PRODUCTION PLANNING FOR
FLEXIBLE MANUFACTURING SYSTEMS

PRODUCTION PLANNING FOR
FLEXIBLE MANUFACTURING SYSTEMS

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Rijksuniversiteit Limburg te Maastricht,
op gezag van de Rector Magnificus, Prof. Mr. M.]. Cohen,
volgens het besiuit van het College van Dekanen,
in het openbaar te verdedigen op
vrijdag, 9 oktober 1992 om 14.00 uur

door

Alwin Gerolt Oerlemans

geboren te Utrecht

Promotor:
Prof.dr.ir. A.W.J. Kolen

Co-promotor:
Dr. Y. Crama

Beoordelingscommissie:

Prof.dr.ir.drs. O.J. Vrieze (voorzitter)

Prof.dr. G. Finke (Université Joseph Fourier, Grenoble)

Prof.dr. H.Th. Jongen (Rheinisch-Westfilische Technische Hochschule, Aachen)
Dr. H.J.M. Peters

Prof.dr. W.H.M. Zijm (Universiteit Twente, Enschede)

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
Oerlemans, Alwin Gerolt

Production planning for flexible manufacturing systems /
Alwin Gerolt Oerlemans. - Maastricht : Universitaire Pers
Maastricht. - Il

Thesis Maastricht. - With index, ref. - With summary in
Dutch.

ISBN 90-5278-035-8

NUGI 811/849

Subject headings: production planning / tool management
/ flexible manutacturing systems.

© 1992 A.G. Oerlemans, Maastricht

Aan mijn ouders en Simone

Preface

The work described in this thesis started in the spring of 1988. At that time
I had just completed my Master’s thesis in Operations Research and
Econometrics at the Erasmus University in Rotterdam and [barely knew
anything about flexible manufacturing systems (FMS). It was my thesis
advisor Antoon Kolen who introduced me to this new field of application for
techniques from Operations Research. This was the starting point of our
cooperation in the last 4 years of which this thesis is the endproduct.

My decision to come to Maastricht proved to be the right one and I owe a lot
to the group of researchers I worked with at the University of Limburg. The
research environment at the University of Limburg is international, informal
and innovative. Also, the beauty and style of Maastricht and South-Limburg
offer countless opportunities for enjoying a Burgundian life every now and
then. 1 have learned a lot on the application of flexible manufacturing
technology and the development of models to improve the efficiency of these
systems during the last years. I have 1o thank my thesis advisors Yves Crama
and Antoon Kolen for the many hours we spent discussing planning and
combinatorial optimization problems and the patience and expertise with which
they guided this research.

The leitmotiv in the first part of the journey into the field of flexible
manufacturing were the frequent meetings together with Frits Spieksma and
our advisors Yves Crama and Antoon Kolen. The research described in
Chapters 2 and 6 of this thesis originated at these meetings. In Chapter 2 a
real-world production planning problem in the automated manufacturing of
printed circuit boards is described. Under the direction of Yves Crama and
Antoon Kolen, Frits Spicksma and | worked on this project. This research was
followed by a another joint project concentrating on recognizing combinatorial
properties and developing solution strategies for a specific problem occurring
in FMS production planning, i.e. the probiem of minimizing the number of
tool switches, which is described in Chapter 6.

The topic of efficient tool management got a hold of us and other results of
work in this field are described in Chapters 3, 4 and 5. I conducted the
research described in these chapters under the guidance of Yves Crama. It was
during this period that the final shape of this thesis was decided on and
without the great interest and important comments of Yves Crama this thesis
would not have had its final form. I thank Yves Crama for his advice and
encouragement and Antoon Kolen for directing the work for the thesis. Special
thanks goes to Henk Zijm for introducing us to the production planning
problem, discussed in Chapter 2. I also want to thank Erwin Pesch for his
interest in the project during this research.

My stay at the University of Limburg would not have been so enjoyable
without many others which contributed to my work and well-being. First I
would like to thank Karin van den Boorn, Ellen Nelissen and Yolanda
Paulissen for their role in taking care of the social activities in the department,
but also for their generous secretarial support during these years. I would like
to thank my roommates. First, I thank Frits Spieksma for our fruitful
cooperation. I thank Hugo Kruiniger for his interest in other topics than his
own research and the many discussions we had on nearly every topic in the
political landscape. Special thanks go to Marcel Lever and Hans Voordijk for
their interest in the progress of this research and the many meals we shared
discussing other aspects of life during the last years.

At this point I want to express my gratitude to professors Gerd Finke, Bert
Jongen, Hans Peters, Koos Vrieze and Henk Zijm for being part of the
reading committee.

I also want to thank the members of the Faculty of Economics and Business
Administration, the Department of Mathematics and others who contributed
to this research in one way or another, especially Peter van Laarhoven, Joe
Mazzola, Maarten Oosten, Marga Peeters, Gerard Pfann, Frangois Soumis,
Peter Vlaar and Ron van der Wal.

I want to thank the University of Limburg for the opportunity they gave me
to do research and visit conferences in Europe and North-America. My
gratitude also goes to the Rutgers Center for Operations Research (New
Brunswick, NJ), Shell Nederland B.V. and the Stichting Wetenschappelijk
Onderzoek Limburg for (travel) grants I received during the last years.
Finally, I would like to thank my parents for stimulating me to explore new
opportunities and Simone Kaars for her support and for abandoning many
weekends during the last year(s).

Maastricht, May 1992.

Contents

Chapter 1
Flexible manufacturing: concepts and models
1.1. Imtroduction
1.2. Automated manufacturing
1.2.1. Whatisan FMS?
1.2.2. Classification and diffusion of FMS
1.2.3. Must FMS be justified by faith alone?
1.3. Hierarchical approaches to FMS production planning
1.3.1. Strategic planning
1.3.2. Tactical planning
1.3.3. Operational planning
1.4. Overview of thethesis
Chapter 2

Throughput rate optimization in the automated assembly of

printed circuit boards

2.1.
2.2.
2.3.
2.4.

Introduction
Technological environment
The throughput rate optimization problem
Workload balancing
2.4.1. Subproblem (A)
2.4.2. Subproblem (B)

2.5. Scheduling of individual machines
2.5.1. Subproblem (C),
2.5.2. Subproblem (D)
2.53. Subproblem (B)
2.54. Subproblem (F)

2.6. Anexample
2.6.1. Subproblem (A)
2.6.2. Subproblem (B),
2.6.3. Subproblem (C)
2.6.4. Subproblem (D)
2.6.5. Subproblem (Eyand (F)

Chapter 3
A column generation approach to job grouping for

flexible manufacturing systems P
3.1 Introduction
32, Lowerbounds
3.2,1. The job grouping problem
3.2.2. Column generation
3.2.3. The generation subproblem
3.2.4. Computation of lower bounds via column generation
3.2.5. Lagrangian relaxation
3.2.6. Other lower bounds
3.3, Upperbounds
3.3.1. Sequential heuristics for grouping
3.3.2. Set covering heuristics
3.4, Implementation
3.5. Computational experiments
3.5.1. Generation of problem instances
3.5.2. Computational results
3.6 Summary and conclusions L. L
Chapter 4
The job grouping problem for flexible manufacturing systems:
some extensions L L
4.1. Introduction,
42, Multiple slots
4.2.1. The job grouping problem

Contents

4.3.

4.4,
4.5.

423,
4.2.4.
4.2.5.
4.2.6.
42.7.

Computational experiments
Computational results

Multiple machines o

43.1.
4.3.2.
4.3.3.
434,
4.3.5.
43.6.
4.3.7.

The job grouping problem
Lower bounds via column generation..
Other lower bounds v
Upperbounds
Adjusting the column generation procedure
Computational experiments
Computational results

Other extenSIONS o o vt v vt it e
Summary and conclusions oo

Chapter 5
A local search approach to job grouping

5.1
5.2.

5.3.

5.4.

3.5.

Introduction e e e e
Local search environment

5.2.1.
5.2.2.
5.2.3.
5.2.4.

Starting solution
Objective function
Neighbourhood structure
Stopping criteria

Local search approaches

5.3.1.
5.3.2.
5.3.3.
5.3.4.

Simple improvement approach
Tabu search approach
Simulated annealing approach
Variable-depth approach

Computational experiments

5.4.1.
5.4.2.

The dataset
Computational results

Summary and conclusionso

107

107
108
109
110
111
111
112
112
112
113
114
114
115
115
122

X

2.5. Scheduling of individual machines
2.5.1. Subproblem (C)
2.5.2. Subproblem (D), ...
2.5.3. Subproblem (E)
2.54. Subproblem (F)

2.6. Anexample
2.6.1. Subproblem (A),
2.6.2. Subproblem (B)
2.6.3. Subproblem (C)
2.6.4. Subproblem (D)
2.6.5. Subproblem (E)and (F)

Chapter 3
A column generation approach to job grouping for

flexible manufacturing systems P

3.1, Introduction
3.2, Lowerbounds
3.2.1. The job grouping problem
3.2.2. Column generation
3.2.3. The generation subproblem

3.2.4. Computation of lower bounds via column generation . .

3.2.5. Lagrangian relaxation
3.2.6. Other lower bounds
3.3, Upperbounds
3.3.1. Sequential heuristics for grouping
3.3.2. Set covering heuristics
3.4. Implementation
3.5. Computational experiments
3.5.1. Generation of problem instances
3.5.2. Computational results
3.6 Summary and conclusions,

Chapter 4
The job grouping problem for flexible manufacturing systems:

some extensions,

4.1. Introduction
42, Multipleslots L
4.2.1. The job grouping problem
4.2.2. Lower bounds via column generation

Contents

4.3.

4.4.
4.5.

4.2.3.
4.2.4,
4.25.
4.2.6.

42.7.

Other lowerbounds
Upperbounds,
Adjusting the column generation procedure
Computational experiments
Computational results

Multiple machines ., oo

43.1.
432,
4.3.3.
4.3.4,
4.3.5.
4.3.6.
43.7.

The job grouping problem
Lower bounds via column generation..
Other lowerbounds
Upperbounds
Adjusting the column generation procedure
Computational experiments
Computational results

Other extensions,
Summary and conclusions e

Chapter 5
A local search approach to job grouping

5.1
5.2.

5.3.

5.4.

5.5.

Introduction e e e
Local search environment

5.2.1
5.2.2.
5.2.3.
5.2.4.

Starting solution L L.
Objective function
Neighbourhood structure
Stopping criteria Lo

Local search approaches

5.3.1.
5.3.2.
5.3.3.
5.3.4.

Simple improvement approach
Tabu search approach
Simulated annealing approach
Variable-depth approach

Computational experiments

5.4.1.
5.4.2.

The dataset
Computational results

Summary and conclusions

X1

107

107
108
109
110
111
111
12
112
112
113
114
114
115
115
122

X

Chapter 6
Minimizing the number of tool switches on a flexible machine . .. 125
6.1. Introduction 125
6.2. Basicresults 129
6.2.1. NP-hardnessresults 129
6.2.2. Finding the minimum number of setups for a
fixed jobsequence 130
6.3. HeurisStics 134
6.3.1. Traveling salesman heuristics 135
6.3.2. Block minimization heuristics 136
6.3.3. Greedy heuristics 137
6.3.4. Interval heuristic 138
6.3.5. 2-Optstrategies, 139
6.3.6. Load-and-Optimize strategy 140
6.4. Computational experiments 141
6.4.1. Generation of problem instances 141
6.4.2. Computational results 143
6.5. Lowerbounds 147
6.5.1. Traveling salesmanpaths 147
6.5.2. Structures implying extra setups 149
6.5.3. Valid inequalities 151
6.5.4. Lagrangianrelaxation 153
6.6. Summary and conclusions e 153
Appendix: Graph-theoretic definitions 155
References 157
Authorindex 169
Samenvatting 173

Curriculum vitae 179

Chapter 1

Flexible manufacturing: concepts
and models

1.1. Introduction

In the last two decades we have witnessed great changes in manufacturing
technology. Increased automation has cleared the way for what some people
call the "factory of the future". However, this factory already exists today.
It distinguishes itself from conventional factories by a high degree of
automation, reduced use of labour and raw materials and a high degree of
flexibility to respond quickly to market changes. The subject of this thesis
is the development of quantitative methods to help solve problems related
to the planning of automated manufacturing systems.

The first chapter is devoted to a presentation of the subject of automated
manufacturing. Its developments and benefits are presented. Also, an
introduction is given on the efforts of the operations research community to
provide quantitative support for the design, implementation and operation
of these highly automated systems. Attention is focused on the use of
deterministic models. The last section (Section 1.4) of this chapter gives an
outline of the work described in the remainder of this thesis.

1.2. Automated manufacturing
Manufacturers around the world are confronted with rapid changes in

market demand. The ability to respond quickly to these changes is a key to
survive in global competition. However, this requires the production

2 _ Chapter 1

philosophy to change dramatically. Not only the layout and design of
factories, but also the organization and development of new products has to
change (Cook, 1975; Zijm, 1988).

The developments in information-intensive processing technologies have
only increased the pace of these changes on the factory floor. Automation
in manufacturing has been an important factor in achieving changes in the
factory. A wide body of literature on manufacturing automation has
emerged in the last decade in technical, management and mathematically
oriented journals. Concepts relating to automated manufacturing are e.g.
Computer Aided Design (CAD), Computer Aided Manufacturing (CAM),
robotics, Flexible Manufacturing Systems (FMS) and Computer Integrated
Manufacturing (CIM). The introduction of automated manufacturing and
increased availability of information technology also offered new tools for
management to control the flow of goods in the factory. Especially in the
last decades we have seen the rise of methods like Materials Requirements /
Manufacturing Resources Planning (MRP), Optimized Production
Technology (OPT) and the implementation of Just-In-Time (JIT) principles
on the factory floor (see Aggarwal (1985)).

A starting point in the development of automated manufacturing was the
use of numerically controlled (NC) machine tools in the 1950’s. NC-
technology permits complex parts to be manufactured rapidly and
accurately by automated machines. NC-machines use a numerical control
method for activating the tools in response to a predetermined command
stored on punch (or magnetic) tapes. A further development was the
introduction of computer numerical control (CNC) in which a mini- or
micro-computer is used to control the NC machine tools. Since the late
1960’s CNC has taken over the major part of the NC machine tool
industry. If a group of NC (or CNC) machines is simultaneously controlled
by one host computer, we speak of direct numerical control (DNC).

Computer Aided Design (CAD) has emerged since the 1960’s as a flexible
method to design products and equipments. CAD coupled with NC
manufacturing is called Computer Aided Manufacturing. The increased
availability of cheap computers also dramatically changed the way
production was organized and controlled. Manufacturing Resource Planning
(MRP) is one of these methods. The emergence of CAD/CAM and adequate
production planning provided an opportunity for improving the productivity
of the design and manufacturing process (see also Groover and Zimmers
(1984)).

Flexible manufacturing. concepts and models 3

The current developments head in the direction of the totally automated
factory, where raw materials are processed into finished goods without
direct human intervention. This way of producing is also called Computer
Integrated Manufacturing (CIM). CIM requires that material handling,
assembly, inspection and design be fully integrated. Human involvement
concentrates on control, maintenance and design. A growing number of
systems which fit this description are used around the world.

In some industries automated manufacturing has a long history, especially
in chemicals or oil refining (Dorf, 1983). However, in the batch-
manufacturing industries, such as metal working, it has been introduced
only in the 1970’s. Our focus will be on this type of industry. Flexible
manufacturing systems are a critical component for the introduction of the
so-called "factory of the future" in the batch-manufacturing industries.
Jaikumar (1986) points out that this new technology has drastically changed
the competitive landscape. A close attention to the market and regular
adjustments of price and product-mix must guarantee full capacity
utilization. Fixed cost have to be reduced and the development time of new
products has to be decreased. To achieve the benefits of FMSs, teams must
be created to work on the manufacturing projects. The intellectual
development of the employees must be stimulated. Jaikumar (1986) also
stresses the integration of design and manufacturing and a focus on process
improvement.

The rest of this section will be devoted to the description, the history and
diffusion and the economic benefits of FMSs.

1.2.1. What is an FMS?

A flexible manufacturing system is an integrated, computer-controlled
complex of automated material handling devices and numerically controlled
machines that can simultaneously process medium-sized volumes of a
variety of part types (Stecke, 1983). As Huang and Chen (1986) and
Gerwin (1982) point out, FMSs are an attempt to solve the production
problem of midvolume (200-20,000 parts per year) and midvariety parts,
for which neither the high-production rate transfer lines nor the highly
flexible stand-alone NC machines are suitable. The aim is to achieve the
efficiency of mass-production, while utilizing the flexibility of manual job
shop production.

An FMS consists of a number of machines or work stations that are used to
perform operations on parts. Each operation requires a number of tools,

4 Chapter 1

that can be stored in the limited capacity tool magazine of the machines.
An automatic tool interchanging device quickly interchanges the tools
during production. This rapid interchange facility enables the machine to
perform several operations with virtually no setup time between operations.
Parts are moved automatically to the machines by a transportation system
or a Material Handling System (MHS). A number of buffer places or an
Automated Storage and Retrieval System (ASRS) are also added to the
system, either at a central location or at each machine. In some FMSs,
tools are also stored at a central tool store and delivered to machines by a
special delivery system (Buzacott and Yao, 1986). Finally, a network of
supervisory computers takes care of the control of tools, parts, MHS and
machines. The development of FMSs goes along with the other
developments in automated manufacturing. The first systems appeared in
the 1960’s; one of the earliest FMSs, which was designed to process
constant speed drive housings for aircraft, was installed by Sunstrand in
1964 (Huang and Chen, 1986). In the late 1970’s more systems were
developed, while the last decade was mainly devoted to refinement of the
systems. Emphasis has shifted from hardware issues to the development of
control systems and refinement of the software packages (Huang and Chen,
1986). A number of authors have written excellent books in which detailed
descriptions of FMSs are given (Rdnky, 1983; Charles Stark Draper
Laboratory, 1984; Hartley, 1984; Warnecke and Steinhilper, 1985).

1.2.2. Classification and diffusion of FMS

A number of surveys have been published on FMSs that are operational

around the world. Several authors have given a classification of FMSs in

their surveys.

Groover (1980) partitions FMSs in the following two classes:

(1) Dedicated FMS, which manufacture a fixed set of parts with well-
defined manufacturing requirements over a fixed time horizon.

(2) Random FMS that produce a wide variety of parts in random order.

Dupont-Gatelmand (1982) gives a survey (with many illustrations) of

several early FMSs in Europe, Japan and the U.S. She divides the systems

in three main categories according to the material handling system used:

(1) Flexible modules and units, which consist of a workstation with an
automatic parts input/output system;

(2) Flexible conveyor lines, where the flexible units are connected by an
automated conveyor system;

(3) Unaligned flexible systems, where the roller conveyor is replaced by
Automated Guided Vehicles (AGVs).

Flexible manufacturing: concepts and models 5

Browne, Dubois, Rathmill, Sethi and Stecke (1984) define eight types of

flexibility to clarify the confusion which often occurs when discussing

"flexible’ manufacturing systems. They define the following eight types of

flexibility:

(1) Machine flexibility: the ease of making changes required to produce a
given set of part types.

(2) Process flexibility: the ability to produce a given set of part types,
each possibly using different materials in several ways.

(3) Product flexibility: the ability to change over to produce a new (set
of) product(s) very economically and quickly.

(4) Routing flexibiliry: the ability to handle breakdowns and to continue
producing the given set of part types.

(5) Volume flexibility: the ability to operate profitably at different
production volumes.

(6) Expansion flexibility: the ability to expand the system easily,
modularly.

(7)Y Operation flexibility: the ability to interchange the ordering of several
operations for each part type.

(8) Production flexibility: the universe of part types that can be
produced.

Sethi and Sethi (1990) extend this list by the following flexibilities:

(9) Material handling flexibility: the ability to move different part types
efficiently for proper positioning and processing through the facility
served by the MHS.

(10) Marker flexibility: the ease with which the manufacturing system can
adapt to a changing market environment.)

The different flexibility types are not independent of each other. For an

FMS, the machine and routing flexibilities are basic flexibilities relating to

the CNC machines and the MHS. Other flexibilities depend on these. For a

thorough discussion on this topic we refer to the surveys of Gupta and

Goyal (1989) and Sethi and Sethi (1990).

This classification can help to categorize FMSs according to their overall
flexibility. In Browne et al. (1984) four types of FMSs are described based
on flexibility and layout-features such as machine tools, MHS (including
tool transportation system), storage areas for in-process inventory and
computer control:

I Flexible Machining Cell,

II Flexible Manufacturing System,

Il Flexible Transfer Line,

IV Flexible Transfer Multi-Line.

6 Chapter 1

Type I consists of a single general purpose CNC machine, interfaced with
an MHS. Linking different type I systems together with a flexible MHS
consisting of shuttle conveyors or AGVs will give a system of type II in
which parts are allowed to take several routings to different machines. In a
type III system a conveyor line is used as an MHS and each operation is
assigned and performed on one specified machine. Each part follows a
fixed route through the system. In Type IV combining a number of type III
systems offers some additional routing flexibility. Browne et al. (1984)
remark that most FMSs in Germany and the U.S. tend to be of Type II,
while most systems in Japan are of Type III. This classification can also be
used for flexible assembly systems (FAS). In a related study Stecke and
Browne (1985) discuss different types of MHS. They discuss the flexibility
of belt conveyors, powered roller conveyors, power-and-free conveyors,
monotractors or monorails, towlines and automated guided vehicles
(mentioned in order of increasing flexibility). The flexibility of the four
types of FMSs (see Browne et al. (1984)) combined with a type of MHS
leads to a more detailed classification. Thirty FMSs in Europe, Japan and
the U.S. are classified according to this classification (Stecke and Browne,
1985).

Jaikumar (1986) gives a comparison of the use of FMSs in Japan (60
systems) and the U.S. (35 systems). He concludes that, although the
systems are similar, the FMSs in Japan are better used in terms of
flexibility. The number of different parts produced on Japanese FMSs was
nearly ten times larger than in the U.S., and for every new part that was
introduced on an American FMS, 22 parts were introduced in Japan.
Development times for U.S. systems took twice as long with four times the
investment in man-hours to get the system running. Ettlie (1988), however,
found out that process and product flexibilities in American FMSs were
well above Jaikumar's (1986) observations. Jaikumar and Van Wassenhove
(1989) present results on 20 highly successful FMSs. They consider a
system successful if its metal cutting time is greater than 75 % of the total
time, if it produces more than 100 different parts a year and if more than
25 new parts are introduced per year. For such systems, they observe
average system losses of only 17 % of total operating time. They observe a
trend from tightly coupled celiular systems with low storage and a high
degree of interdependence between machines towards integrated,
independent cells distinguished by high storage or low interdependence
between the machines (or both). The number of a third category of FMSs,
the transfer lines, which are like tightly coupled cellular systems combined
with a fixed routing, remains stable.

Flexible manufacturing: concepts and models 7

Darrow (1987) has performed a survey on 253 manufacturing facilities. He
mentions that the number of systems in Europe is large, but if it comes to
the number of machines involved Japan has a strong lead. Darrow (1987)
also comments on the product mix. In general, FMSs produce prismatic
(and to a lesser extend rotational) parts including machine tools,
miscellaneous industrial, aerospace and automotive products.

Ranta and Tchijov (1990) study a large FMS-database, containing data of
800 FMSs. They partition FMSs according to size and investment costs into
three groups, i.e. compact, midrange and high-capacity systems. Ranta and
Tchijov (1990) estimate the number of FMSs with at least two CNC
machines, automated MHS and central control at 1200 FMSs in 1989
(compared to a total of 80 systems in 1980) of which 80% is compact. The
estimated annual growth rate of the number of FMSs amounts to 15% until
the year 2000 (Ranta and Tchijov, 1990).

1.2.3. Must FMS be justified by faith alone?

Kaplan (1986) clearly gives a negative answer to this question. He argues
that traditional models are appropriate for the evaluation of investment
proposals concerning computer integrated manufacturing. Managers need
ways to apply for example a discounted cash flow approach to evaluate this
new type of investment and not just rely on strategic faith. Discounted cash
flow methods go wrong when rates for evaluating proposals are set too
high. Kaplan (1986) also notices a bias towards incremental rather than
revolutionary investment proposals. Primrose and Leonard (1991) argue
that in the early years of FMS investment was done as an act of faith,
where today all potential costs and benefits can be included in a financial
evaluation.

Ranta and Tchijov (1990) give estimates on the investment costs involved
in FMSs. The share of the cost spent on CNC-machines, MHS, system
software and planning and training for the three classes of FMSs described
above is given in Table 1.1. The investments in FMS appear to be large
(around U.S. $ 1 million per CNC machine). Operational costs are mainly
related to labour, maintenance and tooling.

The benefits of FMSs can be splitted in benefits that are easy to quantify
(tangible benefits) and those which are difficult to measure (intangible
benefits) (Kaplan, 1986).

Financial analysis that focuses too much on savings that are easy to
quantify, such as savings in labour cost, material or energy misses other
benefits. FMSs offer opportunities for large reductions in inventory. Its

8 " Chapter 1

Table 1.1 Characteristics of three classes of FMSs
(source: Ranta and Tchijov (1990))

Share of costs (in %)
System class | Total costs CNC Material System Planning | Number of
(in million | machines | Handling | software & CNC
U.S. §) System Training | machines
Compact 3 50-55 15-20 20-25 10 24
Midrange 49 40-50 15 25 15 5-15
High-capacity 10-15 35-40 15 25-30 15-20 15-20

flexibility gives an FMS the opportunity to react quickly to changes in
demand, which also may lead to inventory reductions. Work-in-process is
reduced by a vast amount. Other tangible benefits include reduced waste,
scrap and rework and savings in the amount of necessary floor space.
Improved quality and the possibility to easily follow customer specifications
are other tangible benefits. Improved quality also gives reductions in
warranty expense and gives the company a marketing advantage (Kaplan,
1986).

It is difficult to quantify all aspects of increased flexibility (see Section
1.2.2). Greater flexibility of an FMS can extend the life-time of the
investment. Product life-cycles are getting shorter and FMSs can be used
for several generations of products. However, quantifying these
opportunities is difficult. Another intangible benefit is the reduction in
throughput time and lead time. These benefits are partly incorporated in
reduced inventory but other benefits such as the marketing advantages that
would emerge are hard to estimate.

Investments in computer integrated manufacturing also have important
learning characteristics. Kaplan (1986) compares these with buying options,
where relatively small initial outlays may yield huge benefits. He concludes
that there is no reason to value intangible benefits at zero. Managers should
ask themselves how large benefits should be in order to justify an
investment, instead of first quantifying the benefits.

Flexible manufacturing has proven to be very profitable and its concepts
and technology are becoming established, which helps managers to
overcome the perceived risks of this type of investment. Therefore
investment in FMSs should be evaluated the same way as other investments
concerning automated manufacturing are evaluated (Primrose and Leonard,

Flexible manufacturing. concepts and models 9

1991). Jaikumar (1986) studied 22 systems in Japan, which all met their
companies return-on-investment criterion of a three year pay back. Goldhar
and Jelinek (1985) and Meredith (1987) discuss benefits in several metal
working companies which adopted FMS-technology. Ranta and Tchijov
(1990) conclude that small scale, compact systems and high-capacity, large
scale systems (see Table 1.1) are beneficial with pay-back times of 1.5 - 3
(resp. 1 - 4) years, while the returns on midrange systems are disappointing
(pay-back time 5 years or more).

1.3. Hierarchical approaches to FMS production planning

The previous section pointed out that the benefits of FMSs are potentially
high. However, these benefits can only be obtained if the FMS is properly
implemented and managed. A successful implementation of an FMS
corresponds to the efficient solving of the many technical, organizational
and planning problems that arise when a manufacturer wants to introduce
flexible manufacturing technology. Hartley (1984) gives a description of
technical problems that have to be overcome like design, maintenance and
control of fixtures and pallets, tool management and tool condition
monitoring. These technical problems have to be solved first, but the
potential benefits of an FMS can only be reached if the system is planned
and controlled efficiently. In this section we review some of the literature
concerning planning and control of FMSs. First, we review a number of
general frameworks for planning FMSs and then concentrate on
subproblems.

Several authors have presented methodologies and classifications of FMS
design, planning, scheduling and control problems (Suri and Whitney,
1984; Kusiak, 1985a; Stecke, 1985; Suri, 1985; Buzacott and Yao, 1986;
Kusiak, 1986; Van Looveren, Gelders and Van Wassenhove, 1986;
Singhal, Fine, Meredith and Suri, 1987; Stecke, 1988), which are
sometimes complementary. Most surveys describe some kind of
hierarchical decision structure, relating to a variety of decisions that have to
be taken concerning long-term, medium-term or short-term decisions. The
differences between the different methodologies concern the number of
levels or the interpretation of a specific level. Some authors give more
detailed classifications of a specific level (e.g. Stecke(1983)). We now
discuss some general classifications.

In our discussion we basically use the framework of Van Looveren et al.
(1986). They rely on the classical three level view of the organization
(Holstein, 1968) to identify subproblems, and thus establish three levels of
decision making, namely the strategic, tactical and operational levels. The

10 Chapter 1

strategic level relates to long-term decisions taken by the top management,
which influence the basic flexibility of the FMS. Problems involved
concern the design and selection of the equipment and of the products that
have to be manufactured. On the tactical level, the medium-term planning
problems are addressed. Decisions taken at this level concern the off-line
planning of the production system. Van Looveren et al. (1986) distinguish
on this level between the batching problem and the loading problem. The
batching problem is concerned with the splitting of the production orders
into batches such that orders are performed on time given the limited
available resources. The loading problem takes care of the actual setup of
the system given the batches that are formed. Planning on the operational
level is concerned with the detailed decision making required for the real-
time operation of the system. A release strategy has to be developed, in
which one decides which parts are fed into the system (release problem).
Next the dispatching problem has to be solved to decide on the actual use
of the production resources like machines, buffers and the MHS.

Buzacott and Yao (1986) give a classification of analytical models that can
be used for establishing basic design concepts, detailed design, scheduling
and control. Suri and Whitney (1984) describe in detail how to integrate the
FMS software and hardware in the organizational hierarchy. They
emphasize the value of the decision support systems as an integral part of
the FMS.

Stecke (1985) distinguishes four types of problems: design, planning,
scheduling and control. This description closely fits to the decision
structure of Van Looveren et al. (1986). Stecke (see Stecke and Solberg
(1981), Stecke (1983; 1988) and Berrada and Stecke (1986)) has performed
detailed studies on a number of these subproblems.

Kusiak (1986) makes a distinction between design and operational
problems. The former relate to strategic decisions concerning the economic
Justification of the system and the design and selection of parts and
equipment. The term operational refers to problems on the tactical and
operational levels, as defined by Van Looveren et al. (1986). Kusiak (1986)
splits the operational problems into four sublevels, that consider aggregate
planning, resource grouping, disaggregate planning (batching and loading)
and scheduling of equipments.

Kiran and Tansel (1986) use a five level decision hierarchy linked to that of
Van Looveren et al. (1986). They distinguish between design, aggregate
planning, system setup, scheduling and control, where design concerns the
strategic level, aggregate planning and system setup take place on the
tactical level and scheduling and control are on the operational level.
Singhal, Fine, Meredith and Suri (1987) discuss the problems brought
forward by Buzacott and Yao (1986) and discuss the role of MS/OR

Flexible manufacturing: concepts and models 11

techniques in the design, operation and control of automated manufacturing
systems.

Zijm (1988) also discusses problems related to the justification, design and
operation of FMSs and gives an overview of related literature.

Jaikumar and Van Wassenhove (1989) give a different outlook on FMS
problems. They also present a three level model for strategic, tactical and
operational planning. But, instead of stressing the complexity of FMS
problems, they emphasize the use of simple models. They argue that
scheduling theory and algorithms are quite sufficient for the task.

Several other authors have used the hierarchy presented by Van Looveren
et al. (1986) (see Aanen (1988), Van Vliet and Van Wassenhove (1989)
and Zeestraten (1989)).

A large number of mathematical and methodological tools have been used
to describe and solve FMS problems on the strategic, tactical and
operational level. The basic tools and techniques are (see e.g.
Kusiak(1986)):

(1) Mathematical Programming;

(2) Simulation,

(3) Queuing networks;

(4) Markov processes,

(5) Petri Nets;

(6) Artificial intelligence;

(7) Perturbation analysis.

In this thesis we focus on mathematical programming techniques used for
problems on the tactical and operational level of FMSs. For references
concerning the other approaches we refer to the different surveys already
mentioned (Stecke, 1985; Suri, 1985; Buzacott and Yao, 1986; Kusiak,
1986; Van Looveren et al., 1986).

The remainder of this section contains a discussion of FMSs problems in
the framework of the three level decision hierarchy proposed by Van
Looveren et al. (1986). The emphasis is on mathematical programming
models for the planning and scheduling problems on the tactical and
operational level.

1.3.1. Strategic planning

Strategic planning of flexible manufacturing activities is a responsibility for
upper management. These decisions have far reaching consequences for the
actual layout of the FMS and the parts that can be produced. At this level,
issues relating to the design of the system must be solved. The economic
Justification of the system must be investigated. Van Looveren et al. (1986)

12 Chapter 1

distinguish five levels of strategic decision making:

(1) Selection of parts spectrum,

(2) Machine requirements specification;

(3) Technical alternatives;

(4) Screening of alternatives;

(5) Selection of optimal system.

The first three levels are mainly concerned with specifying the technical
environment. Families of parts are selected, based on a long term
production plan in which the versatility of the system is an important
feature. Appropriate machines are selected to manufacture these parts.
Group Technology (Hyer and Wemmerldv, 1984) and CAD/CAM (see
Section 1.2) are important decision aids in specifying several alternatives.
In the screening process the technical alternatives are evaluated using
economic performance criteria. Well-known methods for screening involve
queueing networks, mean value analysis, perturbation analysis and
simulation. A few good alternatives are studied in detail. Finally, a
selection procedure is used to select one of the remaining alternatives.
Financial and technical criteria are used to select a final design, taking into
account some of the potential benefits of FMSs described in Section 1.2.3.
The selection step has to answer questions concerning the machines, tools,
buffers and MHS. Simulation and mathematical programming (see Graves
and Lamar (1983), Cooper and Jaikumar (1984), Whitney and Suri (1985),
Monahan and Smunt (1987) and Avonts and Van Wassenhove (1988)) are
used to help solve selection problems.

Kusiak (1986) gives an alternative classification of FMS design problems.
He distinguishes economic justification, selection of parts and the selection
of machine tools, storage system, MHS, fixtures and pallets, software and
hardware and layout as separate, though mutually dependent, subproblems.
Solot and Van Vliet (1990) give a survey of analytical models for FMS
design. For other references on design and justification issues we refer to
Van Looveren et al. (1986), Suri (1985) and Zijm (1988).

1.3.2. Tactical planning

A lot of efforts have been devoted to tactical planning problems for FMSs.
In this section we review several classifications of tactical planning models,
mathematical programming models and solution approaches. Special
attention is given to the treatment of tooling restrictions, because these
problems are the main focus of Chapters 3 - 6 of this thesis.

Van Looveren et al. (1986) split tactical planning into a barching problem

Flexible manufacturing.: concepts and models 13

and a loading problem. The batching problem concerns the partitioning of
the parts that must be produced into batches, taking into account the due
dates of the parts and the availability of fixtures and pallets. The production
resources are also split into a number of batches. Given these batches, the
loading problem is solved, i.e. one decides in more detail how the batches
are to be manufactured. Machines and tools may be pooled in groups that
perform the same operations, parts are assigned to machine groups and the
available fixtures and pallets are assigned to parts.

Stecke (1983) refers to tactical planning as the system setup problem. She
considers five subproblems:

(1) Part type selection problem;

(2) Machine grouping problem;

(3) Production ratio (part mix) problem;

(4) Resource allocation problem;

(5) Loading problem.

In the part type selection problem a subset of parts is determined for
immediate production. Grouping of the machines into groups of identical
machines is pursued to increase system performance (see Stecke and
Solberg (1981) and Berrada and Stecke (1986)). The production ratio
problem decides on the ratios in which the parts that are selected are
produced. Allocation of pallets and fixtures takes place in the resource
allocation problem. The loading problem concerns the allocation of
operations (that have to be performed on selected parts) and tools among
the machines, subject to technological constraints such as the capacity of
the tool magazine. A lot of attention has been devoted to the solution of
these subproblems; we now review some important contributions in this
area.

In Stecke (1983) nonlinear 0-1 mixed-integer models are proposed for the
grouping and the loading problems. Linearization techniques are used for
solving these problems. Berrada and Stecke (1986) develop a branch-and-
bound procedure for solving the loading problem.

Whitney and Gaul (1985) propose a sequential decision procedure for
solving the batching (part type selection) problem. They sequentially assign
part types to batches according to a probabilistic function, which is
dependent on the due date of the part, the tool requirements of the part and
an index describing whether a part is easy to balance with parts already
selected.

Chakravarty and Shtub (1984) give several mixed-integer programming
models for batching and loading problems. Kusiak (1985¢) also uses group
technology approaches for grouping parts into families (see also Kumar,
Kusiak and Vanelli (1986)).

14 Chapter 1

Ammons, Lofgren and McGinnis (1985) present a mixed-integer
formulation for a large machine loading problem and propose three
heuristics for solving the problem.

Rajagopalan (1985; 1986) proposes mixed-integer programming
formulations for the part type selection, production ratio and loading
problems. The first formulation is used to obtain an optimal part-mix for
one planning period. A second formulation is presented to get a production
plan for the entire period, which is optimal with respect to the total
completion time (including processing and setup time). Two types of
sequential heuristics are presented to solve the formulations. Part type
priorities are determined by considering either the number of tool slots
required or the processing times on the different machines.

Hwang (1986) formulates a 0-1 integer programming model for the part
type selection problem. A batch is formed by maximizing the number of
parts that can be processed given the aggregate tool magazine capacity of
the machines. In Hwang and Shogan (1989) this study is extended and
lagrangian relaxation approaches are compared to solve the problem.

Kiran and Tansel (1986) give an integer programming formulation for the
system setup problem. They consider the part type selection, production
ratio, resource allocation and loading problems. The objective is to
maximize the number of part types produced during the following planning
period. All parts of one part type must be processed in one planning
period. Kiran and Tansel (1986) propose to solve the integer programming
formulation using decomposition techniques.

Stecke and Kim (1988) study the part type selection and production ratio
problem. They propose a so-called flexible approach. Instead of forming
balches, parts 'flow gradually’ in the system. Tools can be replaced during
production and not only at the start of a planning period. This offers the
possibility to replace tools on some machines while production continues on
the other machines. The objective is to balance the workloads of the
machines. As soon as the production requirements of a part type are
reached the model is solved again to determine new production ratios.
Simulations are performed to compare the flexible and various batching
approaches (Rajagopalan, 1985; Whitney and Gaul, 1985; Hwang, 1986).
System utilization appears to be higher for the flexible approach for the
types of FMSs considered.

Jaikumar and Van Wassenhove (1989) propose a three level model. On the
first level the parts selected for production on the FMS and production
requirements are set. A mixed-integer program is proposed that is solved
by rounding off the solution values of the linear relaxation. The part type
selection and loading problems are solved on the second level. The
objective is to maximize machine utilization. The scheduling problem is

Flexible manufacturing: concepts and models 15

solved at the third level (see Section 1.3.3). Feedback mechanisms provide
feasibility of the solutions on all levels.

Kim and Yano (1992) also describe an iterative approach that solves the
part type selection, machine grouping and loading problems.

The most discussed planning problems are the part type selection problem
(often solved simultaneously with the production ratio problem) and the
loading problem. In the last years, in particular growing attention has been
paid to the loading problem and especially to the loading of tools.
Therefore, we review some work that has been done in this area.

The importance of tool management is stressed by several authors
(ElMaraghy, 1985; Gray, Seidmann and Stecke, 1988; Kiran and Krason,
1988; Gruver and Senninger, 1990). These authors also give an extensive
review of the problems involved. Chung (1991) discusses the rough-cut tool
planning problem and the tool requirements planning problem. Graver and
McGinnis (1989), Daskin, Jones and Lowe (1990) and Jain, Kasilingam
and Bhole (1991) discuss the tool provisioning problem, in which is
decided on the number and type of tools that must be available in the
system. This type of problems can also be seen as strategic problems.

Most attention has been focused on the actual tool loading problem. Most
of the loading models described above include the tool loading problem.
Including the capacity of the tool magazines of the machines in these
models prohibits the occurrence of infeasible loadings. De Werra and
Widmer (1990) propose four formulations for the tool loading problem.
Several authors (Hirabayashi, Suzuki and Tsuchiya, 1984; Bard, 1988;
Tang and Denardo, 1988b ; Tang and Denardo, 1988a; Widmer, 1991)
have investigated tool loading problems using different objective functions.
Ventura, Chen and Leonard (1988) give an overview of more work related
to tool loading. Much of the present thesis, in particular Chapters 3 - 6,
will concentrate on tool loading models; for a further discussion of the
topic we refer to these chapters and the references therein.

1.3.3. Operational planning

Operational planning is concerned with short-term decisions and real-time
scheduling of the system. Van Looveren et al. (1986) distinguish a release
and a dispatching problem. The release problem decides on the release
strategy that controls the flow of parts into the system. This flow is limited
for instance by the availability of pallets and fixtures. The dispatching
problem relates to decisions concerning the use of machines, buffers and
MHS. Procedures that have to be carried out in case of machine or system

16 Chapter 1

failure are taken care of within the dispatching problem.

Stecke (1983) gives a similar division of operational problems into
scheduling and control problems. Scheduling problems concern the flow of
parts through the system once it has been set up (at the tactical level).
Control problems are associated with monitoring the system and keeping
track of production to be sure that requirements and due dates are met.

Due to the huge number of interactions and the possibility of disturbances,
the operational problems are complex. Simulation is often used to
determine the performance of solution procedures for the release and
dispatching problem. Chang, Sullivan, Bagchi and Wilson (1985) describe
the dispatching problem as a mixed-integer programming model, which is
solved using heuristics (see also Greene and Sadowski (1986) and Bastos
(1988)).

The dispatching problem is often solved using (simple) dispatching rules.
The purpose of these rules is to generate feasible schedules, not necessarily
optimal ones. A lot of attention has been paid to the evaluation of such
scheduling rules (see e.g. Panwalker and Iskander (1977), Stecke and
Solberg (1981), Akella, Choong and Gershwin (1984), Shanker and Tzen
(1985), Zeestraten (1989) and Montazeri and Van Wassenhove (1990)).
Zijm (1988) and Blazewicz, Finke, Haupt and Schmidt (1988) give an
overview on new trends in scheduling, in particular as they relate to FMS
scheduling.

A strong interdependence exists between tactical and operational planning.
In Spieksma, Oerlemans and Vrieze (1990) we presented a model that can
be used for simultaneously formulating the system setup and scheduling
problems.

1.4. Overview of the thesis

We have seen that FMS planning problems have a complex nature. In the
previous section we presented an overview of hierarchical approaches to the
planning process. Using a hierarchical framework may be helpful for
identifying and understanding the fundamental underlying problems. In this
thesis we study a number of such subproblems, arising within the presented
framework. Emphasis lies on problems on the tactical and operational level.
In Chapter 2, a hierarchical procedure is presented to solve a real-world
production problem in the electronics industry. In Chapters 3 - 6 two FMS
tool loading problems are studied in detail. The job grouping problem is
discussed in Chapters 3, 4 and 5. In Chapter 6 another loading problem is

Flexible manufacturing: concepts and models 17

studied, i.e. the problem of minimizing the number of tool switches. We
take now a short walk along these chapters.

In Chapter 2, a problem of optimizing the throughput rate (production
rate) in the automated manufacture of printed circuit boards (PCBs) is
investigated. PCBs are widely applied in consumer electronics (e.g.
computers and hi-fi) and the professional industry (e.g.
telecommunications). The production of PCBs heavily relies on the use of
CNC machines and the technology is continuously updated (Mullins, 1990).
Production preparation for the assembly of PCBs is comparable to the
system setup problem in (other) FMSs, although the type of industry is
quite different from the metal working industry, which is the main area of
application for FMSs (see also Van Laarhoven and Zijm (1993)). We
assume that the part type selection problem has been solved (only one part
type will be produced), as well as the machine grouping problem (a line of
machines is available). What remains to be solved is a loading problem,
which consists of the assignment of parts and equipments to the machines,
taking some sequencing aspects into account. We solve this production
preparation problem using a hierarchical solution procedure. A number of
well-known NP-hard problems emerge, for which mathematical models and
heuristic solution methods are developed (see also Spieksma (1992)). The
hierarchical approach is successfully tested on a real-world instance in
which 258 components of 39 types have to be inserted in a PCB by a line
of three component-placement machines.

