, 1974-1990, and 1983-1990

AR(3) AR(3)LI

Period 1974-1987 1974-1990 1983-1990 1974~1987 19741990 1983~1990

¥ Unpooled Fooled Unpooled Pooled Unpooled Pooled Unpooled Pooled Unpooled Pooled Unpooled Pooled
Australia 473 3.21 4.34 2.92 3.686 3.36 4.94 2.63 4.77 2.42 3.55 1.91
Austria 3.30 2.60 3.02 2.36 1.53 92 3.42 2.51 3.15 2.29 3.02 1.88
Belgium 3.19 3.24 2.895 2.98 1.38 1.79 1.87 2.41 2.31 2.38 293 2.21
Canada 3.78 3.37 3.48 3.12 3.90 3.47 3.99 291 3.65 2.67 4.08 3.48
Denmark 3.50 3.40 3.3 3.30 1.86 1.81 4.00 3.92 4.02 3.94 3.73 3.06
Finland 3.63 3.34 3.34 3.12 1.49 1.37 3.74 292 3.61 2.73 2.66 1.53
France 3.15 2.42 2.91 2.30 1.44 1.59 3.13 2.72 2.90 2.68 1.51 2.30
Germany 5.05 4.67 4.62 4.36 4.27 4,50 4.19 3.98 3.90 3.756 3.90 3.69
Ireland 4.81 4.36 4.45 4.02 2.23 1.68 4,48 412 425 3.88 2.60 1.78
italy 3.85 3.23 3.56 3.00 2.40 1.55 3.66 2.42 3.54 2.46 347 1.85
Japan 4.36 2.98 3.98 2.73 1.09 .98 417 277 3.95 2.58 245 1.23
Netherlands 3.39 2,58 3.18 241 1.67 1.45 3.23 2.47 4.00 2.46 2.90 246
Norway 2.85 3.02 3.70 3.15 4.94 3.97 3.37 3.12 4.20 3.88 5.36 543
Spain 3.00 2.57 2.74 2.40 1.03 1.18 3.03 2,28 2.95 2.09 2.32 1.24
Sweden 2.91 2.76 2.66 2.52 1.41 1.18 2.90 2.48 2.65 2.34 2.58 1.75
Switzeriand 3.73 377 3.46 3.43 1.54 1.48 3.89 3.46 3.71 3.19 2.51 213
UK 3.49 3.27 3.36 3.10 2.38 1.90 2.83 2.64 4.48 3.35 5.64 3.76
U.S. 4.01 3.79 3.66 3.50 3.15 2.74 3.50 3.42 3.49 3.30 3.75 2.62
Median 3.57 3.24 3.41 3.05 1.76 1.63 3.58 2.74 3.63 2.68 2.79 217

For the estimation period 1961-1980, as expected, the
residuals of the AR(3) model show more contemporaneous
correlation than the residuals of the AR(3)LI model. In-
cluding leading indicators, which are approximately white
noise, accounts for a major part of the contemporaneous
residual correlation present in the AR(3) model.

From the estimated residual correlations, most of which
are positive as expected, it also appears that the coun-
tries can be clustered in regional groups exhibiting much
within-group contemporaneous residual correlation and lit-
tle between-group contemporaneous residual correlation in-
dicating that shocks to real GDP growth are partly syn-
chronized within blocks and uncorrelated between blocks.
We distinguish the following seven regional blocks—(1)
Canada, United States; (2) Australia, Japan; (3) Denmark,
Finland, Norway, Sweden; (4) Belgium, France, Germany,
Netherlands; (5) Ireland, United Kingdom; (6) Austria,
Switzerland; (7} Italy, Spain.

To formally test for contemporaneous residual correla-
tion, we use a Lagrange multiplier (LM) statistic proposed
by Breusch and Pagan (1980) for testing the null hypoth-
esis of a diagonal . Under Ho, Ay = T X0, ST
with ry; being the sample correlation coefficients between
the residuals of the OLS estimates for countries ¢ and 7, has
an asymptotic X2[N(N —1)/2] distribution, The results for
the LM test are given in Table 3.

