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In this paper we study the geometrical properties of the set of Lorenz allocations of a
transferable utility game. We provide procedures to compute a single Lorenz allocation,
and even the entire set of Lorenz allocations, that rely solely on linear optimization
techniques. These procedures only require a finite number of elementary operations and
are therefore easy to implement.
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1. Introduction

In this paper we deal with what are commonly known as transferable utility games,
TU-games for short. In a TU-game there is a finite set of players. With each subset
of this set of players (a coalition) a certain real number (the value of the coalition) is
associated, usually interpreted as the amount of money this coalition can generate
if they operate on their own and do not cooperate with the players outside this
coalition. Other interpretations are also possible. This value can for example also
be viewed as the claim the coalition has issued on the total amount of money to be
divided.

Now the assumption is that the entire set of players decides to cooperate, and
thus a certain amount of money, the value of the grand coalition, is generated. The
central question addressed in this area of research is how this amount of money
should be divided among the players. The second assumption often made in con-
nection with this problem is that there is a division of the total amount of money
(usually called an allocation) among the players in such a way that each coalition
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gets at least its value. In other words, if you add the amounts of money allocated
to the players of a coalition you end up with an amount of money at least as large
as the value of the coalition under consideration. Such an allocation is called a core
allocation. A game that has at least one core allocation is called balanced. In this
paper we will only consider such balanced TU-games.

1.1. Egalitarianism

Egalitarianism is the strife of a community or its representants to spread the total
wealth of the community as equally as possible among its members.® A completely
equal division of goods can usually not be obtained when subcommunities have
reasonable grounds to lay a claim on part of the wealth to be divided. In the
above terminology concerning TU-games this can be expressed as the search for
an allocation that divides the value of the grand coalition as equally as possible
without violation of the claims of the coalitions. In other words, we want to find
a core allocation under which the inequality between the players is as small as
possible, given these minimal demands of subcoalitions.

1.2. Lorenz allocations

One way to measure the degree of inequality between players given an allocation
is via the Lorenz criterion. This criterion works as follows. Given two allocations,
first compare the amounts the poorest players get according to the respective allo-
cations.” Then compare the total amount the two poorest players according to the
first allocation get with the total amount the two poorest players get according
to the second allocation. Next, make a similar comparison for the three poorest
players, et cetera. Now, if it turns out that these amounts according to the first
allocation are all larger or equal than they are according to the second one, we say
that the first allocation Lorenz dominates the second one.© A core allocation that
is not Lorenz dominated by any other core allocation is called a Lorenz allocation.
A Lorenz allocation can thus be viewed as a core allocation from which it is no
longer possible to reduce social inequality within the society without violation of
the minimal demands of at least one of its subcommunities.

1.3. Aim of the paper

In this paper we study the computational aspects connected with the determina-
tion of Lorenz allocation. We both address the problem of determining all Lorenz

2For the arguments why a community would aspire to allocate its wealth as equally as possible
we refer to the discussions in e.g. Rawls (1971) and Dutta and Ray (1989).

POf course the poorest player according to the first allocation need not be the poorest player
according to the second. Hence, this comparison may well be between two different players.
“Well, precisely stated, at least one of these amounts should really be strictly larger according to
the first allocation then it is according to the second one.
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allocations as well as determination of certain special types of Lorenz allocation,
such as the lexmax and the lexmin allocations.

1.4. Organization of the paper

Section 2 provides the reader with our terminology and some preliminary results.
In Sec. 3 we investigate the geometrical properties of the Lorenz set. We prove
that the Lorenz set can be decomposed in a finite number of polytopes, called
relevant Lorenz polytopes, and that these polytopes constitute a connected polyhe-
dral complex. Similar results are true for the kernel as is shown in Maschler et al.
(1979). In Sec. 4 we exploit the results of Sec. 3 to give an algorithm that computes
the Lorenz set in a finite number of elementary operations. We also introduce two
classes of Lorenz allocations. The algorithm we provide to compute the first class
of Lorenz allocations yields relevant Lorenz polytopes. We also provide an algo-
rithm for the second class of Lorenz allocations, which includes the lexmax and the
lexmin allocations, and moreover prove that these allocations are extreme points of
relevant Lorenz polytopes. In an example we show that not all extreme points of
the set of Lorenz allocations can be recovered by this procedure.