In Chapter 3 a loading problem (see Section 1.3.2) is studied, which arises
at the tactical level in batch-industries. We present a model which aims at
minimizing the number of machine setups. We assume that a number of
jobs must processed on a machine. Each job requires a set of tools, which
have to be present in the limited capacity tool magazine of the machine
when the job is executed. We say that a group (batch) of jobs is feasible if,
together, these jobs do not require more tools than can be placed in the tool
magazine of the machine. Each tool is assumed to require one slot in the
tool magazine. The job grouping problem is to partition the jobs into a
minimum number of feasible groups. A number of authors have suggested
solution approaches for the problem (Hirabayashi et al., 1984; Whitney and
Gaul, 1985; Hwang, 1986; Rajagopalan, 1986; Tang and Denardo, 1988b),
but no strong lower bounds on the optimal number of groups were obtained
until now. We rely on a set covering formulation of the problem
(Hirabayashi et al., 1984), and we solve the linear relaxation of this
formulation in order to compute tight lower bounds. Since the number of
variables is potentially huge, we use a column generation approach. We

18 Chapter 1

also describe some fast and simple heuristics for the job grouping problem.
The result of our computational experiments on 560 randomly generated
instances is that the lower bound is extremely strong: for all instances
tested, the lower bound is optimal. The overall quality of the heuristic
solutions appears to be very good as well.

Chapter 4 discusses a number of extensions of the previous job grouping
model. First we consider the job grouping problem for one machine, where
tools have different sizes (i.e., may require several slots in the tool
magazine). Then we study the problem in case several machines are
needed. The lower and upper bounding procedures described in Chapter 3
are generalized so as to apply to these cases as well. We present the results
of computational experiments that were performed on 580 randomly
generated instances. It appears that the lower bound is very strong and that
the conclusions of Chapter 3 can be largely extended to this broader class
of problems.

In Chapter 5 we continue our study of the job grouping problem. Attention
is focused on deriving better upper bounds for the problem. A study is
performed to determine the possibilities offered by local search
approaches. Local search approaches explore the neighbourhood of a
current solution in a smart way in order to improve this solution. Four
local search approaches, viz. a simple improvement, tabu search, simulated
annealing and variable-depth approach are tested. Experiments are
conducted to assess the influence of the choice of starting solutions,
objective functions, neighbourhood structures and stopping criteria.
Computational experiments show that a majority of instances for which
other (simple) heuristic procedures (presented in Chapters 3 and 4) do not
produce optimal solutions can be solved optimally using a local search
approach. The choice of starting solution, objective function and
neighbourhood structure seems to have far more impact on the solution
quality than the local search approach itself, as long as some kind of local
optimum evading strategy is used.

Chapter 6 analyzes another loading problem at the tactical level of FMS
planning, i.e. the tool switching problem. A batch of jobs have to be
successively processed on a single flexible machine. Each job requires a
subset of tools, which have to be placed in the limited capacity tool
magazine of the machine before the job can be processed. The total number
of tools needed exceed the capacity of the tool magazine. Hence, it is
sometimes necessary to change tools between two jobs in a sequence. The
problem is then to determine a job sequence and an associated sequence of

Flexible manufacturing. concepts and models 19

foadings for the tool magazine, such that the total number of tool switches
is minimized. This problem becomes especially crucial when the time
needed to change a tool is significant with respect to the processing times
of the parts, or when many small batches of different parts must be
processed in succession. These phenomena have been observed in the
metal-working industry by several authors (see Chapter 6). Bard (1988) and
Tang and Denardo (1988a) have specifically studied the tool switching
problem described above. In this chapter the problem is revisited, both
from a theoretical and from a computational viewpoint. Basic results
concerning the computational complexity of the problem are established.
For instance, we show that the problem is already NP-hard when the tool
magazine capacity is 2, and we provide a new proof of the fact that, for
each fixed job sequence, an optimal sequence of tool loadings can be found
in polynomial time. Links between the problem and well-known
combinatorial optimization problems (traveling salesman, block
minimization, interval matrix recognition, etc.) are established and several
heuristics are presented which exploit these special structures.
Computational results are presented to compare the behaviour of the eight
heuristic procedures. Also the influence of local improvement strategies is
computationally assessed.

Chapter 2

Throughput rate optimization in
the automated assembly of printed
circuit boards™

2.1. Introduction

The electronics industry heavily relies on numerically controlled machines
for the placement of electronic components on the surface of printed circuit
boards (PCB). These placement (or mounting, or pick-and-place) machines
automatically insert components into PCB’s, in a sequence determined by
the input program. The most recent among them are characterized by high
levels of accuracy and speed, but their throughput rates still appear to be
extremely sensitive to the quality of the instructions. On the other hand, the
effective programming of the machines becomes steadily more difficult in
view of the increasing sophistication of the available technology. The
development of optimization procedures allowing the efficient operation of
such placement machines provides therefore an exciting challenge for the
operations research community, as witnessed e.g. by the recent papers of
Ahmadi, Grotzinger and Johnson (1988), Ball and Magazine (1988),
Leipild and Nevalainen (1989).

We propose in this paper a hierarchical approach to the problem of
optimizing the throughput rate of a line of several placement machines
devoted to the assembly of a single product. As usual in the study of
flexible systems, the high complexity of the problem suggests to decompose
it into more manageable subproblems, and to accept the solution of each

" This chapter has been published as an article in Annals of Operations
Research 26, 455-480, 1990.

22 Chapter 2

subproblem as starting point for the next one. Of course, this methodology
cannot guarantee the global optimality of the final solution, even assuming
that all subproblems are solved to optimality. This is even more true in the
present case, where most subproblems themselves turn out to be NP-hard,
and hence can only be approximately solved by heuristic procedures.
Nevertheless, such hierarchical approaches have previously proved to
deliver good quality solutions to similarly hard problems (e.g. in VLSI-
design; see Korte (1989)). They also offer the advantage of providing
precise analytical models for the various facets of the global problem (see
e.g. Buzacott and Yao (1986) for a discussion of analytical models in
FMS).

Our approach has been tested on some industrial problems, but more
experimentation would be required in order to precisely assess the quality
of its performance and its range of

applicability. In particular, as pointed out by one of the referees, the
validity of some of our models is conditioned by the validity of some
exogenous assumptions about the nature of instances "coming up in
practice" (see for instance Section 2.4.1). Even though these assumptions
were fulfilled in the industrial settings that motivated our study, they may
very well fail to be satisfied in other practical situations. This would then
invalidate the use of the corresponding models. But we believe that the
hierarchical scheme and most of the techniques presented in this paper
would nevertheless remain applicable for a wide range of problem
instances.

We give now a brief outline of the paper. The next section contains a more
detailed description of the technological environment, and Section 2.3
provides a precise statement of the problem, and a brief account of
previous related work. Sections 2.4 and 2.5 present our approach to the
solution of the throughput rate optimization problem. Section 2.4 addresses
the workload balancing problem for the line of machines, and Section 2.5
deals with the optimal sequencing of operations for individual machines.
Both sections present mathematical models and heuristic solution methods
for the various subproblems arising in our decomposition of the global
problem. Finally, we describe in Section 2.6 the results delivered by our
approach on a practical problem instance.

2.2. Technological environment

We are concerned in this paper with the automated assembly of a number
of identical PCB’s. For our purpose, the assembly of a PCB consists of the
insertion of electronic components of prespecified fypes (indexed by 1, ...,

Throughput rate optimization in PCB assembly 23

T) into prespecified locations (indexed by 1, ..., N) on a board. Prior to
operations, the components of different types are collected on different
feeders (one type per feeder). Feeders are used by the placement machines
as described below. We denote by N, the number of components of type t
t=1,..,T).S,N=YT_ N,

We assume that a line of M placement machines is devoted to the assembly
of the PCB’s. The machines we have in mind are of the CSM (Component
Surface Mounting) family. They feature a workrable, a number S of feeder
slots, and three pick-and-place heads (see Figure 2.1).

Feeder

BT T T T T I TIIT1 € sots

Worktable

Heads

_l_L’TJ_L_L_A_LHL_LJ_LJ_u_JW Feeder
I slots
RN% :

Feeders

Figure 2.1 Schematic representation of a placement machine

The PCB is carried from one machine to the next by an automatic
transportband, until it comes to rest on the worktable. It stays motionless
during the mounting operations.

The feeder slots are fixed to two opposite sides of the worktable, S/2 of
them on each side. The feeders containing the components to be placed by
the machine must be loaded in the slots before

the mounting begins. Depending on its type, each feeder may require 1, 2,
or even more adjacent slots.

The pick-and-place heads are numbered from 1 to 3M, with heads 3m - 2,
3m - 1 and 3m on machine m (but, for short, we shall also refer to heads
1, 2 and 3 of each machine). They are fixed along a same arm which
remains always parallel to the side of the worktable supporting the feeder
slots. The arm can move in a horizontal plane above the worktable. It can

24 Chapter 2

also perform vertical moves to allow the heads to pick components from
the feeders or to insert components into the board.

Each head can carry at most one component at a time. It must be equipped
with certain tools (chucks and nozzles) before it can handle any
components. We call equipment the collection of tools necessary to process
a given component. With every component type is associated a restricted
set of alternative equipments by which it can be handled. In most
situations, four or five equipments suffice to mount all component types.
Changing the equipment of a head can be done either manually or
automatically, depending on the technology (notice that, on certain types of
machines, an equipment change can be performed automatically for heads 1
and 2, but only manually for head 3). In either case, an equipment change
is a time-consuming operation.

Consider now a typical pick-and-place operation, during which the machine
must place components of types i, j and k using heads 1, 2 and 3,
respectively. Suppose for instance that these components are to be placed in
the order j, i, k. Such an operation can be decomposed as follows. First,
the arm moves until head 1 is positioned above a feeder of type i. Head 1
picks then a component i. Two more moves of the arm between the feeder
slots allow heads 2 and 3 to pick components j and k. Next, the arm brings
head 2 above the location where component j is to be placed, and the
insertion is performed. The same operation is subsequently repeated for i
and finally for k.

Some remarks are in order concerning such a pick-and-place round. Notice
that the picking of the components must always be performed by head 1
first, then by head 2, then by head 3 (of course, we may decide in some
rounds to use only one or two heads), whereas an arbitrary sequence may
be selected for their placement. Once a head has been positioned by the
arm above the required feeder slot or location, the time needed to pick or
to place the corresponding component depends on the type of the
component, but is otherwise constant. Thus, on one machine, the only
opportunities for a reduction of the total pick-and-place time reside in a
clever sequencing of the operations and assignment of the feeders to feeder
slots.

We have intentionally omitted many details in this brief description of the
placement machines and of their functioning. For example, the insertion
heads have to rotate to a predetermined angle before picking or placing
components; some feeder slots or board locations are unreachable for
certain heads; heads may be unavailable (e.g. broken) or may be assigned
fixed equipments; the arm can only move in a limited number of directions;
etc.

Some of these features (unreachable locations, unavailable heads, etc.) can

Throughput rate optimization in PCB assembly] 25

be easily introduced in our models by setting variables to fixed values, thus
resulting in a simplification of these models. Others will be implicitly
incorporated in the models. For instance, parameters of the models like the
pick-and-place time, or the travel time between board locations will be
assumed to take into account the rotation of the heads and the restricted
moves of the arm. Of course, there remains a possibility that these
characteristics could be exploited explicitly to improve the performance of
the machines, but we did not attempt to do so.

2.3. The throughput rate optimization problem

With this description of the technological constraints, we can now state a
global throughput rate optimization problem as follows. Given the
specifications of a PCB and of M placement machines, determine:

(1) an assignment of the components to the M machines,

(2) for each machine, an assignment of feeders to feeder slots,

(3) for each machine, a sequence of pick-and-place rounds, each round
consisting itself of a sequence of at most three component locations
among those assigned to the machine in step (1),

(4) for each machine and for each pick-and-place round, an assignment
of equipment to heads.

These decisions are to be made so that the PCB can be mounted using all
M machines, and so as to minimize the processing time on the borrleneck
machine (i.e., the machine with the longest processing time).

In our solution of this problem, we shall also take into account a secondary
criterion, dictated by cost considerations. Because feeders are rather
expensive, it appears desirable (at least, in the practical situations that we
encountered) to minimize the total number of feeders used. Ideally, thus,
all components of a same type should be processed by one machine. We
shall show in Section 2.4.2 how this criterion can be accommodated.

This formulation of the throughput rate optimization problem is patterned
after a (confidential) report of the Philips Center for Quantitative Methods
(CQM (1988); see also van Laarhoven and Zijm (1993)). This report
proposes a hierarchical decomposition of the problem, and heuristics for the
resulting subproblems. Our decomposition, as well as all heuristics
presented in the next two sections, are different from CQM’s. Our
heuristics, in particular, rely more explicitly on the precise mathematical
modelling of the subproblems.

The throughput rate optimization problem is also mentioned by Ball and
Magazine (1988), under somewhat simpler technological conditions. In

26 Chapter 2

particular, each machine has but one pick-and-place head. The authors
investigate only in detail the sequencing of pick-and-place operations over
one machine (i.e., our question (3) above).

Leipdld and Nevalainen (1989) discuss our questions (2) and (3), for a
different type of one-head machines.

Ahmadi et al. (1988) consider the case of one machine featuring two heads.
They address subproblems (2), (3) and (4), but their technological
constraints are very different from ours, and their models do not seem to
be directly applicable in our framework.

We describe in the next two sections our approach to the throughput rate
optimization problem. This approach is based on a decomposition of the
global problem into the following list of subproblems (which thus refines
the original formulation (1) - (4) given before):

(A) determine how many components each machine must mount, and
with what equipments;

(B) assign feeder types to machines;

(C) determine what components each head must mount;

(D) cluster the locations into subsets of size at most three, to be
processed in one pick-and-place round;

(E) determine the sequence of pick-and-place operations to be performed
by each machine;

(F) assign the feeders to feeder slots.

Subproblems (A) and (B) in this list answer together question (1) and part
of question (4) above. Our main concern in solving these two subproblems
will be to achieve an approximate balance of the workload over the line of
machines. This will be done in Section 2.4.

Subproblems (C), (D), (E), (F) address the scheduling of individual
machines, and are dealt with in Section 2.5.

In our computer experiments, the sequence of subproblems (A) - (F) is
solved hierarchically in a single pass (except for (E) and (F); see Section
2.5). It may be possible to use an iterative solution procedure, and to
exploit the solution of certain subproblems in order to revise previous ones.
We have not further explored these possibilities.

Throughput rate optimization in PCB assembly 27

2.4. Workload balancing
2.4.1. Subproblem (A)
The model

We proceed in this phase to a preliminary distribution of the workload over
the machine line, based on the number of equipment changes for each
head, and on a rough estimate of the time needed to mount each
component. The latter estimate is computed as follows.

In Section 2.1, we have seen that the time needed to mount a component of
type t (t = 1, ..., T) consists of two terms: a variable term measuring the
travel time of the head, and a constant term p, representing the total time
spent to pick the component when the head is directly above feeder t, plus
the time to place the component when the head is above the desired
location.

Let v, be an estimate of the first variable term; then, v, + p, is an estimate
of the mounting time required by each component of type t. Notice that, in
practice, a reasonable value for v, does not appear too difficult to come by,
e.g. by evaluating the average time required for the arm to travel from
feeder slots to mounting locations. The solution of the model given below
does not appear to be very sensitive to the exact value of v. (In our
computer experimentations, we used a constant value v for all v, t = 1,
..., T.) Otherwise, solving the model for a few alternative values of v, (t =
I, ..., T) provides different initial solutions for the subsequent phases of
the procedure. If necessary, after all subproblems (A) - (F) have been
solved, a solution to the global problem can be used to adjust the values v,
and reiterate the whole solution procedure.

Define now two component types to be equivalent if the quantity v, + p, is
the same for both types, and if both types can be handled by precisely the
same equipments. This relation induces a partition of the set of components
into C classes, with each class containing components of equivalent types.

We are now almost ready to describe our model. We introduce first a few
more parameters:

Q = number of available equipments;
forc =1, ..., C,
B, = number of components in class ¢;

Il

we common value of v, + p, for the types represented in class c;
Q(c) = set of equipments which can handle the components in class c;

28 Chapter 2

forh =1, ..., 3M,
E, = time required by an equipment change for head h.

The decision variables are:
forc=1,..,C,form=1,.., M, forh=1,.., 3M, forq=1,..., Q:

Xcm = number of components of class ¢ to be mounted by machine m;
Zmg = 1if mac}}ine m uses equipment q;
= 0 otherwise;
I, = number of equipment changes required for head h;
w = estimated workload of the bottleneck machine.

The optimization model for subproblem (A) is:

(MA) minimize W

M
subject to Y. Xoy = B, c=1,..,C .1

m=1

Xem < Bg Z Zmq c=1,..0C;
q4€Q() m=1,.. M 2.2)
3m
f} Zmq <) ;+3 m=1,.,M (2.3)
q=1 h=3m-2
C 3m
W2 woxg, +), By m=1,., M (2.4)
c=1 h=3m-2
Xem = 0 integer c=1,..C;
m=1,... M 2.5)
Zing € {0,1} m=1,.. M;
q=1,..Q (2.6)

r, = O integer h=1,.. 3M 2.7

Throughput rate optimization in PCB assembly 29

Constraints (2.1) express that all components must be mounted. Constraints
(2.2) ensure that machine m is assigned at least one of the equipments in
Q(c) when x, is nonzero. Constraints (2.3) together with (2.4), (2.7) and
the minimization objective, impose that the number of equipment changes
on each machine be equal to the number of equipments used minus three,
or to zero if the latter quantity becomes negative. The right-hand side of
(2.4) evaluates the processing time on machine m (we assume here that the
time needed to bring a new PCB on the worktable, after completion of the
previous one, is always larger than the time required for an equipment
change). Thus, at the optimum of (M,), W is equal to the maximum of
these processing times.

A couple of comments are in order concerning this model. First, we could
have formulated a similar model using variables x, instead of x ., with
the index k running over all component locations, from 1 to N. The
advantage of aggregating the components into classes is that the number of
variables is greatly reduced, and that some flexibility remains for the exact
assignment of operations to heads. This flexibility will be exploited in the
solution of further subproblems. Next, observe that we do not impose any
constraint on the number of feeder slots required by a solution of (M,).
This could, in principle, be done easily, e.g., as in the partitioning model
of Ahmadi et al. (1988), but requires the introduction of a large number of
new variables, resulting again from the disaggregation of classes into types.
From a practical point of view, since we always allocate at most one feeder
of each type per machine (remember the secondary criterion expressed in
Section 2.3), the number of feeder slots never appears to be a restrictive
factor, hence the solutions of (M) are implementable.

In practice, the number of equipments needed to mount all components is
often smaller than the number of heads available. When this is the case, we
can in general safely assume that no change of equipments will be
performed in the optimal solution of (M) (since E; is very large). We may
then replace (M,) by a more restrictive model, obtained by fixing r;, = 0
forh =1, ..., 3M.

Complexity and solution of model (M)

Every instance of the well-known set-covering problem can be
polynomially transformed to an instance of (M) with M = 1, which
implies that model (M,) is already NP-hard when only one machine is
available (we assume familiarity of the reader with the basic concepts of
complexity theory; see e.g. Garey and Johnson (1979) or Nemhauser and
Wolsey (1988); the proofs of all the complexity results can be found in
Crama, Kolen, Oerlemans and Spieksma (1989)).

30 Chapter 2

In spite of this negative result, obtaining solutions of good quality for My,)
turns out to be easy in practical applications. To understand this better,
notice that the number of variables in these applications is usually small.
The real-world machine line which motivated our study features three
machines. A typical PCB may require the insertion of a few hundred
components, but these fall into five to ten classes. The number of
equipments needed to mount the board (after deletion of a few clearly
redundant ones) rarely seems to exceed five. So, we have to deal in (MA)
with about 10 to 30 zero-one variables and 15 to 50 integer variables.

In view of these favourable conditions, we take a two-phase approach to
the solution of (M,). In a first phase, we consider the relaxation of My)
obtained by dropping the integrality requirement on the x-variables (in
constraints (2.5)). The resulting mixed-integer program is easily solved by
any commercial branch-and-bound code (one may also envision the
development of a special code for this relaxed model, but this never
appeared necessary in this context).

In the second phase we fix all r- and z-variables of (MA) to the values
obtained in the optimal solution of the first phase. We obtain in this way a
model of the form:

(M) minimize W

M
subject to 2-:1 Xem = B c=1,..,°¢C
C
WZZ:Iwcxcm—i-Wm m=1,... M
¢=
Xem = 0 integer c=1,..C;
m=1,.., M

where some variables x,, are possibly fixed to zero (by constraints (2.2)
of (MA)), and W . is the total time required for equipment changes on
machine m (m = 1, ..., M).

In practice, model (M ,) is again relatively easy to solve (even though one
can show by an easy argument that (M) is NP-hard). If we cannot solve it
optimally, then we simply round up or down the values assumed by the x-
variables in the optimal solution of the first phase, while preserving
equality in the constraints (1). In our implementation of this solution

Throughput rate optimization in PCB assembly 31

approach, we actually added a third phase to the procedure. The goal of
this third phase is twofold: 1) improving the heuristic solutions found in the
first two phases; 2) generating alternative "good" solutions of (M), which
can be used as initial solutions for the subsequent subproblems of our
hierarchical approach.

Two types of ideas are applied in the third phase. On the one hand, we
modify "locally" the solutions delivered by phase 1 or 2, e.g. by
exchanging the equipments of two machines, or by decreasing the workload
of one machine at the expense of some other. On the other hand, we
slightly modify model (M) by imposing an upper bound on the number of
components assigned to each machine, and we solve this new model.
Running the third phase results in the generation of a few alternative
solutions associated with reasonable low estimates of the bottleneck
workload.

2.4.2. Subproblem (B)
The model

At the beginning of this phase, we know how many components of each
class are to be mounted on each machine, i.e. the values of the variables
Xem in model (M). Our goal is now to disaggregate these figures, and to
determine how many components of each type must be handled by each
machine. The criterion to make this decision will be the minimization of
the number of feeders required (this is the secondary criterion discussed in
Section 2.3).

So, consider now an arbitrary (but fixed) class ¢. Reorder the types of the
components so that the types of the components contained in class c are
indexed by t = 1, ..., R. Recall that N, is the total number of components
of type t to be placed on the board for all t. To simplify our notations, we
also let X = x.,, denote the number of components of class ¢ to be

cm
mounted by machine m. So, L8, N, = TM_, X, = B.. We define the
following decision variables: fort = 1, ..., R, form =1, ..., M;

u;, = number of components of type t to be mounted by machine m;
1 if a feeder of type t is required on machine m;
= (otherwise.

Yim

Our model for subproblem (B) is:

32 Chapter 2

R M
(Mp) minimize E Z Vim
m=

R
subject to E u, =X

m m=1,.., M
t=1
M
>y, =N, t=1,..,R
m=1
Uy, < min X Nt) Vim t=1, .., R;
m=1,.. M
U, = 0 integer t=1, ..., R;
m=1,.. M
vim € {0,1} t=1,.., R;
m=1,..,M

Model (Mp) is a so-called pure fixed-charge transportation problem (see
Fisk and McKeown (1979), Nemhauser and Wolsey (1988)).

Another way of thinking about model (Mg) is in terms of machine
scheduling. Consider R jobs and M machines, where each job can be
processed on any machine. Job t needs a processing time Nt=1,.,R)
and machine m is only available in the interval [0, Xpl (m =1, ..., M).
Recall that ¥}, N, = £M_| X_. So, if preemption is allowed, there
exists a feasible schedule requiring exactly the available time of each
machine. Model (Mp) asks for such a schedule minimizing the number of
preempted jobs (in this interpretation, Vym = 1 if and only if job t is
processed on machine m),

Complexity and solution of model (Mp)

The well-known partition problem can be polynomially transformed to
model (Mp), which implies that (Mpg) is NP-hard. Model (Mp) can be
attacked by a specialized cutting-plane algorithm for fixed-charge
transportation problems (Nemhauser and Wolsey (1988)). But we choose to
use instead a simple heuristic. This heuristic consists in repeatedly applying
the following rule, until all component types are assigned:

Rule: assign the type (say t) with largest number N, of components to the

Throughput rate optimization in PCB assembly 33

machine (say m) with largest availability X,,; if N, < X, delete type t
from the list, and reduce X, to X - N;; otherwise, reduce N, to N, - X,
and X, to 0.

Clearly, this heuristic always delivers a feasible solution of (Mp), with
value exceeding the optimum of (Mp) by at most M-1 (since, of all the
component types assigned to a machine, at most one is also assigned to
another machine). In other words, for a class ¢ containing R component
types, the heuristic finds an assignment of types to machines requiring at
most R + M -1 feeders. This performance is likely to be quite satisfactory,
since R is usually large with respect to M.

In situations where duplication of feeders is strictly ruled out, i.e. where all
components of one type must be mounted by the same machine, we replace
the heuristic rule given above by:

Modified rule: assign the type (say t) with largest number N, of
components to the machine with largest availability X ;
delete type t from the list; reduce X, to max(0, X, - Np.

Of course, this modified rule does not produce in general a feasible
solution of (Mp). In particular, some machine m may have to mount more
components of class ¢ than the amount X, determined by subproblem (A),
and the estimated workload W of the bottleneck machine may increase. In
such a case, we continue with the solution delivered by the modified rule.
A possible increase in estimated workload is the price to pay for imposing
more stringent requirements on the solution. Before proceeding to the next
phase, i.e. the scheduling of individual machines, we still have to settle one
last point concerning the distribution of the workload over the machines.
Namely, the solution of model (Mp) tells us how many components of each
type must be processed by each machine (namely, u,.,), but not which
ones. As the latter decision does not seem to affect very much the quality

. of our final solution, we neglect to give here many details about its

implementation. Let us simply mention that we rely on a model aiming at
an even-dispersion of the components over the PCB for each machine. The
dispersion is measured as follows: we subdivide the PCB into cells, and we
sum up the discrepancies between the expected number of components in
each cell and their actual number. It is then easy to set up an integer linear
programming problem, where the assignment of components to machines is
modelled by 0-1 variables, and the objective corresponds to dispersion
minimization. The optimal solution of this problem determines completely
the final workload distribution.

34 Chapter 2

2.5. Scheduling of individual machines

We concentrate in this section on one individual machine (for simplicity,
we henceforth drop the machine index). Given by subproblem (B) are the
locations (say 1, ..., N) of the components to be mounted by this machine
and their types (I, ..., T). Given by subproblem (A) are the equipments (1,
.-, Q) to be used by the machine, and the number 1, of equipment changes
per head.

2.5.1. Subproblem (C)
The model

Our current goal is to determine the distribution of the workload over the
three heads of the machine (a similar "partitioning” problem is treated by
Ahmadi et al. (1988), under quite different technological conditions). This
will be done so as to minimize the number of trips made by the heads
between the feeder slots and the PCB. In other words, we want to
minimize the maximum number of components mounted by a head. In
general, this criterion will only determine how many components each head
must pick and place, but not which ones. The latter indeterminacy will be
lifted by the introduction of a secondary criterion, to be explained at the
end of this subsection.
Here, we are going to use here a model very similar to (M,). Since we are
only interested in the number of components mounted by each head, let us
redefine two components as equivalenr if they can be handled by the same
equipments (compare with the definition used in Section 2.4.1). This
relation determines C classes of equivalent components. As for subproblem
M,), we let, forc =1, ..., C:

B, = number of components in class c;

Q) set of equipments which can handle the components in class c.

il

We use the following decision variables:
forc=1,..,C forh=1,2,3forq=1,..., Q:
Xcp = number of components of class ¢ to be mounted by head h;

Zng = 1 if head h uses equipment g;
= 0 otherwise;
\% = number of components mounted by the bottleneck head.

The model for subproblem (C) is:

Throughput rate optimization in PCB assembly 35

(M) minimize V

3
subject to E Xeh = Be c=1,..C
h=1
Xh = Be X 7y, c=1,.,Ch=1,2,3
q€Q(e)
}Q_:th=rh+l h=1,2,3
q=1
C
V=) oxg h=1,2,3
c=1
Xep = O integer c=1,..,Ch=1,2,3
thE{O,l} h=1,2,3,q=1,..,Q

(recall that r, + 1 is the number of equipments allocated to head h by
model (MA)).

Complexity and solution of model (MC)

Again, the partition problem is easily transformed to model (M), implying
that the problem is NP-hard. Moreover, as was the case for (M), model
(M) is actually easy to solve in practice, due to the small number of
variables. Here, we can use here the same type of two-phase approach
outlined for (M).

As mentioned earlier, the solution of (M) does not identify what
components have to be mounted by each head. To answer the latter
question, we considered different models taking into account the dispersion
of the components over the board. However, it turned out empirically that
a simple assignment procedure performed at least as well as the more
sophisticated heuristics derived from these models. We describe now this
procedure. Consider a coordinate axis parallel to the arm along which the
three heads are mounted. We orient this axis so that the coordinates of
heads 1, 2 and 3 are of the form X, X + k and X + 2k respectively,
where k is the distance between two heads (k > 0). Notice that X is
variable, whereas k is fixed, since the arm cannot rotate.

36 Chapter 2

The idea of our procedure is to assign the component locations with
smallest coordinates to head 1, those with largest coordinates to head 3,
and the remaining ones to head 2. Since this must be done within the
restrictions imposed by (MC), let us consider the values x, obtained by
solving (MC). Then, for each ¢, the components of class ¢ to be mounted
by head 1 are chosen to be the x.; components with smallest coordinates
among all components of class c. Similarly, head 3 is assigned the x3
components with largest coordinates among the components of class ¢, and
head 2 1s assigned the remaining ones.

As mentioned before, this heuristic provided good empirical results. The
reason for this good performance may be sought in the fact that the inter-
head distance k is of the same order of magnitude as the length of a typical
PCB. Thus, our simple-minded procedure tends to minimize the distance
travelled by the heads.

2.5.2. Subproblem (D)
The model

For simplicity, we first consider the case where every head has been
assigned exactly one equipment (i.e., r; = r, = r3 = 0 in model WC)).
Thus, at this point, the components have been partitioned into three groups,
with group h containing the G;, components to be mounted by head h ¢(h =
1, 2, 3). Let us further assume that G; = G, = G3 = G (if this is not the
case, then we add a number of "dummy" components to the smaller
groups). We know that G is also the minimum number of pick-and-place
rounds necessary to mount all these components. We are now going to
determine the composition of these rounds, with a view at minimizing the
total travel time of the arm supporting the heads.
Suppose that the components in each group have been (arbitrarily)
numbered 1, ..., G. Consider two components i and j belonging to different
groups, and assume that these components are to be mounted successively,
in a same round. We denote by dij the time necessary to reposition the arm
between the insertions of i and j.” For instance, if i is in group 1, j is in
group 2, and i must be placed before j, then d; is the time required to
bring head 2 above the location of j, starting with tead 1 above i.
For a pick-and-place round involving three components i, j, k, we can
choose arbitrarily the order in which these components are mounted (see
Section 2.2). Therefore, an underestimate for the travel time of the arm
between the first and the third placements of this round is given by:
) djjx = min { dij + dj, dyye + digr dji + di } if none of i, j, k is a
dummy;

Throughput rate optimization in PCB assembly 37

@) dye = dij if k is a dummy;
(111) dijk = Q'if at least two of i, j, k are dummies.

Let us introduce the decision variables Uik for i,j,k € {1, ..., G}, with
the interpretation:
Uik =1 if components i,j and k, from groups 1, 2 and 3
respectively, are mounted in a same round;
=0 otherwise.

Then, our optimization model for subproblem (D) is:

(Mp) minimize

Mo
Mo
iNgl

ldijk Ujjk

1
—

e

I
—

Ngle!
Mo

subject to =1 k=1,..,G
i=1 j=1
G G
X} kE] Uik = 1 j=1,..,G
1= =
G G
j; kX—:l Ujje =1 i=1,..,G
uk € {0,1} i,i,k=1, .., G.

An optimal solution of (Mp) determines G clusters, of three components
each, such that the sum of the (underestimates of the) travel times “within
clusters” is minimized.

In cases where some or all of the heads have been assigned more than one
equipment in model (M), we adapt our approach as follows. Let g}, be the
first equipment to be used by head h, and Gy, be the number of components
which can be handled by g, among those to be mounted by head h (h = 1,
2, 3). Say for instance that Gl < GZ < G3. We can now set up a model
similar to (Mp) for the clustering of these G, + G, + Gj components.
Any feasible solution of this model determines exactly Gy clusters
containing no dummy components. These clusters correspond to our first
Gy, pick-and-place rounds, to be performed by equipments 41, 9 and q3.
Next, q; is replaced by a new equipment q4, and the process can be

38 Chapter 2

repeated with q4, g and gj.
Complexity and solution of (M)

Model (MD), with arbitrary coefficients dijkv has been studied in the
literature under the name of 3-dimensional assignment problem. The
problem is known to be NP-hard (see Garey and Johnson (1979)). But
observe that, in our case, the coefficients d;;) are of the very special type

defined by (i) - (iii). Moreover, the travel times dij G,j =1, ..., G) are
themselves far from arbitrary; in particular, they satisfy the triangle
inequality: dij < dy + dy for i, j, k = 1, ..., G. However, even under

these added restrictions ‘model (Mp) remains NP-hard (Crama and
Spieksma (1992)).

A number of heuristic and exact algorithms have been proposed to solve
the 3-dimensional assignment problem (see e.g. Frieze and Yadegar (1981)
and the references therein). In view of the role of (Mp) as a subproblem in
the hierarchy (A) - (F), and of the special structure of its cost coefficients,
we opt here for a specialized heuristic procedure.

Our heuristic works in two phases. We start by solving an (ordinary)
assignment problem, obtained by disregarding the components of the third
group. Thus, we solve:

G G
"(API) minimize Z E dij uj;
i=1 j=1

G

subject to Z u = 1 i=1,..,G
j=1
G
E UU =1 J = 1, s G
i=1
uj; € {0,1} L,j,k=1,..,G,

where d;; = 0 if either i or j is dummy. An optimal solution u” of (AP1)

can be computed in time 0(N3) (Papadimitriou and Steiglitz (1982). Let
now A = {(i,j): u?- = 1}. Thus, A is the set of pairs (i,j) matched by the
solution of (API). Jl‘he second phase of our heuristic consists in assigning
the (previously disregarded) components of the third group to the pairs in
A. Formally, we solve:

Throughput rate optimization in PCB assembly 39

G
(AP2) minimize Y, Y, dij Ui

(J)EA k=I
G .
subject to Y, U = |1 (ij) € A
k=1
> v =1 k=1,..,G
(JyeA
u € {013 () € A;k =1, ..., G.

The optimal solution of (AP2) can be obtained in time O(G3) and provides
a heuristic solution of (Mp). Frieze and Yadegar (1981) proposed a closely
related heuristic for general 3-dimensional assignment problems, and
observed its good empirical performance.

Let By denote the optimal value of (4P2). The notation B4 is a reminder
that, in the first phase of our heuristic, we arbitrarily decided to disregard
the components from the third group. Of course, similar procedures could
be defined, and corresponding bounds 8; and B, would be derived, by
initially disregarding the components from either group 1 or group 2.

In our computer implementations, we compute the three bounds, By, By,
B3, and we retain the clustering of the components corresponding to the
smallest bound. In Crama and Spieksma (1992) it is proven that this bound
is never worse than 4/3 time the optimal value for any instance of Mp).
The computer experiments reported in Crama and Spieksma (1992) indicate
that the practical performance of this heuristic is excellent.

2.5.3. Subproblem (E).

The solution of subproblem (D) has delivered a list Cy, ..., Cg of clusters,
with each cluster containing (at most) three components to be placed in a
same round (if some heads must use more than one equipment, then we
successively consider several such lists, where each list consists of clusters
which can be processed without equipment changes). Subproblem (E) asks
for the sequence of pick-and-place operations to be performed by the
machine, given this list of clusters.

This problem has been studied by Ball and Magazine (1988) and Leipidld
and Nevalainen (1989), for machines featuring only one insertion head. In
both papers, the authors observed that the decisions to be made in
subproblem (E) are highly dependent on the assignment of feeders to feeder

40 .Chapter 2

slots (i.e. on the solution of our subproblem (F)), and conversely. On the
other hand, a model simultaneously taking into account both subproblems is
far too complicated to present any practical value.

We choose therefore an approach already suggested by Leipdld and
Nevalainen (1989). Namely, we first solve subproblem (E); using this
solution as input, we compute a solution of subproblem (F), which is used
in turn to revise the solution of subproblem (E), and so on. This process is
iterated until some stopping condition is verified.

The models

According to the previous discussion, we need two models for subproblem
(E): the first one to be used when no feeder assignment is yet known, and
the second one taking into account a given feeder assignment. In either
case, we reduce (E) to the solution of a shortest Hamiltonian path problem
(see Lawler, Lenstra, Rinnooy Kan and Shmoys (1985)) over the set of

clusters {Cy, ..., Cg}: for i,j = 1, ..., G, we define a cost (travel time)
c(i,j) for processing C; immediately before C;; the problem is then to find a
permutation ¢ = (0, ..., og) of {1, ..., G} which minimizes
G-I
o) = Y, c0,0,4 1) 2.8)

=1

The definition of c(i,j) depends on the given feeder assignment (if any), as
explained hereunder. Consider first the situation where feeders are already
assigned to feeder slots, and let C;, C; be two arbitrary clusters. In this
case, the appropriate definition of c(i,j) is given by CQM (1988) as
follows. Denote by 1;, 1, I3 the component locations in C;, where Iy, is to
be processed by head h (h = 1, 2, 3). We assume that the feeder needed
for 1, is in slot s (h = 1, 2, 3). Similarly, l4 is the location to be
processed by head 1 in cluster C;, and slot s4 contains the corresponding
feeder (we assume for simplicity that C; and Cj consist of exactly three
locations; obvious modifications of our description are required when this
is not the case).

Suppose now for a moment that 1}, 1, and I3 are to be mounted in the order
7 = (m, T, m3), where (m}, 7, m3) is a permutation of {1, 2; 3}. For
this fixed order, we can easily compute the time (say c;; (7)) required to
carry out the following operations: starting with head 1 above slot s
sequentially pick one component from each of sy, s, s3 using heads 1, 2,
3 respectively; mount 1, , 1, , 1, in that order; bring head 1 above slot s,4.
Obviously, in an optimal 6ick—3and-place sequence, we would select the

Throughput rate optimization in PCB assembly 41

permutation x of {1, 2, 3} which minimizes cij(1r). We accordingly
define: c(i,)) = < ().

Now, if ¢ is any permutation of {1, ..., G}, then c(o) (given by (2.8)) is
the time required by a complete pick-and-place sequence processing the
clusters in the order (g, ..., gz). The shortest Hamiltonian path problem
with costs c;; provides thus a natural model for subproblem (E). As a last
remark on this model, notice that the computation of c;(w) can be
simplified by dropping from its definition those elements which are
independent of 7 or 0. Namely, we can use a "modified c;(m)" defined as
the time needed, starting with head 3 above s4, to bring successively head
7y above 1, , head m, above L., head w4 above I, and finally head 1
above sy4. Lét us return now to the initial solution of iE), when the feeder
positions are still unknown. Since this initial sequence will be modified by
the subsequent iterations of our procedure, it does not seem necessary at
this stage to look for a solution of very high quality (actually, one may
even argue that an initial sequencing of lower quality is desirable since it
provides more flexibility in the next phases of the procedure; see e.g.
Leipdld and Nevalainen (1989) for more comments along this line).
Accordingly, we define the coefficients c(i,j) for our initial traveling
salesman problem as rough estimates of the actual travel times. We
experimented here with a couple of possible definitions, which seem to lead
to comparable results (in terms of the final solution obtained). One such
definition is as follows. Let g; and g be the centres of gravity of the
clusters C; and Cj, respectively. Let s be the feeder slot minimizing the
total distance from g; to s to gj- Then, c(i,}) is the time needed for the arm
to travel this total distance.

Complexity and solution of the models

The shortest Hamiltonian path problem is closely related to the traveling
salesman problem, and is well-known to be NP-hard, even when the costs
c(i,)) satisfy the triangle inequality (Lawler et al. (1985)). Many heuristics
have been devised for this problem, and we have chosen to experiment
with two of the simplest: nearest neighbour (with all possible startix12g
points) and farthest insertion, which respectively run in O(G3) and O(G*)
steps (we refer to Lawler et al. (1985) for details on these procedures).
Both heuristics delivered results of comparable quality.

42 Chapter 2

2.5.4. Subproblem (F)
The model

As input to this subproblem, we are given the types (1, ..., T) and the
locations (1, ..., N) of the components to be mounted, where (1, ..., N) is
the mounting sequence determined by the previous solution of subproblem
(E). Our problem is now to allocate each feeder 1, ..., T to one of the
feeder slots 1, ..., S, so as to minimize the total mounting time (for the
sake of clarity, we first assume that every feeder can be loaded in exactly
one slot; we indicate later how our model can be moedified when some
feeders require two or more slots).

We use the decision variables vig t =1, ..., T; s =1, ..., S) with the
interpretation:
Vi = 1 if feeder t is loaded in slot s;

= (0 otherwise.

These variables must obey the following restrictions, expressing that every
feeder occupies exactly one slot, and no slot contains two feeders:

S

Yoy =1 t=1,.,T 2.9)
s=1

T

Y ove =1 s=1,..,5 (2.10)
t=1

Vls € {O,l} = 1, ,T,

s=1,..,8§ .11

Before describing the other elements of our model, we first introduce some
terminological conventions. We say that a movement of the arm is a feeder-
board movement if it occurs between the last picking and the first placing
of a same round, or between the last placing of ‘a round and the first
picking of the next one. By contrast, a feeder-feeder movement takes place
between two pickings of a same round.

Consider now a fixed solution Vg =1, .., T; s =1, ..., 8) of (2.9) -
(2.11). For the corresponding assignment of feeders to slots, the total
mounting time of the PCB can be broken up into three terms:

Throughput rate optimization in PCB assembly 43

1) aterm Yi_; Y3_; ag vy, where ag is the total time spent in
feeder-board movements from or to feeder t, when feeder t is loaded
in slot s; this term represents the total feeder-board traveltime; notice
that the value of each coefficient a,; is completely determined by the
technological features of the machine, and by the sequence of pick-
and-place operations to be performed by the machine (i.e., by the
solution of subproblem (E));

) aterm To.y T3y byrs Vpr Vi Where by is the total time
spent in feeder-feeder movements between feeders p and t, when
feeder p is in slot r and feeder t is in slot s; this term gives the total
feeder-feeder travel time; here again the coefficients bprts are easily
computed.

3) a term accounting for all other operations (picking and placing of all
components, and travel time between placements of a same round);
for a fixed pick-and-place sequence, this term is independent of v,.

According to this discussion, our model for subproblem (F) can be
formulated as:

T S T S
(My) minimize E E A Vis T Z E bprts Vor Vis
t=1 s=] p.t=1 rs=1

subject to (2.9), (2.10), (2.11).

Problem (Mp) is a quadratic assignment problem (see Burkard (1984)). As
mentioned earlier, this formulation can be easily modified to accommodate
additional restrictions. For instance, if feeder t must occupy two slots, we
reinterpret:

Vg = 1 if feeder t is loaded in slots s and s + 1;

= 0 otherwise.

Straightforward restrictions must then be added to (2.9) - (2.11) to preclude
the assignment of any feeder to slot s+1 when v, = 1. This can also be
achieved while preserving the quadratic assignment structure of (M), by
raising all coefficients b s+1,t,¢ t0 very high values.
As a last remark on (;), let us observe that this model boils down to a
linear assignment problem for machines featuring only one insertion head.
On the other hand, Leipili and Nevalainen (1989) proposed a quadratic
assignment formulation of the feeder assignment subproblem (F) for
another type of one-head machines. This discrepancy is obviously due to
the different technologies. ‘

44 Chapter 2

Complexity and solution of (Mp)

The quadratic assignment problem is well-known to be NP-hard, and to be
particularly difficult to solve exactly for values of T and S larger than 20
(Burkard (1984)). A typical instance of (M) may involve as many as 20
feeder types and 60 slots, and hence must be attacked by heuristic methods.
We have used for (MF) a local improvement method, based on pairwise
exchanges of feeders (see (Burkard (1984)). This procedure starts with an
initial solution of (2.9) - (2.11), and applies either of the following steps,
as long as they improve the objective function value in Mg):

Step 1: move a feeder from its current slot to some empty slot;
Step 2. interchange the slot assignments of two feeders.

To determine an initial assignment of feeders to slots, we proceed in two
phases. First, we solve the assignment problem (My) obtained by setting all
coefficients b .o to zero in (Mp) (th*is amounts to disregarding the feeder-
feeder movements of the arm). Let v be an optimal solution of Mg).

Next, we consider those feeders (say 1, ..., P) whose components are only
picked by head 2. Observe that the associated variables v t=1,..,P;s
=1, ..., S) do not appear in the objective function of (M), since there are
no feeder-board movements to or from these feeders (i.e., a, = 0 for t=
1, ..., P;s =1, ..., S). Consequently, the value of these variables in v is
only conditioned by the constraints (2.9) - (2.11), and may as well be
random. In order to determine more meaningful values for*these variables,
we solve the restriction of (MF) obtained by setting Vis = Vi fort = P+1,
.» T'and s =1, ..., S. It is easy to see that this is again a linear
assignment problem, aiming at the minim*ization of the total feeder-feeder
travel time under the partial assignment Vis € =P+1, .., T; s =*1, vy
S). The optimal solution of this problem together with the values Vg (t =
P+1, ..., T; s = 1, ..., S), provides the initial solution for the
improvement procedure described above.