The X? statistics reported in Table 3 clearly indicate that
the diagonality of ¥ is not rejected for the AR(3)LI model
for the observation period 1961-1980 when tested against
an unrestricted ¥ matrix. When tested against a block-
diagonal matrix, diagonality is rejected. For the longer pe-
riod 1961-1990, we reject the null hypothesis of a diago-
nal £ matrix. This is possibly due to small sample size or
structural changes that occurred in the 1980s. For this lat-
ter period, the block-diagonal structure is not rejected for
the AR(3)LI model. For the AR(3) model the null hypoth-

esis has to be rejected in all instances. This is not surpris-
ing because the common leading indicator W R;_;, which
is approximately white noise, accounts for interdependen-
cies among the white-noise disturbances of the countries.
Note that Chib and Greenberg (1995) reported that, when
a time-varying parameter version of the AR(3)LI model is
employed for the output growth rate of five countries (Aus-
tralia, Canada, Germany, Japan, and the United States) in
the period 1960--1987, the matrix ¥ is found to be diagonal.

2.2 Properties of Pooling Restriction Tests

Before we check the appropriateness of pooling in a sys-
tem of 18 equations, we investigate the small-sample prop-
erties of the F statistic given in (13) for testing the pooling
restriction Hy @ RB, = 0 against H, : RB, # 0 and of
MCcElroy’s strong and weak pooling criteria allowing for a
block-diagonal matrix ¥. The simulation results have been

Table 3. Testing for Contemporaneous Error Covariances

Hypotheses about ¥

Hg:  Diagonal Diagonal Block-diagonal
H¢: Unrestricted  Block-diagonal*  Unrestricted
AR(3)LI 167.68 99.40 77.28
1961-1980 df = 153 df = 17 df = 136
p=.197 p < .001 p>.5
AR(3)LI 290.88 149.67 141.21
1961-1990 df = 153 df =17 df = 136
p<.01 p < .001 p = .362
AR(3) 353.46 105.94 2475
19611980 df = 153 df =17 df =136
p < .001 p < ,001 p < .001
AR(3) 474.67 137.79 336.88
1961-1990 df = 153 df =17 df = 138
p < .001 p < .001 p<.01

* We distinguish the following seven blacks: (1) Canada, U.S.; (2) Australia, Japan; (3) Denmark,
Finland, Norway, Sweden; (4) Belgium, France, Germariy, the Netherlands; (5) UK., Iraland; [5)]
Austria, Switzerland; (7) Italy, Spain,
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obtained using models for the following sets of countries—
Belgium, Germany, France, and the Netherlands, and
Canada and the United States. The general model consists
of a set of six third-order autoregressions with two leading
indicators:

®(L) y¢ = B xu + T ant
(6x8) (6x1) (6x8) (6x1) 6x1

£t (15)
6x1

where ®(L) is a diagonal lag polynomial matrix with a
third-degree polynomial on the main diagonal and where
B and v denote, respectively, a matrix and a vector of co-
efficients. The leading indicators zy; and zg; and the distur-
bance vector ¢, satisfy the following properties:

z3: ~ IIN(0, 1), @2 ~IIN(0,03), & ~ IIN(D, T3),

(16)

with ¥; being diagonal and £3 being a block-diagonal co-
variance matrix. The variables x4, z2;, and g; are mutu-
ally independent. The vector z;; can be interpreted as a
country-specific leading indicator. The variable za¢ can be
interpreted as a common leading indicator (e.g., WRs_1).
The block-diagonal structure of 53 reflects the finding that
the disturbances within European and North American sub-
groups are correlated and that the between-subgroup cor-
relations are 0. The model (15)-(16) implies a third-order
vector autoregressive (VAR) model for y, with a diago-
nal VAR matrix and a full-disturbance covariance matrix
¥ = BT, B’ + 03y + 3. The error-component structure
of the disturbance term of the AR(3) model will be ignored
in the sequel.