2.6. An example

We discuss in this section the performance of our heuristics on a problem
instance described in CQM (1988). The placement line under consideration
consists of three machines. The third head is broken and unavailable on
machine 3. The 258 components to be mounted on the PCB are grouped in
39 types (actually, the PCB is partitioned into three identical blocks, of 86
components each; we shall make use of this peculiarity in the solution of

Throughput rate optimization in PCB assembly 45

subproblem (A)). Three distinct equipments suffice to handle all the
component types, moreover, each type can be handled by exactly one of
these three equipments.

For the sake of comparison, let us mention that CQM (1988) evaluates to
74, 65 and 81 seconds respectively the mounting times required by the
three machines for the actual operations sequence implemented by the plant
(notice that this sequence is not known in full detail, and that these "plant
times" appear to be underestimates). The hierarchical decomposition and
the heuristics developed in CQM (1988) produce a solution with mounting
times 68.41, 66.52 and 68.88 seconds for the three machines. A still better
solution is obtained in CQM (1988) after imposing that the equipments used
remain fixed as in the plant situation. Under these conditions, production
times of 66.12, 65.25 and 65.47 are achieved on the three machines, i.e.
an improvement of at least 18 percent of the bottleneck time with respect to
the plant solution. To fully appreciate these figures, one should also know
that a constant time of 106 seconds is needed for the pick-and-place
operations alone, independently of the production sequence (see Section
2.2). These unavoidable 106 seconds represent more than half of the total
mounting time required by the CQM solutions.

2.6.1. Subproblem (A)

We take up now our subproblem (A). With a constant estimate of v = 0.3
(secs) for the travel time of the heads between two insertions, the

components fall into five classes, characterized by the parameters in Table
2.1.

Table 2.1 Parameters for subproblem (A)

Class 1 2 3 4 5
B, 201 27 24 3 3
W, 0.6 1.35 0.75 1.65 1.15
Q(c) ey}) (3) (3) 3)
We set up model (MA) with these parameters and E, = 2th=1,..78

(and the obvious modifications implied by the unavailability of head 9).
This model is easily solved by the approach described in Section 2.4.1.
Notice that the relaxation of (M,) obtained by dropping the integrality
requirement for the x-variables has several alternative optima. As expected,
r, = 0 (h =1, ..., 8 in all these optimal solutions, i.e. equipment

46 Chapter 2

changes are ruled out,
As explained in Section 2.4.1, the solutions found for subproblem (A) can
be considered as alternative inputs for the subsequent subproblems in the
decomposition. In the present case, most of these solutions led us to
production plans with processing times of 66 to 68 seconds. To illustrate
the next steps of our approach, we shall concentrate now on a specific
solution of (M), derived as follows.
We mentioned before that our PCB consists of three identical blocks. So,
rather than solving (M,) for the complete board, we can solve first the
model corresponding to one of the blocks, and eventually multiply all
figures by 3. A workload distribution obtained in that way is displayed in
Table 2.2.

Table 2.2 Workload distribution

Machine 1 2 3
Equipment 1 1,3 1,2
Xem = number of Xjp =57
components of class X = 102 X3y = 24 Xj3 = 42
¢ on machine m Xgp = 3 Xp3 = 27
Xsp = 3

2.6.2. Subproblem (B)

Since all components of class 2 are to be handled by machine 3, and all
components of classes 3, 4, 5 by machine 2, we see that the distribution
shown in Table 2.2 need only be further refined for class 1. Specifically,
28 components types are represented in class 1. The number of components
of each type (1, ..., 28) is given in Table 2.3.

Table 2.3 Number of components of each type for subproblem (B)

Type Il 2 3 4 5 6 7 8 9 10 1t 12 13 14

Type |15 16 17 18 19 20 21 22 23 24 25 26 27 28
N, 6 6 3 3 3 3 3 3 3 3 3 3 3 3

The heuristic rule described in Section 2.4.2 produces the assignment

Throughput rate optimization in PCB assembly 4 7

shown in Table 2.4. Observe that each type is assigned to exactly one
machine, and hence exactly one feeder of each type will be needed in the
final solution (in particular, the heuristic delivers here an optimal solution

of WB)).

Table 2.4 Assignment of component types to machines

Machine Types
1 1,2,3,5,10, 11, 14, 17, 20, 23, 26
2 4,6, 8,12, 15, 18, 21, 24, 27
3 7,9, 13, 16, 19, 22, 25, 28

2.6.3. Subproblem (C)
Since model (M) attempts to minimize the maximum workload of the
heads (per machine), we obviously find in this case an assignment of the

type given in Table 2.5.

Table 2.5 Assignment for subproblem (C)

Head 1 2 3 4 5 6 7 8
Equipment L 1 1 1 1 3 1 2
Number of components 34 34 34 29 28 30 42 27

The components to be mounted by heads 1, 2, 3, 4, 5 are further identified
as

explained at the end of Section 2.5.2. In the present case, this amounts to
assigning to head 1 all components of block 1, to head 2 all components of
block 2, and to head 3 all components of block 3, among those previously
assigned to machine 1.

2.6.4. Subproblem (D)

We solve now the 3-dimensional assignment model (Mp) for each of the
three machines. Since machine 3 only has two heads, (Mp,) actually boils
down to the assignment problem (4P/) for this machine, and hence can be
solved exactly (optimal value: 3.26 secs).

For machines 1 and 2, we solve (Mp) using the heuristics described in

48 Chapter 2

Section 2.5.2. These heuristics deliver for machine 1 a very good
clustering of the components (value: 4.95 secs), where each cluster simply
contains corresponding components from each block of the PCB. We obtain
for machine 2 a clustering with value 8.95 secs.

2.6.5. Subproblem (E) and (F)

These two subproblems are solved alternately and iteratively for each
machine. On machine 2, for instance, the first Hamiltonian path
(corresponding to travel times between centres of gravity of the clusters)
has value 13.16 secs. An initial feeder assignment is obtained as in Section
2.5.4. The pick-and-place sequence determined by this assignment and the
first Hamiltonian path corresponds to a total feeder-board time of 14.10
secs and a total feeder-feeder time of 11.63 secs, for a total travel time of
25.73 secs.

The local improvement procedure is next applied to this initial solution. In
each iteration of this procedure, we sequentially consider all Sfeeders, and
we attempt to perform one of the exchange steps 1 and 2 on each of them.
After four iterations of the procedure, no more improving steps are found.
The corresponding feeder-board and feeder-feeder times are respectively
14.68 secs and 8.62 secs, and hence the previous total travel time is
improved to 23.30 secs.

Taking this feeder assignment into account, a revised Hamiltonian path
with value 14.07 secs is computed. The feeder assignment is in turn
modified, resulting (after three iterations of the local improvement
procedure) in a total travel time of 22.94 secs. No better Hamiltonian path
or assignment are found in the next solutions of subproblems (E) and (F).
So, we adopt this solution for machine 2.

Similar computations are carried out for the other machines. The pick-and-
place sequences obtained in this way correspond to processing times of
63.83, 66.27 and 65.82 secs on machines 1, 2 and 3 respectively. These
times are comparable to the best ones obtained by CQM.

Acknowledgments

We are grateful to P. van Laarhoven and H. Zijm for introducing us to the
problem, and for providing us with the data (CQM, 1988).

Chapter 3

A column generation approach to
job grouping for flexible manufac-
turing systems™

3.1. Introduction

Several authors have stressed the influence of rool management on the
overall performance of automated manufacturing facilities in general, and
of flexible manufacturing systems (FMS) in particular (Gray et al., 1988;
Kiran and Krason, 1988). An FMS consists of a number of numerically
controlled machines, linked by automated material handling devices, that
perform the operations required to manufacture parts. The tools required by
these operations are stored in a limited capacity tool magazine attached to
each machine. An automated tool interchanging device enables the machine
to interchange tools very quickly (in seconds). This fast tool interchanging
capability avoids costly setups while producing with the tools available in
the magazine, and is an essential feature of FMSs. When it becomes
necessary to add tools to the tool magazine to allow new operations, the
machine sometimes has to be shutdown while the tools are interchanged,
after which the machine may resume production. The latter type of setup is
time-consuming (it may take up to two hours). The performance of an FMS
may therefore be considerably boosted by reducing the occurrences of these
setups.

* An article based on this chapter is submitted for publication.

50 ’ Chapter 3

In this paper we study a model which aims at minimizing the number of
setups. We assume that a number of jobs must be processed on a single
machine. The job grouping problem asks for a partition of the jobs into a
minimum number of groups (batches), such that the jobs in each group do
not require more tools than can be stored in the tool magazine (see Section
3.2 for a precise formulation of the model). This is equivalent to
minimizing the number of setups in the situation described above.

The job grouping problem has been studied by different authors, who
largely ignore each other. Hirabayashi, Suzuki and Tsuchiya (1984) refer to
it as the ‘optimal paris grouping problem’ and propose a set covering
formulation of it. They mention the possibility to solve this set covering
formulation using a column generation approach, but concentrate in their
paper on developing a branch-and-bound procedure for the column
generation subproblem (see Section 3.2). Hwang (1986) investigates the
equivalent ‘optimal part type grouping problem’. He proposes to solve it
approximately by sequentially creating groups that consist of a maximum
number of jobs (this is in fact equivalent to solving the set covering
formulation of the problem by a greedy heuristic; see Section 3.3). Hwang
and Shogan (1989) use branch-and-bound to solve the sequence of
subproblems. Hwang (1986) remarks that other sequential approaches
(Whitney and Gaul, 1985) and group technology approaches (Chakravarty
and Shtub, 1984) exist for part grouping problems, although the latter are
inapplicable to FMS because they disregard tool magazine capacity
limitations. In Hwang and Shogan (1989) the approach of Hwang (1986) is
extended to allow the consideration of due dates. Rajagopalan (1985; 1986)
gives a general model, which incorporates the job grouping problem as a
special case. He presents a number of heuristic procedures for its solution
(some of these will be presented in Section 3.3). Stecke and Kim (1988)
have extended and made comparisons between the procedures of and
Rajagopalan (1985), Whitney and Gaul (1985) and Hwang (1986).
Rajagopalan (1985; 1986) and Tang and Denardo (1988b) observe that
partitioning jobs into a minimum number of batches can be seen as packing
the jobs into a minimum number of bins with fixed capacity. It follows that
the bin packing problem is a special case of the job grouping problem, and
hence, that the latter is NP-hard (Tang and Denardo, 1988b). Tang and
Denardo (1988b) present a non-LP based branch-and-bound procedure for
job grouping. They propose non-trivial lower bounds (see Section 3.2), and
heuristics similar to Rajagopalan’s (see Section 3.3). Kuhn (1990) has
developed and tested more heuristics for job grouping. Related problems in
process planning are also studied by Kusiak (1985b), Finke and Kusiak
(1987) and Bard and Feo (1989).

A column generation gpproach to job grouping 51

In this paper, we implement a column generation approach to solve the
linear relaxation of the set covering formulation of the job grouping
problem. We demonstrate experimentally that this approach leads to the
derivation of extremely strong lower bounds (always equal, in our
experiments, to the optimal value of the problem). The column generation
scheme is presented in Section 3.2. In Section 3.3, heuristic solution
procedures are suggested. The implementation of our procedures is
described in Section 3.4. Section 3.5 reviews our computational
experiments with these procedures. Section 3.6 contains some conclusions.

3.2. Lower bounds

In this section, we present formulations for the job grouping problem and
explain the column generation approach we used to derive lower bounds on
its optimal value. Some easier, but weaker lower bounds are also
discussed.

3.2.1. The job grouping problem

The job grouping problem can be described by the following model
(Hirabayashi et al., 1984; Hwang, 1986; Tang and Denardo, 1988b).
Assume there are N jobs and M tools. The basic data are the capacity C of
the tool magazine and the tool requirements for the jobs. These tool
requirements are represented by a so-called tool-job matrix A of dimension
M x N, with:
a; =1 if job i requires tool k
= (0 otherwise,
fork=1,...,Mandi =1, ..., N.
We call a subset (group) S of jobs (or of columns of A) feasible if these
jobs together require at most C tools, i.e. if | { ki Yiesa; 21} | < C.
The job grouping problem consists in finding a minimum set of feasible
groups such that each job is contained in (at least) one group. To formulate
this as a set covering problem, let us suppose that there exist P feasible
groups, and let
q; = 1 if job i is contained in the feasible group j,
= (0 otherwise,
fori=1,..,Nandj=1, ..., P.
The job grouping problem is:

52 Chapter 3

minimize % 3.1
j=1
P
subject to > gy =21 i=1,..,N (3.2)
i=1
y; =2 0 j=1,..,P 3.3)
y; integer i=1 ..,P (3.4
where y; = 1 if group j is part of the optimal covering (notice that y; €

{0,1} for j = 1, ..., P in any optimal solution of (3.1) - (3.4)). Notice that
an equivalent set covering model would be obtained if we restricted the set
{1, ..., P} to the subset of maximal feasible groups, i.e. to those feasible
groups of jobs to which no more job can be added without destroying
feasibility.

The main drawback of the formulation (3.1) - (3.4) is the possibly huge
number of columns that it involves. Several authors report on efficient
algorithms for solving large set covering problems to optimality (e.g. Balas
and Ho (1980)), or for finding good heuristic solutions to such problems
(e.g. Nemhauser and Wolsey (1988) and Vasko and Wolf (1988)). Here,
however, even generating the complete set covering formulation is a
tedious task for larger instances (see Section 3.5, Table 3.6). In spite of
this, we shall see in the next sections that it is possible to solve efficiently
the LP-relaxation of (3.1) - (3.4), and that the optimal value of this
relaxation provides a very strong lower bound on the optimal value of the
set covering. problem. The latter observation can only be seen as an
empirical one, without theoretical basis. Indeed, it is known that the LP-
relaxation of arbitrary set covering problems can be rather weak. On the
other hand:

Theorem 3.1 Any instance of the set covering problem can be
interpreted as an instance of the job grouping problem,
for some suitable choice of the tool-job incidence matrix
and of the capacity.

Proof Consider an arbitrary instance (SC) of the set covering problem, in
the form (3.1) - (3.4). We associate with this instance the P x N
tool-job matrix A defined by

A column generation approach to job grouping 53

ajl=l-qu j=l,...,P;i=1,...,N

and the capacity C = P - | (we assume without loss of generality
that Q = (q;;) has no zero row, so that A has no column involving
C + 1 ones). We claim that the set covering formulation of the job
grouping instance described by A and C is exactly (SC). Indeed, a
subset S of jobs (§ € N) is feasible for the instances described by
(A,C) if and only if there exists a row j of A (j € {I, ..., P}) such
that a;; = O for all i € §, or, equivalently, if and only if there is a

column j of (g;;) such that g;; = 1 for all i € S. But this also means
that the (maximal) columns of (qij) exactly correspond to the
maximal feasible sets of jobs. O

Notice, however, that the value of the tool magazine capacity occurring in
this proof (namely, the total number of tools minus one) is not very
realistic from the viewpoint of the job grouping problem.

3.2.2. Column generation

To find a lower bound for the set covering problem, we want to solve the
LP-relaxation of (3.1) - (3.4), i.e. the problem (3.1) - (3.3). We avoid the
difficulty of explicitly generating all columns of this problem, by working
with only a subset of the columns and adding new columns as needed. This
approach was suggested by Gilmore and Gomory (1961) for solving cutting
stock problems. It can also be seen as an essential part of the Dantzig-
Wolfe decomposition (Dantzig and Wolfe, 1960). For a thorough
discussion of column generation we point to Chvdtal (1983), and we only
briefly recall here the main features of the approach.

At each iteration of the column generation procedure, we solve the LP
obtained by restricting (3.1) - (3.3) to some subset T of columns, i.e. we
solve a problem of the form:

minimize E Y 3.5
JET

subject to X gy =1 i=1,.,N (3.6)
JET
y 20 JET (3.7

for some T S {1, ..., P} (we shall indicate in Section 3.4 how an initial

54 Chapter 3

set T may be chosen). Let y* be an optimal solution to (3.5) - (3.7) and A"
be an optimal solution to the dual of (3.5) - (3.7). Consider also the dual of
(3.1) - (3.3), in the form

N

maximize Z N (3.8)
i=1
N

subject to y g N <1 j=1,.., P (3.9)
i=1
A 20 i=1,..,N (3.10)

Observe that y satisfies the constramts (3.2), (3.3) and that);J_l y =
Z.'“l)\ (we suppose here that y is extended to a vector of R" by lettmg

=0 forJ € T). Hence, if A~ satisfies all constraints (3.9), it follows
from the duallly theorem of linear programming theory (see Chvdtal
(1983)) that y is an optimal solution to the LP relaxation (3.1) - (3.3). In
such a case, the column generatlon procedure does not need to proceed
further. On the other hand, if A" does not satlsfy (3. 9) that 1s if there
exists a column j € {l, ..., P} such that Z,_l g5)\ > 1, then the
current set T can be extended by this new index j, and a new iteration of
the column generation procedure can be started (alternatively, j can be seen
as a column with negative reduced cost for the relaxation (3.1) - (3.3)).
Classical LP theory ensures again that this procedure can be made to
converge in a finite number of iterations. In the next subsection, we discuss
the question of finding a violated constraint among (3.9).

3.2.3. The generation subproblem

The efficiency of column generation procedures is to a large extend
determined by the complexity of the so-called generation subproblem, that
is, in our case of the subproblem:

given)\T, .)\;\], is there j € {1, ..., P} such that ¥ P=1 Gjj)\;-F > 1?7 (3.11)

In many successful applications of column generation, the subproblem is
relatively easy, e.g. solvable in polynomial or pseudo-polynomial time (see
e.g. Gilmore and Gomory (1961), Desrosiers, Soumis and Desrochers
(1984), Ribeiro, Minoux and Penna (1989), and Minoux (1987) for a

A column generation approach to job grouping _ 35

general discussion). Other applications exist, however, where the
subproblem itself turns out to be hard (see e.g. Kavvadias and
Papadimitriou (1989), Jaumard, Hansen and Poggi de Aragdo (1991)). In
order to determine the complexity of our subproblem, notice first that
(3.11) can be rephrased as:

given)\T,)\ﬁ, is there a feasible group S such that ¥ 5)\T > 17 (3.12)

Now, (3.12) could certainly be answered if*we could find a feasible group
S which maximizes the expression Y ;cs A; over all feasible groups. We
may express this reformulation of the subproblem as follows. Introduce
variables

x; =1 if job i is in group S
=0 otherwise,
fori =1, ..., N, and
7z, =1 if tool k is required by some job in §,
=0 otherwise,
for k = 1, ..., M. The maximization version of (3.12) becomes

(Hirabayashi et al., 1984):

. MZ
>
*
>

maximize 3.13)
i=1
subject to a, X < 7 i=1,..., N;
k=1,.., M (3.14)
M .
Yz < C (3.15)
k=1
x; € {0,1} i=1,..,N (3.16)
7, € {0,1} k=1,.., M (3.17)
This problem is known to be NP-hard, even when)\1 = ..)\ 1
(Gallo, Hammer and Simeone, 1980). Notice that, when >\1 =, >‘N =

1, (3.13) - (3.17) boils down to determining a feasible group that contains
as many jobs as possible; this subproblem has been considered by Hwang
(1986) and Hwang and Shogan (1989). Problem (3.13) - (3.17) (and
generalizations thereof) has been investigated by a number of authors.
Hirabayashi et al. (1984) developed a branch-and-bound procedure for it.

56 Chapter 3

To obtain an upper bound, they solve the linear relaxation of the problem
by a specialized primal-dual algorithm. Mamer and Shogan (1987) use a
Lagrangian method with the help of subgradient optimization to solve the
relaxation of (3.13) - (3.17). This approach has been developed further by
Gallo and Simeone (1988) (see also Chaillou, Hansen and Mahieu (1989)).
Dietrich, Lee and Lee (1991) present a heuristic procedure for the problem
(see Section 3.4). They also use the LP-relaxation for obtaining an upper
bound, and present some valid inequalities to improve this bound and to
fasten up the branch-and-bound search.

From a practical viewpoint, (3.13) - (3.17) remains a hard problem to
solve. In particular, experimental results of Dietrich et al. (1991) show a
large gap between the LP-relaxation value and the optimal value of (3.13) -
(3.17). Our own experience also indicates that the LP-relaxation is
generally weak. Especially in the case where optimality in the column
generation procedure is nearly reached (i.e. where the generation
subproblem has an optimal value close to 1), the gap between LP- and IP-
formulation is considerable (often larger than 2). This results in large
search trees when attacking (3.13) - (3.17) by branch-and-bound. Another
drawback of solving (3.13) - (3.17) to optimality is that this only allows
one new column of the set covering problem to be generated in each
iteration (i.e., we find only one violated inequality of type (3.9)). This may
lead to a large number of iterations of the column generation procedure.
Because we are using the LP package LINDO in our experiments, and this
package does not allow to add columns to a model in a dynamic fashion,
one new LP problem has to be re-optimized from scratch in each such
iteration, a rather costly operation.

In view of all these considerations, we decided to use a complete
enumeration procedure for the solution of the generation subproblem. Thus,
in terms of the formulation*(3.12), we are not only interested in finding one
group S for which ¥ ;cs A\; > 1, but in finding all (or many) such groups.
All the corresponding columns may enter the set covering formulation, and
this tends to reduce the number of iterations of the column generation
procedure.

The enumeration procedure works as follows. First, we sort the dual
variables by nonincreasing values, say e.g.)\T >)\; = ... 2)\;\}. Then
we grow a binary tree, by successively attempting to include or not to
include each of the jobs 1, 2, ..., N in a feasible group. Early on in the
column generation procedure, the)\?’s are bad estimates of the optimal dual
variables, and hence the enumeration procedurg produces very quickly a
large number of feasible groups S with ¥,cs A; > 1. Therefore, the total
number of columns that is generated in one iteration is limited to a fixed
arbitrary number (100 in our implementation). For the instance sizes which

A column generation approach to job grouping 57

we considered in our experiments, the enumeration procedure always
remained manageable (see Section 3.5).

3.2.4. Computation of lower bounds via column generation

The column generation procedure can be summarized as follows (see
Section 3.4 for details about its implementation):

Initialisation : Generate an initial set T of columns of the set
covering formulation (3.1) - (3.3).

LP Solution : Solve the LP (3.5) - (3.7); let y* and A" be
optimal primal and dual solutions of (3.5) -
3.7).

Column Generation : Generate new columns by solving the
generation subproblem: that is, find mdlces
j € {1, .., P}suchthat TN_, qU>\ > 1,
and let T« T U {j } for each suchj.
If no such new columns can be found then
STOP: y* is an optimal solution of (3.1) -
(3.3); otherwise return to LP Solution.

When the column generation procedure stops we have an optimal solution
y for the LP relaxation (3.1) - (3.3). Rounding up the solution value EJGT

to the next integer gives a lower bound for the job grouping problem.
W}e will refer to the bound | Liet Y; -| as LB¢g-

It is also possible to compute weaker lower bounds on the optimal value of
the job grouping problem before the column generation procedure
terminates. To see this, let Z denote the optimal value of the generation
subproblem (3.13) - (3.17), as computed for instance in some iteration of
the column generation step (for the results below to be valid, the)\; may
actually be arbitrary numbers in [0,1], and do not necessarily need to arise
from the LP solution step). Farley (1990) observed the following:

Theorem 3.2 If Z > 1, then ¥V_,)\? /' Z is a lower bound on the
optimal va]ue of (3.1) - (3.3).

Proof: By definition, Z is the maximum value of N G;i)\ over j
(see (3.11)). Thus, N/ Z is a feasible solution for the dual
(3.8) - 3.10) of (3.1) - (3.3), and it follows that ¥ N_,)\l /Z

58 Chapter 3

is a valid lower bound for (3.1) - (3.3). |
Another lower bound can also be derived as follows:

Theorem 3.3 If Z = 1, then }:r}':l)\’; + N - ({1 - 7Z) is a lower
bound on the optimal value of (3.1) - (3.3).

Proof: Let y* be an optimal solution of (3.1) - (3 3). Notice that
DR =1 q'LyJ = 1@ =* ., N) and EJ_I yJ N. Hence,
?—1)’JZ‘éJ—l)’i)'*Eﬂ(l EJ~1quyJ))\
= T A I (- .-1q.J>\)yJ
> ‘}‘=1>\‘l‘+(1-2)zj_lyJ
> NN 4+ N(1-2). O

Theorem 3.4 IfZ > I, then TN_ X[/Z > £Y¥_ Al + N-(1-2).
Proof: Trivial. O

Theorem 3.4 shows that the bound given in Theorem 3.3 is strictly better
than the bound in Theorem 3.2 whenever Z > 1. When Z = 1, both
bounds coincide with the optimal value of (3.1) - (3.3). Thus, we will only
consider from now on the stronger bound ¥ % _, X;/Z. More precisely, we
define

LBFarley = [zh,)‘i/Z—I

LBFarley is obviously a valid lower bound on the optimal value of the job
grouping problem. As the column generation proceeds, Z approaches 1 and
LBFarley approaches the lower bound LB (see Farley (1990)).

3.2.5. Lagrangian relaxation

In this subsection, we present an alternative integer programming model for
the job grouping problem and we discuss the quality of the bounds that it
yields, either by continuous relaxation or by Lagrangian relaxation.

In this model, a variable Xij is used to denote the assignment of job i to one
of N groups, indexed by j (i = 1, ..., N; j = 1, ..., N) (one may best

A column generation approach to job grouping

think of the N groups as being initially empty).
We use the following notation

j
Y =
Zk _] =

=1

0
1
0
1
0

if job i is assigned to group j,

otherwise,

if group j is non-empty,

otherwise,

if tool k is used for the production of group j,
otherwise,

fori=1,...,.N,j=1,...,N, k =1,...,M.
The model is now:

minimize

subject to

N

Y ox. =1 i=1,..,N

=

i Xjj < Z; = } . II:]I;
J_ 3 "y ;
k=1,..M

M

szjsCyj i=1,..,N

k=1

v, € {01 i=1,..,N
j=1..,N
k=1,..,M

59

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

The objective function (3.18) minimizes the number of nonempty groups.
Restrictions (3.19) make sure that each job is assigned to some group.
Restrictions (3.20) assure that the tools needed for a job are available for
the production of the group to which the job is assigned. Restrictions (3.21)
describe the tool magazine capacity constraints for each group.

60 Chapter 3

The continuous relaxation of this model yields a weak [ower bound on the
optimal value. Indeed, the solution x;; = 1/N, Zyj = 1/N and yj = M/CN
=1, ..., N;j=1, .., Nk = II, ..., M) is feasible, with an objective
function value of M / C (which is trivially a valid lower bound; see Section
3.2.6).

Lagrangian relaxation could be used to compute a stronger bound. For
instance, if we dualize restrictions (3.19) with multipliers Ay, ..., Ay, we
obtain a lower bound LB p(A) by solving:

N N N
LB g(\) = minimize Y. y; + 3 N (1-X x; (3.18")
j=1 i=1 j=1

subject to (3.20) - (3.24).

Up to deletion of an additive constant, r‘f:l A, this problem can be
equivalently rewritten as

N N
minimize E (Y, -Z N X;;) . 3.18")
j=1 i=1

subject to (3.20) - (3.24).

Now problem (3.18"’"), (3.20) - (3.24) can be decomposed into N identical
subproblems, one for each value of j = 1, ..., N. Deleting the index j, the
generic form of each subproblem is:

N
minimize y - 3 A X (3.25)
i=1
subject to a, X £z i=1, .., N;
k=1,...M (3.26)
M
¥y 7z <Cy (3.27)

A column generation approach to job grouping 6l

y € {01} (3.28)
xi, € {0,1} i=1,..,N (3.29)
z, € {01} k=1,..,M (3.30)

If y = 0 in the optimal solution of (3.25) - (3.30), then also z = 0 for k
=1,..,M,x,=0fori=1,.., N, and the optimal value is 0. If y = 1
at optimality, then minimizing the objective function (3.25) becomes
equivalent to maximizing Z’LI A; x;. Therefore, we conclude that the
subproblem arising via this Lagrangian relaxation is essentially equivalent
to the subproblem (3.13) - (3.17) arising via column generation.
Denote by Z, as usual, the maximum of EILI A; x; under the constraints
(3.26) - (3.30). The previous discussion shows that the optimal value of
(3.25) - (3.30) is equal to min (O, 1 - Z). This in turn implies that the
lower bounds LB (M), computed from (3.18°), (3.20) - (3.24), is equal to
N_t A\ + N -min (0, 1 - Z). As we already know, this bound is weaker
than LBy, ., for all A such that Z > 1 (see Theorem 3.4), and coincides
with the optimal value of (3.1) - (3.3) when Z < [. Thus, the Lagrangian
relaxation approach described here does not yield better bounds than the
column generation procedure.
Observe that a "best possible” choice of the multipliers A\;, ..., Ay, i.e.
one leading to the maximum value of LBy g(N), could be searched for by a
subgradient optimization procedure (Fisher, 1981) or by a multiplier
adjustment procedure (Fisher, Jaikumar and Van Wassenhove, 1986). The
column generation procedure can also be seen as using an LP-solver to
adjust the values of the multipliers. The Lagrangian relaxation approach
will not be considered any further in this work.

3.2.6. Other lower bounds

We discuss in this subsection some more lower bounds for the job grouping
problem. By duality, the optimal value of the problem (3.8) - (3.10) is
equal to the optimal value of (3.1) - (3.3), i.e. (up to rounding) LBrg-
Thus, the optimal value of (3.8) - (3.10) under the additional restriction

A\ € {01} i=1,..,N (3.31)

is a lower bound on LB(g; we denote it by LBgp. This lower bound can
be interpreted as follows. Call two jobs compatible if they form a feasible
group and incompatible otherwise. Then, LBgp is nothing but the

62 Chapter 3

maximum number of pairwise incompatible jobs. The problem (3.8) -
(3.10), (3.31) is a so-called set packing problem. Conversely, a
construction similar to the one used for Theorem 3.1 shows that any
instance of the set packing problem can arise in that way. It follows from
this observation that computing LBgp is NP-hard (see e.g. Nemhauser and
Wolsey (1988) p. 117).

Tang and Denardo (1988b) propose a lower bound which is also based on
the concept of compatibility of jobs. In their so-called sweeping procedure,
they sequentially create a number of groups as follows. In each step of the
procedure, they first select a job (seed) which is compatible with the fewest
number of other (not yet selected) jobs (in case of a tie, the job for which
the set of compatible jobs requires the smallest number of tools is selected).
Next, the seed, along with all jobs which are compatible with it, are
selected to form one group. The procedure is repeated until all jobs have
been selected. The number of groups so created, say.L (i.e., the number of
steps of the sweeping procedure) is a valid lower bound for the job
grouping problem. In fact, L can best be seen as a lower bound on LBgp,
since the seeds are mutually incompatible, and hence define a feasible
solution of the set packing problem (3.8) - (3.10), (3.31). From this
viewpoint, the sweeping procedure is a greedy heuristic applied to (3.8) -
(3.10), (3.31).

Tang and Denardo (1988b) also point to the lower bound [M / C].
Combining this bound with L yields the lower bound LBgw =
max { [M / C], L} (Tang and Denardo, 1988b).

The lower bound LBgy, can be further improved by "incorporating” the
lower bound [M / C-IS in the sweeping procedure. More precisely, a lower
bound for the job grouping problem can be calculated in each step of the
sweeping procedure by summing the number of already created groups by
the sweeping procedure and the lower bound [| Uier Ty | 7 C],
where 1 is the set of "not yet selected" jobs, and T; is the set of tools
needed by job i. This procedure generates a sequence of valid lower
bounds, the first of which is equal to [M / C| and the last of which is
equal to L. We refer to this procedure as the “"modified sweeping
procedure”. It yields a new lower bound, equal to the maximum of the
bounds in the sequence, which we denote by LBpsw-

We have considered a number of lower bounds for the Job grouping
problem. Summarizing we have:

A column generation approach to job grouping 63

LBFarley < LBcg (see Section 3.2.4)

LBig < LBFarley (see Section 3.2.5)
LBgw = LBpysw (see this section)

In our implementation we use the bound LBygqw for its computational
simplicity and the lower bounds LBFarley and LBrg if LByqw is not
strong enough.

3.3. Upper bounds

In this section a number of heuristic methods will be described to compute
good solutions for the job grouping problem and hence upper bounds on its
optimal value. First, we will describe a number of procedures that
sequentially build groups. The second part will discuss procedures based on
solving the set covering formulation.

3.3.1. Sequential heuristics for grouping

Sequential heuristic procedures use a two-step approach for building each
group. In the first step, a job is picked to be used as a seed. Unless
explained otherwise, we always pick a job that requires the highest number
of tools. Then a selection rule is used to add jobs to the group until the tool
magazine capacity constraint prohibits the addition of any other job to this
group. The two-step procedure is repeated until all jobs are assigned to
some group. For selecting the next job to be assigned to a group (in step 2)
a number of different rules have been considered. We now describe them.
For a group S and a job i & S, let

t; = number of tools required by job i;

b; = number of tools required both by job i and by some job already in S.

1. MIMU rule
Tang and Denardo (1988b) select the job that has the largest number
of tools in common with the jobs aiready in the group. In case of a
tie, the job which requires the smallest number of additional tools is
selected. The procedure is called Maximal Intersection Minimal
Union. (Maximize b; ; in case of a tie minimize t;)

2. MI rule
This is the rule obtained if only the first part of the MIMU rule is
used, and ties are arbitrarily broken. (Maximize bi)

R

Chapter 3

MU rule

It is also possible to select jobs according only to the Minimal Union
criterion: select the job that requires a minimum number of additional
tools. (Minimize (t; - b;)

Whimey and Gaul rule

Whitney and Gaul (1985) favour jobs that bring with them a large
number of versatile tools. This idea is operationalized by selecting a
job for which the ratio (b;+1)/(t;+1) is maximal. (Maximize
b+ 1)/1;+1)

Rajagopalan rule

Rajagopalan (1985) proposes a number of procedures based on the
First Fit Decreasing rule for bin-packing. Among these, we consider
one that first assigns weights to the tools and then selects the job that
requires the most ’expensive’ tools. More precisely, each tool k
receives a weight a; equal to the number of jobs that require tool k
among the jobs that still have to be assigned to a group. Then, the
priority of job i is calculated by summing the weights a, of the tools
that must be added to the tool magazine in case job i is assigned to
the group. The job with the largest priority is selected first. For this
rule, the first job in each group (seed) is also selected according to
the same criterion.

Modified Rajagopalan rule

The procedure of Rajagopalan (1985) can be changed in the
following way: the weight a; for each tool k is defined as the number
of jobs that require tool k among the jobs already selected in the
group. The priority of a job is the sum of the weights of the tools
that are needed for that job. The job with the highest priority is
selected.

Marginal gain rule

The addition of job i to a group usually requires that extra tools be
loaded in the tool magazine. This new tool configuration may in turn
allow the execution of other, not yet selected, jobs; denote by p; the
number of such jobs. This rule selects a job i that maximizes p; (a
similar idea is used by Dietrich et al. (1991)).

3.3.2. Set covering heuristics

In the course of the column generation procedure, several set covering

A column generation approach ro job grouping 65

subproblems of type (3.5) - (3.7) are formulated. Each such subproblem
can be viewed as an approximation of the complete formulation (3.1) -
(3.4). In particular, each feasible solution of the system (3.6) - (3.7) is a
feasible solution of (3.2) - (3.3), and hence each 0-1 solution of (3.6) -
(3.7) defines a heuristic solution to the job grouping problem. We have
used this observation in various ways.

First, the solution of (3.5) - (3.7) found by LINDO during the column
generation procedure sometimes happens to be a 0-1 solution which
improves upon the current best solution. Such solutions can be detected
with very little additional computational effort and may avoid the use of
other upper bounding procedures.

It is also possible to systematically generate "good" 0-1 solutions of the
subproblem (3.5) - (3.7). This can be done using either a heuristic
procedure or an exact algorithm. We have considered both possibilities. As
a heuristic, we used the well-known greedy procedure (Nemhauser and
Wolsey, 1988 p. 466); this constructive heuristic recursively selects as next
group (column) one which contains a maximum number of jobs, until all
jobs are included in some group (i.e. are covered by some column).
Alternatively, subproblem (3.5) - (3.7) could also be solved to optimality in
0-1 variables, by relying on the capability of LINDO to handle mteger
programmmg problems. In view of the computational burden involved in
this approach, we chose to turn it into a heuristic by requiring only a small
number of variables to be integer. We only used this heuristic when the

. column generation procedure ended without an optimal solution. We will
% explain in Section 3.4 the implementational details of this approach.

3.4. Implementation

¥

An Sections 2 and 3, an overview has been given of the methods that can be
.used for obtaining lower bounds and upper bounds for the job grouping
‘;prohlem; Also, the general principle of the column generation procedure
and .the difficulty of solving the generation problem have been discussed.
Now, we focus on implementational issues. The procedure that we
1mplemented consists of four main steps. We first briefly sketch the whole
procedure before commenting on each individual step.

Step I: Use the heuristics of Section 3.3.1. to produce a first upper
bound.
Compute the simple lower bounds LBgy, and LByjgw-
If optimality is achieved then STOP

66 Chapter 3

Otherwise construct an initial set covering formulation using
the groups that have been generated using the heuristic
procedures.

Step II: Use the greedy heuristic to solve the initial set covering for-
mulation.
If optimality is achieved then STOP.
Otherwise use a heuristic to add a number of columns to the
initial formulation.
Solve again the resulting set covering formulation using the
greedy procedure. If optimality is achieved then STOP.

Step III: Solve the LP-relaxation of the current formulation.
Check whether the primal solution is integral and whether its
value improves the current upper bound.
Use the dual variables to formulate the generation subproblem
and generate new columns with negative reduced cost.
Calculate LBFarley' If optimality is achieved then STOP.
If no columns with negative reduced cost have been found,
then continue with Step IV.
Otherwise, update the set covering formulation and repeat Step
II1.

Step 1V: Use the last set covering formulation for finding an improved
heuristic solution.

In Step I an upper bound is obtained by using the 7 heuristics of Section
3.3.1 and retaining the best solution. A lower bound is obtained by
calculating the bounds LBgy and LBy gy of Section 3.2.6. If the lower
bound equals the upper bound, the procedure stops and steps II-IV are not
necessary. Otherwise the groups generated by the heuristics are used to
generate an initial set covering formulation of the problem.

Step II aims at improving the initial formulation and the current upper
bound before starting the column generation procedure. The first set
covering formulation is solved using the greedy heuristic (Section 3.3.2.).
If optimality is not established yet, then a heuristic based on the work of
Dietrich et al. (1991) is used for generating additional columns as follows.
Each job is considered as a seed, around which a group is built by
iteratively adding that job i for which the ratio pi/(t; - by is maximal,
where (t; - b;) is the number of additional tools needed for job i and p; is
the number of additional jobs that may be executed with the new set of
tools in the tool magazine (see Section 3.3.1). In this way N (number of
jobs) new groups (i.e. columns) are constructed and used to extend the set
covering formulation. This new formulation is solved again using the

A column generation approach to job grouping 67

greedy heuristic. Notice that the second part of step II is time consuming
(see Section 3.5.2); this is the main reason why we first apply the greedy
heuristic to the initial formulation rather than directly extending this
formulation.

The third step is critical to the procedure. First, the LP-relaxation of the
current set covering formulation is solved using the linear programming
package LINDO. The primal and dual solutions are stored, and the primal
solution is checked for integrality. If it is integral and involves fewer
groups than the current best solution, then its value is stored as a new
upper bound. The dual variables are then used in the generation
subproblem. This problem is solved using the enumeration strategy
described in Section 3.2.3. In the first steps of the column generation
procedure only a limited enumeration takes place because of (the self-
imposed) maximum of 100 columns that may be generated by the
enumeration procedure. When a complete enumeration is performed, the
optimal value Z of the generation subproblem is used for computing the
bound LBFarley' If this lower bound is equal to the upper bound the
procedure stops. If no new column has been generated (t.e. Z = 1 and
LBFarley = LB(g), then the column generation subroutine terminates, and
we continue with step IV. Otherwise, the new columns are added to the set
covering formulation. Also, to limit the size of the formulation, all columns
with a small reduced cost are eliminated. More precisely, columns for
which):fle q; A; < 1 - « are removed from the formulation, where « is
an arbitrary chosen parameter (¢ = 0.25 in our implementation). This may
cause the procedure to cycle, as columns are removed from the
formulation, then enter it again, etc. In our tests (with o = 0.25) cycling
occurred for 4 instances out of 550, but could be avoided when the
procedure was run anew with « set to a larger value.

When there is still a gap between the upper and lower bound generated in
Steps I-1II, more work has to be done. A branch-and-bound procedure
could be used to establish optimality. However, it is also possible to use
the last set covering formulation to improve the upper bound, as we
explained in Section 3.3.2. In our implementation, we first solve this
formulation by the greedy heuristic. If this is not effective, we solve a
slightly modified set covering formulation with LINDO, requiring only a
limited number of variables to take 0-1 values. More precisely, the T
variables which assume the largest value in the continuous solution of the
set covering formulation (where columns for which ¥Y_, g A < 1-8
are removed to limit the size of the formulation, with 8 = 0.10), extended
by the additional constraint Z?=1 Y; = LB(, are forced to be integer.

68 Chapter 3

The parameter T is taken equal to LBrg +35 if the number of columns is
smaller than 50 (resp. LB + 15 if the number of columns is between 50
and 150, and LBrg + 25 otherwise). Because of the small number of
integer variables, the resulting mixed 0-1 problem is easily solved by
branch-and-bound.

Notice that the choices made for the various parameters of the procedure
(maximum number of columns pgenerated in each iteration, o, T, B)
influence the sequence of LP subproblems generated, and hence also the
heuristic solutions produced in Steps III and IV. These choices may
sometimes determine whether an optimal solution is found or not by the
procedure.

At the end of the procedure, a lower bound and an upper bound have been
obtained. In the next section, we discuss our computational experiments
with this procedure, and we show that both bounds often coincide (and
hence, are optimal).

3.5. Computational experiments
3.5.1. Generation of problem instances

We generated three sets of random instances. The first set contains 120
instances, the second set 400 instances and the third set 30 instances. Each
instance falls into an instance rype, characterized by the size (M,N) of the
tool-job matrix and the value C of the capacity. Accordingly, we denote the
type of an instance by a triple (M,N,C). The first set of instances contains
12 instance types obtained by combining each of the matrix sizes (20,15),
(40,30) or (60,40) with four different capacity values C;, C,, C3, C4, as
indicated in Table 3.1. For each size (M,N), we also define a pair (Min,M-
ax) of parameters with the following interpretation:

- Min = lower bound on the number of tools per job,

- Max = upper bound on the number of tools per job.

The second set of instances was created according to rules suggested by
Tang and Denardo (1988b) in order to allow some comparison with the
results of these authors. It involves four instance types, defined by the
values of the parameters displayed in Table 3.2.

For each problem size (M,N) in the first (resp. second) set, 10 (resp. 100)
random matrices A were generated. For each j = 1, ..., N, the j-th column

A column generation approach to job grouping 69

Table 3.1 Parameters first set of instances

Problem size C, Gy Csy Cy Min Max
M x N
20x 15 6 8 10 12 2 6
40 x 30 IS 17 20 25 5 15
60 x 40 20 22 25 30 7 20

Table 3.2 Parameters second set of instances

Problem size Cy Min Max
Mx N
10x 10 4 1 3
15 x 20 8 1 7
20 x 30 0 1 9
25x 30 10 1 9

of A was generated as follows. First, an integer t. was drawn from the
uniform distribution over [Min,Max]: this number denotes the number of
tools needed for job j, i.e. the number of 1’s in the j-th column of A, Next,
a set T; of t; distinct integers were drawn from the uniform distribution
over [l,JM]: these integers denote the tools required by job j, i.e. a; = 1 if
and only if k is in T.. Finally, we checked whether T, & T, or ”lli c T
held for any i < j. If any of these inclusions was found to hold, then the
previous choice of T was cancelled, and a new set T; was generated (as
observed by Tang and Denardo (1988b) the job grouping problem trivially
simplifies by removal of the columns included in other columns of the tool-
Job matrix). A problem instance of type (M,N,C) is now obtained by
combining an MxN tool-job matrix A with one of the corresponding
capacities displayed in Tables 1 and 2.

The random instances described above are similar to those generated e.g.
by Rajagopalan (1985), Tang and Denardo (1988b), Hwang and Shogan
(1989) and Kuhn (1990). It turns out that, for these instances, the feasible
groups of jobs are usually rather small (typically, 2 to 5 jobs). This can be
explained by the fact that the tool requirements of the jobs are completely
independent of each other, and that large subsets of jobs are therefore
unlikely to be compatible. This lack of interdependence between jobs is,
however, unlikely to reflect the structure of "realistic" tool-job matrices.

70 Chapter 3

Indeed, real-world instances are more likely to exhibit subsets of "similar"
jobs, characterized by "similar” tool requirements. Our third set of random
instances results from an attempt to capture this type of features. The
parameters for this set are displayed in Table 3.3.

Table 3.3 Parameters third set of instances

Problem size C Min Max Minjob | Maxjob
Mx N
40 x 40 20 7 10 5 8
50 x 50 25 8 12 6 10
60 x 60 30 10 15 8 12

Ten instances of each type (M,N,C) were generated as follows. First, a
number N, is drawn uniformly between Minjob and Maxjob, and a subset
of tools My of size exactly C is randomly chosen. Then, we create N;
"similar" jobs, by making sure that these jobs use only the tools in M, (and
hence, form a feasible group). These jobs are generated as explained before
for the first and the second sets of instances (except that they are restricted
to the tools in M,). When N, jobs have been defined, then the procedure is
iterated to produce N,, N5, ... additional jobs. This process stops after k
iterations, when almost all columns of the incidence matrix have been
generated (specifically, when Z‘f=1 N, = N - Maxjob). Then, the last
columns are filled independently of each other, as for the first two sets of
instances.

This completes the description of our problem instances. It will be observed
in the next section that the degree of difficulty of these instances is
somewhat related to the relative size of the capacity with respect to the
maximum number of tools used by the jobs (viz. the parameter Max). We
call sparse those problem instances for which Max/C is small, and dense
those for which the ratio is close to 1. Notice, in particular, that all
instances of type (M,N,C,) are dense, and that the instances of type
(M,N,C,), as well as the instances in the third set, are rather sparse.

3.5.2. Computational results
The column generation procedure has been implemented as described in

Section 3.4, using Turbo Pascal, and tested on the instances described in
Section 3.5.1. The experiments were run on an AT personal computer with

A column generation approach to job grouping 71

16 MHz 80386sx processor and 80387 mathematical coprocessor. No
systematic attempts have been made to optimize the running times of the
codes, because our primary goal was to establish the quality of the bounds
computed.

Before going into detailed comments, we mention what we see as our two
most interesting results. First, for all instances tested, the gap between the
LP-relaxation of the set covering formulation and the value of the optimal
solution was smaller than 1. In other words the column generation
procedure always provided a lower bound LB equal to the optimal value
of the job grouping problem (note, however, that this empirical observation
is definitely not a theorem: indeed, it follows from Theorem 3.1 that LB
can, for some possibly contrived examples, be arbitrarily far from the
optimal value). Second, using the column generation procedure described in
Section 3.4.1 we were able to solve 541 of our 550 instances to optimality.
Moreover, all instances have been solved to optimality by variants of the
same procedure, characterized by different choices of the parameters
(number of new columns generated in each iteration, value of the reduced
costs under which columns are deleted, etc.).

The quality of the lower bounds LBgyw, LBpgw, LBcg and of the
solutions obtained by the sequential heuristics in step I of the procedure is
compared in Table 3.4. The first column (labelled OPT) gives the average
number of groups in the optimal solution, per instance type. The next three
columns bear on the lower bounds; columns 5 to 11 correspond to the
upper bounds delivered by the seven sequential heuristics, and the last
column (labelled Best) reports on the upper bound obtained by retaining the
smallest of the previous seven ones. Each entry in columns 2 to 12 has the
format § (). In a row labelled (M,N,C) and a column labelled X, & is the
average difference between the lower (or upper) bound X and the optimal
value of the instance, over all instances of type (M,N,C); thatis, § = X -
OPT, where X is the average of the lower (or upper) bound X. In columns
5 to 11 (that is, for the sequential heuristics), the entry o denotes the
number of instances of type (M,N,C) for which the upper bound X is best
among the sequential heuristics. In the remaining columns 2, 3, 4 and 12,
o is the number of instances for which X is equal to the optimal value of
the instance.

As mentioned before, LB is equal to the optimal value for all instances
tested. The lower bounds LBgy and LBpsqw are often not sufficiently
sharp to prove optimality. For only 35 % of the instances (especially
smaller, denser instances), LBgy, gives an optimal lower bound. For an

Table 3.4 Quality of lower and upper bounds

Instance type Lower bounds Upper bounds
M x N OPT LBgw LBpysw LBeg MIMU MI MU Whitney Rajago- | Modified | Marginal Best
and Gaul palan Rajago- gain
1 2 3 4 5 6 7 8 9 palan 10 11 12
20 x 15 6 9.3 -0.5(5) -0.4 (6) 0(10) 0.3 (10) 0.3 (10) 0.4(9) 0.3 (10) 1.1(3) 0.3 (10) 0.5(8) 03(7
8 57 -1.2(1) 1201 0(10) 04(7 0.2(9 0.7(4) 0.5(6) 0.8(4) 0.1 (10y 06 (5 1(9)
10 39 -1.9(0) -1.8(0) 0 (10) 0.4(7) 0.4(7 0.6(5) 04(7 1.0(2) 0.4(7) 0.6 (5) 0.1(9
12 2.9 09(1D 09 (1) 0(10) 0.2(9) 0.3 (8) 0.6 (5) 0.3(8) 0.9(3) 0.3(8) 0.5(6) 0.1(9)
40 x 30 15 19.0 0.7(5) 03(7 0 (10y 03(7 0.0 (10) 0.6 (5) 0.2(8) 0.8(3) 0.0 (10) 03(7) | 0.0(0)
17 15.5 -0.7(5) -0.7(5) 0(10) 0.3(8) 02(9) 0.6(5) 0.2(9) L1(n 0.1 (10) 0.6(5) 0.1(9
20 10.9 2.1 (0) 200D 0(10) 09(7 0.6 (10) 1.6 (2) 1.0 (6) 24 (0) 0.6 (10) 1.4 (3) 0.6 (4)
25 6.7 -4.7(0) 43(0) 0(10) 0.9 (10) 0.9 (10) 1.9 (0) 1.0(9) 3.0(0) 0.9 (10) 20(1D) 09 (1)
60 x 40 20 25.9 08(5) 0.6 (7T 0(10) 0.5(8) 0.3 (10) 0.6(7) 0.4(9) 0.9 (4) 0.3 (10) 0.6(7) 03(7
22 223 -8.6(2) -8.6 (2) 0(10) 0.6 (5) 0.1 (10) 1.0(3) 0.5(6) 1.4(0) 0.1 (10) 0.7(5) 0.1(9
25 17.0 9.6 (0) 9.6(0) 0(1i0) 1.5(3) 0.8(9) 2.5(0) 1.6(1) 23(0) 0.7 (10) 1.9 (0} 0.7(3)
30 12.0 -7.0(0) 6.9 (0) 0 (10) 1.3(6) 0.9 (10) 28(0) 1.3(6) 39(0) 1.0¢(9) 32(0) 09(NH
10 x 10 4 5.1 | -0.7(38) | -0.5(54) 0 (100) 0.2 (95) 0.2 (95) 0.5 (62) 0.2 (95) 0.6 (58) 0.2 (95) 0.5(65) [0.1 (87
15 x 20 8 9.3 -0.7 (45) | -0.5(57) 0 (100) 0.4 (88) 0.4 (90) 0.7 (65) 0.5 (83) 1.2 31) 0.4 (89) 0.8 (59) | 0.3 (68)
25x 30 10 15.0 | -0.7(47) | -0.5(62) 0 (100) 0.5 (79) 0.4 (90) 0.9 (43) 0.5 (73) 1.5 (11) 0.4 (50) 0.8 (50) | 0.3 (75)
20 x 30 10 140 [0.8 (39) -0.6 (45) 0 (100) 0.5 (81) 0.4 (92) 1.3 (26) 0.6 (73) 1.7 (15) 0.4 (9] 1.1 (33) | 0.3 (66)
40 x 40 20 6.2 4.2(0) -4.2(0) 0 (10) 1.0 (6) 0.8(8) 0.8 (8) 1.0 (6) 59(0) 1.1(6) 1.4(3) 0.6(4)
50 x 50 25 6.3 43(0)(43(0) 0(10) 1.5(2) 1.1(6) 1.3(6) 09(6) | 103(0) 1.8 (4) 39(1)| 05(5)
60 x 60 30 77| -5.7(0)| -5.7(0) 0(10) 1.5(6) 0.7 (9) 1.5(4) 1.6 (4) | 12.2(0) 1.1 (6) 36(3) | 06(5)

4

£ 421doy)

A column generation approach to job grouping 73

additional 10 % of the instances, LBpsqw is optimal. But even LBy qy is
only optimal for 2 out of the 90 sparse instances of type (M,N,C3) or
(M,N,C4). This bad bebaviour of LBgy and LBpsqyw on sparse instances
is intuitively easy to understand. Indeed, as capacity increases, each pair of
jobs becomes more and more likely to be compatible; hence, the sweeping
procedure tends to become wuseless, as only small sets of pairwise
incompatible jobs can be produced (notice that the same conclusion applies
for the set packing lower bound LBgp - see Section 3.3.2). Tang and
Denardo (1988b) recognized this weakness of the sweeping procedure, and
proposed the lower bound M/C with the hope to partially palliate it. But
the latter bound is usually weak too.

As far as the sequential heuristics go, it appears from columns 5 to 11 that
the MIMU, MI, Whitney and Gaul and Modified Rajagopalan rules
outperform the other rules. In particular, the MI rule performs extremely
well for all instance types, whereas the Modified Rajagopalan rule is
especially well suited for the first two sets of instances, but is slightly
weaker for the third set. In some instances, the Whitney and Gaul or the
MIMU rule provide an optimal solution where the other procedures leave a
gap. The MU rule is not very effective for the first two sets of instances
(which may help explain why MI performs better than MIMU), but is
better for the third set (it is intuitively easy to understand that, for the in-
stances in the latter set, the Minimal Union rule tends to preserve the
feasible groups which have been artificially built into the instance). The
performance of the Marginal gain and the Rajagopalan rule is very weak,
especially for large, sparse instances.

The best upper bound (column 12) is optimal or within one unit of
optimality for nearly all instances, which explains that the average
deviation from the optimal value is smaller than 1 for all instance types.
For large, sparse instances, a gap often remains. Notice however that the
"structured" instances in the third set (though very sparse) behave better
with this respect than other sparse instances of type (40,30,25) or (60,40,-
30). One may easily admit the idea that, for the latter instances, the built-in
structure helps in finding an optimal solution (see also the comments on
Table 3.5 hereunder).

Table 3.5 summarizes the results obtained by the complete procedure
described in Section 3.4. We concentrate on the moments at which
optimality is established; that is, Table 3.5 gives, for each instance type,
the number of instances solved in each step of the procedure (the numbers
in brackets refer to 4 instances for which LB could not be computed

Table 3.5 Performance of different steps column generation procedure

Instance type Step 1 Step 1l Step 111 Step 111 Step IV
MxN CG P
20x 15 6 6 + 2 2
8 9 1
10 9 1
12 1 8 1
40 x 30 15 7 3
17 5 4 3
20 4 2 4
25 1 1 7D
60 x 40 20 7 2 1
22 2 7 1
25 3 4 3
30 1 9
10 x 10 4 44 1 43 9(2) 1
15 x 20 8 43 1 ++ 27 19 73
25 x 30 10 46 29 20 4(1)
20 x 30 10 27 38 (1) 29 5
40 x 40 20 4 4 2
50 x 50 25 +4 6 (1) 3
60 x 60 30 + 6 4
All instances 188 2 (+6) 204 (2) 103 (2) 44 (5)

174

£ 121doy)

A column generation approach to job grouping B 75

exactly because cycling occurred in Step III, and to 5 instances for which
no optimal solution had been found by the heuristics after completion of
Step IV - see Section 3.4; all these instances were ultimately solved to
optimality by a variant of the procedure using different parameter settings).
Zero values are omitted from the table to improve readability.

Thus, for instance, the column labelled "Step I" displays the number of
instances for which optimality is achieved in Step I of the procedure : these
are the instances for which the lower bound LBpsqy is equal to Best, viz.
the best sequential heuristic value. The instances for which LBpsqw 18
optimal and Step II produces an optimal solution are recorded in column
"Step II" (a "+" in this column denotes an instance where LByqy is not
optimal, but Step II produces an optimal solution). If optimality is not
established in either Step I or Step II, the column generation process starts.
Column "Step III-CG" records the number of instances for which the
column generation procedure provides a lower bound (LBFarley or LBerg)
equal to the best upper bound obtained in Steps I and II. Those instances
for which an optimal 0-1 solution is found in the course of solving the set
covering LP-relaxation are accounted for in column "Step III-IP". After
Step III, instances remain for which the lower bound LB is smaller than
the best available upper bound. Column "Step IV" shows the number of
instances for which solving the set covering formulation with a limited
number of integer variables was enough to produce an optimal solution
with value equal to LB¢g.

For 188 out of 550 instances (34 %), optimality is achieved in Step I. All
these are dense instances (of type (M,N,C;) or (M,N,C;)), with the
exception of one small (20,15,12) instance. This comes as no surprise : as
discussed before, both the lower bound LByqw and the best upper bound
tend to deteriorate when sparsity increases (see Table 3.4).

The upper bound computed in Step II is used to prove optimality for §
instances only. Thus, this step does not seem very useful as far as finding
good solutions goes. One should however bear in mind that the additional
columns produced in this step may improve the quality of the initial set
covering model, and thus reduce the number of subsequent column genera-
tion steps. More on this topic below.

Optimality is achieved in Step III for 307 instances (56%). For 204 (37 %)
of these, an optimal solution had already been found in either Step I or
Step II, and only the lower bound is improved here; for the other 103
instances (19 %), both the optimal lower bound and the optimal solution

Table 3.6 Computation times and size of problems

Instance type Computation times (in seconds)

M x N C Heuristics Steps I-1V Steps [-1V # iterations # columns # maximal feasible

all instances all instances col. gen. instances | col. gen. instances col. gen. instances | columns, all instances
1 2 3 4 5 6

20x 15 6 2.6 (2.5,2.8) 12 (2.5,44) 26 (15,44) 4027 23 (20,29) 33 (18,61)
8 23(2324) 26 (10,40) 26 (10.40) 3.5(1,6) 29 (23,41) 89 (51,138)
10 2.2(2.1,2.4) 27 (12,36) 27 (12,36) 3.0(1,5) 41 (19,77) 189 (116,284)
12 2.1(2.0,2.3) 30 (2,51) 33 (14,51) 3.7(1,8) 43 (23,74) 327 (238,514)
40 x 30 15 17 (16,18) 34 (16,79) 75 (66,79) 3.0(2,9) 49 (47,52) 147 (57,283)
17 16 (15,17) 56 (15,144) 96 (79,144) 3.2 2.6 71 (56,108) 310 (141,549)
20 15 (14,15) 230 (134,349) 230 (134,349) 56 (3,7 132 (67,180) 931 (342,1640)
25 14 (13,14) 777 (422,1654) T77 (422,1654) 8.7 (7,11) 252 (175,344) 5909 (2032,8745)
60 x 40 20 42 (42,43) 102 (42,249) 242 (237,249) 5.7(.7 85 (63,103) 215 (137,311
22 39 (37,42) 192 (41, 318) 229 (183,318) 3.5(1,6) 90 (62,125) 404 (247,694)
25 37 (36,38) 449 (263,683) 449 (263,683) 55027 178 (121,263) 1010 (597,1694)
30 36 (35,36) 1168 (860,1512) 1168 (860,1512) 7.8 (7,10 288 (224,364) 5036 (2871,9099)
10 x 10 4 1.1(1.0,1.2) 7.1 (1.0,35) 12 (6,35) 2.1(1,6) 13 (9,24) 18 (7,39)
15 x 20 8 3.8(3.54.2) 24 (3.6,113) 39 (14,113) 4.0 (1,8) 32 (18,62) 76 (28,202)
25 x 30 10 12 (11,13) 54 (11,197) 90 (50,197) 4.3 (2.11) 67 (36,131) 263 (59,879)
20x 30 10 10 (9.3,11) 62 (9.6,158) 81 (38,158) 4.7 (1,13) 58 (35,120) 230 (78,667)
40 x 40 20 25 (24,25) 1342 (494,2409) 1342 (494,2409) 14.5 (6,26) 184 (133,213) 5663 (4304,6950)
50 x 50 25 47 (46,47) 2202 (753,3887) 2202 (753,3887) 24.7 (6,42) 247 (186,325) | 22562 (13823,32498)
60 x 60 30 79 (78,80) 4759 (1967,8626) 4759 (1967,8626) 29.9 (15,49) 284 (172,351) | 31878 (20336,43827)

9%

£ 421doy)

A column generation approach to job grouping 77

are improved in Step III. These figures sustain our previous claims
concerning the strength of the linear relaxation of the set covering
formulation of the job grouping problem, and the usefulness of Step III in
solving this problem to optimality (especially sparse instances).

Finally, for 44 instances (9%), Step IV has to be performed in order to
find an optimal solution. This last step is mostly required for sparse
instances, but is almost never needed for the "structured" instances in the
third set. This confirms our earlier conjecture that most heuristics perform
better on the latter instances than on completely unstructured ones.

Table 3.6 contains information about the time required to solve the various
instance types; comparison of these times provides additional information
on the effectiveness of the procedure. Each entry has the format "average
value (minimal value, maximal value)" (the four instances for which the
column generation procedure cycles have not been taken into account when
computing these average or extremal values). Column 1 gives the
computation time for Step I of the procedure and column 2 records the total
computation time for the whole procedure (Steps I to IV) (all times are in
seconds). In columns 3, 4 and 5, averages and extremal values are restric-
ted to those instances for which execution of the column generation step
(Step III) was necessary. Column 3 reports the total computation time
required by Steps I-IV for these instances. Column 4 gives the number of
iterations of the column generation step, that is the number of calls on the
linear programming package. Column 5 indicates the maximum number of
columns occurring in the linear programming subproblems. The figures in
this column are to be contrasted with those in Column 6, where the number
of maximal feasible groups for each instance type is recorded. As
mentioned in Section 3.2.1, this number indicates the size of the complete
set covering formulation of the job grouping problem. Thus, it also gives a
measure of the difficulty of the instances.

A look at column 6 immediately reveals that only the sparse instances are
really big. For many of the dense instances (e.g., of type (M,N,C,)), the
complete column generation model could have been explicitly generated
and solved by LINDO, rather than resorting to a column generation
procedure. Let us remember, however, that the characteristics of the dense
instances in the second set correspond to those of the instances solved by
Tang and Denardo (1988b); therefore, considering such instances allows to
put our computational results in perspective.

The time required by Step I of the procedure (column 1) remains very short

78 Chapter 3

in comparison with the total computing time. It exhibits a tendency to
decrease as capacity increases; this may be explained by the fact that, as
capacity grows larger, the number of groups built by the heuristics
decreases (see Table 3.4).

As may be expected, the total computation time grows together with the
problem dimension, and especially with the number of maximal feasible
columns (column 6). The number of iterations of the column generation
subroutine and the size of the LP subproblems grow simultaneously. For
small or dense instances, the computation times remain very short. E.g.,
for the instances in the second set, the average computation times are
between 7 and 62 seconds, and all these instances can be solved within 3%
minutes. The computation times grow by a factor of 3 when the dimension
goes from (10,10,4) to (15,20,8), and by a factor of 2.5 from (15,20,8) to
(20,30,10) or (25,30,10). Tang and Denardo (1988b) do not report
computation times, but the number of nodes enumerated by their branch-
and-bound procedure for the same instance types roughly grows by factors
of 10 and 15, respectively.

For larger, sparser instances, computation times become more considerable.
This can be explained in part by the larger number of iterations of the
column generation step, and by the increasing size of the LP subproblems.
Notice that these two factors may be influenced by the choice of some of
the parameters defining the procedure; in particular, generating less
columns in each step would result in a larger number of iterations, but
would also decrease the time spent in each iteration. In fact, it is likely that
the efficiency of the procedure could be boosted by using a heuristic to
solve the generation subproblem, instead of the complete enumeration
approach that we used. Complete enumeration would then only be required
in the last iterations of the column generation step, to check that no more
columns with negative reduced cost can be found. However, as explained
in Section 3.2.3, such an approach could only be efficiently implemented if
an LP solver more flexible than LINDO is available.

Finally, let us mention that the time needed to execute Step II also grows
sharply with increasing capacity. This time is not singled-out in Table 3.6,
but represents an important chunk of the total computation time: on
average, 4 seconds (resp. 52, 146, 177, 505 and 1029 seconds) for the
instances of size (20,15) (resp. (40,30), (60,40), (40,40), (50,50) and
(60,60)). In order to assess the contribution of Step 2 to the efficiency of
the whole procedure, we ran some experiments in which we disabled this
step (more exactly, we disabled the demanding second half of this step,

A column generation approach to job grouping 79

which extends the initial set covering formulation - see Section 3.4). It
turned out that this modified procedure was slower, on the average, than
the initial one - even though it was faster for some particular instances.

3.6 Summary and conclusions

In this paper, various lower and upper bounds have been proposed for the
job grouping problem. In particular, we showed how the optimal value of
the LP-relaxation of the set covering formulation of the problem can be
computed by a column generation procedure. Although the column
generation subproblem is NP-hard, the procedure that we implemented
could solve to optimality 550 instances of the problem. Many of these
instances are larger and sparser than the ones previously solved in the
literature. This was only possible because of the tightness of the lower
bound computed : for all 550 instances, the lower bound was equal to the
optimal value of the instance.

An interesting area for further research may be the development of fast
heuristics that would provide optimal results for large instances of the
problem. It would also seem interesting to be able to compute good
heuristic solutions and tight upper bounds for the column generation
subproblem. In chapter 4 we study extensions of the present setting (o
situations involving multiple machines, or where each tool requires several
slots in the tool magazine.

Acknowledgments

We gratefully acknowledge useful discussions on the topic of this work
with Antoon W.J. Kolen and F. Soumis.

Chapter 4

The job grouping problem for
flexible manufacturing systems:
some extensions™

4.1. Introduction

In Chapter 3 the job grouping problem for flexible manufacturing systems
has been studied. This chapter concentrates on extensions of the previous
model. First, the extension where tools may require several slots in the tool
magazine is discussed. Next, we consider the case where several identical
machines are necessary for production. In both cases, the procedures used
in Chapter 3 are extended to derive strong lower and upper bounds on the
optimal value of the problem and results of computational experiments are
presented. In Section 4.4 we discuss the possibility to incorporate due dates
in the model. Section 4.5 summarizes and concludes the chapter.

4.2. Multiple slots
4.2.1. The job grouping problem

In Chapter 3 a job grouping model is considered in which each tool
requires exactly one slot in the tool magazine. However, tools often require
several slots in the magazine as observed by Stecke (1983; 1989), Kusiak
(1985a), Rajagopalan (1985; 1986) and Hwang (1986). Therefore, we relax
the one-slot assumption, by allowing the number of slots necessary for a

* An article based on parts of this chapter is submitted for publication.

82 Chapter 4

tool to be tool-dependent. We will perform computational experiments on
problems for which tools need 1 to 3 slots, as suggested by Rajagopalan
(1985), Shanker and Tzen (1985) and Mazzola, Neebe and Dunn (1989).
First, we briefly discuss the set covering formulation of the job grouping
problem and the column generation procedure used to solve it. The changes
that are necessary in case tools need several slots in the tool magazine are
incorporated in this explanation.

Assume there are N jobs and M tools. We denote by s, the number of slots
that are necessary to place tool k in the tool magazine. The tool
requirements are represented by a so-called tool-job matrix A of dimension
M x N, with:
a; =1 if job i requires tool k

= (0 otherwise,
fork=1,...,Mandi =1, ..., N.
A subset (group) S of jobs (or of columns of A) is called feasible if the
tools that are needed for these jobs together require at most C slots, i.e. if
Y {sc: ag=1forsomei €S} < C. We do not consider the
possibility of tool overlap (where the total number of slots needed by a set
of tools is strictly less than the sum of the slot requirements of the separate
tools (Stecke, 1983)).
The job grouping problem consists in finding a minimum set of feasible
groups such that each job is contained in (at least) one group. It can be
formulated as a set covering problem, as shown in Chapter 3. Let us
suppose that there exist P feasible groups, and let

g = 1 if job i is contained in the feasible group j,

0 otherwise,
fori=1,...,Nandj =1, ..., P.
The job grouping problem is:

Il

P

minimize y i 4.1)
j=1
p

subject to Y gy = i=1,..,N 4.2)
j=1 o
y, =0 i=1,..,P 4.3)

Y integer j=1,...,P 4.4)

The job grouping problem: some extensions 83

where y; = 1 if group j is part of the optimal covering. In comparison with
the mocfel described in Chapter 3 the introduction of tool-dependent slot
requirements has influenced the set of feasible columns {q:} (where q =
(qu cens qNJ)), but model (4.1) - (4.4) remains otherwise the same.

Notice that the job grouping problem with s, > 1 for some k could also be
transformed into an equivalent job grouping problem with s = 1 for all k
in a straightforward way. Namely, consider the tool job matrix A and the
values sy for each tool k. Now, construct a new tool job matrix A’ where
each row k in A is replaced by s, similar rows in A’. The tool job matrix
A’ has T, s rows and N columns. Solving the job grouping problem
with tool job matrix A’, sp = 1 for all k and tool magazine capacity C is
equivalent to solving the job grouping problem described by the parameters
A, s, and C.

This transformation has the disadvantage that it expands the size of the
problem, but clearly shows that the job grouping problem where tools need
several slots is a special case of the single-slot problem. Thus, the lower
and upper bounding procedures developed in Chapter 3 can be easily
adjusted to this case. In fact, this section can be seen as restating the
procedures described in Chapter 3 in such a way that they can be applied
directly to the instance A, s, C. The result will be a general procedure for
the "multiple slots" problem with no preprocessing of the data. The new
formulation will be more compact. Notice that we may expect instances
with s > 1 to have a different behaviour than the single-slot ones. This
will be investigated by performing computational experiments.

4.2.2. Lower bounds via column generation

To find a lower bound for the set covering problem (4.1) - (4.4), we want
to solve its LP-relaxation, i.e. the problem (4.1) - (4.3). A column
generation procedure is used to calculate this bound, as in Chapter 3. At
each iteration of the column generation procedure, we solve the LP
obtained by restricting (4.1) - (4.3) to some subset T of columns, i.e. we
solve a problem of the form:

minimize 2y (4.5)
JET

subject to y q;; ¥ = 1 i=1,..,N 4.6
JET

y, =0 JET @.7)

84 Chapter 4

for some T ¢ {1, ..., P}. Let y* be an optimal solution to (4.5) - 4.7)
ani A" be an optlmal solutlon to the dual of (4.5) - (4.7).

In ¢ach iteration of the column generation procedure the generation
subproblem has to be solved (see Section 3.2). The generation subproblem
identifies columns that have negative reduced cost and may, when added to
the set covering formulation, improve the optimal solution value. The
generation subproblem is

given)\I, ey)\;J, is there a feasible group S such that ¥ ;¢)\? > 17 (4.8)
After introduction of different sizes for the tools the generation subproblem

can be formulated as follows (see also Hirabayashi, Suzuki and Tsuchiya
(1984)):

N *
>N X

maximize 4.9
i=1
subject to a; Xy £ zg i=1, .., N;
k=1,.., M (4.10)
M
Yoseze s C (4.11)
k=1
x; € {0,1} i=1, .., (4.12)
z, € {0,1} k=1,., M 4.13)
where
X =1 if job i is in group S
=0 otherwise,
fori=1, ..., N, and
zp, =1 if tool k is required by some job in S,
=0 otherwise,

fork =1, ..., M.

Only restrlctxon (4.11) has changed in comparison with the generation
subproblem in Section 3.2.3, so as to incorporate the number of tool slots
needed for each tool. The problem (4.9) - (4.13) is NP-hard and we solve
it using the same enumeration procedure as in Section 3.2.3. The column
generation procedure that is used is basically the same as described in
Section 3.2.4. When the column generation procedure stops we have an
optimal solution y for the LP relaxation (4.1) - (4.3). Rounding up the
solution value) et yJ to the next integer gives a lower bound for the job

The job grouping problem: some extensions 85

grouping problem. We will refer to the bound [¥ eﬁ 1 as LB¢g.

will also consider the lower bound LBFarIey = |_ i1 N2 1. where Z
is the optimal solution value of the generation subproblem (see also Farley
(1990)).

4.2.3. Other lower bounds

The sweeping procedure (Tang and Denardo, 1988b) provides a lower
bound for the job grouping problem when all tools need 1 slot. Tang and
Denardo (1988b) did not consider the "multiple slots” problem. However,
the sweeping procedure can be modified to be applicable to "multiple slots"
instances. Call two jobs compatible if they form a feasible group. The
sweeping procedure sequentially creates a number of groups as follows. In
each step of the procedure, a job (seed) first is selected which is compatible
with the fewest number of other (not yet selected) jobs (in case of a tie, the
job for which the tools necessary for the set of compatible jobs require the
smallest number of slots in the tool magazine is selected). Next, the seed
along with all jobs which are compatible with it are selected to form one
group. The procedure is repeated until all jobs have been selected. The
number of groups so created, say L, is a valid lower bound for the job
grouping problem.

We also use the trivial lower bound | LY _, s / C—| Combining this
bound with L yields the lower bound LBgy, = max { {(reM._, s/ C], L}

A better lower bound can be obtained in each step of the sweeping
procedure by summing the number of groups already created by the
sweeping procedure and the lower bound |§ EkE UieT; Sk / C 7], where
I'is the set of "not yet selected" jobs, and T; is the set of tools needed for
Job i. This procedure generates a sequence of valid lower bounds, the first
of which is equal to [Et‘:x s/ C | and the last of which is equal to L.
We refer to this procedure as the "modified sweeping procedure". It yields
a new lower bound LBpsqw, equal to the maximum of the bounds in the
sequence.

4.2.4. Upper bounds

We apply sequential heuristic procedures that use a two-step approach for
building groups. In the first step, a job is picked as a seed. Unless
explained otherwise, we always pick a job for which the tools require the
highest number of slots. Then a selection rule is used to add jobs to the
group until the tool magazine capacity constraint prohibits the addition of
any other job to this group. The two-step procedure is repeated until all

86 Chapter 4

jobs are assigned to some group. For selecting the next job to be assigned
to a group (in step 2) a number of different rules have been considered.
For a group S and a jobi &€ S, let

t; = number of slots necessary for the tools required by job i;

b, = number of slots necessary for the tools required both by job i and by

1
some job already in S.

1. MIMU rule: select a job i for which b; is maximal; in case of a tie
select a job for which t; is minimal (this is a straightforward

generalization of the procedure by Tang and Denardo (1988b)).

MI rule: select a job i for which b; is maximal.

MU rule: select a job i for which (t; - b;) is minimal.

Whitney and Gaul rule: select job i for which (b+1)/(;+1) is

maximal (Whitney and Gaul (1985) did not consider the "multiple

slots" problem, but this rule is a straightforward extension of the
single-slot rule).

5. Rajagopalan rule: Each tool k receives a weight a equal to the
number of jobs that require tool k among the jobs that still have to be
assigned to a group. Then, the priority of job 1 is calculated by
summing the weights si - a, of the tools that must be added to the
tool magazine in case job i is assigned to the group. The job with the
largest priority is selected first. For this rule, the first job in each
group (seed) is also selected according to the same criterion (see
Rajagopalan (1985)).

6. Modified Rajagopalan rule: The Rajagopalan rule can be changed in
the following way: the weight a, for each tool k is defined as the
number of jobs that require tool k among the jobs already selected in
the group. The priority of a job is the sum of the weights s, - aj of
the tools that are needed for that job. The job with the highest
priority is selected.

7. Marginal gain rule: The addition of job i to a group usually requires
that extra tools be loaded in the tool magazine. This new tool
configuration may in turn allow the execution of other, not yet
selected, jobs; denote by p; the number of such jobs. This rule selects
a job i that maximizes p;.

Ll

Compared to what was done in Section 3.3.1, the MIMU, MI, MU and
Whitney and Gaul rule have been adjusted by simply updating the defini-
tions of parameters t; and b;. Rules 5 and 6 have been changed by incor-
porating the number of slots in the definition, as in Rajagopalan (1985).
The Marginal gain rule uses the new definition of feasibility of a group.
The set covering heuristics can also be used as described in Section 3.3.2.

The job grouping problem: some extensions 87

4.2.5. Adjusting the column generation procedure

The column generation approach can be easily adapted to the multiple slots
per tool-case. The procedure that is implemented consists of four main
steps. We first briefly sketch the whole procedure before commenting on
each individual step (see also Section 3.4).

Step I Use the sequential heuristics to produce a first upper bound.
Compute the simple lower bounds LBgy and LBy gy
If optimality is achieved then STOP
Otherwise construct an initial set covering formulation using
the groups that have been generated using the heuristic

procedures.

Step II: Use the greedy heuristic to solve the initial set covering
formulation. If optimality is achieved then STOP.

Step III: Solve the LP-relaxation of the current formulation.

Check whether the primal solution is integral and whether its
value improves the current upper bound.
Use the dual variables to formulate the generation subproblem
and generate new columns with negative reduced cost.
Calculate LBFarle If optimality is achieved then STOP.
If no columns w1th negative reduced cost have been found,
then continue with Step IV.
Otherwise, update the set covering formulation and repeat Step
III.

Step IV: Use the last set covering formulation for finding an improved
heuristic solution.

The lower and upper bounding procedures of Step I have been described in
Sections 4.2.2 - 4.2.4. In Step II no additional columns are generated
(contrary to what was done in Section 3.4 for the single-slot case) for
reasons of time-efficiency. The set covering formulation is solved using the
well-known greedy heuristic (Nemhauser and Wolsey, 1988).

The LP-relaxation is solved using the package LINDO. When the
generation subproblem is solved to optimality (i.e. when a complete
enumeration is performed), its optimal value Z is used for computing the
bound LBFarle If this lower bound is equal to the upper bound the
procedure stops If no new column has been generated (i.e. Z = 1 and
LBFarley = LB¢g), then the column generation subroutine terminates, and
we confinue with step IV. Otherwise, at most 200 new columns are added
to the set covering formulation. Also, to limit the size of the formulation all
columns with a small reduced cost are eliminated. More precisely, columns

88) Chapter 4

for which ©N_, q; A; < | - o are removed from the formulation, where
o 1s an arbitrary chosen parameter (@ = 0.25). Furthermore, columns with
DR qjj A; < 0.85 are removed when the number of columns exceeds
700 (an arbitrary maximum).

Step IV of the procedure is extended in the following way. We first solve
the last set covering formulation by the greedy heuristic. If this is not
effective, we solve a slightly modified set covering formulation with
LINDO, requiring only a limited number of variables to take 0-1 values.
More precisely, the T variables which assume the largest value in the
continuous solution of the set covering formulation (columns for which
DR 95 A; < 0.9 are removed to limit the size of the formulation),
extended by the additional constraint }:P_l y; = LB, are forced to be
integer. The parameter T is taken equal to BCG +5 if the number of
columns is smaller than 50 (resp. LB + 15 if the number of columns is
between 50 and 150, and LBcg + 25 otherwise). Because of the small
number of integer variables, the resulting mixed 0-1 problem can be solved
by LINDO’s branch-and-bound subroutine (see also Section 3.4). If the
solution is still fractional after this step, additional variables (that still have
positive fractional values) are forced to take 0-1 values and the formulation
is solved again. This procedure is repeated until an integer solution is
obtained.

4.2.6. Computational experiments

We generated two sets of random instances. Table 4.1 contains the
parameter settings for the first set. This set of instances involves four
instance sizes (M, N). The capacity of the tool magazine takes one of the
values C;, C,, C5. Min (resp. Max) represent the minimal (resp. maximal)
number of tool slots needed by each job. For each instance type (M, N, C)
two ranges of values for s, (k=1, ..., M) are considered, as shown in
column labelled ’s,. €’. We assume that tools need a small number of tool
slots (s, € {1, 2, 3}), as often seems to be the case in real-world systems.
Rajagopalan (1985), Shanker and Tzen (1985) and Mazzola et al. (1989)
perform computational experiments using these values. Stecke (1989) gives
a detailed description of a system for which the tools take either 1 or 3
slots. For the first range of values, j only takes values in {1, 2, 3},

namely s, = 1 for k = 1, |_2/3M =2 fork = [213M] + 1,
|_5/6MJ and s, = 3 for k = |_5/6M + 1, ..., M. For the second
range s, € {1, 3} for all k, w1th Sk =1 fork = l , [2/3M] and Sk

=3 fork = L2/31vu + 1,

For each problem size (M, N, C) 10 random matrices A were generated.

The job grouping problem. some extensions 89

Table 4.1 Parameters first set of instances

Problem size c, C, Cs s € Min | Max
Mx N
10x 10 7 10 13 [1,2,3] 1 6
10x 10 7 10 13 [1,3] 1
15 x 20 13 15 18 [1,2,3] 1 12
15x 20 13 15 18 [1,3] R 12
25 x 30 15 20 25 [1,2,3] 1 14
25x 30 17 21 25 [1,3] 1 16
60 x 40 30 40 45 [1,2,3] 1 29
60 x 40 33 | 40 | 45 | [1.3] 1 32

For each j = 1, ..., N, the j-th column of A was generated as follows.

First, an integer t; was drawn from the uniform distribution over [Min,Ma-
x]: this number denotes the number of tool slots available for job j. Next, a
set T; of distinct integers were drawn from the uniform distribution over
[l,M]l until at most t; slots were used, i.e. until ¥} 1. S > tj - 3. These
integers denote the tools required by job j, i.e. ay, = { if and only if k is
in T;. Finally, we checked whether T, & T; or T; & T; held for any i < j.
If any of these inclusions was found to hold, then the previous choice of Tj
was cancelled, and a new set Tj was generated.

Table 4.2 Parameters second set of instances

Problem size o s € Min | Max | Minjob | Maxjob
Mx N
30 x 30 20 [1,2,3] 7 11 4 7
30 x 30 20 [1,3] 7 11 4 7
40 x 40 30 [1,2,3] 10 16 5 8
40 x 40 30 [1,3] 10 16 5 8

In Table 4.2 the parameter settings are described for the second set of
instances (comparable to the third set in Section 3.5.1). For each instance
class (M, N, C) 10 instances were generated. This second set explicitly
takes into account the interdependence between jobs. First, a number Ny is
drawn uniformly between Minjob and Maxjob, and a subset M;, containing

Q0 Chapter 4

tools that together require exactly C tool slots, is randomly chosen. Then,
we create N| “similar” jobs, by making sure that these jobs use only the
tools in M;. These jobs are generated as explained before for the first set
of instances (except that they are restricted to the tools in M). When Ny
jobs have been defined, then the procedure is iterated to produce Nj, Nj,
. additional jobs. This process stops after k iterations, when almost all
columns of the incidence matrix have been generated (specifically, when
“%_, N; = N - Maxjob). Then, the last columns are filled independently
of each other, as for the first set of instances.
Finally, a real-world instance described in Stecke (1989) was also tested.
This instance involves 10 jobs and 141 tools, with 100 tools using 1 slot
and 41 tools using 3 slots.

4.2.7. Computational results

The column generation procedure has been implemented using Turbo
Pascal, and tested on the instances described in Section 4.2.6. The
experiments were run on an AT personal computer with a 16MHz 80386sx
processor and 80387 mathematical coprocessor. This section reports on the
results of our experiments.

Using the procedure of Section 4.2.5. 271 of the 280 "multiple slots"
instances were solved to optimality. The gap between the value of the LP-
relaxation of the set covering formulation and the value of the optimal
solution was smaller than 1 for all instances solved to optimality. In other
words the lower bound LBrg was optimal for these instances. For the
remaining 9 instances the procedure finished with a lower and upper bound
that differed by one unit. As a matter of fact, the gap between the optimal
value of the LP-relaxation of the set covering formulation and the best
known upper bound amounts to maximal 1.05 for these instances. For some
of these instances, a branch-and-bound procedure was eventually used to
show that the upper bound was optimal and there was indeed a gap between
the lower bound LB and the optimal solution value. Nevertheless, our
experiments seem to show that the lower bound obtained by using the LP-
relaxation of the set covering formulation is usually very good, even though
it is not optimal for all instances.

The quality of the lower bounds LBgw, LBpgw, LBcg and of the
solutions obtained by the sequential heuristics in step I of the procedure is
compared in Table 4.3. The first column (labelled OPT) gives the average
number of groups in the optimal solution for the instances of each type that
were solved to optimality using the procedure of Section 4.2.5. The next

The job grouping problem: some extensions 91

three columns bear on the lower bounds; columns 5 to 11 correspond to the
upper bounds delivered by the seven sequential heuristics, and the last
column (labelled Best) reports on the upper bound obtained by retaining the
smallest of the previous seven ones. Each entry in columns 2 to 12 has the
format § (o). In a row labelled (M, N, C) and a column labelled X, § is
the average difference over all instances of type (M, N, C) between the
lower (or upper) bound X and the best lower (or upper) bound computed
for this instance in the course of the procedure; that is, 6 = X - BOUND,
where X is the average of the lower (or upper) bound X and BOUND is the
average of the best lower (or upper) bound. In columns 5 to 11 (that is, for
the sequential heuristics), the entry o denotes the number of instances of
type (M, N, C) for which the upper bound X is best among the sequential
heuristics. In the remaining columns 2, 3, 4 and 12, « is the number of
instances for which X is equal to the best lower (or upper) bound of the
instance.

For 271 out of 280 instances the best lower bound (LB(g) is equal to the
optimal solution value. For the remaining 9 instances the best lower bound
and the best upper bound differ by one group. The lower bounds LBgy
and LBy qw are seldom sharp (only for small instances and instances of
type (M, N, C;)). Table 4.3 also shows that the MI and the Modified
Rajagopalan rules (in that order) outperform the other rules. The
performance of the MIMU and the Whitney and Gaul rule is quite good.
The MU and the Marginal gain rules are much weaker. The Rajagopalan
rule performs even worse (especially for the instances of the second set).
Taking the best solution of the sequential heuristics, a solution is obtained
which is optimal or close to optimality (gap of 1) for nearly all instances
(for about half of the larger instances an optimal solution is obtained).
Because of the poor quality of the lower bounds LBgy and LBp;qy the
column generation procedure is needed for a large majority of the
instances. The instances for which a gap remained at the end of the
procedure can be found in rows with & < 10 in column 4 (LB(().

Table 4.4 summarizes the results obtained by the complete procedure
described in Section 4.2.5. We concentrate on the moments at which
optimality is established; that is, Table 4.4 gives, for each instance type,
the number of instances solved in each step of the procedure (the numbers
in brackets refer to 4 instances for which no optimal solution had been
found after completion of Step IV; all these instances were ultimately
solved to optimality by a variant of the procedure using different parameter
settings). Zero values are omitted from the table to improve readability.