Both the AR(3)LI model (15) and the implied VAR(3)
model have been simulated. The models have been simu-
lated under parameter heterogeneity across countries and
under regression parameter homogeneity. The parameter
values used in the simulations for the AR(3)LI model are
set equal to the OLS estimates of Model (15), taking zi¢ to
be the vector of observed GM;;_; and x: = WR;_1. Un-
der parameter homogeneity, OLS estimates of the equation
in (15) for the United States are used for all six countries.
The parameter values of the AR(3) model are derived from
those of the AR(3)LI model under, respectively, parameter
heterogeneity and homogeneity. On the basis of the data
for the six countries, parameter homogeneity is not rejected
for model (14) when testing regression parameter equality
across countries using an F' test. Obviously, McElroy’s cri-
teria do not reject pooling either. The details for these tests
are given in Table 4.

The empirical distribution of the F statistic in (13) and
rejection frequencies were obtained by simulation. The

Table 4. Testing for Pooling for a Subset of Six Countries (Canada,
the United States, Belgium, France, Germany, the Netherlands)

Model by F value pvalue A = 0 p value A = q/2
AR(3) a2l 5763 9244 .9944
AR(3) Full 1.0532 4032 .8839
AR@ILI a?l 1.2580 2156 8772
AR@3)LI Block 1.1099 3320 .8453
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Table 5. Rejection Frequencies for the F Test at a
Nominal Significance Level of 5%

Homogeneous Heterogeneous

T Estimator = A=0 A=qg A=20 A=q2
25  AR(3)L} o2 024 .000 722 251
50  AR(3L} o/ 010 .000 .996 871
100 AR(3)LI o2 .023 .000 1.000 1.000
25 AR(3) a2 017 .000 270 .038
50 AR(3) a?l .019 001 872 .207
100 AR(3) o?] .032 .000 984 .810
25 AR(I)LI Block .019 .000 369 .095
50 AR(3)L! Block .007 .000 821 .354
100 AR(S)L! Block  .005 .000 1.000 950
25 AR(3) Fuli 254 026 623 .266
50 AR(3) Full 160 011 824 388
100 AR(3) Full 112 002 .983 .829

number of runs is 1,000. Results on the empirical dis-
tribution of the F statistic in (13) are not reported here.
In most instances, the empirical distributions resemble an
F distribution. Rejection frequencies when the test statis-
tic is compared with the critical value of, respectively,
a central £ distribution with ¢ and n — ¢ df and that
of a noncentral F(g,n — ¢, Ap) with Ar = ¢/2 are re-
ported in Table 5. A nominal significance level of 5% is
used.

Under parameter homogeneity, the rejection frequencies
are very small when McElroy’s second weak criterion is
tested. With the exception of the AR(3) model with un-
restricted disturbance covariance matrix, the rejection fre-
quencies when a central £ distribution is used are also sub-
stantially smaller than 5% for the model under parame-
ter homogeneity. An F' test appears to be too conservative
whether the correct disturbance covariance is assumed or
not.

Under parameter heterogeneity, as expected, the power is
found to increase as the sample size increases. For values
of T equal to or larger than 50, the rejection frequency
is found to be fairly large (larger than 80%). For T = 25,
McElroy’s second weak criterion rejects rather infrequently
the incorrect parameter restrictions. As 7" increases, the gain
resulting from trading off some bias against a decrease in
the variance of the estimates decreases as expected on the
basis of asymptotic theory.