Table 4.3 Quality of lower and upper bounds

Instance type Lower bounds Upper bounds
M x N C OPT LBgw LBysw LBcg MIMU Mi MU Whitney | Rajagopa- Modified Marginal Best
and Gaul lan Rajagopa- gain

(s €) 1 2 3 4 5 6 7 8 9 lan 10 11 12
10 x 10 7 33| -03(7m| 03¢ o(10)| 01 (9| 03(n| 01 (9| o019l o05(5H| o02(8| os(s| o000
10 2.0 0.0 (10) 0.0 (10) 0(10) 0.2 (10) 0.2 (10) 0.4 (8) 0.4(8) 05(7N 0.2 (10) 0.4(8) 0.2(8)
[1.2,3} 13 2.0 0.0 (10) 0.0 (10) 0(10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10y 0.0 (10)
10 x 10 7 4.3 0.4 (6) 0.1 (9) 0(10) 0.1 (10) 0.1 (10) 02(9) 0.1 (10) 04(7) 0.1 (10) 0.3 (8) 0.1(9)
10 2.8 0.8(2) 0.8(2) 0(10) 0.0 (10) 0.0 (10) 0.1(9 0.0 (10) 02(8) 0.0 (10) 0.0 (10) 0.0 (10)
[1,3] 13 2.0 0.0 (10) 0.0 (10) 0(10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 04(6) 0.0 (10) 0.2 (8) 0.0 (10)
15 x 20 13 60| -12¢(1n| -1.0(2) 0(10)| 07(6)| 030 12(n| 08¢ 16 (| 0300 o0s6(mn| 03(7
15 4.2 -1.5(0) -1.3(0) 0(10) 0.5(8) 0.3 (10) 0.8(5) 0.5(8) 1.6(1) 0.4 (9) 0.8(5) 03(7)
[1,2,3) 18 2.8 0.8 (2) -0.8 (2) 0(10) 0.1(9) 0.0 (10) 0.2(8) 0.1(9) 09(2) 0.2 (8) 0.4 (6) 0.0 (10)
15x% 20 13 7.6 -1.0(2) 0.8 (3) 0{10) 0.5(8) 0.4(9) 1.1(3) 0.6(7 1.1(4) 0.4(9) 09 (4) 03(7)
15 5.1 -1.5(hH -14(1) 0(10) 0.6 (6) 04(8) 1.0(3) 0.5(7N 2.1 (0 0.4 (8) 1.0(2) 0.2(8)
[1.3] 18 3.3 -1.3(0) -1.1 (0) 0(10) 0.5(6) 0.3 (8) 0.5(7) 0.5(7) 0.8(5) 0.3 (8) 0.6 (5) 0.1(7)
25 x 30 15 134 -12(2)] 086 0(10)] 05(8)] 04(¢(9| 09(5| 04(9| 23(0| o3¢0 o8¢5 03(M
20 7.2 3.7(0) -33(0) 0(10) 0.9 (5) 0.5(8) 1.3(3) 08(5) 3.2(0) 09(4) 1.5(2) 0.3 (6)
[1.2,3] 25 4.4 24 (0) -24(0) 0(10) 0.6(9 0.5 (10) 1.0 (5) 0.9 (6) 2.5(0) 0.7 (8) 1.2 (4) 0.5(4)
25 x 30 17 12.8 0.9 (3) 08 (4 0(10) 0.8 (3) 02(9) 1.1(2) 0.6 (5) 24(0) 0.2(9) 1o(n 0.1(9)
21 7.9 -2.8(0) 2.7(0) 0(10) 1.3(9%) 0.8 (10) 1.7(2) 1.2 (6) 33(0) 0.9(9) 2.0(0) 0.8 (2)
[1,3] 25 5.6 -3.2(0) -2.9(0) 0 (10) 0.8 (6) 0.7(7) 13(1) 0.9 (5) 3.1(0) 0.7(7 1.3(2) 0.4(5)
60 x 40 30 18.1| -11.3(0)| -11.3(0) 0(10) 0.8(5) 0.4 (9 1L.5(1n 08(5) 1.6 (1) 0.4(9) 1.2(4) 03(7N
40 10.7 5.1 (0) 4.8(0) 0(10) 1.6(1) 0.6 (9 22(0) 14(4) 29(0) 0.7 (8) 2.0(0) 0.5(4)
1,2,3) 45 8.6 6.0 (0) -5.6 (0) 0(10) 1.3(4) 0.5 (10) 19(1) 1.0 (5) 3.5(0) 08(7) 2.2(0) 0.5(5)
60 x 40 33 19.4| -11.8(0)| -11.8(0) 0(10) 0.5(9) 0.4 (10) 1.2(3) 05(9) L9 (1) 0.4 (10} 1.1(4) 0.4 (6)
40 13.7 -6.1 (0) 6.1 (0) 0(10) 1.6 (2) 06(9) 2.1(0) 1.5(2) 29(0) 0.7(8) 19(1 0.5(5)
{1,3] 45 11.1 -5.6 (0) -5.5(0) 0(10) 1.3(5) 0.8 (10) 24(0) 1.8(1) 33(0) 1.1(7 2.4(0) 0.8(2)
30x30[1,2,3]| 20 53 23(0) -2.3(0) 0(10) 0.6(7) 0.6(7 08(5) 0.6(7 3.2(0) 0.5(8) 14(1) 03 (6)
30x30[1,3] | 20 5.5 25(0) 25(0) 0 (10) 0.7 (8) 0.9 (6) 1.0(5) 0.7 (8) 3.2(0) 0.7(8) 13(3) 0.5(5)
40x40 (1,2,3]| 30 6.4 34(0) -3.4(0) 0 (10) 1.3(2) 0.7(7 1.5(3) 1.1(3) 50(0) 13(2) 23(1) 04(5)
40x40 {1,3] | 30 6.8 -3.7(0) -3.7(0) 0(10) 12(D 0.8(9) 1.4 (5) 1.3(5) 50(0) 1.3(5) 1.9(2) 07(3)

6

p 421d0Y)

Table 4.4 Performance of different steps of the column generation procedure

Instance type Step 1 Step 11 Step I Step 11l Step IV Step IV Gap
M x N (s €) C CG P A B
10x 10 7 7 3
10 8 2
[1,2,3] 13 10
10x 10 7 8 1 1
10 2 8
[1.3] 13 10
15 x 20 i3 1 6 1 2
15 7 1 2
[1,2,3] 18 2 8
15 x 20 13 2 5 2 1
15 8 2
[1.3] 18 7 1 2
25 x 30 15 4 3 3
20 6 1 2 1
[1.2,3) 25 4 2(3) 1
25 x 30 17 4 + 6
21 2 3 5
[1,3] 25 5 1 3 1
60 x 40 30 7 2 1
40 4 1 3 1
[1,2,3] 45 5 3 2
60 x 40 33 6 4
40 5 3 1 1
(1,31 45 2 2 4 2
30 x 30 [1,2,3) 20 6 2 1 1
30 x 30 [1,3) 20 5 3 1 1
40 x 40 [1,2,3] 30 5 4 1
40 x 40 [1.3] 30 3 2 4 1
All instances 58 0(+1) 127 32 44 (4) 6 9

SuoIsuaIxa awos waqold Suidnoad qof ayJ

&6

94 Chapter 4

Thus, for instance, the column labelled "Step I" displays the number of
instances for which optimality is achieved in Step I of the procedure : these
are the instances for which the lower bound LBy,qw is equal to Best, viz.
the best sequential heuristic value. The instances for which LBpsw is
optimal and Step II produces an optimal solution are recorded in column
“Step II" (a "+" in this column denotes an instance where LBpigw Is not
optimal, but Step II produces an optimal solution). If optimality is not
established in either Step I or Step II, the column generation process starts.
Column "Step III-CG" records the number of instances for which the
column generation procedure provides a lower bound (LBFarley or LBrg)
equal to the best upper bound obtained in Steps I and II. Those instances
for which an optimal 0-1 solution is found in the course of solving the set
covering LP-relaxation are accounted for in column "Step III-IP". After
Step III, instances remain for which the lower bound LB is smaller than
the best available upper bound. Column "Step IV - A" shows the number
of instances for which solving the set covering formulation with a limited
number of integer variables was enough to produce an optimal solution
with value equal to LBrg. Column "Step IV - B" shows the number of
instances for which Step IV - A did not suffice, but for which an optimal
solution was obtained after more variables were forced to take 0-1 values,
as described in Section 4.2.5. Column "Gap" displays the number of
instances for which the best lower bound (LBg) was strictly smaller than
the best known upper bound at the end of the procedure.

Table 4.4 shows that for 21 % of the instances optimality is achieved in
Step I (mainly smaller instances). For only one instance Step II offered a
better upper bound. In Step III optimality is achieved for 159 instances (57
%). For 32 instances (11 %) the upper bound was improved in Step III.
For 63 instances (23 %) Step IV had to be performed. Four of these
instances were solved with different parameter settings. For another 6
instances the solution of the set covering formulation remained fractional
after a number of variables were forced to take 0-1 values. Nine instances
could not be solved. For these instances a gap remained between LB and
the best upper bound (the largest gap between the LP-relaxation value and
the best upper bound amounts 1.05). A comparison with results of Section
3.6 shows that these instances seem to be harder than those considered in
the previous study (see also column 6 in Table 4.5).

Table 4.5 contains information about the time required to solve the various
instance types; comparison of these times provides additional information
on the effectiveness of the procedure. Each entry has the format "average
value (minimal value, maximal value)" (the four instances for which the

Table 4.5 Computation times and size of problems

Instance type

Computation times (in seconds)

M x N c Heuristics Steps IV Steps I-IV # iterations # columns # maximal feasible
all instances all instances col. gen. instances | col. gen. instances | col. gen. instances | columns, all instances
(s €) 1 2 3 4 S 6

10x 10 7 1.1(1.1,1.2) 6.8 (1.1,25) 20 (15,25) 4.0 (3,5) 13 (12,14) 26 (20,29)
10 1.1 (1.0,1.1) 7.9 (1.0,45) 35 (25,45) 7.0 (5.9) 20 (17,23) 28 (21,37)
f1,2.3] 13 1.1 (1.0,1.2) 1.1 (1.0,1.2) n.a. n.a. n.a. 13 (721
10x 10 7 1.1 (1.0,1.2) 4.3 (1.0,19) 17 (15,19) 3.5 (3.4) 8 (7,9 13 (6,23)
10 1.1 (1.0,1.1) 26 (1.0,50) 32 (20,50) 6.4 (4,10) 15 (9,20) 29 (24,34)
[1.3] 13 1.1¢1.0.1.1 1.1 (1.0,1.1) n.a. n.a. n.a. 25 (18,30)
15 x 20 13 353437 43 (3.6,88) 47 (25.88) 5.6 (3.8) 43 (28,71) 122 (57,215)
15 3.4(3.2,3.6) 87 (42,173) 87 (42,173} 10.0 (5,16) 50 (36,79) 163 (98,250)
[1,2.3] 18 32(3.1,3.3) 86 (3.1,199) 107 (47,199) 11.6 (5,26) 54 (38.87) 148 (116,213)
15 x 20 13 3.6(3.53.8) 35 (3.6,71) 43 (29,71) 6.0 (4,8) 30 (17,57) 70 (55,101)
15 3.4(3.2.3.6) 57 (41,86} 57 (41,86) 7.5 (5,12) 40 (27,54) 109 (77,149)
[1.3] 18 3.2(3.233} 111 (41,172) 111 (41,172) 10.8 (6.21) 49 (20,78) 146 (106,186)
25 x 30 15 11 (11.12) 49 (11,97) 73 (43,97) 5.8 (2.9) 82 (46,144) 230 (111,407)
20 10 (9.8,10) 342 (120.862) 342 (120,862) 8.1 (5,10) 179 (146,226) 1432 (693,2581)
[1,2,3] 25 9.7(9.4,10) 1369 (632 .2573) 1369 (632,2573) 13.4 (9.17) 255 (225,292) 5490 (3309,8669)
25 x 30 17 11 (11,12) 59 (11,136) 91 (41,136) 6.2 (3,8) 94 (51,126) 274 (135,425)
21 10 (10,11) 219 (106,368) 219 (106,368) 7259 155 (110,189) 968 (479,1649)
f1.31 25 9.9 (9.7,10) 554 (187,1230) 554 (187,1230) 9.2 (5,13) 202 (149,261) 2802 (1619,5053)
60 x 40 30 37 (36.38) 190 (45,478) 190 (49,478) 4.3 (1,10) 130 (49,276) 285] (430,9604)
40 35 (34,36) 3066 (573,13523) 3066 (573,13523) 8.6 (6,12) 444 (338,602)| 27648 (3362,112876)
[1.2.3] 45 34 (33,35) _ 5539 (1247.317333)| 5539 (1247,17333) 13.0(7.21) 600 (456,685) 82611 (9780,362517)
60 x 40 33 37(37.38) 127 (58,305) 127 (58,305) 4.1 (2,10) 125 (53,232) 1312 (324,2642)
40 36 (35.37) 506 (267,894) 506 (267,894) 6.8 (4,9) 253 (179,372) 5272 (1192,10676)
1.3) 45 35 (35,36) 1302 (492,2237) 1302 (492,2237) 82 (5,12) 381 (264,521) 13863 (3078,27955)
30x30[1,23) | 20 (1,1 528 (257,1144) 528 (257.1144) 10.5 (7,14) 211 (125,281) 2286 (1727,2863)
30 x 30 [1.3] 20 11 (1,11 440 (264,640) 440 (264,640) 10.0 (7,14) 195 (132,242) 1790 (1187,2967)
40 x 40 [1,2,3]1 | 30 25 (24,26) 3530 (1629,8940) 3530 (1629,8940) 16.7 (12,21) 367 (220,439) 11855 (8537,16731)
40 x 40 {1,3] 30 25 (24,25) 2104 (1283,2894) 2104 (1283,28%4) 15.3 (11,22) 316 (271,388) 7446 (4399,14903)

SUOISUIIXND duos ‘wajqosd Suydnos8 qof ay]

$6

96 Chapter 4

column generation procedure cycles have not been taken into account when
computing these average or extremal values). Column 1 gives the
computation time for Step I of the procedure and column 2 records the total
computation time for the whole procedure (Steps I to IV) (all times are in
seconds). In columns 3, 4 and 5, averages and extremal values are restric-
ted to those instances for which execution of the column generation step
(Step III) was necessary. Column 3 reports the total computation time
required by Steps I-IV for these instances. Column 4 gives the number of
iterations of the column generation step, that is the number of calls on the
linear programming package. Column 5 indicates the maximum number of
columns occurring in the linear programming subproblems. The figures in
this column are to be contrasted with those in Column 6, where the number
of maximal feasible groups for each instance type is recorded. This number
indicates the size of the complete set covering formulation of the job
grouping problem (see Section 4.2.1). Thus, it also gives a measure of the
difficulty of the instances.

The computation times in Table 4.5 show that the large instance (especially
of type (M, N, Cy)) take a lot of time to reach optimality. This is due to
the many calls to LINDO and the size of the set covering formulations that
have to be solved in each step. For larger instances columns 2 and 3 are
similar, because all instances need the execution of the column generation
procedure. Column 4 shows that at most 26 calls to LINDO are necessary.
The maximal average number of columns lies around 600 (which is close to
the maximum of 700 columns). The last column shows that the size of the
complete set covering formulation for the large instances is indeed very
large.

The real-world instance of Stecke (1989) was solved to optimality by 6 out
of 7 sequential heuristics (not recorded in Tables 4.5, 4.6 and 4.7). The
lower bound LB was optimal, in contrast with the other lower bounds.

4.3. Multiple machines
4.3.1. The job grouping problem

In practice a flexible machine is likely to be part of a system of several
machines. Rajagopalan (1985) and Tang and Denardo (1988b) developed
models to describe "multiple machine” problems. In this section we
consider the job grouping problem for a number of identical machines,
where each job has to be processed by each machine. Early flexible

The job grouping problem: some extensions 97

manufacturing systems consisted of different types of machines. Nowadays
many machines and tools have become so versatile that only one type of
CNC machine can be used to produce a wide variety of part types (Hwang
and Shogan, 1989). Many FMSs are configured with a group of these
general-purpose CNC machines (Jaikumar, 1986; Jaikumar and Van
Wassenhove, 1989) and a job entering such a system is routed to one of the
available machines. If each job has to be processed by only one machine,
the single machine job grouping model (see Chapter 3) can be used,
extended by a final step in which the groups are assigned to the different
machines. However, other criteria like workload balancing tend to become
more important for these cases. This leads to a different type of problems
which we did not consider in this research.

Thus, we assume that each job has certain tool requirements on each
machine. These requirements are described by the tool job "matrix" (ay;,),
where ay;,, = 1 if tool k (k = 1, ..., M) is used forjobi(i =1, ..., N)
on machine m (m = 1, ..., V) and ay;,, = O otherwise. We assume that
each tool needs | slot in the tool magazine, and that all machines have the
same capacity C (the latter assumption is mostly for ease of notation, and
can be easily removed). The job grouping problem is to find a partition of
the jobs into a minimum number of groups, such that the jobs in each
group do not require more tools on each machine than can be stored in the
tool magazine of the machine. A set covering formulation (4.1) - (4.4) of
the problem is still valid. The columns in the formulation represent the
groups that are feasible on all machines.

4.3.2. Lower bounds via column generation

A lower bound can again be computed by solving the linear relaxation of
the formulation (4.1) - (4.4) using a column generation approach.
However, a different generation subproblem must now be solved in order
to find columns that can improve the solution value of (4.5) - (4.7). Indeed,
the restrictions (4.10) and (4.11) must be included for each machine (with
s, = 1 for all k), thus leading to the following formulation of the
generation subproblem:

N

maximize Z N X (4.14)
i=1

subject to Aim X = Zkm i=1, ..,

m=1,..,V (4.15)

98 Chapter 4

M
Y 2, C m=1,..,V (4.16)
k=1
x; € {0,1} i=1,..,N 4.17)
e € {0,1} k=1, .., M;
m = 1, .., (4.18)
where
X; =1 if job i is in group S
=0 otherwise,
fori =1, ..., N, and
Zym = if tool k is required by some job in S on machine m,

1
=0 otherwise,
fork=1,..., Mm=1, .., V.
As previously, we solve this subproblem by complete enumeration (see
Section 3.2.3). The lower bounds LBFa“ey and LB are defined as in
Section 3.2.4.

4.3.3. Other lower bounds

The sweeping procedure can be adjusted as described by Tang and Denardo
(1988b). The concept of compatibility is changed for the “multiple
machines” case. Two jobs are compatible if they form a feasible group on
all machines. A number of groups are sequentially created as follows. In
each step of the procedure, first a job (seed) is selected which is compatible
with the smallest number of other (not yet selected) jobs (in case of :a tie
the job, for which the set of compatible jobs requires the smallest number
of tools on all machines is selected). Next, the seed along with all jobs
which are compatible with it, are selected to form one group. The
procedure is repeated until all jobs have been selected. The number of
groups so created, say L is a valid lower bound for the job grouping
problem. We also have the trivial lower bound | M/ C]. Combining this
bound with L yields the lower bound LBgyw = {[M /C], L}.

Another lower bound can be obtained in each step of the sweeping
procedure by summing the number of groups already created by the
procedure and the lower bound max, {[| Uier Tim | /C] }, where I
is the set of "not yet selected” jobs, and Tim 1is the set of tools needed for
job i on machine m. This procedure generates a sequence of valid lower
bounds, the first of which is equal to [M / C 7| and the last of which is
equal to L. We refer to this procedure as the "modified sweeping

The job grouping problem: some extensions 99

procedure”. It yields a new lower bound, equal to the maximum of the
bounds in the sequence, which we denote by LBygw-

4.3.4. Upper bounds

The MIMU, MI, MU and Whitney and Gaul rules are changed by simply
adjusting the definitions of the parameters b; and t; introduced in Section
3.3.1. Foragroup Sand a jobi & S, let
b, = the sum over all machines of the number of tools required by job i
t; = the sum over all machines of the number of tools required both by
job i and by some job already in S.
For the MIMU rule these changes have been described by Tang and
Denardo (1988b).
The Rajagopalan rule (resp. Modified Rajagopalan-rule) is changed
similarly. For each machine m, each tool k receives a weight ay,, defined
as a; was for the one machine case. Next the priority of job i is calculated
by summing the weights a; . over all tools that must be added to the tool
magazine of machine m (resp. over all tools needed for job i on machine
m) when job i is assigned to the current group, and over all machines.
Rajagopalan (1985) also assigns weights to the different machines, based on
the ratio of the total number of tool slots needed for the jobs executed on
the machine to the capacity of the tool magazine. We decided to use equal
weights for all machines. The Marginal gain rule is defined as in the single
machine case. For all sequential heuristics the selection of the first job in
each group is also based on the cumulative measures mentioned above.
All set covering heuristics can also be used as described in Section 3.3.2.

4.3.5. Adjusting the column generation procedure

The generation subproblem has become more complicated. However, due
to our enumerative approach for solving the generation subproblem (see
Section 3.2.3), only straightforward adjustments to the procedure are
needed. The column generation procedure is implemented as described in
Section 4.2.5 (see also Section 3.4).

4.3.6. Computational experiments

We generated two sets of random instances. The first set was generated in
the same way as the first set of Section 4.2.6. (and the first two sets of
Section 3.5.1), except that all tools require just one slot in the tool
magazine and each instance is described by V tool-job matrices. The values
of M, N, C and V, describing each instance type, are given in Table 4.6.

100 Chapter 4

Table 4.6 Parameters first set of instances

Problem size C, Cy Cy \Y Min | Max
M x N
10 x 10 4 5 7 3 1 3
10x 10 4 5 7 5 1 3
15 x 20 8 10 12 3 1 7
15x 20 8 10 12 5) 7
25 x 30 10 12 15 3 1 9
25x 30 10 12 15 5 1 9
60 x 40 20 25 30 3 1 19
60 x 40 20 25 30 5 1 19

The second set (see Table 4.7) consists of instances which have a block
structure (that is, the tool requirements for subsets of jobs are
interdependent) similar to the instances of the second dataset of Section
4.2.6. (or the third dataset of Section 3.5.1).

For these instances, the jobs are divided from the start in a number of
feasible subgroups. First, a number Ny is drawn uniformly between Minjob
and Maxjob, and for each machine a subset of C tools is drawn. Then, the
tool requirements on the different machines for the first Ny jobs are
generated using the same procedure as in Section 3.5.1, that is, making
sure that these jobs form a feasible group. When N; jobs have been
defined, then the procedure is iterated to produce N, N3, ... additional
jobs. The process stops when it is not possible to create a new group with
Maxjob jobs. The last columns are filled independently of each other as for
the first set of instances.

We considered two cases, with resp. 3 and 5 machines (see Table 4.6 and
Table 4.7). For each instance type 10 instances were created (i.e. 30 or 50
tool job matrices had to be generated for each instance type) for a total of
300 instances.

4.3.7. Computational results

For a description of the software and hardware used we refer to Section
3.5.2. The results of the computational experiments are recorded in Tables
4.8, 4.9 and 4.10. The description of these tables is similar to that given in
Section 4.2.7. (Table 4.8 (resp. 4.9 and 4.10) corresponds to Table 4.3
(resp. 4.4 and 4.5)).

The job grouping problem: some extensions 101

Table 4.7 Parameters second set of instances

Problem size Cy \Y% Min | Max | Minjob | Maxjob

Mx N

30 x 30 15 3 5 8 4 7
30 x 30 15 5 5 8 4 7
40 x 40 20 3 7 10 5 8
40 x 40 20 5 7 10 5 8
50 x 50 25 3 8 12 6 10
50 x 50 25 5 8 12 6 10

With the procedure sketched in Section 4.3.5. 296 out of 300 instances
were solved to optimality. Another 2 instances were solved to optimality by
using different parameters while for 2 instances a gap of one unit remained
between the best lower bound LB and the best known upper bound on
the solution value.

Table 4.8 shows that the lower bounds LBgy and LBysqy are only
sufficient for instances of type (M, N, C|). The number of jobs in a group
for these instances is extremely small (1 or 2). The performance of the
sequential heuristics gets worse for instances with larger capacities. The MI
and the Modified Rajagopalan rules outperform the other rules, although
the MIMU, Whitney and Gaul, MU and Marginal gain rules give
reasonable results. For the instances of the second set the performance of
the Rajagopalan and the Marginal gain rules is terrible; this is certainly due
to the nature of these rules, which select jobs having few tools in common
with the jobs already chosen in a group. The best heuristic solution is in
general very good, but for instances of type (M, N, C;) the gap between
heuristic and optimal solution value is often equal to 2 (see Table 4.8,
column 12).

Table 4.9 shows that nearly all instances of the first set (of type (M, N,
C))) can be solved in Step I of the procedure. For the remaining instances
optimality is reached in Step III in many cases (73 %). For 27 percent of
the instances Step IV is necessary. Table 4.9 shows that for 3 instances
additional variables of the last set covering formulation were forced to take
0-1 values to obtain an optimal solution, while 2 instances could not be
solved to optimality. For these instances the maximal gap between the
lower bound LB and the best known upper bound amounts to 1.19.

Table 4.8 Quality of lower and upper bounds

Instance lype

Lower bounds

Upper bounds

Mx N C OPT LBgy LBysw LBcg MIMU MI MU Whitney | Rajagopa- | Modified Marginal Best
and Gaul lan Rajagopa- gain

V) ! 2 3 4 5 6 7 8 9 lan 10 11 12
10 x 10 4 7.5 0.0 (10y 0.0 (10) 0(10) 0.0 (10) 0.0 (10} 0.0 (10) 0.0 (10) 0.2(8) 0.0 (10} 0.0 (10) 0.0 (10)
5 4.8 -1.9(0) -1.3(0) 010 03(9) 03(9) 0.4 (8) 0.3 (9 0.6 (6) 03(9) 0.3(9) 0.2(8)
3) 7 30| -10(0)| -1.0(0) 0(10)]| 0.0(0) 01(9| 00300 000 02(8) | 0010 0.1(9) | 0.0(10)
10x 10 4 9.1 0.0 (10) 0.0 (10) 0(10) 0.0 (10) 0.0 (10} 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10} 0.0 (10)
5 5.0 -1.4 (0) b (1) 0(10) 0.4 (9) 0.5(8) 0.3 (10) 0.4(9) 0.6(7) 0.5(8) 0.4(9) 03(7
(5) 7 3.0 -1.0(0) -1.0(0) 0(10) 0.0 (10) 0.0 10y 0.1 (9 0.1(9) 0.6 (4) 0.0 (10) 0.4 (6) 0.0 (10
15x 20 8 14.8 0.0 (10) 0.0 (10) 0(10) 0.2 (10) 0.2 (10y 0.4 (8) 03(9) 03 (M 0.2 (10) 0.4 (8) 0.2(8)
10 7.6 3.1(0) -3.0(0) 0 (10) 0.8(8) 0.6 (10) 1.1(9%5) 0.7(9) 1.9(0) 0.6 (10) 1.6(2) 0.6 (4
(3) 12 4.8 2.7 (0) 2.7(0) 0{10) 0.5(9 0.5(9) 0.6 (8) 0.6 (8) 1.5(2) 0.6 (8) 1.0 (4) 0.4 (5)
15 x 20 8 18.4 0.0 (10) 0.0 (10) 0(10) 0.2(8) 0.0 (10) 0.2(8) 0.1(9) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)
10 9.3 3.0(0) -28(0) 0{(10) 0.8 (6) 05(9%) 1.2(3) 0.7(7 [.1(3) 05(9) 1.1(5%5 0.4(95)
(5) 12 53 -3.2 (0) -3.2(0) 0(10) 0.9 (6) 0.8 (7) 1.1(4) 0.8 (7 1.8 (0) 1.1(4) 1.3(3) 0.5 (5)
25 x 30 10 21.8 03(7D 0.2(8) 0(10) 03(8) 0.3 (8) 0.6 (5) 04(7 0.7(6) 0.3(8) 0.3(8) 0.1 (9
12 13.6 2.7(0) 2.6 (0) 0(10) 1.8(3) 1.2(8) 2.0(3) 1.6 (5) 1.6 (4 1.2(8) 1.8(3) 1.0(2)
3) 15 86| -62(0)| -58(0) 0(10) 1.2(7 1.1(8) 1.7(3) 1.4(5) 2.5(0) 1.4 (5) 200 09¢1
25 x 30 10 258 -0.1(9) 0.0 (10) 0(10) 0.1(9) 0.0 (10) 0.1(9) 0.0 (10) 0.0 (10) 0.0 (J0) 0.1(9) 00 (10)
12 155 2.2(4) 2.0(4 0(10) 1.0(4) 05(9 1.1 (3) 09(95) 0.8(7) 0.5(9) 1.2(3) 0.4 (6)
(5) 15 9.5 6.7(90) -6.3 (0) 0(10) 1.6 (6) 1.5(6) 1.9 (4) 1.5(7) 30(0) 1.5(6) 24(0) 1.1(H
60 x 40 20 29.2 0.1 (0) -0.1(9) 0(10) 05(7N 03(9 0.6 (6) 03(9) 0.4(8) 0.3(9) 0.4 (8) 02(9)
25 171 -11.2(0) | -11.2(0) 0(10) 2.4 (3) 1.7(8) 32(D 2.7(3) 1.9(7 1.8(D 23(3) 1.5(0)
3) 30 12.2 -8.5(0) -8.3(0) 0(10) 2.3(6) 1.8 (10) 29(1) 22(7N 29(1) 1.9(% 28(1 1.8(0)
60 x 40 20 35.5 0.1 (9) -0.0 (10) 0(10) 0.2(8) 01(9) 0.2(8) 0.2(8) 0.1(9) 0.1(9) 0.1 (9 0.0 (10)
25 198 -107¢(0)| -10.7(0) 0(10) 19(1hH) 1.2(6) 22(1) 1.9(2) 0.9(9) 1.2 (6) 1.5(4) 0.8 (3)
(5) 30 13.8 -9.6(0) 9.4(0) 0(10) 2.5(3) 1.9(9) 28(2) 2.5(3) 2.7(2) 1.8 (10) 2.8(2) 1.8(0)
30x30 (3) | 15 7.1 5.1(0) -5.0(0) 0(10) 0.5(9) 05(9 07(7 0.5(9 54(0) 0.4 (10) 3.4(0) 04(7N)
40x40 (3) 20 19 -5.9(0) -5.9(0) 0(10) 0.4 (8) 0.4(8) 0.4 (8) 05(7 79(0) 0.4 (8) 49(0) 0.2(8)
50x50 3) | 25 83| -63(0)| -63(0) 0(10) 1.4 (4) 1.1 (7) 1.4 (4) 1.2 (6) 9.5 (0) 0.9 (9) 5.9(0)| 08(3)
30x30 (5) 15 7.4 -53(0) 5.1(0) 0(10) 0.7 (8) 0.6(9) 0.7(8) 0.5 (10) 6.8 (0) 0.6(9) 40(1) 0.5(5)
40x40 (5) | 20 7.9 S9(0 5.9(0) 0(10) 0.7(8) 0.6 (9) 0.7(9) 0.7(8) 9.5(0) 0.6(9) 4.6(0) 0.5(5)
50x50 (5) 25 8.5 -6.5 (0) -6.5(0) 0(10) 1.0 (8) 0.8 (10) 1.0(8) 0.8 (10) 103 (0) 0.8 (10) 59(1 08 (4

%

¥ 421doyD

Table 4.9 Performance of different steps of the column generation procedure

Instance type Step I Step Il Step 111 Step 11 Step IV Step IV Gap
MxN) c CG P A B
10 x 10 4 10
5 8 2
3 7 10
10 x 10 4 10
5 7 2 i
(5) 7 10
15 x 20 8 8 2
10 4 4 2
3) 12 S 1
15 x 20 8 10
10 5 2 2 1
(5) 12 S 2 2
25 x 30 10 7 2 1
12 2 5 3
(3) 15 1 1 7
25x 30 10 10
12 2 4 1
(5 15 1 9
60 x 40 30 8 1 I
25 6 4
(3) 30 1 9
60 x 40 20 10
25 3 7
5) 30 I 6 3
30 x 30 (3) 15 7 2 1
40 x 40 (3) 20 8 2
50 x 50 (3) 25 3 6 1
30 x 30 (5) 15 5 5
40 x 40 (5) 20 5 5
50 x 50 (5) 25 + 5 4 1
All instances 75 0(+1) 101 64 53 (2) 3 2

SUOISU21X2 FW0s ‘wajqold Suidnos8 qof ayJ

o1

Table 4.10 Computation times and size of problems

Instance type Computation times (in seconds)
Mx N C Heuristics Steps I-[V Steps [-IV # iterations # columns # maximal feasible
all instances all instances col. gen. instances col.gen. instances col. gen. instances | columns, all instances
V) 1 2 3 4 s 6

10 x 10 4 2.1(2.0.2.3) 2.1(2.0,2.3) n.a. n.a. n.a. 9 (8,11
s 1.9 (1.8,2.0) 13 (6.3,20) 13 (6.3,20) 25(1,4) 17 (14,21) 30 (25,34)
3) 7 1.8 (1.8.1.9) 26 (12,40) 26 (12,40) 4427 30 (22,38) 64 (57,69)
10x 10 4 33 (3.2,3.5) 3.3(3.23.5) n.a. n.a. n.a. 9 (8,10)
5 3.0 (2.9,3.0) 14 (8.1,24) 14 (8.1,24) 2.2(1,4) 15 (12,18) 26 (20,34)
(5) 7 2.7(2.7,2.8) 24 (14,40) 24 (14,40) 37027 25 (19,29) 67 (59,77)
15 x 20 8 11(10,11) 15 (10,37) 30 (23,37) 3.0(2,4) 20 (19,20) 26 (19,36)
10 9.7 (9.6,10) 52 (27,75) 52 (27,75) 4.6 (2,8) 52 (35,68) 124 (97,166)
3) 12 9.1(9.09.2) 166 (106.309) 166 (106,309) 5.6 (4,9) 143 (117,173) 513 (388,693)
15 x 20 8 18 (17,18) 18 (17,18) n.a. n.a. n.a. 19 (17,20)
10 16 (15,16) 49 (26,85) 49 (26,85) 330,77 37 (29.,43) 90 (76,100)
(5) 12 14 (14,15) 160 (87,313) 160 (87,313) 4.7 (33,9 132 (97,163) 384 (306,469)
25 x 30 10 37 (35,38) 43 (35, 60) 59 (59,60) 2.0(2,2) 32 (27,39) 55 (32,79)
12 34 (33.35) 111 (58,164) 111 (58,164) 4.3 (2,8) 80 (41,136) 192 (110,284)
(3) is 31 (30,31) 591 (213.1095) 591 (213,1095) 59 (3.8 278 (209,419) 1308 (646,1997)
25x 30 10 59 (57,61) 59 (57.61) n.a. n.a. n.a. 31 (26 37)
12 53 (52,56) 99 (54,170) 109 (72,170) 3.4 (1,5) 48 (34,73) 127 (69,176)
(5 15 50 (49,51) 504 (365,729) 504 (365,729) 5.9 (4,8) 259 (150,384) 806 (445,1187)
60 x 40 20 141 (139,143) 154 (140,227) 204 (182,227) 3.0(2,4) 54 (47,60) 97 (70,164)
25 120 (119,121) 431 (266,614) 431 (266,614) 5.1(3,8) 173 (105,252) 515 (361,876)
3) 30 117 (116,118) 1681 (963,2626) 1681 (963,2626) 6.6 (4,8) 480 (356,626) 2898 (1852,4953)
60 x 40 20 230 (228,232) 230 (228,232) n.a. n.a, n.a. 45 (37,56)
25 197 (192,213) 422 (248,661) 422 (248,661) 4.0 (1,7 99 (53,147) 240 (189,269)
5) 30 191 (190,193) 1343 (795,1744) 1343 (795,1744) 5337 288 (221,413) 1223 (860,1444)
30x30(3) | 15 36 (35,37) 240 (149,398) 240 (149,398) 7.9 (5,13) 114 (63,254) 752 (497,1058)
40x40(3) | 20 81 (80,82) 653 (360,1730) 653 (360,1730) 10.7 (7,30) 158 (85,236) 2164 (1655,2654)
50x50(3) | 25 154 (152,156) 2895 (824,7867) 2895 (824,7867) 18.5 (7,41} 319 (205,453) 7823 (6230,10411)
30x30(¢(5)| 15 58 (57,59) 213 (131,322) 213 (131,322) 8.0 (4,15) 63 (43,107) 455 (373,609)
40x 40 (5) | 20 132 (131,133) 710 (319,1793) 710 (319,1793) 11.8 (7,21) 94 (48,162) 1247 (944,1556)
50 x 50(5) | 25 249 (247,251) 3274 (794.10386) 3274 (794,10386) 16.0 (8,53) 271 (143,431) 5341 (4267,6568)

POl

b 421do)

The job grouping problem: some extensions 105

In Table 4.10 the computation times are given. It appears that only the
instances of type (M, N, C3) of the first set and the instances of the second
set require much computational effort. But of course, these are the only
really large ones (see column 6). Column 6 also shows that the instances of
the first set are usually small. The instances of the second set are probably
more realistic. The number of calls to LINDO was considerable for some
of these instances (on average 8 - 19, but with peaks of 53). The number of
columns in the set covering formulation peaked at 453 for the instances of
the second dataset.

For the 3-machine instances of type (M, N, Cj) of the first set and the
instances of the second set the column generation approach proved to be a
helpful tool in decreasing the size of the set covering formulation. For the
instances of the second set the number of maximal feasible columns
increased by a factor 10 from instance type (30, 30, 15) to (50, 50, 25).
The increases in computation time were similar, but the number of columns
in the LP subproblems only grew by a factor of 3 to 4'4.

4.4. Other extensions

The extension of the job grouping problem to several non-identical
machines is similar to the one described in Section 4.3. It is also possible
to combine these changes for the case where jobs have to be processed on
several non-identical machines with tools that require one or multiple slots
in the tool magazines.

Rajagopalan (1985) and Hwang and Shogan (1989) discuss the introduction
of due dates in the job grouping problem. Their models are sequential by
nature and concentrate on finding one batch (optimal with respect to some
"local" criterion) at a time. Due dates are incorporated by weighting jobs:
jobs which have tight due dates receive larger weights and thus higher
priority for being added to a next batch. By contrast the set covering
formulation aims at finding a minimal number of groups, with no decisions
taken on the order in which the groups have to be executed. Therefore the
introduction of due dates does not fit very well into this formulation.
Similarly, the introduction of order quantities or production times would
change the nature of the formulation. Because we should decide on the
order in which groups are executed, additional variables should be added to
incorporate this information.

A possible change in this direction is the introduction of separate weights
for groups in different planning periods, where the weights depend on the
planning period (each group (column) should be available in the

106 Chapter 4

formulation for each appropriate planning period). Additional constraints
must then be added to the set covering formulation to prohibit that more
than one group be assigned to some planning period (or that a job be
executed more than once). The introduction of due dates also requires the
separate evaluation of small groups. Previously, we only had to consider
groups that were maximal (groups for which it is not possible to add jobs
without destroying feasibility). Now, we must explicitly consider all groups
that are not maximal, because different costs are attached to these smaller
groups (increases in setup time can be traded off against decreases in the
number of jobs that are overdue). As a result, the size of the formulation
grows sharply with the number of possible planning periods.

This discussion shows that the set covering formulation is probably not the
right tool to incorporate the introduction of due dates, production times and
order quantities, and therefore we did not further investigate these
extensions.

4.5. Summary and conclusions

In this study, the results of Chapter 3 have been extended to some special
cases of the job grouping problem. First, the job grouping problem was
considered in the case where tools need more than one slot in the tool
magazine. Next, the job grouping problem for several identical machines
was investigated. Lower and upper bounds were derived for these
extensions. A column generation approach was used to compute a lower
bound.

It appears that the lower bound obtained by computing the LP-relaxation
value of the set covering formulation of the job grouping problem is very
strong, though not always optimal. This is the case for both extensions
studied. For 2 percent of the instances tested, this lower bound was strictly
smaller than the best upper bound (gap equal to 1). In our computational
experiments, the "multiple slots” instances tend to be more difficult and the
"multiple machines" instances tend to be easier than the instances studied in
Chapter 3.

Acknowledgments
We gratefully acknowledge useful discussions on the topic of this work

with Antoon W.J. Kolen. We thank Ron van der Wal for solving some
problems using a branch-and-bound procedure.

Chapter 5

A local search approach to job
grouping

5.1. Introduction

In Chapters 3 and 4, lower and upper bounding procedures were proposed
for the job grouping problem. It appeared that, in many cases, sequential
heuristic procedures were not sufficient to provide an optimal solution. A
column generation approach was also developed to compute a strong lower
bound, based on the linear relaxation of the set covering formulation of the
Jjob grouping problem. In the course of this procedure, it was sometimes
possible to derive improved upper bounds. Notice, however, that solving
the job grouping problem may be done faster if a better upper bound is
known from the start. For instance, execution of the column generation
procedure can be avoided if simple lower bounds like LBgw and LBpgw
(see Chapters 3 and 4) are optimal and an optimal upper bound is also
available. Alternatively, improved solutions provide additional columns to
be included in the set covering formulation, which may speed up the
column generation procedure.

Local search procedures may provide such improved solutions. Loosely
speaking, a local search procedure tries to improve the current solution of a
problem by searching the neighbourhood of that solution for improved
solutions, until no better solution can be found, optimality is achieved or
the procedure is stopped according to some other criterion. In this chapter,
we investigate four possible ways for searching the neighbourhood, namely
a simple improvement approach, a tabu search approach, a simulated
annealing approach and a variable-depth approach, based on ideas of

108 Chapter 5

Kernighan and Lin (1970). For each of these methods three different
objective functions and two different neighbourhood structures are
considered for two different types of starting solutions. The environment in
which these methods are applied is discussed in the next section. Section
5.3 contains the description of the methods. The results of our
computational experiments are reported in Section 5.4. In this study, we
consider instances where tools require several slots and instances with
several machines. Some conclusions are drawn in Section 5.5.

5.2. Local search environment

Our objective is to partition the set of jobs into a minimal number of
feasible groups, where a group is called feasible if the tools needed for the
jobs in the group fit in the tool magazine of the machine(s). Our local
search heuristics are designed to solve this problem indirectly, by
answering a sequence of questions of the form: "Given a number g, is there
a partition of the jobs into at most g feasible groups?". This approach is
motivated by the observation, made in Chapters 3 and 4, that simple
sequential heuristics provide good estimates for the optimal number of
groups. For most instances tested the sequential heuristics provided a
solution within 2 groups of the optimal solution.

Therefore, the local search procedure can be applied to find a solution
which uses a number of groups equal to best known upper bound minus
one. If a feasible solution is found the procedure is repeated for a smaller
number of groups. If a solution is found with a number of groups equal to
the lower bound the procedure ends. If we are not able to find a feasible
solution for the given number of groups, the procedure is started again with
a different starting solution. Other stopping criteria can be added to avoid
endless runs. In this section we will discuss the setting of different
parameters that are important for the execution of the local search
procedures.

All procedures rely on the choice of a srarring solution, an objective
function f(G) which evaluates the 'quality’ of each solution G (consisting of
g groups of jobs), a neighbourhood structure defining what solutions are
considered as neighbours or perturbations of a given solution, and a
stopping criterion. Before discussing all these concepts in detail, we first
present, for illustration, the structure of an unsophisticated local search
procedure to which we will refer as the simple improvement approach. The
other local search procedures can be seen as variants of this basic strategy.

A local search approach to job grouping 109

Simple improvement approach (for finding a partition into g feasible groups).

(Initialization) find a starting solution,
i.e. a partition G = { G, Gy, ..., Gg }

(Improve) while G is not feasible and the stopping criterion is not

satisfied do

begin
select a neighbour of G, say G’, which minimizes
f(G’) among all neighbours;
if f1G’) = f(G) and G’ is not feasible
then return FAIL (G 1is an infeasible local
optimum)
elselet G := G’

end

(Termination) if G is feasible
then return G
else return FAIL (stopping criterion satisfied) O

5.2.1. Starting solution

A local search procedure starts from a given partition of the jobs into g
groups. This partition does not have to be feasible (if it is, we can stop the
local search procedure for this number of groups). In our implementation
we used two types of starting solutions, viz. the Maximal Intersection
solution and a random starting solution. The Maximal Intersection (MI)
starting solution is created using the Maximal Intersection rule for job
grouping (see Sections 3.3.1, 4.2.4 and 4.3.4). Remember that this rule
sequentially creates a number of groups. Here, we run the procedure until
g feasible groups are formed. Then, the remaining jobs (that are not (yet)
assigned to some group) are distributed to the already created groups. This
is done in a greedy way. The jobs are assigned to one of the g groups in an
arbitrary order, so that the sum of the violations of the tool magazine capa-
city constraint of the groups is minimized in each step (see next section).

A random starting solution is created by assigning jobs randomly to g
different groups. Some experiments were carried out using another
structured starting solution (based on the Modified Rajagopalan rule, see
Sections 3.3.1, 4.2.4 and 4.3.4), but these experiments offered no
improvement over the MI starting solution. The MI starting solution was
eventually preferred because the overall performance of the MI rule was
better for the job grouping problem (see Chapters 3 and 4).

110 Chapter 5

5.2.2. Objective function

We used one of several measures to judge the quality of a partition of the
jobs in a given number of groups.

1. Minimize violations

The violation v(G) of a group G of jobs is defined as the difference
between the number of slots needed for the jobs in G and the
capacity of the tool magazine, if this difference is positive. The
violation is zero if the tools fit in the tool magazine. The value of
our first objective function is the sum of the violations of the
groups. In case of several machines, we consider the sum of the
violations over all machines. More precisely, define

C = capacity of the tool magazine,

\" = number of machines,

T,n = -collection of tools necessary for job i on machine m,
Sk = number of slots necessary for tool k,

G = collection of groups (G = { Gy, G,, ..., Gg b,

v(GJ) = violation of group G:;.
Then thé violation of group G: (€ G) is v(G) = EV , max { 0,
Yke(u Viegj Tim} Sk - C} TLe objective functlon to be minimized
is f1(G) = EG €G v(GJ) A feasible solution is found if the
objective funcuon is equal to 0. This approach is derived from the
approach of Chams, Hertz and de Werra (1987) for graph coloring.

2. Minimize violations & maximize slack

Instead of only considering the violations, this objective function
also takes into account the slack-capacity (i.e. the number of unused
tool slots) in a group. It can be improved by increasing the slack-
capacity in a group.

If §; is the slack (S; = Yy y max {0, C - LkEUieq; Tim Sk)
in a group Gj € G, then the objective function to be minimized is
f(G) = ZGJ'EG (C 'V(Gj) - Sj)-

3. Maximize groupsize & minimize violations
This objective function is inspired from the objective function of
Johnson, Aragon, McGeoch and Schevon (1991) for graph coloring.
The objective function is f3(G) = EG €G |G |
2 EG eG |G| - v(G) When mmlmnzmg thlS functlon the first
term tcnds to fjavour large groups, whereas the second term favours
feasible groups.

A local search approach to job grouping e

5.2.3. Neighbourhood structure

The neighbourhood structure defines the set of feasible moves from a
certain solution. We studied two different neighbourhood structures:

1. Move and exchange

Given a solution, a neighbour solution is created by moving some
job to another group or by exchanging two jobs. All possible moves
and exchanges are considered in each iteration. To find a best move
or exchange we visit all jobs consecutively. First, all possible
moves for a job are considered. Then, all pairwise exchanges of the
job with jobs in other groups are investigated. The best of these
moves and exchanges is selected.

2. Move
Given a solution, a neighbour solution is created by moving some
job to another group. We consider all moves for all jobs and select
the best one. Compared to the first neighbourhood structure, the
pairwise exchanges are not considered.

It is clear that the first neighbourhood structure uses more computation time
per iteration then the other neighbourhood structure. On the other hand, the
number of iterations to reach optimality will be decisive for the actual
computational effort. In some procedures, the neighbourhood structure will
be restricted by disallowing some moves or exchanges (see Section 5.3 on
tabu-lists).

5.2.4. Stopping criteria

The local search procedure stops if feasibility is achieved or the
computation time limit is reached. Use of a computation time limit is
necessary to prevent some local search procedures from running endlessly.
At the end of each step the solution is checked for feasibility since the
values of the second and the third objective function give no conclusive
evidence of feasibility of the solution.

For some local search approaches (viz. the simple improvement and the
variable-depth approaches, see Section 5.3) the procedure is stopped when
no improvements are possible any more (the tabu search always has the
possibility to leave a local optimum, while the simulated annealing
approach only stops if repeatedly no suitable neighbour solution can be
found after a large number of trials; see Section 5.3.3). For randomly
generated starting solutions an additional stopping criterion is added to

112 Chapter 5

allow testing of several starting solutions within a fixed amount of
computation time. Namely, only a maximal number of steps can be
performed from each starting solution, after which the procedure is
restarted with a new random starting solution (here, a step is defined as a
transition from one solution to another). In our implementation the
procedure was restarted after 3 - N steps, where N is the number of jobs.
This type of restart is not used with the MI starting solution, which thus
can use the full amount of computation time.

5.3. Local search approaches

Four different approaches have been considered. The simple improvement
approach only considers those moves which improve the solution at hand.
The second approach (tabu search) also accepts moves that give a
deterioration of the objective function. The third approach (simulated
annealing) introduces a stochastic element in accepting moves that worsen
the objective function value. In the fourth approach, ideas of Kernighan and
Lin (1970) are implemented.

5.3.1. Simple improvement approach

This approach has been formally described in Section 5.2. Given the
neighbourhood structure and the objective function, a move is accepted
only if it improves the objective function. If it is not possible to find an
improvement after all possible moves and/or exchanges have been
considered the procedure stops.

5.3.2. Tabu search approach

The simple improvement approach follows a so-called hill climbing (or
better valley seeking) approach for finding an optimum. The chances that
the procedure gets stuck in a local optimum using the simple improvement
approach are considerable. To overcome this difficulty, the tabu search
approach allows moves that worsen the solution value. The idea is that
accepting a number of ’bad” moves may open up possibilities to move to
another (better) local optimum. The approach has achieved impressive
practical successes for other combinatorial problems; for a thorough
discussion we refer to Glover (1989; 1990).

When it is not possible to find an improved solution among the neighbours
of the current one, a move is chosen that is the best among the 'bad’
moves, that is a move that has the least impact on the value of the objective

A local search approach to job grouping 113

function. To avoid returning to a recent local optimum a tabu-list is used.
More precisely, in our implementation, the tabu-list contains a list of jobs
that are not allowed to be transferred to another group. The tabu-list may
also contain a list of specified moves (in which explicitly the job, the old
and the new group are recorded) that are not allowed, but preliminary tests
showed no improvement over the current choice. We use a tabu-list of
length 7, which means that the last seven jobs that have been moved (in
steps where the objective function deteriorated) may not be moved again
(preliminary tests with a tabu-list of variable length - equal to 2 - N,
where N is the total number of jobs - led to a significant deterioration of
the performance of the procedure). A move remains tabu only during a
certain number of iterations, so that we have a cyclical list where the oldest
forbidden move (or job) is removed whenever a new forbidden move (or
job) is added. The procedure stops when a feasible solution is obtained or
the computation time limit is reached.

To improve the performance of the procedure the concept of aspiration
levels is introduced (see Glover (1989)). This offers the possibility of
overriding the tabu status of a job (or move) on the tabu-list if the solution
value which can be obtained by accepting this particular move is strictly
smaller than the best known solution value.

5.3.3. Simulated annealing approach

Simulated annealing extends the simple improvement approach by allowing
uphill moves during the minimization process, as in the tabu search
approach (for a discussion on simulated annealing we refer to Van
Laarhoven and Aarts (1987) and Johnson, Aragon, McGeoch and Schevon
(1989; 1991)). However, the procedure of accepting uphill moves is
randomized. If a move or exchange is selected in an iteration and this move
offers an improvement of the objective function, the move is accepted. If it
offers an increase of the objective function by A, then the move is accepted
with a probability of AT The parameter T is referred to as temperature
and is an important factor in the decision to accept uphill moves. If the
temperature T is large, the possibility of accepting ’bad’ moves is large.
Therefore, the temperature is gradually decreased in the course of the
procedure (‘annealing’). The behaviour of a simulated annealing
implementation may be largely influenced by the setting of certain
parameters, like the initial temperature and the cooling schedule. We used
some suggestions of Johnson et al. (1989; 1991) in our choices for these
parameters; these are now as follows.

At the start of the simulated annealing procedure T is fixed to some value
Tgrar = 4- A number of iterations is carried out using this temperature.

114 Chapter 5

After MAXITER iterations have been performed at a certain temperature, the
temperature is decreased. The parameter MAXITER is chosen proportional to
the number of jobs (N), viz. MAXITER = 3 - N. The temperature T is
decreased using geometric cooling (the temperature in a next step is 95 %
of the current temperature). To limit the time spent at high temperatures we
introduce a parameter CUTOFF (= 0.3). This parameter makes sure that the
temperature T is decreased if too many moves are accepted. Thus, the
temperature is decreased either after MAXITER moves or after CUTOFF -
MAXITER accepted moves. Finally a parameter MINPERCENT (= 2 %) is
used as follows to decide whether a simulated annealing run can be
stopped. A counter is incremented after each temperature change, if less
than MINPERCENT of the selected moves have been accepted since the
previous temperature change. The counter is reset to O whenever the
current best solution is improved. If the counter reaches 5, the process is
declared frozen and stopped (see Johnson et al. (1989)). The procedure also
stops if the computation time limit is reached. Finally, we introduced a
tabu-list to avoid the possibility of returning too fast to an already visited
local optimum. This tabu-list was implemented as in the tabu search
approach (see Section 5.3.2).

5.3.4. Variable-depth approach

Kernighan and Lin (1970) proposed an effective heuristic algorithm for the
graph partitioning problem. We use an idea similar to theirs. Each iteration
of our procedure consists of a number of steps. In each step, a move or
exchange is performed (the best one according to the given objective
function and neighbourhood structure), and the jobs involved are placed on
a tabu-list of length N. After a number of steps, when all N jobs have
been moved once (and placed on the tabu-list), a sequence of solutions has
been obtained. From this sequence the best solution is chosen and a next
iteration is performed starting from this solution. At the start of each new
iteration all jobs are removed from the tabu-list (the tabu-list is emptied).
The procedure is repeated until no improved solution can be found in an
iteration or the maximum amount of computation time is used.

5.4. Computational experiments

Considering all combinations of two starting solutions, three objective
functions, two different neighbourhood structures and four local search
approaches, we get 48 possible implementations for a local search
procedure (if we do not vary the other parameters). In this section we first

A local search approach to job grouping 115

make a selection among these methods, and then discuss the results of our
computational experiments with the 'best’ ones.

5.4.1. The dataset

Computational experiments were performed on a set of problem instances
which emerged from the research described in Chapters 3 and 4. In these
chapters, computational experiments were performed on a large set of
randomly generated data (see Sections 3.6, 4.2.7 and 4.3.7). From this set,
we selected a subset of instances for which the upper bounds computed by
the sequential heuristics were not optimal (it is clear that this is not a
random selection from the whole set of problems since all relatively easy
instances were left out). The smallest instances were also discarded and, for
each instance type (M,N,C) (where M is the number of tools, N is the
number of jobs and C is the capacity of the tool magazine), at most 5
problems were retained. We investigated three types of instances:

- single slot, single machine instances,
- multiple slot, single machine instances,
- single slot, multiple machine instances.

The dataset we used is described in Table 5.1. In each row the parameters
for each instance type (M,N,C) are given: M, N, C, the number of
instances tested, the number of machines and the size of the tools. The
upper part of Table 5.1 contains 45 instances of the single slot, single
machine type (dataset 1). Then, 46 instances are described where tool sizes
are tool-dependent (dataset 2). The last 54 instances are of the single slot,
multiple machine type (dataset 3A and 3B).

The sequential heuristics provided solutions close to optimality for all these
instances (gap between upper bound and optimal solution is 1 or 2).
Therefore, we tested all our local search heuristics by asking the question:
"Is there a feasible solution involving exactly OPT groups?", where OPT
was the optimal value of the instance at hand.

5.4.2. Computational results

The local search procedures were implemented in Turbo Pascal and run on
an AT personal computer with 16 MHz 80386sx processor and 80387
mathematical coprocessor (except for the results of Table 5.4; see below

for details).

The computational experiments were performed as follows. First, extensive

116 Chapter 5
Table 5.1 Dataset local search
Dataset Problem size C Number of | Number of | Number of
Mx N instances machines | slots per tool
single slot 10 x 10 4 5 1 1
single machine 15 x 20 8 5 1 1
(dataset 1) 20 x 30 10 5 1 1
25 x 30 10 5 1 1
40 x 30 25 5 1 1
60 x 40 30 5 1 1
40 x 40 20 5 1 1
50 x 50 25 5 1 1
60 x 60 30 5 1 1
multiple slots 15 x 20 13, 15 5 1 1,2,3
single machine 15x 20 13, 1S 5 1 1,3
(dataset 2) 25 x 30 20 5 1 1,2,3
25 x 30 25 4 1 1,3
60 x 40 40 5 1 1,2,3
60 x 40 45 S 1 1,3
30 x 30 20 3 1 1,2,3
30 x 30 20 5 1 1,3
40 x 40 30 4 1 1,2,3
40 x 40 30 5 1 1,3
single slot 15 x 20 12 4 3 1
3 machines 25 x 30 15 5 3 1
(dataset 3 A) 60 x 40 30 5 3 1
30 x 30 15 3 3 1
40 x 40 20 2 3 1
50 x 50 25 5 3 1
single slot 15x20 12 5 5 1
5 machines 25 x 30 15 5 5 1
(dataset 3 B) 60 x 40 30 5 5 1
30 x 30 15 5 5 1
40 x 40 2 N 5 1
50 x S0 25 5 5 1

A local search approach to job grouping 117

computational experiments were performed on the first dataset for a wide
variety of implementations. The results of a number of approaches that
performed relatively well are presented in Table 5.2. For this selection of
approaches, additional experiments were performed on the instances of the
second and the third datasets (for the "multiple slots" and the "multiple
machines"” instances).

The experiments on the first dataset were carried out with a 600 seconds
limit on the computation time. Each instance was tested for a given starting
solution, objective function, neighbourhood structure and local search
approach.When a random starting solution was used a number of restarts
was allowed within the given time period of 600 seconds (see Section
5.2.4).

Early tests showed that the simple improvement approach was dominated
strongly by the other local search approaches, and therefore we did not
consider this approach any further. The lack of good results for this
strategy is probably due to the fact that the objective functions are such that
the possibility of getting stuck in local optima (minima) is indeed large if
no uphill moves are allowed.

The results for the other three local search approaches (i.e. tabu search,
simulated annealing, variable-depth) did not diverge too much for a given
starting solution, objective function and neighbourhood structure. Table 5.2
gives the results of the computational experiments for the tabu search
approach using the objective functions f;(G), fo(G), f3(G) defined in
Section 5.2.2 and the neighbourhood structures "move and exchange" and
"move" described in Section 5.2.3. The second column of Table 5.2
indicates the number of instances tested for each instance type (M,N) (5 for
all instance types). Each entry of the table consists in a pair "A - B",
where A describes the number of instances for which an optimal solution
was found using the MI starting solution and B describes the number of
instances that was solved using a random starting solution (possibly with
nultiple starts). The bottom line of the table gives the cumulative results.

The first two rows show that nearly all smaller instances can be solved by
the tabu search approach, independently of the neighbourhood structure or
the objective function. However, the results diverge for larger instances. It
appears that the use of a MI starting solution gives better results than the
implementation using a random starting solution. We come back to this
issue in the discussion of Table 5.4. The second objective function,
including the slacks, usually leads to the best results (an impression also

118 . Chapter 5

Table 5.2 Results dataset 1: tabu search

Problem size # Move and exchange Move
MxN HG | KOG | [5G | (G | HG | A6
10x 10 5 5-5 5-5 5-5 -5 5-5 5-5
15 x 20 5 5-5 5-5 4-5 5-5 5-5 5-5
20 x 30 5 4-2 4-3 4-2 4-3 5-4 5-3
25 x 30 5 1-1 2-1 1-0 2-2 3-4 1-1
40 x 30 5 5-4 4-5 5-3 5-4 5-5 4-4
60 x 40 5 2-1 3-3 2-0 1-0 2-2 -0
40 x 40 5 2-1 3-3 3-4 4-2 4-4 4-3
50 x 50 5 4-0 5-0 3-0 5-1 5-2 5-5
60 x 60 5 2-0 5-0 3-0 5-0 4-0 5-4
Total 45 || 30-19 | 36-25 30-19 36 - 22 38-31 | 35-30

confirmed by our other experiments). The "move” neighbourhood provides
slightly better results than the "move and exchange" neighbourhood. This
may be due to the fact that the latter neighbourhood is computationally
more expensive to explore and can perform fewer steps within a fixed time
period. The results show that even large instances can be solved to
optimality using a tabu search approach.

The trends discussed above for the tabu search approach have also been
observed for the simulated annealing and the variable-depth approach. We
do not give complete results for these two approaches, but limit ourselves
to some brief comments. The results of the simulated annealing approach,
though sometimes different for individual instances, are on average
comparable to the tabu search results. The performance of the variable-
depth approach is somewhat weaker (especially for objective functions
J1(G) and f3(G)), which may be due to the absolute stopping criterion used
(see Sections 5.2.4 and 5.3.4). As an illustration of these comparisons,
Table 5.3 reports on the results obtained by the three approaches on the
first dataset, when the objective ﬁmclionfz(G) is used.

From these preliminary experiments, it appears that the objective function
JS>(G) combined with the "move" neighbourhood provides the best results.
For the variable-depth approach the more elaborate "move and exchange"
neighbourhood provides better results, which may again be related to the
influence of the stopping criterion (the time limit criterion is not often the
reason to cut off the variable-depth search). In the remainder of this section

A local search approach to job grouping 119

Table 5.3 Selected results dataset 1

Problem size | # Tabu search Simulated Annealing | Variable - depth
M x N Move and| Move |[Moveand| Move [Move and| Move
exchange exchange exchange
10x 10 5 5-5 5-5 5-5 5-5 5-5 5-5
15 x 20 5 5-5 5-5 5-5 5-5 3-5 5-5
20 x 30 5 4-3 5-4 4-1 5-4 5-3 4-3
25x 30 5 2-1 3-4 2-1 3-3 2-1 1-3
40 x 30 5 4-5 5-5 4-5 5-5 3-5 3-5
60 x 40 5 3-3 2-2 3-2 2-2 3-3 2-1
40 x 40 5 3-3 4-4 3-3 4-4 4-2 1-3
50 x 50 5 5-0 5-2 5-0 5-0 5-0 5-3
60 x 60 5 5-0 4-0 5-0 4-0 5- 5-1
Total 45 || 36-25 | 38-31 | 36-22 | 38-28 | 35-24 | 31-29

we limit ourselves to the discussion of the objective function 5(G)
combined with the "move and exchange" or the "move" neighbourhood.

Table 5.4 displays the influence of computation time when using a random
starting solution within the tabu search framework, with the "move"
neighbourhood structure. Of course, we expect the tabu search approach to
give better results if the time limit is increased, but the extent of
improvement is not clear. These experiments were run on a faster computer
(with 25 Mhz 80386 processor), approximately twice as fast as the previous
one. For each instance type (M,N), S instances were tested, and for each
instance 25 random starting solutions were considered. Each column of
Table 5.4 records the number of times (maximal 125) that an optimal
solution was obtained within the given time limit (resp. 1, 5, 15, 30, 60,
150, 300, 450 and 600 seconds).

The instances are roughly arranged by increasing size and the zeros in the
lower diagonal part of Table 5.4 speak for themselves. Table 5.4 shows
that the largest instances are indeed hard to solve using a random starting
solution, especially if this performance is compared to the results using a
MI starting solution (see Table 5.2 for the occurrence of optimality within
600 seconds on the slower computer). One may consider these computation
times as very high, compared to the time it takes to solve similar instances
to optimality (see Table 3.6, Chapter 3). These experiments were also
carried out for the simulated annealing approach, with comparable results.

120 Chapter 5

Table 5.4 Results tabu search with random starting solution

Problem size | # Cumulative number of instances solved to optimality after ...
Mx N ls 5s 15s | 30s | 60s | 150s | 300s | 450s | 600 s
10x 10 5 102 123 124 124 124 124 124 124 124
15 x 20 5 0 25 59 70 80 89 90 91 92
20 x 30 5 0 0 2 20 39 47 49 51 52
25 x 30 5 0 0 5 21 41 63 77 83 87
40 x 30 5 0 0 15 50 83 113 117 120 122
60 x 40 5 0 0 0 0 1 12 37 45 58
40 x 40 5 0 0 0 3 51 83 97 108 113
50 x 50 5 0 0 0 0 2 44 64 69 72
60 x 60 5 0 0 0 0 0 3 19 26 26

In Tables 5.5 and 5.6, a further comparison is made between the three
local search approaches for the "multiple slots" and the "multiple
machines” instances. As mentioned before, we choose to present the results
of implementations using the superior objective function S>(G). Tests with
the other objective functions yield results that are in general worse than the
results obtained for this objective function, as previously illustrated in
Table 5.2.

Table 5.5 Selected results dataset 2

Problem size| # | s € Tabu search Simulated Annealing | Variable - depth
Mx N Move and| Move [Move and| Move [Move and| Move
exchange exchange exchange
15x 20 511,2,3 4-5 5-5 4-5 5-5 2-5 2-5
15 x 20 5 1,3 4-5 5-5 4-5 5-5 3-5 3-5
25 x 30 511,2,3 2-2 4-5 2-4 4-4 3-3 0-5
25 x 30 4 1,3 4-3 2-3 4-2 2-4 1-3 1-4
60 x 40 511,2,3 3-2 3-3 3-3 3-3 3-2 2-3
60 x 40 5 1,3 4-5 5-5 4-5 5-5 3-4 3-5
30x 30 3 (11,2,3 2-2 3-2 2-2 3-3 1-2 2-3
30 x 30 5 1,3 3-4 5-4 3-4 5-3 2-2 1-4
40 x 40 4 11,2,3 4-1 2-0 4-3 2-0 3-1 2-0
40 x 40 5 1,3 3-0 -1 3-2 1-0 1-0 -0
Total 46 33-29 | 35-33 | 33-35] 35-32 | 22-27 | 17-34

Table 5.5 displays the results for the "multiple slots" case (dataset 2). In

A local search approach to job grouping 121

the third column of Table 5.5 the size of the tools is given. Because the
"multiple slots" instances are expected to be harder (see Chapter 4), the
time limit is increased from 600 to 900 seconds (on the 'slower’ computer).
Objective function f,(G) combined with the "move" neighbourhood
structure form the best parameter set for the "multiple slots” instances. The
results obtained with a random starting solution are similar to those using
the MI starting solution if the tabu search or simulated annealing approach
is used. However, if the time limit stopping criterion is decreased from 900
to 600 seconds, the results for the random starting solution deteriorate
much faster than for the MI starting solution. The 'total scores for the
"move and exchange" neighbourhood change from 33 - 29, 33 - 35 and
22 - 27 (see last line of Table 5.5) to 33 - 24, 32 - 25, 22 - 25 if the time
limit is set to 600 seconds. The influence of a time limit reduction is also
present (though less significantly) in case of the "move" neighbourhood.
Thus, it seems that the relatively good results for the random starting
solution are related to the large time limit. Table 5.5 also shows that the
time limit of 900 seconds is probably not enough for the largest instances in
case of a random starting solution.

The performance of the variable-depth approach is systematically worse
than that of the other approaches if a MI starting solution is used. This may
be partly explained by the stronger stopping criterion adopted (12 out of 24
(resp. 28 out of 29) unsolved instances for the variable-depth approach
using a "move and exchange" (resp. "move") neighbourhood structure were
stopped before the computation time limit was reached). The influence of
the stopping criterion is largely decreased in case multiple random starts
are used. The results for the variable-depth approach are comparable to the
other results if a random starting solution is employed.

Table 5.6 records the results for the "multiple machines” instances (datasets
3 A & B). The computations were performed using a 900 seconds time
limit (in Chapter 4 it is shown that these instances are probably easier than
those of the second dataset; however, in each step of the local search
approach more function evaluations have to be made). The upper (resp.
lower) part of Table 5.6 presents results on "3 machines” (resp. "5
machines") instances.

The tabu search and simulated annealing approaches give similar results,
with the variable-depth approach trailing behind. The tests using a MI
starting solution were more successful than those using a random starting
solution, which may indicate that the time limit was too low for randomly
generated starting solutions (compare with the results presented in Table
5.4). Nearly all structured instances (of sizes (30, 30), (40, 40) and (50,

122 - Chapter 5

Table 5.6 Selected results dataset 3A & 3 B

Problemsize | # [V Tabu search Simulated Annealing| Variable - depth
Mx N Move and| Move |Move and| Move |Move and| Move
exchange exchange exchange
15 x 20 4|3 4-4 4-4 4-4 5-5 4-4 4-4
25x 30 513 3-4 3-4 3-4 3-3 3-3 2-3
60 x 40 513 2-1 0-0 2-0 0-1 1-1 1-0
30 x 30 313 3-3 3-3 3-3 3-3 2-3 2-3
40 x 40 213 2-0 2-2 2-1 2-2 2-0 2-2
50 x 50 513 5-0 5-2 5-0 5-2 5-0 4-1
15 x 20 515 5-5 4-5 5-4 4-4 3-3 3-5
25 x 30 515 4-4 2-2 4-4 2-2 1-2 1-0
60 x 40 5|5 0-0 0-0 0-0 0-0 0-0 0-0
30 x 30 S|5 5-5 5-5 5-5 5-5 5-5 4-5
40 x 40 5|5 5-0 5-3 5-0 5-5 5-0 5-4
50 x 50 515 4-0 5-1 4-0 5-2 4-0 5-1
Total 54 42-26 | 38-31 | 42-25 | 39-34 | 35-21 | 33-28

50)) were solved to optimality when a MI starting solution was used. The
results were better for the "move and exchange" neighbourhood structure
than for the "move" neighbourhood structure in case a MI starting solution
was used. For random starting solutions the more time-efficient "move"
neighbourhood structure was more appropriate.

5.5. Summary and conclusions

In this chapter, we investigated the use of local search approaches to
improve the solution for the job grouping problem. Four local search
approaches were considered, namely simple improvement, tabu search,
simulated annealing and the variable-depth approach; for each of these
methods, several starting solutions, objective functions, neighbourhood
structures and stopping criteria were tested. Computational experiments
using three sets of data seem to indicate that the latter choices considerably
influence the performance of the different approaches, while the influence
of the specific local search approach seems less serious as long as some
kind of local optimum evading procedure is used. The opportunity to leave
local optima is particularly important given the rigidity of some objective
functions.

The differences in performance of the tabu search, simulated annealing and

A local search approach to job grouping 123

variable-depth approach are relatively small for the job grouping problem.
In some cases the results for the variable-depth approach are a bit
disappointing, but this may be partly related to the stopping criteria used
(that is, the variable-depth approach does not always benefit from
additional computation time as the other two approaches do).

Local search approaches are well known for their extensive use of
computation time and, in this study, they live up to this expectation.
However, initial solutions are sometimes improved in a limited amount of
time, especially for smaller instances. The MI starting solution outperforms
the random starting solutions in most cases. Since the MI starting solution
can be quickly obtained, we find it advisable to use it as a starting point.
The objective function f,(G), which combines minimizing the number of
violations with increasing the slack in groups that have spare capacity,
seems to be the most adequate objective function. Combined with either of
the neighbourhood structures "move and exchange" or "move", it provided
good results for all three datasets considered.

In conclusion, the experiments with local search approaches show that these
approaches can be helpful in finding improved solutions for the job
grouping problem. One important application could be the use of these
methods for improving the initial set covering formulation of the job
grouping problem by a column generation approach, as described in
Chapters 3 and 4.

Chapter 6

Minimizing the number of tool
switches on a flexible machine®

6.1. Introduction

The importance of tool management for the efficient use of automated
manufacturing systems has been recently stressed by several authors; we
refer for instance to Gray, Seidmann and Stecke (1988) or Kiran and
Krason (1988) for a thorough discussion of this issue. In particular, a
central problem of tool management for flexible machines is to decide how
to sequence the parts to be produced, and what tools to allocate to the
machine, in order to minimize the number of tool setups. The problem
becomes especially crucial when the time needed to change a tool is
significant with respect to the processing times of the parts, or when many
small batches of different parts must be processed in succession. These
phenomena have been observed in the metal-working industry by
Hirabayashi, Suzuki and Tsuchiya (1984), Finke and Kusiak (1987), Bard
(1988), Tang and Denardo (1988a), Bard and Feo (1989), etc. Blazewicz,
Finke, Haupt and Schmidt (1988) describe for instance an NC-forging
machine equipped with two tool magazines, each of which can handle eight
tools. The tools are very heavy, and exchanging them requires a sizeable
fraction of the actual forging time. Another situation where minimizing the
number of tool setups may be important is described by Forster and Hirt
(1989, p. 109). These authors mention that, when the tool transportation

* An article based on this chapter will be published in The International
Journal of Flexible Manufacturing Systems 6 (1), 1994,

126 Chapter 6

system is used by several machines, there is a distinct possibility that this
system becomes overloaded. Then, minimizing the number of tool setups
can be viewed as a way to reduce the strain on the tool transportation
system. Bard (1988) mentions yet another occurrence of the same problem
in the electronics industry. Suppose several types of printed circuit boards
(PCBs) are produced by an automated placement machine (or a line of such
machines). For each type of PCB, a certain collection of component feeders
must be placed on the machine before boards of that type can be produced.
As the machine can only hold a limited number of feeders, it is usually
necessary to replace some feeders when switching from the production of
one type of boards to that of another type. Exchanging feeders is a time-
consuming operation and it is therefore important to determine a production
sequence for the board types which minimizes the number of "feeder-
setups”. Identifying the feeders with tools, we see that this constitutes again
an instance of the "job-sequencing and tool loading" problem evoked
above.

The present paper deals with a particular formulation of this problem, due
to Bard (1988) and Tang and Denardo (1988a). Suppose that a batch of N
Jobs have to be successively processed, one at a time, on a single flexible
machine. Each job requires a subset of tools, which have to be placed in
the tool magazine of the machine before the job can be processed. The
number of tools needed to produce all the jobs in the batch is denoted by
M. We represent the data by an MxN tool-job matrix A, with:

ay =1 if job i requires tool k,
= 0 otherwise,
for k = 1,2, ., Mand i =1, 2, ..., N. Without loss of generality, A

has no zero row. The tool magazine has a limited capacity: it can
accommodate at most C tools, each of which fits in one slot of the magazi-
ne. To ensure feasibility of the problem, we assume that no job requires
more than C tools. We also assume that, while the jobs are in process, the
tool magazine is always loaded at full capacity (as will be explained below,
this is in fact a non-restrictive assumption for our problem). We thus call
any subset of C tools a loading of the magazine.

A job sequence is a permutation of {1, 2, ..., N}, or, equivalently, of the
columns of A. As the number of tools needed to produce all jobs is
generally larger than the capacity of the tool magazine (i.e., M > C), it is
sometimes necessary to change tools between two jobs in a sequence. When
this occurs, one or more tools are removed from the tool magazine and are

Minimizing the number of tool switches 127

replaced by a same number of tools retrieved from a storage area. We call
setup the insertion of a tool in the magazine. A switch is the combination
of a tool setup and a tool removal. Since each tool has to be set up at least
once in order to process the whole batch of jobs, we will also pay attention
to the extra setups of a tool, that is, to all setups of the tool other than the
first one.

The tool switching problem is now defined as follows: determine a job
sequence and an associated sequence of loadings for the tool magazine,
such that all tools required by the j-th job are present in the j-th loading,
and the total number of tool switches is minimized. In matrix terms, the
tool switching problem translates as follows: determine an MxN 0-1 matrix
P = (pkj), obtained by permuting the columns of A according to some job
sequence, and an MxN 0-1 matrix T = () containing C ones per column
(each column of T represents a tool loading), such that ;. = 1 if pp; = 1
(i.e., tool k is placed in the j-th loading if it is needed for the j-th job in
the sequence; k = 1, ... M; j = 1, ... ,N), and the following quantity is
minimized:

(this quantity is exactly the number of switches required for the loading
sequence represented by T). Observe that minimizing the number of tool
switches is equivalent to minimizing the number of setups or of extra
setups, since the following relations hold:

number of setups = number of switches + C
number of extra setups + M.

|

Let us now briefly discuss some of the (explicit and implicit) assumptions

of the tool switching model.

(1) As mentioned before, the assumption that the tool magazine is always
fully loaded does not affect the generality of the model. Indeed, since
no cost is incurred for tools staying in the magazine, one may consider
that the first C tools to be used are all incorporated in the very first
loading; thereafter, a tool only needs to be removed when it is
replaced by another one.

(2) Each tool is assumed to fit in one slot of the magazine. Removing this
assumption would create considerable difficulties. For instance the

128 Chapter 6

physical location of the tools in the magazine would then become
relevant, since adjacent slots would need to be freed in order to
introduce a tool requiring more than one slot.

(3) The time needed to remove or insert each tool is constant, and is the
same for all tools. This assumption is in particular crucial for the
correctness of the KTNS procedure (see Section 6.2.2) which
determines the optimal tool loadings for a given job sequence. Many
of our heuristic procedures, however, can easily be adapted in the case
where switching times are tool dependent.

(4) Tools cannot be changed simultaneously. This is a realistic assumption
in many situations, e.g. for the forging or for the PCB assembly
applications mentioned above.

(5) The subset of tools required to carry out each job is fixed in advance.
This assumption could be relaxed by assuming instead that, for each
Jjob, a list of subsets of tools is given, and that the job can be executed
by any subset in the list; (i.e., several process plans are given for each
Job; see e.g. Finke and Kusiak (1987)). Choosing the right subset
would then add a new dimension (and quite a lot of complexity) to the
problem.

(6) Tools do not break down and do not wear out. This assumption is
Justified if the tool life is long enough with respect to the planning
horizon. Otherwise, one may want to lift the assumption
"deterministically”, e.g. by assuming that tool k is worn out after the
execution of wy jobs, for a given value of w). Alternatively,
breakdowns and wear may also be modelled probabilistically. This
would obviously result in a completely new model.

(7) The list of jobs is completely known. This assumption is realistic if the
planning horizon is relatively short.

This paper deals with various aspects of the tool switching problem.
Section 6.2 contains some basic results concerning the computational
complexity of this problem; in particular, we establish that the problem is
already NP-hard for C = 2, and we present a new proof of the fact that,
for each fixed job sequence, an optimal sequence of tool loadings can be
found in polynomial time. In Section 6.3, we describe several heuristics for
the tool switching problem, and the performance of these heuristics on
randomly generated problems is compared in Section 6.4. Section 6.5
contains a summary of our results and presents perspectives for future
research. The Appendix contains some graph-theoretic definitions.

Minimizing the number of tool switches 129

6.2. Basic results

We present in this section some results concerning the computational
complexity of the tool switching problem. We assume that the reader is
familiar with the basic concepts of complexity theory (see e.g. Nemhauser
and Wolsey (1988)). Let us simply recall here that, loosely speaking, a
problem is NP-hard if it is at least as hard as the traveling salesman
problem (see the Appendix).

6.2.1. NP-hardness results

Tang and Denardo (1988a) claim that the tool switching problem is NP-
hard. They do not present a formal proof of this assertion, but rather infer
it from the observation that the problem can be modelled as a traveling
salesman problem with variable edge lengths. Our immediate goal will be
to establish the validity of two slightly stronger claims.

Consider first the following restricted version of the tool switching
problem:

Input: an MxN matrix A and a capacity C.
Problem Pl: is there a job sequence for A requiring exactly M setups
(i.e., no extra setups) ?

Theorem 6.1 Problem P1 is NP-hard.

Proof: It is straightforward to check that P1 is precisely the decision
version of the so-called matrix permutation problem, which has been
extensively investigated in the VLSI design literature (see Mohring (1990)
and references therein). Several equivalent versions of the matrix
permutation problem have been shown to be NP-hard (see Kashiwabara and
Fujisawa (1979), Méhring (1990)), and hence Pl is NP-hard. Q.E.D.

In the description of problem P1, both A and C are regarded as problem
data. But, from the viewpoint of our application, it may also be interesting
to consider the situation where a specific machine, with fixed capacity, has
to process different batches of jobs. The matrix A can then be regarded as
the sole data of the tool switching problem. This observation leads us to
define the following problem, where C is now considered as a fixed para-
meter:

Input: an MxN matrix A.

130 Chapter 6

Problem P2: find a job sequence for A minimizing the number of
setups required on a machine with capacity C.

Theorem 6.2 Problem P2 is NP-hard for any fixed C = 2.

Proof: Let G = (V, E, d) be a graph and H = (E, 1, §) be its edge-graph
(see Appendix). We consider the problem of finding a minimal length TS
path in H (problem P3 in the Appendix). We are now going to prove
Theorem 6.2 by showing that this NP-hard problem can be formulated as a
special case of problem P2, for any fixed C = 2. For simplicity, we first
concentrate on a proof of Theorem 6.2 for C = 2.

LetV ={1,2,...,M}and E = {e1, &, ..., en}. Define an MxN matrix
A, with rows associated to the nodes of G, columns associated to the edges
of G, and such that:

I

1 if edge e; contains node k,
0 otherwise.

ai

i

Consider now A as an instance of the tool switching problem, with capacity
C = 2. A job sequence for this problem corresponds to a permutation of
E, and hence to a TS path in the edge-graph of G. Also, it is easy to see
that the number of tool switches between two jobs i and j, corresponding to
the edges e; and e; of G, is:

- equal to 1 if ¢; and e; share a common node, that is, if o(e;,) = 1 in H;
- equal to 2 if e; and g do not share a common node, that is, if 6(ei, ej) =
+ oo in H.

This discussion immediately implies that an optimal job sequence for A
(with capacity 2) always corresponds to a minimal length TS path in H.
Hence, we can solve P3 by solving P2, and this entails that P2 is NP-hard.

To see that Theorem 6.2 is also valid for C > 2, it suffices to adapt the
definition of A in the previous argument, by adding C - 2 rows of 1's to it;
that is, A now has (M + C - 2) rows, and 3; =1lifk =M + 1. The
reasoning goes through with this modification. Q.E.D.

6.2.2. Finding the minimum number of setups for a fixed job sequence

The tool switching problem naturally decomposes into two interdependent

issues, namely:

(1) sequencing: compute an (optimal) job sequence, and

(2) rooling. for the given sequence, determine what tools should be
loaded in the tool magazine at each moment, in order to
minimize the total number of setups required.

Minimizing the number of tool switches 131

In their paper, Tang and Denardo (1988a) proved that the sequencing
subproblem actually is the hard nut to crack, since the tooling problem can
be solved in O(MN) operations by applying a so-called Keep Tool Needed
Soonest (KTNS) policy. A KTNS policy prescribes that, whenever a situati-
on occurs where some tools should be removed from the magazine, so as to
make room for tools needed for the next job, then those tools which are
needed the soonest for a future job should be removed last (we refer to
Tang and Denardo (1988a) or Bard (1988) for a more precise description).

Tang and Denardo’s proof of the correctness of KTNS relies on ad-hoc
interchange arguments and is rather involved (as observed by Finke and
Roger - see Roger (1990) - the correctness of KTNS was already
established by Mattson, Gecsei, Slutz and Traiger (1970) in the context of
storage techniques for computer memory, in the case where each job
requires exactly one tool; their proof is similar to Tang and Denardo’s).
We now look at the tooling subproblem from a different angle, and show
that the problem can be modelled as a specially structured 0-1 linear
programming problem, which can be solved by a greedy algorithm due to
Hoffman, Kolen and Sakarovitch (1985) (see also Nemhauser and Wolsey
(1988), pp. 562 - 573; Daskin, Jones and Lowe (1990) present another
application of the same greedy algorithm in a flexible manufacturing
context). When translated in the terminology of the tool switching problem,
this algorithm precisely yields KTNS. Thus, this argument provides a new
proof of correctness for KTNS.

The bulk of the work in our derivation of the KTNS procedure will simply
consist in reformulating the tooling problem in an appropriate form. With
this goal in mind, we first introduce some new notations and terminology.
For the remainder of this section, assume that the job sequence o is fixed.
Let the MxN (0,1)-matrix P be defined by:

Il

1 if tool k is required for the i-th job in o,
0 otherwise

Pxi

(that is, P is obtained by permuting the columns of A according to the job
sequence at hand). A tooling policy can now be described by flipping some
entries of P from O to 1, until each column of P contains exactly C ones. If
we denote by c; the remaining capacity of column i, that is the quantity:

M
6 C _kgl P

132 _ Chapter 6

then a tooling policy must flip c; entries from O to 1 in the i-th column of
P.

Let us next define a 0-block of P as a maximal subset of consecutive zeroes
in a row of P. More formally, a 0-block is a set of the form {(k, 1), (k, i
+ 1), ..., (k, i + j)}, for which the following conditions hold:

M l<igi+j<N,
() Pk =Pk, i+1 = - = Pk, i+j = O
3 Pk, i1 = Pk, i+j+1 = L

Intuitively, a O-block is a maximal time interval before and after which tool
k is needed, but during which it is not needed. It is easy to see that each 0-
block of P is associated with an extra setup of tool k. Thus, flipping an
element of P from O to 1 can only reduce the number of extra setups if this
element belongs to a O-block, and if all other elements of this O-block are
also flipped. In other words, only flipping whole 0-blocks can help
reducing the number of setups.

Example 6.1 The matrix

010011
P = 110000
101101

contains three O-blocks, namely {(1, 3),(1, 4)}, {(3, 2)} and {(3, 5)}. They
correspond to an extra setup of tool 1 in period 5, and two extra setups of
tool 3, in periods 3 and 6. Assume that the capacity is C = 2. Then, the
number of extra setups can be minimized by flipping the first and the third
0-blocks to 1, thus resulting in the matrix:

=]
[

o O
O
— O
-0
O
=

From the previous discussion, it should now be clear that the tooling
problem can be rephrased as follows: flip to 1 as many O-blocks of P as
possible, while flipping at most c; entries in column i (i = 1, 2, ..., N).

Denote by B the number of 0-blocks in P, and, for j = 1, 2, ..., B,
introduce the decision variables:

Minimizing the number of tool switches 133

¢
!

1 if the j-th O-block is flipped to 1,
0 otherwise.

Fori=1,2,..,Nandj =1, 2, ..., B, let also:

m.: = 1 if the j-th 0-block "meets" column i in P,
0 otherwise

(formally, a O-block meets column i if it contains an element of the form
(k,i), for some k; for instance, in Example 6.1, the first O0-block meets
columns 3 and 4).

Now, the tooling problem admits the following O-1 linear programming
formulation:

B
(TP) max Y X,
j=1
subject to E m; X < ¢, i=1,2,...,N
X; € {0,1}, i=12 .., B

Assume now that the O-blocks of P have been ordered in non-decreasing
order of their "endpoints”: that is, the O-blocks of P have been numbered
from 1 to B in such a way that the index of the last column met by the j-th
0-block is smaller than or equal to the index of the last column met by the
(j + 1)-st O-block, forj = 1, ..., B-1. Then, the matrlx (mJ) is a so-called
greedy matrix, 1.e. it does not contam the matrix (1 O) as a submatrix.
Hoffman et al. (1985) considered the following, more general problem on
an NxB greedy matrix:

=
>

(GP) max

o
1
—_

subject to mg X; =g i=1,2,...,N

s
Il

134 Chapter 6

0< X; < dj X integer =12, ..,B

where bj, dj g=1,2,..,Band¢ (i =1, 2, , N) are integers with
by = by = ... = by They proved that when the matrix (m;) is greedy,
problem (GP) can be solved by a greedy algorithm, in which each (G =

1, 2, ..., B) is successively taken as large as possible while respecting the
feasibility constraints. Reformulating this algorithm for (TP), we see that
we should successively flip O-blocks to 1, in order of nondecreasing
endpoints, as long as the remaining capacity of all columns met by the O-
block is at least one. We leave it to the reader to check that this procedure
is precisely equivalent to a KTNS policy.

Remark. In a more general situation where the setup times are not
identical for all tools, the tooling subproblem can still be formulated as a
problem of the form (GP), where b is now the time required to set up the
tool associated with the j-th O-block. Since the condition b; = by = ... =
bg does not generally hold for these setup times, the greedy algorithm of
Hoffman et al. (1985) and KTNS are no longer valid. However, the matrix
(m,) being an interval matrix, is totally unimodular (see Section 6.3.4 and
Nemhauser and Wolsey (1988) for definitions). It follows that the tooling
subproblem can still be solved in polynomial time in that case, by simply
solving the linear programming relaxation of the formulation (GP).

6.3. Heuristics

The tool switching problem being NP-hard, and hence probably difficult to
solve to optimality, we concentrate in the sequel on heuristic techniques for
its solution. We propose hereunder six basic approaches, falling into two
main categories (we adopt the terminology used by Golden and Stewart
(1985) for the traveling salesman problem):

- construction strategies, which exploit the special structure of the tool
switching problem in order to construct a single (hopefully good) job
sequence (Subsections 6.3.1 to 6.3.4 below);

- improvement strategies, which iteratively improve a starting job
sequence (Subsections 6.3.5 and 6.3.6 below).

Composite strategies will be obtained by combining construction and

improvement procedures. A computational comparison of the resulting

procedures will be presented in Section 6.4,

Minimizing the number of tool switches 135

As explained in Section 6.1, the data of our problem consist of an MxN
tool-job matrix A and a capacity C. We focus on the solution of the
sequencing subproblem (see Subsection 6.2.2), since we already know that
the tooling subproblem is easy to solve. Whenever we speak of the cost of
a (partial) job sequence, we mean the minimal number of tool switches
required by the sequence, as computed using KTNS.

6.3.1. Traveling salesman heuristics

These heuristics are based on an idea suggested by Tang and Denardo
(1988a). They consider a graph G = (V, E, Ib) (see Appendix for
definitions), where V is the set of jobs, E is the set of all pairs of jobs, and
the length Ib(i, j) of edge {i, j} is an underestimate of the number of tool
switches needed between jobs i and j when these jobs are consecutively
processed in a sequence. More precisely:

Ib(i, j) = max(|T; U Tj| -C, 0),

where T, is the set of tools required by job i (i =1, 2,..., N). Notice that,
if each job requires exactly C tools (i.e. |T;| = C for all i), then Ib(i, j) is
equal to the number of tool switches required between jobs i and j in any
schedule.

Each traveling salesman (TS) path of G corresponds to a job sequence for
the tool switching problem. So, as suggested by Tang and Denardo
(1988a), computing a short TS path in G constitutes a reasonable heuristic
for the generation of a good sequence. As a matter of fact, when all jobs
use full capacity, then the tool switching problem is precisely equivalent to
the TS problem on G.

In our computational experiments, we have considered the following

procedures for constructing a short TS path in G:

(1) Shortest Edge heuristic: this is the heuristic used by Tang and Denardo
(1988a), and called "greedy feasible” in Nemhauser and Wolsey
(1988); complexity: O(N2logN);

(2) Nearest Neighbour heuristic with all possible starting nodes: see
Golden and Stewart (1985), Johnson and Papadimitriou (1985);
complexity: O(N3);

(3) Farthest Insertion heuristic with all possible starting nodes: see Golden
and 4Stewart (1985), Johnson and Papadimitriou (1985); complexity:
O(N");

(4) B&B algorithm: this is a state-of-the-art branch-and-bound code, which

136 Chapter 6

solves TS problems to optimality: see Volgenant and Jonker (1982);
complexity: exponential in the worst-case.

Procedures (1), (2) and (3) are well-known heuristics for the traveling
salesman problem. In addition to the complexity mentioned for each
procedure, an overhead of O(MNZ) operations has to be incurred for the
computation of the edge lengths 1b(i,j).

6.3.2. Block minimization heuristics

We describe now another way of associating a traveling salesman instance
to any given instance of the tool switching problem. We first introduce a
directed graph D = (V*,U,ub). Here, V_ is the set of all Jobs, plus an
additional node denoted by 0. Each ordered pair of nodes is an arc in U.
The length ub(i, j) of arc (i, j) is given by:

ub(i, j) = |T)T;]

where T; is the set of tools required by job i (i = 1, 2, ..., N), and Ty is
the empty set. In words, ub(i, j) is the number of tools used by job 1 but
not by job j; hence, ub(i, j) is an upper bound on the number of tool
switches between jobs i and j, for any sequence in which i and j must be
consecutively processed. If every job requires exactly C tools, then ub(i, j)
= ub(j, i) = Ib(i, j) is equal to the number of switches between i and j.
But in general, ub(i, j) differs from ub(j, 1).