Next, information on distributions of the mean and me-
dian RMSFE using, respectively, unrestricted and pooled
parameter estimates is given in Table 6. As expected, as
T increases, the distributions become more concentrated.
Left-skewness of a distribution means that the median
(across countries) RMSFE of the pooled forecasts is larger
than that of the forecasts based on unpooled estimates. In
column 4 of Table 6, we report the percentage of the number
of times forecasts using unpooled estimates outperformed
those based on pooled estimates. For T' = 25, the simu-
lations indicate that pooling is appropriate even under pa-
rameter heterogeneity. For T' = 50, under parameter het-
erogeneity, it seems to be advisable to use pooled forecasts,
based on a VAR model, which leaves a major part of the
contemporaneous correlation in the disturbances and there-
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Table 6. Mean and Median (Median) RMSFE for the Simulations

Homogeneous Heterogeneous

Mean Median Mean Median

T  Estimator % Unpooled Fooled Unpooled!”  Pooled!® A < 0 Unpooled Pooled Unpooled!”  Pooled® A < g

25  AR@LI o2/ 016 015 016 014 149 016 016 016 016 448
50 AR@BL o2/ 011 010 010 010 272 011 011 011 011 867
100 AR@BILI o2/ 007 007 .007 007 309 007 .008 007 008 782
25 AR(3) o 022 021 022 020 212 017 017 017 017 338
50 AR(3) o2l 015 015 015 014 286 012 012 012 018 467
100 AR(3) 021 010 010 010 010 348 .008 008 .008 .008 547
25 AR(@3LI  Block 015 015 015 015 309 018 016 016 016 611
50 AR@)LI Block  .010 010 010 010 A11 o1 011 010 011 781
100 AR@)L!  Block 007 007 .007 .007 420 007 .008 .007 .008 832
25  AR(3) Full 022 021 022 021 226 018 017 017 017 387
50  AR(3) Full 015 015 015 014 299 012 012 012 012 485
100 AR(3) Full 010 010 010 010 354 .008 .008 008 .008 560

NOTE: A < 0 represents the praportion of the number of times that the forecasts based on unpooled (1) astimates outpertorms those bassd on pooled (2) estimates.

fore yields forecasts that are genuinely less accurate than the pooling restrictions for Model (14) and the associated

those for the AR(3)LI model. These findings are in line VAR(3) model using international data for 18 countries are
with the theoretical results presented in Section 2 and the presented.

conclusions drawn previously for the F tests, Tests of the pooling restrictions Hy : RB, = 0 against

. the alternative Hy : R, # 0 are reported in Table 7 for
2.3 Analyses of International Data the AR(3)LI model and the AR(3) model, respectively, for
In this section the results of an empirical analysis of estimation periods varying from 1961-1980 to 1961-1990.