Each TS path of D finishing at node O defines a sequence of jobs, and the

length of the path is an upper bound on the total number of switches

entailed by the sequence. For reasons explained below, we refer to

heuristics which attempt to construct a short TS path in D as block

minimization heuristics. We have implemented two such heuristics:

(1) NN Block Minimization, based on a nearest neighbour heuristic with all
possible starting nodes; complexity: O(NB);

(2) FI Block Minimization, based on a farthest insertion heuristic with all
possible starting nodes; complexity: ON%.

Let us mention another interesting interpretation of the block minimization
approach. As in Section 6.2.2, consider the matrix P obtained after
permuting the columns of A according to a job sequence 0. We define a /-
block of P as a set of entries, of the form {(k, i), (k, i + 1), ..., (k, i +
1}, for which the following conditions hold:

Minimizing the number of tool swirches 137

1) 1 €1 <1+ <N,
2 pki:pk:i‘*"l:"':pk,iﬂ':l,
() eitheri = lorp ;; =0,

(4) either i+j = N or py irj+1 = 0

(this definition does not exactly mimic the definition of O-blocks, but the
difference is irrelevant here). Notice that, were it not for the possibility to
carry out KTNS on P, then each 1-block of P would induce a tool setup in
the job sequence o. Thus, the number of 1-blocks of P is an overestimate
of the number of setups required by o. l

We leave it to the reader to check that the number of 1-blocks in P is also
equal to the length of the TS path associated with ¢ in D (and finishing at
node 0). So, finding a shortest TS path in D is equivalent to determining a
permutation of the columns of A which minimizes the number of I-blocks
in the permuted matrix. This observation is essentially due to Kou (1977).
Kou (1977) also proved that finding a permutation which minimizes the
number of 1-blocks is NP-hard (our proof of Theorem 6.2 establishes the
same result). This justifies the use of heuristics in our block minimization
approach.

6.3.3. Greedy heuristics

One of the obvious drawbacks of the heuristics described in Sections 6.3.1
and 6.3.2 is that they do not take a whole job sequence into account when
estimating the number of tool switches required between pairs of jobs. For
instance, lb(i, j) is in general only a lower bound on the actual number of
switches between jobs i and j, and this lower bound can sometimes be a
quite poor estimate of the actual value. An extreme case would arise when
no job requires more than C/2 tools; then, Ib(i, j) = 0 for each pair (i, j),
and any traveling salesman heuristic based on these edge-lengths picks a
random job sequence! Similarly, ub(i, j) can also be a rough upper bound
on the number of switches required. In order to alleviate this difficulty, we
propose now the following (Simple) Greedy heuristic:

Step 1: start with the partial job sequence ¢ = (1);
let Q = {2, 3, ..., N}.
Step 2: for each job.j in Q, let c(j) be the cost of the partial sequence

(0,) (i.e., the number of tool switches entailed by this partial
sequence, disregarding the remaining jobs).

Step 3. let i be a job in Q for which c(i) = mi“jeQ c());
let 0 := (0, i) and Q := Q\{i}.

138 Chapter 6

Step 4: if Q is not empty, then repeat Step 2;
else, stop with the complete sequence o.

Greedy runs in time O(MN3), since it requires O(Nz) applications of the
KTNS procedure (in Step 2). Its empirical performance can be slightly
improved by taking advantage of the fact that all the partial sequences
considered in Step 2 share the same initial segment.

Of course, there is no mandatory reason to select job 1 first in Step 1 of
Greedy, rather than any other job. This observation suggests to consider
the following, more elaborate Multiple-Start Greedy heuristic: run N times
Greedy, once for each initial sequence ¢ = () § = 1, 2, ..., N), and
retain the best complete sequence found. This heuristic clearly dominates
Greedy, in terms of the quality of the job sequence that it produces. Its
worst-case complexity is O(MN%).

As a final note on this approach, it may be interesting to observe that, if
each job requires exactly C tools, then Multiple-Start Greedy is identical to
the TS Nearest Neighbour heuristic (Section 6.3.1) or to the NN block
minimization heuristic (Section 6.3.2).

6.3.4. Interval heuristic

In order to motivate our next heuristic, let us first consider a special
situation: assume that the matrix P arising by permuting the columns of A
according to some sequence ¢ has precisely one l-block in each row. In
other words, the ones in each row of P occur consecutively. When this is
the case we say that A is an interval matrix (or that A has the consecutive
ones property; see e.g. Fulkerson and Gross (1965), Booth and Lueker
(1976), Nemhauser and Wolsey (1988)). Then, the job sequence ¢ requires
only one setup per tool, and is obviously optimal.

Thus, every MxN interval matrix admits an optimal sequence with M
setups. Moreover, given an arbitrary matrix A, one can decide in time
O(MN) whether A is an interval matrix, and, in the affirmative, one can
find within the same time bound a sequence entailing M setups for A
(Booth and Lueker (1976) (notice that this does not contradict Theorem
6.1: by applying KTNS, a sequence with M setups can sometimes be found
for non-interval matrices). On the other hand, it is by no means clear that
any of the heuristics described in Sections 6.3.1, 6.3.2 or 6.3.3 would find
an optimal job sequence for an interval matrix.

Minimizing the number of tool switches 139

These observations suggest the implementation of the following [Interval
heuristic. The heuristic simultaneously builds a "large” interval submatrix
of A, and computes an optimal job sequence for the submatrix. This
sequence is the solution returned by the heuristic. More precisely:

Step I initialize K = { }, k = 1.

Step 2: determine whether the submatrix of A consisting of the rows
with index in K U {k} is an interval matrix;
if so, then let K := K U {k} and let.c be an optimal job
sequence for the submatrix; else, continue.

Step 3: ifk < M, then let k := k + 1 and go to Step 2;
else, continue.
Step 4: return the last job sequence found; stop.

The Interval heuristic has the attractive property that it produces an optimal
job sequence for every interval matrix. The complexity of the heuristic is
O(MN) if the algorithm by Booth and Lueker (1976) is used. In our
implementation, we have used a slower, but simpler recognition algorithm
for interval matrices, due to Fulkerson and Gross (1965).

In the following subsections, we concentrate on improvement Strategies.
The input for each procedure is some initial job sequence o, that we
subsequently attempt to improve in an iterative way.

6.3.5. 2-Opt strategies

This class of strategies is based on an idea that has been widely used for
other combinatorial optimization problems: given a sequence ¢, try to
produce a better sequence by exchanging two jobs in o (if 1 is the n-th job
and j is the p-th job in o, then exchanging i and] means putting i in p-th
position and j in n-th position). We have considered two versions of this
basic approach. The first one, called Global 2-Opt, can be described as
follows:

Step 1: find two jobs i1 and j whose exchange results in an improved
sequence; if there are no such jobs, then return ¢ and stop;
else, continue.

Step 2: exchange i and j; call ¢ the resulting sequence; repeat Step 1.

Global 2-Opt has been proposed by Bard (1988) for the tool switching
problem. Notice that each execution of Step 1 requires O(Nz) applications
of KTNS, i.e. O(MN) operations. But the number of potential executions

140 Chapter 6

of this step does not appear to be trivially bounded by a polynomial in N
and M (contrary to what is claimed by Bard (1988)). In order to reduce the
computational effort by iteration of Global 2-Opt, the following Restricted
2-Opt procedure can also be considered:

Step 1: find two consecutive jobs in o, say the p-th and (p + 1)-st
ones, whose exchange results in an improved sequence; if there
"are no such jobs, then return o and stop.

Step 2: exchange the jobs found in Step 1; call ¢ the resulting
sequence; repeat Step 1.

The complexity of Step 1 in Restricted 2-Opt is O(MNZ). This exchange
strategy has also been proposed by Finke and Roger (see Roger (1990)).

6.3.6. Load-and-Optimize strategy

Consider again a job sequence ¢ and the matrix P obtained by permuting
the columns of A according to o. Applying KTNS to P results in a new
matrix T, each column of which contains exactly C ones (the j-th column
of T describes the loading of the tool magazine while the j-th job in ¢ is
being processed). Suppose now that we look at T as defining a new
instance of the tool switching problem (with capacity C). If we can find for
T a better sequence than o, then this sequence will obviously be a better
sequence than o for the original matrix A as well. On the other hand, the
problem instance (T,C) is a little bit easier to handle than the instance
(A,C). Indeed, since each column of T contains C ones, the tool switching
problem (T,C) can be reformulated as a TS problem, as explained in
Sections 6.3.1, 6.3.2, 6.3.3. These observations motivate our Load-and-
Optimize strategy:

Step 1: permute the columns of A according to ¢ and apply KTNS;
call T the resulting matrix.

Step 2: compute an optimal sequence ¢’ for the tool switching instance
(T, O).

Step 3: if ¢’ is a better sequence than ¢ for A, then replace ¢ by ¢’

and repeat Step 1; else return ¢ and stop.

From a practical viewpoint, we have found it easier to slightly alter this
basic strategy, in the following way. In Step 2, rather than computing an
optimal sequence for T (which is computational demanding), we simply use
the farthest insertion heuristic to produce a good sequence ¢’ (as in Section
6.3.1). On the other hand, in Step 3, we accept the new sequence ¢’ even

Minimizing the number of tool switches 141

if it entails the same number of setups as o. We only stop when 10
iterations of the procedure have been executed without producing a strictly
improved sequence. In the sequel, we also refer to this variant as "Load-
and-Optimize".

6.4. Computational experiments
6.4.1. Generation of problem instances

We tested our heuristics on 160 random instances of the tool switching
problem. Of course, tool-job matrices occurring in practice may have
characteristics not present in the ones we generated. For instance, as
pointed out by an anonymous referee, realistic matrices are likely to display
inter-row and inter-column correlations, as well as "tool clusters".
However, in the absence of real-world data or even of detailed statistical
information about these, we decided to follow a procedure similar to the
one proposed by Tang and Denardo (1988a) in generating our test
problems.

Each random instance falls into one of 16 instance types, characterized by
the size (M, N) of the tool-job matrix and by the value C of the capacity.
Accordingly, we denote the type of an instance by a triple (M, N, C).
There are 10 instances of each type. The tool-job matrices are MxN
matrices, where (M, N) is either (10,10), (20,15), (40,30) or (60,40). For
each size (M, N), we also define a pair (Min, Max) of parameters with the
following interpretation:

- Min = lower bound on the number of tools per job,
- Max = upper bound on the number of tools per job.

The specific values of these parameters are displayed in Table 6.1.

For each problem size (M, N), 10 random matrices A were generated. For
eachj = 1, 2, ..., N, the j-th column of A was generated as follows. First,
an integer t; was drawn from the uniform distribution over [Min,Max]: this
number denotes the number of tools needed for job j, i.e. the number of
I's in the j-th column of A. Next, a set T. of t, distinct integers were
drawn from the uniform distribution over [I,M]: these integers denote the
tools required by job j, i.e. aj; = 1 if and only if k is in T;. Finally, we
checked whether T, & T; or ’Ili S T. held for any i < j. II! any of these
inclusions was found to hold, then the previous choice of Tj was cancelled,

142 Chapter 6

Table 6.1 Parameter values Min and Max

Problem size Min Max
Mx N
10 x 10 2 4
20x 15 2 6
40 x 30 5 15
60 x 40 7 20

and a new set T. was generated (Tang and Denardo (1988a) and Bard
(1988) have observed that any column of A contained in another column
can be deleted without affecting the optimal solution of the problem; thus,
we want to make sure that our problem instances actually involve N
columns, and cannot be reduced by this simple trick). Notice that this
generation procedure does not a priori prevent the occurrence of null rows
in the matrix. In practice, only two of the 40 matrices that we generated
contained null rows (these were two (20,15) matrices, containing
respectively one and three null rows).

A problem instance of type (M, N, C) is now obtained by combining an
MxN tool-job matrix A with one of the four capacities C;, Cy, Cyand Cy
displayed in Table 6.2.

Table 6.2 Problem sizes and tool magazine capacities

Problem size C; C, Cs Cy
Mx N
10 x 10 4 5 6 7
20x 1S 6 8 10 12
40 x 30 15 17 20 25
60 x 40 20 22 25 30

We will see that the performance of some heuristics strongly depends on
the value of the ratio Max/C. We call sparse those problem instances for
which Max/C is small, and dense those for which the ratio is close to 1.
Notice, in particular, that all instances of type (M, N, C)) have Max/C; =
1. Varying the capacity as indicated in Table 6.2 will allow us to examine

Minimizing the number of tool switches 143

the behaviour of our heuristics under different sparsity conditions. Let us
mention here that, according to the empirical observation of many real-
world systems described by Forster and Hirt (1989), sparse instances are
probably more "realistic" than dense ones. But of course, this conclusion is
very much system-dependent.

6.4.2. Computational results

All heuristics described in Section 6.3 have been implemented in Turbo
Pascal and tested on the problem instances described above. The experi-
ments were run on an AT personal computer equipped with an 12 MHz
80286 microprocessor and an additional 80287 coprocessor. Since our
primary goal was to compare the quality of the solutions produced by the
heuristics, no systematic attempts were made to optimize the running time
of the codes. Accordingly, we will not report here on precise computing
times, but simply give some rough indication of the relation between the
times required by the various methods.

The performance of heuristic H on problem instance I is measured in terms
of "percentage above the best solution found", namely, by the quantity:

H(T) - Best(I)
S = () * 100,
Best(I)

where H(I) is the number of tool setups required by the job sequence
produced by heuristic H, and Best(I) is the number of setups required by
the best sequence found by any of our heuristics.

For information, Table 6.3 indicates the evolution of Best(I) as a function
of the problem type (average of Best (I) over all ten instances of each
type). All subsequent tables (Tables 6.4, 6.5, 6.6) report averages and (in
brackets) standard deviations of ép(I) over all instances I of a given type.

Table 6.4 compares the behaviour of the four traveling salesman heuristics
described in Section 6.3.1. We will see later that TS heuristics perform
best on dense instances, and tend to behave very badly on sparse instances.
Therefore, we limit ourselves here to a comparison of these heuristics on
the densest instances, that is, those instances where C = Cy = Max.

From Table 6.4, it appears that on average, and mostly for large instances,
Farthest Insertion yields better solutions than the other TS heuristics.

144 Chapter 6

Table 6.3 Average of Best (I)

Problem size Tool magazine capacity
M x N C, C, Cs Cq
10 x 10 13.2 11.2 10.3 10.1
20x 15 26.5 21.6 20.0 19.6
40 x 30 113.6 95.9 76.8 56.8
60 x 40 211.6 189.7 160.5 127.4

Table 6.4 Average (and standard deviation) of dy(D) for the traveling salesman procedures

Heuristic (10,10, C=4) | (20,15, C=6) | (40,30, C=15) | (60,40, C=20)
Shortest edge 12.4 (6.8) 23.9 (9.8) 20.3 3.1) 18.8 (3.4)
Farthest Insertion 2.1 (9.8) 15.5 (8.6) 9.4(5.3) 6.9 (2.7)
Nearest Neighbour 13.7 (7.8) 19.8 (7.7) 21.0 (6.0) 18.9 (3.5)
Branch-and-Bound 12.6 (4.6) 16.2 (5.8) 12.4 (4.3) 10.9 (2.9)

Farthest Insertion is also a very fast heuristic, which produces solutions in
a matter of seconds (about 30 seconds for the largest instances). The Shor-
test Edge and Nearest Neighbour heuristics are even faster, but Farthest
Insertion presents in our view the best quality vs. efficiency trade-off.
Thus, we will select Farthest Insertion as our "winner" among TS
heuristics, and no longer report on the other TS heuristics in the sequel.

A similar comparison between the two block minimization heuristics
presented in Section 6.3.2 would lead to similar conclusions. Here again,
FI is slightly better and slightly slower than NN. In the remainder of this
section, we only report on the performance of FI, and no longer of NN.

Table 6.5 displays the performance of "constructive" and "improvement"
heuristics over our complete sample of problem instances. The results
(averages and standard deviations) for each heuristic are given in different
columns. The results presented under the labels "2-Opt" or "Load-and-
Optimize" have been obtained by first picking a random job sequence, and
then applying the corresponding improvement strategies to it. The columns
labelled "Random" provide, for the sake of comparison, the number of tool
setups entailed by the initial random job sequence.

Minimizing the number of tool switches 145

Let us now try to sketch some of the conclusions that emerge from this
table. Consider first the case of dense instances, that is, the instances of
type (10,10,4), (20,15,6), (40,30,15) and (60,40,20). As the size of these
instances increases, the ranking of the solutions delivered by the various
heuristics seems to become more or less stable. Namely, Multiple-Start
Greedy and Global 2-Opt produce (on the average) the best results. Next
comes a group made up of Farthest Insertion, FI Block Minimization and
Simple Greedy, which usually yield solutions of slightly lower quality.
Finally, the worst solutions are produced by Load-and-Optimize, Restricted
2-Opt and Interval (and, as expected, the random procedure).

We get a somewhat different ranking of the heuristics when we look at
sparse instances. Consider e.g. the instances of type (10,10,7), (20,15,12),
(40,30,25), (60,40,30). Multiple-Start Greedy, Global 2-Opt, Simple
Greedy and FI Block Minimization remain, in that order, the best
heuristics. But Farthest Insertion performs now almost as badly as the
random procedure! As a matter of fact, for larger instances, it appears that
the performance of Farthest Insertion deteriorates very systematically as
sparsity increases. This behaviour is matched by all other TS heuristics
(Shortest Edge, Nearest Neighbour, and B&B). It can be explained by
observing that, for sparse instances, the bounds Ib(i,j) tend to be poor
estimates of the number of switches required between jobs i and j (see
Sections 6.3.1 and 6.3.3).

Our conclusion at this point would be that, if we are only concerned with
the quality of the solution produced by each heuristic, then Muitiple-Start
Greedy and Global 2-Opt come out the winners, while Simple Greedy and
FI Block Minimization are good contenders. For dense problems, Farthest
Insertion also is a very good technique.

This first picture becomes more nuanced when we also take computing
times into account. Indeed, the various heuristics run at very different
speeds. For instance, solving an instance of type (10,10,4) takes about 0.30
seconds by Farthest Insertion, FI Block Minimization or by Simple Greedy,
2 seconds by Global 2-opt and 3 seconds by Multiple-Start Greedy. More
strikingly, the instances of type (60,40,20) require about 30 seconds by
Farthest Insertion or by FI Block Minimization, 1.5 minutes by Simple
Greedy, 30 minutes by Global 2-Opt, and 1 hour by Multiple-Start Greedy
(these times are rather stable, for a given method, over all instances of the
same type). Even though some of these procedures could certainly be
accelerated by implementing them more carefully, it is probably safe to say
that the first three heuristics are fast, while the latter two are computational

Table 6.5 Average (and standard deviation) of bﬂ(I)

MxN | C Farthest FI Block Simple Muiltiple- Interval Restricted Global Load-and- Random
Insertion Minimization Greedy Start 2-opt 2-opt Optimize
Greedy

10x10| 4 12.1 (9.8) 14.3 (1.7) 12.3 (6.3) 4.6 (3.8) 22.6(12.2) 26.0 (7.7) 8.7 4.7) 5.8(5.3) 41.2(18.9)
10x10| 5 19.0 (7.8) 13.6 (7.6) 8.1(6.0) 3.7 (4.6) 14.1(14.1) 24.3 (10.1) 7.4(7.1) 10.1(7.2) 33.8(16.2)
10x 10| 6 17.8 (10.8) 9.7 (6.4) 5.7(4.7) 2.9 (4.4) 9.7 (11.8) 18.3 (7.7) 3.0 (4.6) 6.7 (4.4) 26.3(9.1)
10x10| 7 11.7 (10.3) 3.9(4.8) 1.0 3.0) 0.0 (0.0) 3.0(6.4) 9.8 (7.5) 0.0 (0.0) 3.0(6.9) 13.8(7.9)
20x 15| 6 15.5 (8.6) 12.0 (4.2) 13.7 (7.0) 4.6 (3.5) 25.7(9.7) 33.6 (1.2) 10.0 (4.3) 12.3 (6.8) 45.9 (8.8)
20x15(8 37.3 (10.8) 13.9 (8.4) 11.0 (7.3) 4.6 (3.0 20.4(9.2) 35.7(10.8) 9.7 (4.1) 23.8(8.5) 42.2(11.8)
20x 15| 10 30.5(5.8) 8.3(6.2) 5.6 (4.3) 1.5 (2.3) 10.4 (8.2) 243 (9.2) 6.4(7.3) 25.6(11.7) 30.1(12.3)
20x 15| 12 15.3 (5.5) 2.1(3.5) 1.02.1) 0.0 (0.0) 3.5(5.0) 13.6 (8.3) 1.0 (2.0) 16.6 (9.6) 18.1(11.3)
40x 30| 15 9.4 (5.3) 8.8 (4.49) 11.4 (4.8) 6.2 (3.1) 30.5 (4.3) 30.3 (5.0) 6.0 (4.0) 16.6 (5.3) 42.9 (6.1)
40x 30 | 17 16.3 (7.5) 9.4 (3.8) 9.8 (3.5) 5.52.2) 31.2(5.4) 31.0 (4.6) 4.5(3.3) 27.5 (4.3) 44.6 (6.4)
40 x 30| 20 33.8(9.1) 12.1 (3.6) 9.8 (4.2) 3.2 (2.0) 30.4 (6.0) 33.0 (6.6) 6.0(2.9) 35.1(6.4) 45.5 (8.9)
40 x 30 | 25 39.4 (6.6) 15.0 2.7) 8.3 (4.9) 2.6 (2.3) 27.8 (6.6) 34.5 (7.4) 6.1 (3.7) 37.8 (1.0) 40.5 (7.1)
60 x 40 | 20 6.9 (2.7) 9.7 (2.4) 10.2 (2.6) 5.8 (1.5) 30.6 (2.7) 25.8 (3.8) 4.8 (2.4) 20.0 (3.8) 37.1 (3.6)
60 x 40 | 22 9.9 (2.7) 8.7 (2.6) 7.9 (3.1) 3.3 (1.7) 29.3 (4.1) 25.4 (2.9) 3.7 (2.6) 25.4 (4.1) 36.5 (3.5)
60 x40 | 25 21.8 (5.7) 10.5 (3.1) 8.2 (2.8) 2.8(2.0) 30.2 (3.6) 29.7 (3.0) 2.1(1.9) 35.5(4.3) 38.0 (3.6)
60 x 40 | 30 36.7 (4.0) 13.1(3.7) 6.5 (2.4) 1.7 (1.4) 28.8(3.49) 30.1 (3.3) 4.5 2.7) 36.7 (4.4) 37.6 (3.8)

9l

9 421doy)

Minimizing the number of tool switches 147

more demanding. Therefore, for those applications where a solution of high
quality has to be found quickly, FI Block Minimization and Simple Greedy
seem to be perfectly adequate procedures (as well as Farthest Insertion, for
dense instances). On the other hand, when computing time does not matter
too much, and the thrust is instead on the quality of the solution, Multiple-
Start Greedy and Global 2-Opt could be considered.

Table 6.6 contains the results of our experiments with composite heuristics.
The idea is here to quickly compute a good job sequence using one of the
constructive heuristics, and to subsequently improve it by relying on some
improvement strategy. In view of our previous experiments, we consider
five ways to produce an initial solution (namely, by Farthest Insertion, FI
Block Minimization, Simple Greedy, Interval and by a random procedure),
and we choose Global 2-Opt as improvement strategy.

We see from Table 6.6 that, for dense instances, Farthest Insertion usually
provides a very good initial solution, while FI Block Minimization always
performs among the best for sparser instances. But in fact, surprisingly
enough, all initialization procedures for Global 2-Opt (including the random
one) come extremely close to each other, in terms of the quality of the
solution produced. Also, their running times do not differ significantly.

6.5. Lower bounds

In order to judge of the quality of the heuristics described above, it would
have been desirable to know tight and easily computed lower bounds on the
cost of an optimal job sequence. The knowledge of such lower bounds
would also be a prerequisite for the development of an exact optimization
procedure (e.g. of the branch-and-bound type) for the tool switching
problem. At this moment, unfortunately, we do not have very good lower-
bounding procedures for our problem. We now briefly discuss some of the
directions which may be worth exploring in this regard. In this discussion,
we denote by cost (A, C) the total number of setups required by an optimal
sequence for the problem instance (A, C).

6.5.1. Traveling salesman paths

Since the quantity Ib(i, j) introduced in Section 6.3.1 is a lower bound on
the number of tool switches incurred between job i and job j in any
sequence, the length of a shortest TS path in the graph G = (V, E, Ib)
certainly is a lower bound for the total number of switches in the optimal
sequence (see Section 6.3.1). In other words, denoting by L(A, C) the

Table 6.6 Average (and standard deviation) of d(I) for composite heuristics

Mx N C Farthest Insertion FI Block Simple Greedy Interval Global 2-opt
Minimization
10x 10 4 5.0 (5.5) 8.7 (6.9) 5.4 (3.6) 6.9 (4.5) 8.7 4.7)
0x 10 5 83 (5.3) 7.3(7.1) 53(5.5) 3.6 (4.4) 7.4(7.1)
10x 10 6 4.9 (4.9) 2.9 (4.4) 1.9(3.8) 2.0(4.0) 3.0 (4.6)
10 x 10 7 2.0 (4.0 1.0 (3.0) 0.0 (0.0 1.0 3.0 0.0 (0.0)
20x 15 6 6.3 (5.1) 6.4 (3.8) 6.6 (3.8) 4.7 (2.9) 10.0 (4.3)
20x 15 8 12.3 (6.4) 6.2 (4.9) 7.1 3.4) 8.9 (5.5) 9.7 (4.1)
20 x 15 10 5.0 (5.5) 3.6 4.0 3.93.0 39(.2) 6.4 (71.3)
20x 15 12 1.53.2) 0.0 (0.0) 0.5 (1.5) 1.0 3.0) 1.0 2.0)
40 x 30 15 2.5(@3.1) 2.82.0) 5.3 4.3) 53 3.1 6.0 (4.0)
40 x 30 17 3.1(1.3) 3.02.95) 5024 6.5 (2.6) 4.5(3.3)
40 x 30 20 6.6 (4.1) 34 2.1) 5327 6.6 (2.9) 6.0 (2.9)
40 x 30 25 7.7 (3.0) 3.92.2) 4.6 (3.4) 9.1(5.1) 6.1 3.1
60 x 40 20 1.5 (1.6) 2.2(1.8) 5.2(1.5) 5.0(1.5) 4.8(22.4)
60 x 40 22 2024 2.6 2.1 2.52.3) 2.7 2.0) 3.72.6)
60 x 40 25 3.7(0.7) 2.7 2.0) 23 2.5) 4.1(3.4 2.1(1.9)
60 x 40 30 3227 1.6 2.0) 2.4 (2.0 3.7(1.5) 4.52.7)

syl

9 4a1doy)

Minimizing the number of tool switches 149

length of such an optimal path, we see that L(A, C) + C is a lower bound
on cost (A, C) (Tang and Denardo (1988a)). Our computational experi-
ments indicate that this bound is generally extremely weak.

The lower bound L(A, C) + C can sometimes be improved by relying on
the following observations. It is obvious that, if (A’, C) is a new problem
instance obtained by deleting some jobs from A (i.e., the columns of A’
form a subset of the columns of A), then the number of setups required for
(A’, C) is never larger than the number of setups required for (A, C), i.e.
cost (A’, C) < cost (A, C). Thus, in particular, L(A’, C) + C is a lower
bound on cost (A, C). But it may happen that L(A, C) < L(A’, O), in
which case L(A’, C) + C is a sharper bound than L(A, C) + C.

Example 6.2 Consider the instance (A, C) described in Tang and Denardo
(1988a). After some reductions, the instance involves 6 jobs, and the
matrix Ib(i, j) is given by :

NN R R

= O W
~N w
N -
NN O N

RN N s

The path (3, 6, 1, 4, 2, 5) is a shortest TS path with respect to Ib. Its
length is L(A, C) = 6. On the other hand, deleting the second job from
this instance results in an instance (A’, C) for which the shortest
Hamiltonian path (3, 6, 1, 4, 5) has length L(A’,C) = 7. Since the
sequence (3, 6, 1, 2, 4, 5) requires precisely 7 switches (see Tang and
Denardo (1988a)), we conclude that this sequence is optimal for the
instance (A,C).]

An interesting question is how the partial instance (A’, C) should be
(heuristically) picked in order to raise as much as possible the lower bound
L(A’, C) + C. This question has not been investigated yet.

6.5.2. Structures implying extra setups

Another approach for obtaining lower bounds on cost (A, C) is to identify
subsets of tools for which extra setups are needed in any sequence. This
can for instance be done as follows. Let K be a subset of rows (viz. tools),
and J a subset of columns (viz. jobs) of A. Say that a job | € J is heavy
(with respect to J and K) if, for every partition of J into J; U {j} U I, (J;

150 Chapter 6

and J, nonempty),

[{k € K: =1} + [{k E€EK: —Oandakr—aks—l
forsomerE{Il,SEJz 1| > C. 6.1)

The idea behind this definition is easy to grasp : the left-hand side of (6.1)
represents the number of tools required to process job j (akj = 1), plus the
number of tools which are not required by j (ay; = 0), but which are used
before and after j in a sequence of the form (]J[b 1) @, = 3, = D.
Now, we have :

Theorem 6.3 If J contains three heavy jobs with respect to J and K,
then, in any sequence, at least one tool of K incurs an
extra setup.

Proof: Consider any sequence. We can always find a partition J into J; U
{i} U J, such that j is heavy, J; and J, are nonempty, all the jobs in J;
occur before j in the sequence, and all the jobs in J, occur after j. It
follows directly from (6.1) that, among all the tools of K which are needed
both in J| and in J,, some will not be present in the magazine when job j is
processed (since this would exceed the magazine capacity). Hence, an extra
setup will be necessary for these tools. Q.E.D.

The statement of Theorem 6.3 is probably too general to be of direct
interest. But it can nevertheless be used to identify some substructures in
the tool-job matrix A which imply extra setups in any sequence. Two
illustrations of such structures are now given.

1) Assume there exist three jobs (say, without loss of generality, j = 1,
2, 3) and a subset K of tools such that :
0 each tool in K is used by exactly two of the jobs 1, 2, 3;
(i) each of the jobs 1, 2, 3 needs (strictly) more than C - K tools
among those not in K.
Under these conditions, one verifies that the jobs 1, 2, 3 are heavy
with respect to K; hence, the conclusion of Theorem 6.3 applies.

2) Suppose that J and K are subsets of jobs and tools respectively, such

that :
M] = K] 2
(i) the submatrix of A with column-set J and row-set K is the

adjacency matrix of a cycle (see Nemhauser and Wolsey
(1988));

Minimizing the number of tool switches 151

(iii) at least three jobs in J require C tools.
Then, the three tools mentioned under (iii) are heavy, and Theorem
6.3 applies again.

Consider now p subsets of tools Ky, K,, ..., K for which we know (e.g.,
using Theorem 6.3) that at least one tool in K; incurs an extra setup in any
sequence (1 = 1, 2, ..., p).

Let K = U; K;. Then, a lower bound on the total number of extra setups
is provided by the optimal value of the following set covering problem :

subject to Lxek; t = 1 i=1,2,..,p (6.3)
t € {0,1} k € K. 6.4)

Hence, Z + M is a lower bound on cost (A, C) (where M is, as always,
the total number of tools).

6.5.3. Valid inequalities

Tang and Denardo (1988a) propose the following formulation of the tool
switching problem (see also Bard (1988)). Let X = 1 if job 1 is the j-th
job in a sequence, and x;; = O otherwise; let t,. = 1 if tool k is on the
machine when the j-th job’is processed, and 0 otherwise; let y,. = 1 if tool
k is setup just before processing the j-th job of the sequence, and O
otherwise (k = 1, 2, ..., M; 1, =1, 2, ..., N). Then,

cost (A,C)= min Y Zj Y

subject to i x5 =1 i=12, .., 6.5)

(6.6)

N
N
= . M
i=12 ..,N 6.7
N 6.8)
M

i=2, N (6.9)

152 Chapter 6

xij € {01} ij=1,2 .,N (6.1
tkj’ yk_] € {0,1} k = 1,2, ,M,
i=1,2 ..,N (612

Call SW this 0-1 programming problem. The linear programming relaxation
of SW provides a lower bound on cost (A, C). But this bound is extremely
weak (Tang and Denardo (1988a)). One way of improving it would be to
add more valid constraints to the formulation of SW. For instance, the
following inequalities are valid for the tool switching problem :

Lj g 21 k=12 .., M

(notice that these trivial inequalities are not even satisfied, in general, by an
optimal solution to the continuous relaxation of SW). Another family of
valid inequalities can be derived as follows. Let K be a subset of tools for
which we know that at least one extra setup is required in the optimal
sequence (see Theorem 6.3). Then,

Yxek Lj g = K[+1

is valid. More generally, if Z is the optimal value of (6.2) - (6.4), then a
valid constraint is given by :

Lxex Lj v = |K| +Z
More work is needed on the strengthening of the formulation SW.

Still another possible approach would be to replace SW by a formulation of
the tool switching problem using different variables. For instance, one may
want to consider the "disaggregated” variables ty;;, with the interpretation
that t ;. = 1 if tool k is set up just after finishing the i-th job and is
removed just after finishing the j-th job. It is easy to write a formulation of
our problem involving only the variables x;;, thij and y;. It is also
relatively easy to derive exponentially many valid inequalities using these
variables, which can in principle be added to the initial formulation in
order to strengthen it. But our preliminary computational experiments along
these lines were quite disappointing, in that they did not allow us to
noticeably improve our previous lower bounds on the optimal value of the

Minimizing the number of rool switches 153

problem.
6.5.4. Lagrangian relaxation

Lagrangian relaxation is a classical tool in deriving bounds on the optimal
value of an integer programming problem (see Nemhauser and Wolsey
(1988)). For problem SW, one may for instance try to relax the groups of
constraints (6.7) and (6.8). Indeed, as observed by Bard (1988), the
resulting subproblems are then easy to solve (Bard (1988) uses this
relaxation scheme in order to produce a sequence of heuristic solutions for
the tool switching problem). But it is easy to prove that the optimal value
of the Lagrangian dual problem obtained in this way is equal to the optimal
value of the linear relaxation of SW (this is because all extreme points of
the system defined by (6.5), (6.6), (6.9), (6.10) and the relaxation of
(6.11), (6.12) are integral; see Nemhauser and Wolsey (1988)).

The possibility of deriving good .lower bounds on cost (A, C) using
Lagrangian relaxation is an avenue that should be further explored.

6.6. Summary and conclusions

In this chapter we analyze a problem occurring in certain flexible
manufacturing environments. This problem was described by Tang and
Denardo (1988a) and Bard (1988), and is here referred to as the tool
switching problem. Links between this problem and other well-studied
combinatorial optimization problems are established here for the first time:
the matrix permutation problem (Mohring, 1990), optimization with greedy
constraint matrices (Hoffman et al., 1985), the block minimization problem
(Kou, 1977), recognition of interval matrices (Fulkerson and Gross, 1965),
etc.

We prove that the tool switching is NP-hard, already for a fixed capacity C
= 2. On the other hand, when the job sequence is fixed, we show that the
problem of determining the optimal sequence of tool loadings can be
modelled as a specially structured 0-1 linear programming problem which
can be solved in polynomial time. This provides an alternative proof of the
correctness of the KTNS procedure.

In view of the compiexity of the tool switching problem, several heuristic
solution approaches are introduced. For instance, by modelling the tool
switching problem as a shortest Hamiltonian path problem, well known

154 Chapter 6

heuristics for the latter problem become available. This was already noticed
by Tang and Denardo (1988a), but the connection is here exploited in a
systematic way by our traveling salesman and block minimization
heuristics. Other new approaches include a greedy type heuristic and a
heuristic based on the recognition of interval matrices. In addition, some
improvement strategies are also proposed.

The performance of these heuristics is tested by applying them to a number
of randomly generated problem instances. It turns out that the density of
the tool job matrix affects the quality of the solutions obtained by some
heuristics. In particular, the TSP-based heuristics of the type proposed by
Tang and Denardo (1988a) perform poorly for sparse instances. The simple
greedy heuristic performs well (in comparison with the other heuristics) on
the sparse instances considered here, both in terms of quality of the
solution found and of running time by the heuristic. The reason for this
relatively good behaviour may be sought in the fact that greedy uses more
information than e.g. the traveling salesman heuristics (see Section 6.3.3).

In order to formulate a more accurate judgement on the quality of the
heuristics tested it would have been desirable to know tight and easily
computed lower bounds on the cost of an optimal job sequence. The
knowledge of such lower bounds would also be a prerequisite for the
development of an exact optimization procedure (e.g. of the branch-and-
bound type) for the tool switching problem. Some of the research directions
which may be worth pursuing in this regard are described.

Appendix

Graph-theoretic definitions

In Chapter 6, a graph G is a triple of the form (V, E, d), where:

-V is a finite set; the elements of V are the nodes of G;

- Eis a set of pairs of nodes, called edges;

- d is a function which assigns a nonnegative length to each pair of
nodes; we assume that d(u, v) = +o0 when {u, v} is not an edge.

A path in a graph is a sequence of nodes, i.e. a permutation of a subset of

V. A rraveling salesman path (or TS path) is a permutation of V. The

length of a path (uy, ..., u,) is by definition:

d(ul, Uz) + d(Uz, U3) + ...+ d(uk_l, llk)

Notice, in particular, that the length of such a path is infinite if some pair
{u;, u;; |} is not an edge of the graph.

The traveling salesman problem on a graph G can be stated as follows: find
a TS path of minimal length in G.

With a graph G = (V, E, d), we can associate another graph H= (E, I, §),

called the edge-graph of G, and defined as follows:

- each node of H is an edge of G;

- apair {e, f}, with e, f € E, is an edge of H if and only if the edges e
and f share a common node in G;

- b(e, ©) = 1if {e, f} is an edge of H, and é(e, f) = + oo otherwise.

Observe that, in an edge-graph, every TS path has length either |E| - 1 or

+oo. Consider now the restriction of the traveling salesman problem to

edge-graphs, that is:

156 : _ - Appendix

Input: a graph G.
Problem P3: find a TS path of minimal length in the edge-graph of G.

Equivalently, P3 asks whether there exists a TS path of finite length in the
edge-graph of G. Bertossi (1981) proved that this problem is NP-hard.

We also deal in Chapter 6 with directed graphs. A directed graph is a

triple (V, U, d), where V is defined as for a graph, and:

- U is a set of ordered pairs of nodes, called arcs; i.e., U C VxV;

- dis a (nonnegative) length function defined on VxV, with the property
that d(u, v) = + oo when (u, v) is not an arc.

So, in a directed graph, d(u, v) may differ from d(v, u). The definitions of

a TS path and of the TS problem extend in a straightforward way for

directed graphs.

References

Aanen, E. (1988), Planning and scheduling in a flexible manufacturing
system, Ph.D. Thesis, University of Twente, Enschede.

Aggarwal, S.C. (1985), “MRP, JIT, OPT, FMS? Special report,” Harvard
Business Review 63 (5), 8-16.

Ahmadi, J., Grotzinger, S. and Johnson, D. (1988), “Component allocation
and partitioning for a dual delivery placement machine,” Operations
Research 36 (2), 176-191.

Akella, R., Choong, Y. and Gershwin, S.B. (1984), “Performance of hierar-
chical production scheduling policy,” in: Proceedings of the First
ORSA/TIMS Special Interest Conference on Flexible Manufacturing
Systems, Ann Arbor, MI, 385-396.

Ammons, J.C., Lofgren, C.B. and McGinnis, L.F. (1985), “A large scale
machine loading problem in flexible assembly,” Annals of Operations
Research 3, 319-332. '

Avonts, L.H. and Van Wassenhove, L.N. (1988), “The part mix and routing
mix problem in FMS: a coupling between an LP model and a closed
queueing network,” International Journal of Production Research 26
(12), 1891-1902.

Balas, E. and Ho, A. (1980), “Set covering algorithms using cutting planes,
heuristics, and subgradient optimization: a computational study,”
Mathematical Programming Study 12, 37-60.

Ball, M.O. and Magazine, M.J. (1988), “Sequencing of insertions in printed
circuit board assembly,” Operations Research 36 (2), 192-201.

Bard, J.F. (1988), “A heuristic for minimizing the number of tool switches on
a flexible machine,” IIE Transactions 20 (4), 382-391.

158

Bard, J.F. and Feo, T. (1989), “The cutting path and tool selection problem

in computer aided process planning,” Journal of Manufacturing Systems
8 (1), 17-26.

Bastos, J.M. (1988), “Batching and routing: two functions in the operational
planning of flexible manufacturing systems,” European Journal of
Operational Research 33, 230-244,

Berrada, M. and Stecke, K.E. (1986), “A branch and bound approach for
machine load balancing in flexible manufacturing systems,”
Management Science 32 (10), 1316-1335.

Bertossi, A.A. (1981), “The edge hamiltonian path problem is NP-complete,”
Information Processing Letters 13 (4,5), 157-159.

Blazewicz, I., Finke, G., Haupt, R. and Schmidt, G. (1988), “New trends in
machine scheduling,” European Journal of Operational Research 37,
303-317.

Booth, K.S. and Lueker, G.S. (1976), “Testing for the consecutive ones
property, interval graph planarity using PQ-tree algorithms,” Journal of
Computer and System Sciences 13, 335-379.

Browne, J., Dubois, D., Rathmill, K., Sethi, S. and Stecke, K.E. (1984),
“Classification of flexible manufacturing systems,” The FMS Magazine
2(2), 114-117.

Burkard, R.E. (1984), “Quadratic assignment problems,” European Journal of
Operational Research 15, 283-289.

Buzacott, J.A. and Yao, D.D. (1986), “Flexible manufacturing systems: a
review of analytical models,” Management Science 32 (7), 890-905.

Chaillou, P., Hansen, P. and Mahieu, Y. (1989), “Best network flow bounds
for the quadratic knapsack problem,” in: B. Simeone (ed.),
Combinatorial Optimization, Springer-Verlag, Berlin, 225-235.

Chakravarty, A K. and Shtub, A. (1984), “Selecting parts and loading flexible
manufacturing systems,” in: Proceedings of the First ORSA/TIMS

Special Interest Conference on Flexible Manufacturing Systems, Ann
Arbor, MI, 284-289.

Chams, M., Hertz, A. and de Werra, D. (1987), “Some experiments with
simulated annealing for coloring graphs,” European Journal of
Operational Research 32, 260-266.

Chang, Y.-L., Sullivan, R.S., Bagchi, U. and Wilson, J.R. (1985),
“Experimental investigation of real-time scheduling in flexible

References 159

manufacturing systems,” Annals of Operations Research 3, 355-377.

Charles Stark Draper Laboratory (1984), Flexible Manufacturing Systems
Handbook, Noyes Publications, Park Ridge, NJ.

Chung, C.H. (1991), “Planning tool requirements for flexible manufacturing
systems,” Journal of Manufacturing Systems 10 (6), 476-483.

Chvital, V. (1983), Linear Programming, W.H. Freeman and Company, New
York.

Cook, N.H. (1975), “Computer-managed parts manufacture,” Scientific
American 232, 22-28.

Cooper, R. and Jaikumar, R. (1984), “Management control of the flexible
machining system,” in: Proceedings of the First ORSA/TIMS Special
Interest Conference on Flexible Manufacturing Systems, Ann Arbor,
MI, 81-92.

CQM (1988), Philips Centre for Quantitative Methods, Eindhoven, The
Netherlands.

Crama, Y., Kolen, A.W.J., Oerlemans, A.G. and Spiecksma, F.C.R. (1989),
“Throughput rate optimization in the automated assembly of printed
circuit boards,” Research Memorandum RM 89.034, Department of
Quantitative Economics, University of Limburg, Maastricht.

Crama, Y. and Spieksma, F.C.R. (1992), “Approximation algorithms for
three-dimensional assignment problems with triangle inequalities,”
European Journal of Operational Research 60 (3), to appear.

Dantzig, G.B. and Wolfe, P. (1960), “Decomposition principle for linear
programs,” Operations Research 8, 101-111.

Darrow, W.P. (1987), “An international comparison of flexible manufacturing
systems technology,” Interfaces 17 (6), 86-91.

Daskin, M., Jones, P.C. and Lowe, T.J. (1990), “Rationalizing tool selection
in a flexible manufacturing system for sheet-metal products,”
Operations Research 38 (6), 1104-1115.

De Werra, D. and Widmer, M. (1990), “Loading problems with tool
management in FMSs: a few integer programming models,” The
International Journal of Flexible Manufacturing Systems 3, 71-82.

Desrosiers, J., Soumis, F. and Desrochers, M. (1984), “Routing with time
windows by column generation,” Networks 14, 545-565.

160

Dietrich, B.L., Lee, J. and Lee, Y.S. (1991), “Order selection on a single
machine with high set-up costs,” Working Paper OR 90-19, Yale
University, New Haven.