Table 7. Testing for Pooling in the AR(3)L! and AR(3) Model

AR(3)LI AR(3)
Year F valve 0 pvaluel =0 p value » = 68 F value 7 pvalue A = 0 p value X = 34
z 20’2[ bH :0.2/
1981 1.1 414 24 .98 .82 5.97 .66 .99
1982 1.06 3.81 35 .99 .78 5.52 .89 1.00
1983 1.10 7.89 26 98 75 7.59 92 1.00
1984 .97 6.97 .57 1.00 .78 7.74 .90 1.00
1985 97 7.04 57 1.00 .78 7.51 .89 . 1.00
1986 97 6.79 .58 1,00 79 7.38 .88 1.00
1987 .94 6.53 .66 1.00 .82 7.23 .84 1.00
1988 1.0 7.03 46 1.00 .81 7.55 .86 1.00
1989 1.03 8.35 42 1,00 .84 7.48 .81 1.00
1990 1.04 8.11 .38 1.00 .86 7.42 .78 1.00
¥ «diagonal Y :diagonal
1981 1.39 10.35 01 70 1.21 10.27 14 87
1982 1.20 9.87 10 .93 .98 10.68 52 .89
1983 1.28 9.64 .05 .86 .88 10.04 73 1.00
1984 1.20 12.46 10 .94 94 9.67 62 99
1985 1.15 11.85 .16 .97 94 9.33 61 89
1986 1.13 10.14 .18 .97 .87 9.80 76 1.00
1987 . 1.06 9.46 .34 .99 .87 9.10 75 1.00
1988 1.10 8.59 24 .99 .82 9.73 .84 1.00
1989 1.11 10.04 .23 .98 .86 9.49 .78 1.00
1990 1.15 10.12 15 .97 ' .86 9.49 77 ] 1.00
3 block % full
1981 1.63 4.89 .00 29 4.85 4.38 .00 .00
1982 1.34 4.75 .02 .78 3.80 5.10 .00 00
1983 1.63 5.32 .00 .28 2.40 4.98 .00 .00
1984 162 2.24 00 45 1.75 4,80 .00 .18
1985 1.35 5.22 .02 77 1.61 4,67 .00 32
1986 1.41 5.81 .00 .68 2.49 5.37 .00 .00
1987 1.16 5.58 14 .96 2.18 5.59 .00 .01
1988 1.04 6.05 .38 1.00 2.01 5.72 .00 .04
1989 .95 7.44 64 1.00 2.12 572 .00 0z
1990 .95 7.34 .63 1.00 247 5.53 .00 .01
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Table 8. Root Mean Squared Forecast Errors for the AR(3)L! and AR(3) Models
AR(3)LI AR(3)
Block Diagonal a?l Full Diagonal a?1
Country Unpooled Pooled Unpooled Pooled Unpooled Foolsd Unpoolsd Pooled Unpooled Pooled Unpooled FPooled
Canada 3.58 2.58 3.57 2.26 3.57 2.26 2.64 1.94 2.81 2.16 2.81 217
u.s. 2.45 2.75 2.64 234 2.64 2.39 2.04 1.80 2.13 2.23 2.13 2.27
Australia 4.23 3.09 3.97 2.73 3.97 2.67 3.32 3.69 3.69 3.53 3.69 3.50
Japan 2.91 1.52 3.21 .80 3.21 .87 1.97 79 .78 91 78 .88
Denmark 3.65 3.24 3.46 2.91 3.48 2.95 1.89 1.69 2.13 1.65 213 1.72
Finland 517 3.07 4.27 2.50 4.27 2.50 2.28 2.31 2.19 2.26 219 2.26
Norway 4.36 3.46 4.01 3.51 4.01 3.54 7.14 2,18 4.36 2.31 4.36 2.34
Sweden 217 2.65 2.08 2.28 2.08 2.27 2.83 2.02 1.87 1.88 1.87 1.91
Belgium 293 2.67 3.19 2.03 3.19 2.05 243 2.01 1.39 1.53 1.39 1.51
France 3.29 2.77 1.76 222 1.75 2.28 3.13 1.65 1.21 1.27 1.21 1.27
Germany 3.43 2.68 3.21 2.61 3.21 2.69 3.62 2.96 2.64 2.71 2.64 2.70
Netherlands 2.23 2.27 2.03 1.81 2.03 1.88 4.24 1.32 1.23 .88 1.23 .87
Ireland 4,02 2.94 4.10 2.38 4.10 2.38 5.01 1.91 2.94 1.69 2.94 1.66
UK. 6.40 410 5.67 3.93 5.67 3.89 2.83 2.56 245 2.55 245 2.57
Austria 2147 217 2.52 1.76 2.52 1.74 1.89 110 .95 .80 .95 .79
Switzerland 2.14 2.50 2.23 1.95 2.23 1.95 1.69 1.41 1.47 1.09 1.47 1.10
ltaly 3.98 2.24 3.49 1.95 3.49 1.99 1.29 1.36 1.46 1.11 1.46 1.11
Spain 3.63 1.70 3.43 1.26 3.43 1.23 3.00 1.18 92 1.04 .82 1.02
Median 3.51 2.67 3.32 2.27 3.32 2.27 2.73 1.85 2.00 1.67 2.00 1.69

We report the values of the test statistic F* given in (13)
and the p values for the asymptotically justified tests of
exact linear restrictions R, = 0 and of the MSE criterion
for these linear restrictions. The matrix ¥ is assumed to be,
respectively, ¥ = o%Iy, diagonal, and block-diagonal (as
explained previously).