Dorf, R.C. (1983), Robotics and Automated Manufacturing, Reston Publishing
Company, Reston, VA,

Dupont-Gatelmand, C. (1982), “A survey of flexible manufacturing systems,”
Journal of Manufacturing Systems 1 (1), 1-16.

ElMaraghy, H.A. (1985), “Automated tooling management in flexible
manufacturing,” Journal of Manufacturing Systems 4 (1), 1-13.

Ettlie, J.E. (1988), “Implementation strategies for discrete parts manufacturing
technologies,” Final report, The University of Michigan, Ann Arbor,
MI.

Farley, A.A. (1990), “A note on bounding a class of linear programming

problems, including cutting stock problems,” Operations Research 38
(5), 922-923.

Finke, G. and Kusiak, A. (1987), “Models for the process planning problem
in a flexible manufacturing system,” International Journal of Advanced
Manufacturing Technology 2, 3-12.

Fisher, M.L. (1981), “The lagrangean relaxation method for solving integer
programming problems,” Management Science 27 (1), 1-18.

Fisher, M.L., Jaikumar, R. and Van Wassenhove, L.N. (1986), “A multiplier
adjustment method for the generalized assignment problem,”
Management Science 32 (9), 1095-1103.

Fisk, J. and McKeown, P.G. (1979), “The pure fixed charge transportation
problem,” Naval Research Logistics 26, 631-641.

Forster, H.-U. and Hirt, K. (1989), “Entwicklung einer Handlungsanleitung
zur Gestaltung von Produktionsplanungs- und -Steuerungskonzepten
beim Einsatz flexibler Fertigungssysteme,” Schlufibericht zum
Forschungsvorhaben, Nr. S 172, Forschungsinstitut fir
Rationalisierung, Rheinisch-Westfalische Technische Hochschule,
Aachen.

Frieze, A.M. and Yadegar, J. (1981), “An algorithm for solving
3-dimensional assignment problems with application to scheduling a

teaching practice,” Journal of the Operational Research Society 32,
989-995.

References 161

Fulkerson, D.R. and Gross, D.A. (1965), “Incidence matrices and interval
graphs,” Pacific Journal of Mathematics 15 (3), 833-835.

Gallo, G., Hammer, P.L. and Simeone, B. (1980), “Quadratic knapsack
problems,” Mathematical Programming Study 12, 132-149.

Gallo, G. and Simeone, B. (1988), “On the supermodular knapsack problem,”
Mathematical Programming 45, 295- 309.

Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, New York.

Gerwin, D. (1982), “Do’s and don’ts of computerized manufacturing,”
Harvard Business Review 60 (2), 107-116.

Gilmore, P.C. and Gomory, R.E. (1961), “A linear programming approach to
the cutting-stock problem,” Operations Research 9, 849-859.

Glover, F. (1989), “Tabu search - part I,” ORSA Journal on Computing 1 (3),
190-206.

Glover, F. (1990), “Tabu search - part II,” ORSA Journal on Computing 2
(1), 4-32.

Golden, B.L. and Stewart, W.R. (1985), “Empirical analysis of heuristics,”
in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys
(eds.), The Traveling Salesman Problem, John Wiley & Sons,
Chichester, 207-249.

Goldhar, J.D. and Jelinek, M. (1985), “Computer integrated flexible
manufacturing: organizational, economic, and strategic implications,”
Interfaces 15 (3), 94-105.

Graver, T.W. and McGinnis, L.F. (1989), “A tool provisioning problem in
an FMS,” The International Journal of Flexible Manufacturing Systems
1, 239-254.

Graves, S.C. and Lamar, B.W. (1983), “An integer programming procedure
for assembly system design problems,” Operations Research 31 (3),
522-545.

Gray, A.E., Seidmann, A. and Stecke, K.E. (1988), “Tool management in
automated manufacturing: operational issues and decision problems,”
Working Paper CMOM 88-03, Simon Graduate School of Business
Administration, University of Rochester, New York.

Greene, T.J. and Sadowski, R.P. (1986), “A mixed integer program for
loading and scheduling multiple flexible manufacturing cells,” European

162

Journal of Operational Research 24, 379-386.

Groover, M.P. (1980), Automation, Production Systems, and Computer-Aided
Manufacturing, Prentice-Hall, Englewood Cliffs, NJ.

Groover, M.P. and Zimmers jr., EEW. (1984), CAD/CAM Computer-Aided
Design and Manufacturing, Prentice-Hall, Englewood Cliffs, NJ.

Gruver, W.A. and Senninger, M.T. (1990), “Tooling management in FMS,”
Mechanical Engineering 112 (3), 40-44,

Gupta, Y.P. and Goyal, S. (1989), “Flexibility of manufacturing systems:
concepts and measurements,” European Journal of Operational
Research 43, 119-135.

Hartley, J. (1984), FMS ar Work, 1FS/North-Holland, Amsterdam.

Hirabayashi, R., Suzuki, H. and Tsuchiya, N. (1984), “Optimal tool module
design problem for NC machine tools,” Journal of the Operations
Research Society of Japan 27 (3), 205-228.

Hoffman, A.J., Kolen, A.W.J. and Sakarovitch, M. (1985), “Totally balanced
and greedy matrlces 7 SIAM Journal on Algebratc and Discrete
Methods 6 (4), 721 730

Holstein, W.K. (1968), “Production planning and control integrated,”
Harvard Business Review 46 (3), 121-140.

Huang, P.Y. and Chen, C. (1986), “Flexible manufacturing systems: an
overview and bibliography,” Production and Inventory Management
Third Quarter, 80-90.

Hwang, S. (1986), “A constraint-directed method to solve the part selection
problem in flexible manufacturing systems planning stage,” in: K.E.
Stecke and R. Suri (eds.), Proceedings of the Second ORSA/TIMS
Conference on Flexible Manufacturing Systems, Elsevier Science
Publishers B.V., Amsterdam, 297-309.

Hwang, S.S. and Shogan, A.W. (1989), “Modelling and solving an FMS part
selection problem,” International Journal of Production Research 27
(8), 1349-1366.

Hyer, N. and Wemmerlov, V. (1984), “Group technology and productivity,”
Harvard Business Review 62 (4),

”»

Jaikumar, R. (1986), “Postindustrial manufacturing,” Harvard Business

Review 64 (6), 69-76.

References 163

Jaikumar, R. and Van Wassenhove, L.N. (1989), “A production planning
framework for flexible manufacturing systems,” Journal of
Manufacturing and Operations Management 2, 52-79.

Jain, A.K., Kasilingam, G. and Bhole, S.D. (1991), “Joint consideration of
cell formation and tool provisioning problems in flexible manufacturing
systems,” Computers & Industrial Engineering 20 (2), 271-2717.

Jaumard, B., Hansen, P. and Poggi de Aragdo, M. (1991), “Column
generation methods for probabilistic logic,” ORSA Journal on
Computing 3 (2), 135-148.

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1989),
“Optimization by simulated annealing: an experimental evaluation; part
1, graph partitioning,” Operations Research 37 (6), 865-892.

Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Schevon, C. (1991),
“Optimization by simulated annealing: an expirimental evaluation; part
II, graph coloring and number partitioning,” Operations Research 39
(3), 378-406.

Johnson, D.S. and Papadimitriou, C.H. (1985), “Computational complexity,”
in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys
(eds.), The Traveling Salesman Problem, John Wiley & Sons,
Chichester, 37-85.

Kaplan, R.S. (1986), “Must CIM be justified by faith alone?,” Harvard
Business Review 64 (2), 87-95.

Kashiwabara, T. and Fujisawa, T. (1979), “NP-completeness of the problem
of finding a minimum-clique-number interval graph containing a given
graph as a subgraph,” in: Proc. 1979 Intern. Symposium on Circuits
and Systems, 657-660.

Kavvadias, D. and Papadimitriou, C.H. (1989), “A linear programming
approach to reasoning about probabilities,” Annals of Mathematics and
Artificial Intelligence 1, 189-205.

Kernighan, B.W. and Lin, S. (1970), “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal 49 (2),
291-307.

Kim, Y.D. and Yano, C.A. (1992), “An iterative approach to system setup
problems in flexible manufacturing systems,” The International Journal
of Flexible Manufacturing Systems 4, 183-209.

Kiran, A.S. and Krason, R.J. (1988), “Automated tooling in a flexible
manufacturing system,” Industrial Engineering April, 52-57.

164

Kiran, A.S. and Tansel, B.C. (1986), “The system setup in FMS: concepts
and formulation,” in: K.E. Stecke and R. Suri (eds.), Proceedings of
the Second ORSA/TIMS Conference on Flexible Manufacturing Systems,
Elsevier Science Publishers B.V., Amsterdam, 321- 332.

Korte, B. (1989), “Applications of combinatorial optimization,” in: M., Iri and
K. Tanabe (eds.), Mathematical Programming, Recent Developments
and Applications, KTK Scientific Publ., Tokyo, 1-55.

Kou, L.T. (1977), “Polynomial complete consecutive information retrieval
problems,” SIAM Journal on Computing 6, 67-75.

Kuhn, H. (1990), Einlastungsplanung von flexiblen Fertigungssystemen,
Physica-Verlag, Heidelberg.

Kumar, K.R., Kusiak, A. and Vanelli, A. (1986), “Grouping of parts and
components in flexible manufacturing systems,” European Journal of
Operational Research 24, 387-397.

Kusiak, A. (1985a), “Flexible manufacturing systems: a structural approach,”
International Journal of Production Research 23 (6), 1057-1073.

Kusiak, A. (1985b), “Integer programming approach to process planning,”
International Journal of Advanced Manufaciuring Technology 1 (1),
73-83.

Kusiak, A. (1985c), “The part families problem in flexible manufacturing
systems,” Annals of Operations Research 3, 279-300.

Kusiak, A. (1986), “Application of operational research models and
techniques in flexible manufacturing systems,” European Journal of
Operational Research 24, 336-345.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B.
(1985), The Traveling Salesman Problem, John Wiley & Sons,
Chichester.

Leipdld, T. and Nevalainen, O. (1989), “Optimization of the movements of a
component placement machine,” European Journal of Operational
Research 38, 167-177.

Mamer, J.W. and Shogan, A.W. (1987), “A constrained capital budgetting
problem with applications to repair kit selection,” Management Science
33 (6), 800-806.

Mattson, R., Gecsei, J., Slutz, D.R. and Traiger, 1.L. (1970), “Evaluation
techniques for storage hierarchies,” IBM Systems Journal 9 (2), 78-117.

References 165

Mazzola, J.B., Neebe, A.W. and Dunn, C.V.R. (1989), “Production,
planning of a flexible manufacturing system in a material requirements
planning environment,” The International Journal of Flexible
Manufacturing Systems 1 (2), 115-142.

Meredith, J.R. (1987), “Implementing new manufacturing technologies:
managerial lessons over the FMS life cycle,” Interfaces 17 (6), 51-62.

Minoux, M. (1987), “A class of combinatorial problems with polynomially
solvable large scale set covering/partitioning relaxations,” R.A.I.R.O.
Recherche opérationnelle/Operations Research 21 (2), 105-136.

Mohring, R.H. (1990), “Graph problems related to gate matrix layout and
PLA folding,” in: G. Tinhofer et al. (eds.), Compurational Graph
Theory, Springer-Verlag, Wien, 17-51.

Monahan, G.E. and Smunt, T.L. (1987), “A multilevel decision support
system for the financial justification of automated flexible manufacturing
systems,” Interfaces 17 (6), 29-40.

Montazeri, M. and Van Wassenhove, L.N. (1990), “Analysis of scheduling
rules for an FMS,” International Journal of Production Research 28
(4), 785-802.

Mullins, P. (1990), “PCB assembly: a total package,” Production 102 (2),
60-61.

Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial
Optimization, John Wiley & Sons, New York.

Panwalker, S.S. and Iskander, W. (1977), “A survey of scheduling rules,”
Operations Research 25 (1), 45-61.

Papadimitriou, C.H. and Steiglitz, K. (1982), Combinatorial Optimization,
Algorithms and Complexity, Prentice Hall, Inc., Englewood Cliffs, NJ.

Primrose, P.L.. and Leonard, R. (1991), “Selecting technology for investment
in flexible manufacturing,” The [International Journal of Flexible
Manufacturing Systems 4 (1), 51-77.

Rajagopalan, S. (1985), “Scheduling problems in flexible manufacturing
systems,” Working Paper, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, PA.

Rajagopalan, S. (1986), “Formulation and heuristic solutions for parts
grouping and tool loading in flexible manufacturing systems,” in: K.E.
Stecke and R. Suri (eds.), Proceedings of the Second ORSA/TIMS
Conference on Flexible Manufacturing Systems, Elsevier Science

166

Publishers B.V., Amsterdam, 311-320.

Rénky, P.G. (1983), The Design and Operation of FMS, 1FS/North-Holland,
Amsterdam.

Ranta, J. and Tchijov, [. (1990), “Economics and success factors of flexible
manufacturing systems: the conventional explanation revisited,” The
International Journal of Flexible Manufacturing Systems 2, 169-190.

Ribeiro, C.C., Minoux, M. and Penna, M.C. (1989), “An optimal
column-generation-with-ranking algorithm for very large scale set
partitioning problems in traffic assignment,” European Journal of
Operational Research 41, 232-239.

Roger, C. (1990), “La gestion des outils sur machines a commande
numérique,” Mémoire DEA de Recherche Opérationnelle,
Mathématiques et Informatique de la Production, Université Joseph
Fourier, Grenoble.

Sethi, A.K. and Sethi, S.P. (1990), “Flexibility in manufacturing: a survey,”
The International Journal of Flexible Manufacturing Systems 2,
289-328.

Shanker, K. and Tzen, Y.J. (1985), “A loading and dispatching problem in a
random flexible manufacturing system,” International Journal of
Production Research 23 (3), 579-595.

Singhal, K., Fine, C.H., Meredith, J.R. and Suri, R. (1987), “Research and
models for automated manufacturing,” Interfaces 17 (6), 5-14.

Solot, P. and van Vliet, M. (1990), “Analytical models for FMS design
optimization: a survey,” Working Paper ORWP 90/16, Ecole
Polytechnique Fédérale de Lausanne, Lausanne.

Spieksma,’F.C.R. (1992), Assignment and scheduling algorithms in automated
manufacturing, Ph.D. Thesis, University of Limburg, Maastricht.

Spieksma, F.C.R., Oerlemans, A.G. and Vrieze, K. (1990), “On the system
setup and the scheduling problem in a flexible manufacturing system,”
Statistica Neerlandica 44 (3), 125-138.

Stecke, K.E. (1983), “Formulation and solution of nonlinear integer
production planning problems for flexible manufacturing systems,”
Management Science 29, 273-288.

Stecke, K.E. (1985), “Design, planning, scheduling, and control problems of
flexible manufacturing systems,” Annals of Operations Research 3,
3-12.

References 167

Stecke, K.E. (1988), “O.R. applications to flexible manufacturing,” in: G.K.
Rand (ed.), Operational Research '87, 217-232.

Stecke, K.E. (1989), “Algorithms for efficient planning and operation of a
particular FMS,” The International Journal of Flexible Manufacturing
Systems 1 (4), 287-324.

Stecke, K.E. and Browne, J. (1985), “Variations in flexible manufacturing
systems according to the relevant types of automated materials
handling,” Material Flow 2, 179-185.

Stecke, K.E. and Kim, I. (1988), “A study of FMS part type selection
approaches for short-term production planning,” The International
Journal of Flexible Manufacturing Systems 1 (1), 7-29.

Stecke, K.E. and Solberg, J.J. (1981), “Loading and control policies for a
flexible manufacturing system,” International Journal of Production
Research 19 (5), 481-490.

Suri, R. (1985), “An overview of evaluative models for flexible
manufacturing systems,” Annals of Operations Research 3, 13-21.

Suri, R. and Whitney, C.K. (1984), “Decision support requirements in
flexible manufacturing,” Journal of Manufacturing Systems 3 (1),
61-69.

Tang, C.S. and Denardo, E.V. (1988a), “Models arising from a flexible
manufacturing machine, part I: minimization of the number of tool
switches,” Operations Research 36 (5), 767-777.

Tang, C.S. and Denardo, E.V. (1988b), “Models arising from a flexible
manufacturing machine, part 1I: minimization of the number of
switching instants,” Operations Research 36 (5), 778-784.

Van Laarhoven, P.J.M. and Aarts, E.H.L. (1987), Simulated Annealing:
Theory and Applications, D. Reidel Publishing Company, Dordrecht.

Van Laarhoven, P.J.M. and Zijm, W.H.M. (1993), “Production preparation
and numerical control in PCB assembly,” The International Journal of
Flexible Manufacturing Systems 5 (3), to appear.

Van Looveren, A.J., Gelders, L.F. and Van Wassenhove, L.N. (1986), “A
review of FMS planning models,” in: A. Kusiak (eds.), Modelling and
Design of Flexible Manufaciuring Systems, Elsevier Science Publishers
B.V., Amsterdam, 3-31.

Van Vliet, M. and Van Wassenhove, L.N. (1989), “Operational research
techniques for analyzing flexible manufacturing systems,” Research

168

Memorandum Series, No. TI-1989/16, Tinbergen Institute, Erasmus
University Rotterdam, Rotterdam.

Vasko, F.J. and Wolf, F.E. (1988), “Solving large set covering problems on a
personal computer,” Computers & Operations Research 15 (2),
115-121.

Ventura, J.A., Chen, F.F. and Leonard, M.S. (1988), “Loading tools to
machines in flexible manufacturing systems,” Computers & Industrial
Engineering 15 (1-4), 223-230.

Volgenant, T. and Jonker, R. (1982), “A branch and bound algorithm for the
symmetric traveling salesman problem based on I-tree relaxation,”
European Journal of Operational Research 9, 83-89.

Warnecke, H.-J. and Steinhilper, R. (1985), Flexible Manufacturing Systems,
IES Publications, Springer-Verlag, Berlin.

Whitney, C.K. and Gaul, T.S. (1985), “Sequential decision procedures for
batching and balancing in FMSs,” Annals of Operations Research 3,
301-316.

Whitney, C.K. and Suri, R. (1985), “Algorithms for part and machine
selection in flexible manufacturing systems,” Annals of Operations
Research 3, 239-261.

Widmer, M. (1991), “Job shop scheduling with tooling constraints: a tabu
search approach,” Journal of the Operational Research Society 42 (1),
75-82.

Zeestraten, M.J. (1989), Scheduling flexible manufacturing systems, Ph.D.
Thesis, Delft University of Technology, Delft.

Zijm, W.H.M. (1988), “Flexible manufacturing systems: background,
examples and models,” in: H. Schellhaas et al. (eds.), Operations
Research Proceedings 1988, Springer-Verlag, Heidelberg, 142-161.

Author index

Aanen,E. 11

Aarts, EH.L. 113

Aggarwal, S.C. 2

Ahmadi, J. 21, 26, 29, 34

Akella, R. 16

Ammons, J.C. 14

Aragon, C.R. 110, 113

Avonts, L.H. 12

Bagchi, U. 16

Balas, E. 52

Ball, M.O. 21, 25, 39

Bard, J.F. 15, 19, 50, 125,
126, 131, 139,
140, 142, 151,
153

Bastos, .M. 16

Berrada, M. 10, 13

Bertossi, A.A. 156

Bhole, S.D. 15

Blazewicz, J. 16, 125

Booth, K.S. 138, 139

Browne, J. 5,6

Burkard, R.E. 43, 44

Buzacoftt, J.A. 4, 9-11, 22

Chaillou, P. 56 _

Chakravarty, A.K. 13, 50

Chams, M. 110

Chang, Y.-L. 16

Charles Stark Draper Labo-
ratory 4

Chen, C. 3, 4

Chen, F.F. 15

Choong, Y. 16

Chung, C.H. 15

Chvdtal, V. 53, 54

Cook, N.H. 2

Cooper, R. 12

CQM 25, 40, 44, 45, 48

Crama, Y. 29, 38, 39

Dantzig, G.B. 53

Darrow, W.P. 7

Daskin, M. 15, 131

De Werra, D. 15, 110

Denardo, E.V, 15, 17, 19,
50, 51, 62, 63,
68, 69, 73, 77,
78, 85, 86, 96,
98, 99, 125, 126,
129, 131, 135,
141, 142, 149,
151-154

Desrochers, M. 54

Desrosiers, J. 54

Dietrich, B.L. 56, 64, 66

Dorf, R.C. 3

Dubois, D. 5

Dunn, C.V.R. 82

Dupont-Gatelmand, C. 4

ElMaraghy, H.A. 15

Ettlie, JE. 6 - -

170

Farley, A.A. 57, 58, 85

Feo, T. 50, 125

Fine, C.H. 9, 10

Finke, G. 16, 50, 125, 128,
131, 140

Fisher, M.L. 61

Fisk, J. 32

Forster, H.-U. 125, 143

Frieze, A.M. 38, 39

Fujisawa, T. 129

Fulkerson, D.R. 138, 139,
153

Gallo, G. 55, 56

Garey, M.R. 29, 38

Gaul, T.S. 13, 14, 17, 50,
64, 86

Gecsei, J. 131

Gelders, L.F. 9

Gershwin, S.B. 16

Gerwin, D. 3

Gilmore, P.C. 53, 54

Glover, F. 112, 113

Golden, B.L. 134, 135

Goldhar, 1.D. 9

Gomory, R.E. 53, 54

Goyal, S. 5

Graver, T.'W. 15

Graves, S.C. 12

Gray, A.E. 15, 49, 125

Greene, T.J. 16

Groover, M.P. 2, 4

Gross, D.A. 138, 139, 153

Grotzinger, S. 21

Gruver, W.A. 15

Gupta, Y.P. 5

Hammer, P.L. 55

Hansen, P. 55, 56

Hartley, J. 4,9

Haupt, R. 16, 125

Hertz, A. 110

Hirabayashi, R. 15, 17, 50,
51, 55, 84, 125

Hirt, K. 125, 143

Ho, A. 52

Hoffman, A.J. 131, 133,
134, 153

Holstein, W.K. 9

Huang, P.Y. 3, 4

Hwang, §.S5. 14, 17, 50, 51,
55, 69, 81, 97,
105

Hyer, N. 12

Iskander, W. 16

Jaikumar, R. 3, 6, 9, 11, 12,
14, 61, 97

Jain, AK. 15

Jaumard, B. 55

Jelinek, M. 9

Johnson, D. 21

Johnson, D.S. 29, 38, 110,
113, 114, 135

Jones, P.C. 15, 131

Jonker, R. 136

Kaplan, R.S. 7, 8

Kashiwabara, T. 129

Kasilingam, G. 15

Kavvadias, D. 55

Kernighan, B.W, 108, 112,
114

Kim, 1. 14, 50

Kim, Y.D. 15

Kiran, A.S. 10, 14, 15, 49,
125

Kolen, AW.J. 29, 131

Korte, B. 22

Kou, L.T. 137, 153

Krason, R.J. 15, 49, 125

Kuhn, H. 50, 69

Kumar, K.R. 13

Kusiak, A. 9-13, 50, 81, 125,

128
Lamar, B'W. 12
Lawler, E.L. 40, 41
Lee, J. 56

Author index

171

Lee, Y.S. 56

Leipidld, T. 21, 26, 39-41, 43

Lenstra, J.K. 40

Leonard, M.S. 15

Leonard, R. 7, 8

Lin, S. 108, 112, 114

Lofgren, C.B. 14

Lowe, T.J. 15, 131

Lueker, G.S. 138, 139

Magazine, M.J. 21, 25, 39

Mahieu, Y. 56

Mamer, J.W. 56

Mattson, R. 131

Mazzola, J.B. 82, 88

McGeoch, L.A. 110, 113

McGinnis, L.F. 14, 15

McKeown, P.G. 32

Meredith, J.R. 9, 10

Minoux, M. 54

Mohring, R.H. 129, 153

Monahan, G.E. 12

Montazeri, M. 16

Mullins, P. 17

Neebe, AW 82

Nemhauser, G.L. 29, 32, 52,
62, 65, 87, 129,
131, 134, 135,
138, 150, 153

Nevalainen, O. 21, 26, 39-
-41, 43

Oerlemans, A.G. 16, 29

Panwalker, S.S. 16

Papadimitriou, C.H. 38, 55,
135

Penna, M.C. 54

Poggi de Aragio, M. 55

Primrose, P.L. 7, 8

Rajagopalan, S. 14, 17, 50,
64, 69, 81, 82,
86, 88, 96, 99,
105

Rénky, P.G. 4

Ranta, J. 7-9

Rathmill, K. §

Ribeiro, C.C. 54

Rinnooy Kan, A.H.G. 40

Roger, C. 131, 140

Sadowski, R.P. 16

Sakarovitch, M. 131

Schevon, C. 110, 113

Schmidt, G. 16, 125

Seidmann, A. 15, 125

Senninger, M.T. 15

Sethi, A K. 5

Sethi, S.P. 5

Shanker, K. 16, 82, 88

Shmoys, D.B. 40

Shogan, A.W. 14, 50, 55,
56, 69, 97, 105

Shtub, A. 13, 50

Simeone, B. 55, 56

Singhal, K. 9, 10

Slutz, D.R. 131

Smunt, T.L. 12

Solberg, J.J. 10, 13, 16

Solot, P. 12

Soumis, F. 54

Spieksma, F.C.R. 16, 17, 29,
38, 39

Stecke, K.E. 3,5, 6, 9-11,
13-16, 50, 81, 82,
88, 90, 96, 125

Steiglitz, K. 38

Steinhilper, R. 4

Stewart, W.R. 134, 135

Sullivan, R.S. 16

Suri, R. 9-12

Suzuki, H. 15, 50, 84, 125

Tang, C.S. 15, 17, 19, 50,
51, 62, 63, 68,
69, 73, 77, 78,
85, 86, 96, 98,
99, 125, 126,
129, 131, 135,

172

141, 142,
149, 151-
-154

Tansel, B.C. 10, 14

Tchijov, I. 7-9

Traiger, I.L. 131

Tsuchiya, N. 15, 50, 84, 125

Tzen, Y.L. 16, 82, 88

Van Laarhoven, P.J.M. 17,
25,113

Van Looveren, A.J. 9-12, 15

Van Vliet, M. 11, 12

Van Wassenhove, L.N. 6, 9,
11, 12, 14, 16,
61, 97

Vanelli, A. 13

Vasko, F.J. 52

Ventura, J.A. 15

Volgenant, T. 136

Vrieze, K. 16

Warnecke, H.-J. 4

Wemmerlov, V. 12

Whitney, C.K. 9, 10, 12-14,
17, 50, 64, 86

Widmer, M. 15

Wilson, J.R. 16

Wolf, F.E. 52

Wolfe, P. 53

Wolsey, L.A. 29, 32, 52, 62,
65, 87, 129, 131,
134, 135, 138,
150, 153

Yadegar, J. 38, 39

Yano, C.A. 15

Yao, D.D. 4, 9-11, 22

Zeestraten, M.J. 11, 16

Zijm, W.HM. 2, 11, 12, 16,
17, 25

Zimmers jr., EW. 2

Samenvatting

Produktieplanning voor flexibele
produktiesystemen

Produktieplanning is essentieel voor het efficiént gebruik van moderne produk-
tiesystemen. In dit proefschrift worden methoden ontwikkeld, die kunnen
worden toegepast om een aantal specifieke produktieplanningsproblemen in
flexibele produktiesystemen (FPS) op te lossen. Eerst zal worden ingegaan op
de flexibele produktietechnologie en vervolgens zal per hoofdstuk een
overzicht worden gegeven van het onderzoek.

Het industriéle landschap bestaat uit een wijd spectrum van produktie-
faciliteiten. Aan de ene kant van het spectrum is er sprake van stuksproduktie,
waar met behulp van machines kleine series van een bepaald produkt worden
gemaakt. De machines in een dergelijk systeem kunnen verschillende
produkten fabriceren. Wanneer er wordt overgeschakeld op een ander type
produkt worden de machines omgesteld, hetgeen echter wel produktieverlies
betekent. Het voordeel van het maken van kleine series of individuele
produkten is de flexibiliteit, die aanwezig is om tegemoet te komen aan de
specifieke wensen uit de markt. Aan de andere kant van het spectrum 1s er
sprake van massaproduktie. De machines zijn gebouwd voor een bepaald
produkt of een klasse van produkten. Overgaan op een ander produkt is erg
kostbaar omdat de machines mogelijk geheel moeten worden aangepast. Het
grote voordeel is het grote produktievolume, waardoor de kosten per eenheid
voor één type produkt relatief laag zijn. Massaproduktie kenmerkt zich door
een starheid als het gaat om het snel en goedkoop reageren op een verande-
rende vraag. Flexibele produktiesystemen (FPS) zijn ontworpen om de
voordelen van beide systemen te combineren. Dit gebeurt door de
omsteltijden, die nodig zijn om van één produkt over te schakelen op een
ander produkt aanzienlijk te verminderen. In plaats van machines, die slechts

174

één specifieke functie kunnen vervullen, worden machines ingezet, die een
magazijn hebben, waarin verschillende gereedschappen kunnen worden
opgeslagen. Gereedschappen, die aanwezig zijn in het magazijn, kunnen
automatisch in enkele seconden worden verwisseld door een gereedschappen-
verwisselaar, die aan iedere machine is bevestigd. Hierdoor is het mogelijk dat
snel en zonder noemenswaardig produktieverlies kan worden overgeschakeld
van het ene naar het andere produkt. De omsteltijden bij stuksproduktie
worden op deze wijze verminderd, terwijl tevens de starheid, die massapro-
duktiesystemen kenmerkt, wordt voorkomen.

Een FPS bestaat uit een aantal machines met een gereedschappenmagaziin, een
transportsysteem, een aantal voorraadbuffers, aanvoer- en afvoerstations,
eventueel afwerkingsmachines en een computersysteem, dat zorgt voor de
codrdinatie van de diverse functies en sturing van de apparatuur. Het transport
kan plaatsvinden via een transportband, die de machines, de aanvoer- en
afvoerplaatsen en buffers met elkaar verbindt, maar er wordt ook in
toenemende mate gebruik gemaakt van automatisch gestuurde wagens, die
langs de diverse lokaties in het systeem worden geleid.

De eerste FPS zijn aan het eind van de jaren '60 ontworpen. Momenteel zijn
wereldwijd 500-1500 systemen in gebruik (het exacte aantal is afhankelijk van
de aangehangen definitie voor FPS). Een FPS is technologisch complex en de
investeringen in het systeem en de opleiding van het personeel zijn hoog. De
systemen zijn het meest geschikt in omgevingen, waar het gewenst is om
geregeld de machines om te stellen. De belangrijkste toepassingen van FPS
zijn te vinden in de metaalindustrie (de produktie van specificke motor- en
machineonderdelen), maar ook in de elektronica zijn er toepassingen, onder
andere in de fabricage van printplaten, die te vinden zijn in tal van industriéle
en consumentenprodukten. Momenteel bevindt FPS-technologie zich niet meer
in een test-fase, maar heeft zij zich ruimschoots bewezen in tal van
toepassingen.

Dit proefschrift richt zich op een aantal problemen binnen de produktie-
planning van FPS. De complexiteit van de produktieplanningsproblemen
nodigt uit tot het splitsen van deze problemen in een aantal deelproblemen, die
beter hanteerbaar zijn. Nadeel van deze methode is het risico dat het oplossen
van de deelproblemen niet leidt tot een oplossing van het totale probleem in
verband met het weglaten van interacties tussen de deelproblemen. Het
voordeel is echter dat door gebruik te maken van een opzet met higrarchisch
geordende deelproblemen een beter inzicht kan worden verkregen in de
fundamentele problemen, die ten grondslag liggen aan het produktieplannings-
probleem. In hoofdstuk 2 van dit proefschrift wordt een hiérarchische
oplossingsmethode voorgesteld voor een produktieplanningsprobleem in de
elektronica-sector. In de overige hoofdstukken van het proefschrift worden een
aantal produktieplanningsproblemen besproken, die betrekking hebben op

Samenvatting 175

toewijzingsproblemen van opdrachten en gereedschappen aan machines.

In hoofdstuk 2 wordt een produktieplanningsprobleem besproken uit de
praktijk. Het probleem betreft het maximaliseren van de produktiesnetheid bij
de produktie van printplaten (printed circuit boards). Printplaten worden
algemeen toegepast in de consumentenelectronika (onder andere computers,
audio en video) en de industrie (bijvoorbeeld in telecommunicatie). De
produktie van printplaten vindt hoofdzakelijk plaats met behulp van
computergestuurde (CNC) machines en de technologie verandert snel. Er
wordt een probleem bestudeerd, waarbij een vastgesteld aantal componenten
op een printplaat moet worden bevestigd met behulp van een aantal machines.
Er moet worden vastgesteld welke componenten door welke machine moeten
worden bevestigd. Tevens moet worden bepaald op welke wijze en in welke
volgorde de componenten door de machines moeten worden bevestigd. Dit
produktieplanningsprobleem wordt aangepakt met behulp van een hiérar-
chische oplossingsmethode, waarbij het probleem wordt gesplitst in een aantal
deelproblemen, die apart moeten worden opgelost. Een aantal van deze
deelproblemen blijkt NP-moeilijk te zijn. Dit betekent dat het oplossen van
deze problemen met gangbare methoden exponentieel veel rekentijd vraagt.
Het optimaal oplossen van grotere NP-moeilijke problemen duurt hierdoor
extreem lang. In dit soort gevallen wordt daarom gebruik gemaakt van
heuristische methoden, hetgeen ook in dit onderzoek is gebeurd. De
hiérarchische oplossingsmethode is met succes getest op een praktijkgeval,
waarbij 258 componenten van 39 verschillende typen op een printplaat moeten
worden bevestigd met behulp van een lijn met drie machines. De geschatte
reductie in produktietijd bedroeg tenminste 18 procent.

In hoofdstuk 3 wordt een tool management probleem besproken. Tool
management, het efficiént plannen van het gebruik van de gereedschappen, die
door de machines van het FPS worden gebruikt, is essentieel voor het efficiént
gebruik maken van het systeem. In conventionele produktiesystemen ligt de
nadruk op de planning van de opdrachten, waarbij vastligt welke opdrachten
door bepaalde machines kunnen worden vervuld. In FPS kunnen machines
diverse opdrachten vervullen, afhankelijk van de gereedschappen, die
aanwezig zijn in de magazijnen van de machines. Deze hebben een beperkte
capaciteit variérend van 10 tot 250 (maar doorgaans enkele tientallen)
gereedschappen. In de planningsfase moet worden bepaald welke
gereedschappen in het magazijn worden bewaard, waarmee de mogelijke
functies van de machines worden vastgelegd. Indien een opdracht moet
worden uitgevoerd met een gereedschap, dat niet aanwezig is in het magazijn
van de machine, moet de samenstelling van het magazijn worden aangepast.
In dit geval is een langere omsteltijd noodzakelijk. Efficiént tool management
richt zich op het efficiént inrichten van de magazijnen, zodat omsteltijden
zoveel mogelijk worden vermeden. In hoofdstuk 3 wordt een model

176

gepresenteerd dat zich richt op het minimaliseren van het aantal keren dat een
machine moet worden omgesteld ten gevolge van een toevoeging van
gereedschappen aan het magazijn. We veronderstellen dat een aantal
opdrachten moeten worden uitgevoerd op een machine. Voor iedere opdracht
zijn een aantal gereedschappen nodig, die aanwezig dienen te zijn in het
magazijn bij het uvitvoeren van de opdracht. We noemen een groep van
opdrachten uitvoerbaar, indien de gereedschappen, die nodig zijn voor deze
opdrachten tegelijk in het magazijn van de machine passen. Voor een
uitvoerbare groep hoeft de machine dus maar één keer te worden ingesteld.
Het job grouping probleem bestaat uit het splitsen van de opdrachten in een
minimaal aantal uitvoerbare groepen. Het job grouping probleem behoort tot
de klasse van NP-moeilijke problemen, waardoor het exact oplossen van het
probleem wordt bemoeilijkt.

Diverse auteurs hebben methoden voorgesteld, die een benadering geven voor
het minimaal aantal uitvoerbare groepen (zie hoofdstuk 3). De kwaliteit van
deze methoden werd vastgesteld door de resultaten van de methoden te
vergelijken met de optimale oplossing, die kan worden verkregen door (zeer
lange) computerberekeningen met behulp van branch-and-bound methoden.
Wij maken gebruik van een set covering formulering om een ondergrens te
vinden voor het aantal uitvoerbare groepen. Het oplossen van de lineaire
relaxatie van deze formulering geeft een ondergrens, die nauw aansluit bij de
optimale waarde. Hierdoor is het exact berekenen van deze waarde niet meer
noodzakelijk. De lineaire relaxatie wordt berekend met behulp van een kolom
generatie methode. Tevens worden enkele methoden voorgesteld voor het
vinden van oplossingen voor het probleem. De resultaten worden bevestigd
door computerexperimenten op een grote verzameling van testproblemen. Uit
deze berekeningen blijkt dat de kwaliteit van de ondergrens en van een aantal
heuristische methoden goed is.

In hoofdstuk 4 worden de resultaten van hoofdstuk 3 uitgebreid naar enkele
algemenere gevallen. Eerst wordt bestudeerd of de resultaten van kracht
blijven indien gereedschappen verschillende afmetingen hebben. Vervolgens
worden problemen met meerdere machines getest. Uit computerexperimenten
blijkt dat de voorgestelde ondergrens ook voor deze uitbreidingen erg goed is.
Voor 98 procent van de geteste problemen blijkt de ondergrens gelijk aan de
optimale oplossing.

In hoofdstuk 5 wordt het job grouping probleem vanuit een andere invalshoek
bestudeerd. Doel van het onderzoek is om na te gaan of een aantal lokale
zoekmethoden goede oplossingen leveren voor het probleem en of deze
oplossingen binnen acceptabele rekentijd worden bereikt. Lokale
zoekmethoden onderscheiden zich van de bovengenoemde methoden in de
wijze, waarop een oplossing wordt gevonden. De oplossing wordt niet
stapsgewijs opgebouwd, maar uitgaande van een (random) oplossing worden

Samenvatting 177

nieuwe oplossingen gegenereerd en onderzocht. Een oplossing van het
probleem bestaat uit een verdeling van de opdrachten in een aantal groepen.
Een nieuwe oplossing kan worden verkregen door bepaalde opdrachten van de
ene naar de andere groep te verplaatsen of door twee opdrachten in
verschillende groepen met elkaar te verwisselen. ledere oplossing heeft een
aantal buuroplossingen. Een doelstellingsfunctie wordt gebruikt om de
kwaliteit van de oplossing te beschrijven. Door op een slimme manier de
andere oplossingen in de buuromgeving van de huidige oplossing te bekijken,
kan een betere oplossing worden verkregen, dat wil zeggen een oplossing, die
gebruik maakt van minder uitvoerbare groepen. Soms kan het verstandig zijn
om tijdelijk een verslechtering van de doelstellingsfunctie toe te staan. Het
verwisselen van twee opdrachten kan een verslechtering betekenen van de
doelstellingswaarde, maar het is mogelijk dat na enkele verwisselingen een
oplossing wordt bereikt met een lager aantal uitvoerbare groepen. Vier
verschillende lokale zoekmethoden, te weten een eenvoudige verbeterings-
strategie, een fabu-zoekmethode, een simulated annealing aanpak en een
variable-depth methode zijn onderzocht. Experimenten zijn uitgevoerd om vast
te stellen welke methoden efficiént werken. Tevens wordt de invloed van de
startoplossing, de doelstellingsfunctie, de buuromgeving en de stopcriteria
onderzocht. Uit de experimenten blijkt dat veel instanties waarvoor de eerder
genoemde methoden (in hoofdstuk 3) geen optimale oplossing geven met
behulp van lokale zoekmethoden wel optimaal kunnen worden opgelost. De
keuze van de startoplossing, de doelstellingsfunctie en de buuromgeving blijkt
van veel sterkere invloed dan de keuze van de methode zelf, indien tijdens het
proces verslechteringen van de doelstellingsfunctie worden toegestaan. In een
aantal gevallen is de tijd om een optimale oplossing te bereiken echter
aanzienlijk.

In hoofdstuk 6 wordt een ander tool management probleem, het ool Switching
probleem, bestudeerd. De doelstelling is het vinden van een
opdrachtenvolgorde, waarbij het aantal gereedschappen dat moet worden
toegevoegd aan het magazijn tijdens de produktie wordt geminimaliseerd. De
gereedschappen passen niet tegelijkertijd in het magazijn en het kan
noodzakelijk zijn om bepaalde gereedschappen een aantal keren toe te voegen
en te verwijderen (omdat andere gereedschappen op dat moment noodzakelijk
zijn). Niet het aantal keren dat de machine moet worden omgesteld (zoals in
het job grouping probleem), maar het aantal gereedschappen dat wordt
gewisseld is hier van belang. Het tool switching probleem is vooral relevant
indien de tijd, die nodig is voor het verwisselen van een gereedschap,
aanzienlijk is vergeleken met de produktietijd voor de opdracht (of serie
opdrachten), zoals dit voorkomt in bepaalde sectoren van de metaalindustrie.
In dit hoofdstuk wordt het tool switching probleem zowel vanuit theoretisch
oogpunt als met behulp van experimenten bestudeerd. Er wordt bewezen dat

178

het probleem al NP-moeililk is indien het magazijn slechts twee
gereedschappen bevat. Een nieuw bewijs wordt gegeven voor het feit dat
gegeven een vaste opdrachtenvolgorde binnen polynomiale tijd een optimale
toewijzing van de gereedschappen kan plaatsvinden. Nadruk wordt gelegd op
de overeenkomsten met andere bekende problemen uit de combinatorische
optimalisering (het handelsreizigersprobleem, het blok minimalisatieprobleem,
bet interval matrix herkenningsprobleem, etc.) en heuristicken worden
voorgesteld, die gebruik maken van deze eigenschappen. De resultaten van
computerexperimenten met heuristische oplossingsmethoden en enkele lokale
zoekmethoden worden gepresenteerd.

Curriculum vitae

Alwin G. Oerlemans, geboren 13 februari 1965 te Utrecht, heeft in 1983 het
Voorbereidend Wetenschappelijk Onderwijs aan het College Blaucapel te
Utrecht met goed gevolg afgesloten. Van 1983 tot 1988 studeerde hij
Econometrie aan de Erasmus Universiteit in Rotterdam, In 1987 was hij
werkzaam bij de verzekeringsmaatschappij Nationale Nederlanden N.V. te
Rotterdam als assistent-onderzoeker ten behoeve van onderzoek op het gebied
van ziektekostenverzekeringen. In 1988 werd aan de Erasmus Universiteit het
doctoraal examen Econometrie afgelegd in de richting bedrijfseconometrie.
Van 1988 tot 1992 was de auteur verbonden aan de vakgroep Kwantitatieve
Economie van de Faculteit der Economische Wetenschappen van de
Rijksuniversiteit Limburg te Maastricht, eerst in de functie van assistent in
opleiding en in 1992 als toegevoegd docent mathematische besliskunde.

Alwin G. Oerlemans (born February 13, 1965 in Utrecht) studied
Econometrics and Operations Research at Erasmus University Rotterdam from
1983 to 1988. In 1987 he worked as research assistant at the insurance
company Nationale-Nederlanden N.V. in Rotterdam. In 1988, he received his
Master’s degree in Econometrics and Operations Research from Erasmus
University Rotterdam. Between 1988 and 1992 he held positions as research
assistant and lecturer in Operations Research at the Department of Quantitative
Economics of the Faculty of Economics and Business Administration of the
University of Limburg in Maastricht. During this period, he completed his
work on this thesis.

Froduction pianning Is essential tor the ertricient operation of modern

manufacturing systems. The focus of this study is on mathematical

programming models for production planning problems arising in
flexible manufacturing systems (FMS), and on their solution.
The main part of the book is devoted to a discussion of a number of
production planning problems. First, a case study is presented. A
hierarchical solution procedure is developed for a real-world production
planning problem in the automated manufacturing of printed circuit
boards. Special attention goes to the combinatorial modelling of many of
the problems which constitute the planning hierarchy. An important aspect
of the efficient use of an FMS is the planning of the flow of parts and
tools through the production facility. To take advantage of the new
opportunities offered by FMS-technology tool management has to be
handled well. The simultaneous scheduling of tools and parts adds
complexity to the already difficult scheduling operation. Tool management
tries to overcome these problems. Two specific tool management
problems are studied in detail. Both problems concern the efficient
batching and sequencing of parts and tools under different technological
constraints. Their objective is to decrease the number of machine-setups.
A batching problem with applications in printed circuit manufacturing as
well as the metal working industry is studied. The objective is to partition
a set of jobs in a minimal number of batches. Solution procedures and
lower bounds on the solution value for problems of this type are
developed. Under different technological constraints, sequencing of
individual operations becomes more important than batching.
Computational experiments show that satisfactory solutions can be
obtained for both tool management problems discussed here.
The author received a Master's degree in Econometrics and Operations
Research from Erasmus University Rotterdam in 1988. He has held
positions as research assistant at Nationale Nederlanden N.V., a major
insurance company, and since 1988 as research assistant and lecturer in
Operations Research at the Department of Quantitative Economics of the
University of Limburg in Maastricht.