The values of the F statistic are given in column 2 of
Table 7. Column 3 contains the value of the noncentrality
parameter 8, given in (13). In the columns 4-6, the p values
are reported for the tests of Hp : A =0 versus Hy : A # 0,
and Hy : A < A* against H; : A > A* for A* being equal to
g/2. The two criteria correspond to the tests of McElroy’s
strong criterion and second weak criterion, respectively. For
the AR(3)LI and the AR(3) models, under the assumption
that & = oIy or that ¥ is diagonal, an F test usually does
not lead to rejection of the pooling restrictions RS, = 0
Consequently, the less stringent restrictions of the second
weak MSE test for pooling given by McElroy (1977) are not
rejected either in these two cases. A similar conclusion is
reached if the first weak criterion is used to test for pooling.
The p values are never lower than .64 when the estimation
period is varied from 1961-1980 to 1961-1990. McElroy’s
second weak pooling criterion is not rejected in general,
except for the AR(3) model using an unrestricted covariance
ruatrix . Notice that a similar conclusion holds for the first
weak criterion. Moreover, the pooled AR(3) model has to
be rejected when compared with the pooled AR(3)L1 model.

The true size of a test based on an “F' statistic” using a
spherical £ will be different from the assumed size when
the true ¥ is nonspherical. The evidence for the F' test in
Table 7 for ¥ = o2Iy or ¥ being diagonal supports the
null hypothesis because neglecting residual correlation in
estimation generally leads to rejection frequencies for the
muil hypothesis that are much lower than the nominal size of
the test [e.g., see Palm and Sneek (1984) for results on the F'

test in a regression model when neglecting serial correlation
in the disturbances].

When T is estimated as a block-diagonal matrix in the
AR(3)LI model, Hy : RS, = 0 usually has to be rejected
at conventional significance levels. The less restrictive sec-
ond weak MSE tests do not lead to rejecting Hy in this
case. For the AR(3) model, with full disturbance covari-
ance matrix, the p values for the pooling restrictions are
very small. In this case, the second weak MSE criterion
also leads to rejecting pooling (see Table 7). Note that we
are using asymptotically justified procedures in relatively
small samples. The procedures are asymptotically justified
because L has to be estimated and because of the presence
of lagged dependent variables among regressors. There is an
earlier literature on the incorrect sizes of asymptotic tests
indicating that these tests reject the null hypothesis too of-
ten in finite samples. The simulations in Subsection 3.2,
however, indicate that asymptotic theory provides rather
good guidance in small samples. F' statistics neglecting the
presence of residual correlation are expected to reject the
null hypothesis less often than they should according to the
nominal size. Therefore, we conclude that, on the whole, the
evidence from Table 7 supports the pooling restrictions.

This conclusion is supported by the results given in Table
8. For the forecast period 1983-1990, pooling leads to a
substantial reduction in the RMSFE for the AR(3) and the
AR(3)LI model when a pooled GLS estimator is used with,
respectively, estimated full and block-diagonal covariance
matrices. For the forecast period 1983-1990, GLS-based
unpooled forecasts perform slightly less than OLS-based
unpooled forecasts.

3. CONCLUSIONS

In this article, we studied the problem of whether fore-
casts of a set of panel data generated by models with sim-
ilar but not necessarily identical parameter structures can
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be improved by using pooled parameter estimates, Results
obtained by McElroy (1977) for a regression model with
nonspherical disturbances can be generalized in a straight-
forward way to apply to systems of regression models used
to study panel data with large T' and fixed N. The gain in
forecast and estimator performance measured by the reduc-
tion in MSFE or MSE results from a trade-off between the
bias implied by the use of (slightly) false pooling restric-
tions and the reduction in the covariance matrix of the esti-
mators due to imposing these restrictions. Moreover, as the
sample size increases, the covariance matrices of restricted
and unrestricted estimates converge to constant matrices but
the bias of the restricted estimator (multiplied by +/n} in-
creases without bound. Therefore, beyond some given sam-
ple size, the forecasts based on unrestricted estimates will
outperform the pooled forecasts.

Our simulation results show that for small and moderate
values of T, reductions in MSFE can be achieved through
pooling, even under parameter heterogeneity. The asymp-
totic properties of the pooling criteria put forward by McEIl-
roy (1977) provide a fairly accurate insight into their prop-
erties for finite 7.

We applied these results to growth rates for 18 OECD
countries for the periods starting in the 1950s until 1991
using models put forward by Garcia-Ferrer et al. (1987)
and Zellner and Hong (1989). Our empirical findings can
be summarized as follows.

First, there is contemporaneous residual correlation in
the form of a block-diagonal structure corresponding to re-
gional groups present in the models for the 18 countries.

Second, when formally tested using an estimated resid-
ual covariance matrix, the pooling restrictions and the MSE
criteria for pooling put forward by McElroy (1977) are re-
jected onty for the AR(3) model, They are not rejected when
a diagonal or an identity residual covariance matrix is used.
We should bear in mind that asymptotically justified F test
criteria tend to reject too often in finite samples. Moreover,
the pooling restrictions and MSE criteria for 18 countries
were jointly tested even not allowing for individual fixed
effects in the form of country-specific intercepts. Compar-
ing pooled and unpocled models using posterior odds is
probably a sensible alternative in relatively small samples
to asymptotically justified test criteria.

Third, in actval forecasting, the median MSFE of OLS-
based pooled forecasts is found to be smaller than that of
OLS-based individual forecasts. A fairly large sample size
is needed for the OLS-based pooled forecasts to be outper-
formed by a forecast based on unrestricted estimates. Using
unpooled GLS with an estimated residual covariance ma-
trix leads to slightly improved forecast performance. Pooled
GLS-based forecasts have a much lower median MSFE than
pooled OLS-based forecasts. Although we did not present
results for shrinkage procedures, we like to note that shrink-
age forecasts are convex combinations of individual and
pooled forecasts. Therefore, results for shrinkage forecasts
lie between the two polar cases of forecasts based on unre-
stricted estimates and those based on pooled estimates. Qur
findings parallel resulis obtained by Blattberg and George
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(1991). When modeling sales using a chain-brand model,
they found that GLS added little to their data, whereas
pooling and shrinkage estimation procedures provided su-
perior estimates to OLS. Finally, the question of whether
restricting the contemporaneous residual correlations to be
the same within groups of countries and possibly across
groups leads to further improvement of GLS-based pooled
forecasts remains to be investigated.
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APPENDIX: DATA

The dataset used is an updated set as used by Min and
Zellner (1993) and consists of annual postwar data for 18
OECD countries for the period 1948 to 1990. The data are
obtained from the main International Monetary Funds In-
ternational Financial Statistics Data Base and contain the
following four variables—(1) real stock prices, (2) an in-
dex of nominal stock prices as price index, (3} nominal
money M1, and (4) GDP. Because of missing values and
to make a fair comparison between the AR(3) model and
the AR(3)LI model, we only included those years that could
be used to estimate both models. The countries, with start-
ing year given between parentheses, are Australia (1956),
Austria (1949), Belgium (1953), Canada (1955), Denmark
(1950), Finland (1950), France (1950), Germany (1950},
Ireland (1948), Italy (1951), Japan (1953), The Nether-
lands (1950), Norway (1949), Spain (1954), Sweden (1950),
Switzerland (1953), United Kingdom (1957), and the United
States (1955).

[Received July 1996, Revised June 1999.]
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