1.5. Notation

For two elements k£ and [ of a finite set N, the directional vector dg; € RY is
defined by

1 ifi=1
(dri)i =< —1 ifi=k
0 else.

A subset F of a polytope P is called a face of P if for every x and y in P both x and y
are elements of F' whenever the vector %x + %y is an element of F.4 Furthermore,
the smallest affine subspace® that contains P is denoted by ah(P). The relative
interior of P is the collection of elements x of P for which for some neighborhood
U of x the intersection of U with ah(P) is a subset of P.f A set X in IR" is called
connected if it cannot be covered by two disjoint open sets U and V in such a way
that both intersections U N X and V N X are not empty.
A relation < on a set X that satisfies

(reflexivity) for all z € X we have z < = and

[}
e (transitivity) for all z,y,z € X we have < z whenever both z <y and y < z

is called a partial order. It is called a weak order if it also satisfies
dOf course there is also a dual definition in terms of linear (in)equalities.
€A subspace V of IR” is called affine if Az + (1 — \)y is an element of V for every real number A

and elements x and y of V.
fAlso in this case there is a dual definition in terms of linear (in)equalities.
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e (completeness) for all z,y € X we have at least one of the two relations < y or
Yy 2@

2. Preliminaries

A (transferable utility) game is a real-valued function v: 2V — IR on the collection
2NV of subsets of the player set N := {1,...,n} with v(0)) = 0. Any subset S of the
player set N is called a coalition and v(S) is the value of coalition S in the game v.
We consider the game v to be fixed throughout the paper.

Any real valued vector z € RY is called an allocation. The ith coordinate of the
vector = represents the payoff given to player i. We denote ) ;.o x; by x(S). The
allocation x is efficient if 2(N) = v(N). The core C(v) of the game v is defined as
the collection of efficient allocations = for which

z(5) = v(S)

holds for each coalition S. In this paper we will assume that the given game v is
balanced, i.e. that its core is not empty.

In order to define the notion of a Lorenz allocation, take an allocation .
An order for x is a permutation o of N that orders the coordinates of z in such
a way that

To) < To) < -0 < Tpn)8

Now let y be another allocation and let 7 be an order for y. We say that y Lorenz
dominates x in the weak sense if

k k
Z Yr(i) = Z Lo (4)
i=1 i=1

for all k = 1,...,n. Notice that this definition is sound since the above sums do not
depend on the particular choices for o and 7. If at least one of the above inequalities
is strict, we say that y Lorenz dominates x.

Definition 1. A core allocation is called a Lorenz allocation if it is not Lorenz
dominated by any other core allocation. The collection of Lorenz allocations is
called the Lorenz set in this paper.

It was shown in Arin and Ifarra (1997) that every balanced game has at least
one Lorenz allocation.

3. Geometrical Properties of the Lorenz Set

The main result of this section is that the Lorenz set is a finite union of polytopes.
We will also discuss in what way these polytopes that constitute the Lorenz set

g€There may be more than one order in case several players receive the same payoff under the
allocation x.
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hang together. In particular we will show that they form a connected polyhedral
complex. In the next section we will exploit these results for computational ends.

3.1. Polyhedral structure of the Lorenz set

First we need some notation. Let < be a weak order on the set N of players of the
game v. We define the set A(=) by

A(X) :={z € R" | i = j implies z; < z,}.

Clearly, A(=) is a polyhedral cone. Observe that there are only finitely many

different cones of this type, since there are only finitely many weak orders on .
A Lorenz polytope is a set of the form

AR)NFE
for some weak order < on N and face I of the core of v.

Remarks. Since such a Lorenz polytope is a subset of the bounded set C'(v) and
both A(=<) and F can be given by linear inequalities, a Lorenz polytope is indeed
a polytope. Mind though that it is not necessarily a subset of the Lorenz set. [

Nevertheless we have the following

Lemma 1. A Lorenz polytope is a subset of the Lorenz set as soon as at least one
element of its relative interior is a Lorenz allocation.

Proof. Assume that there is a Lorenz allocation x in the relative interior of a given
Lorenz polytope A(=<) N F. Let y be another element of this polytope. We have to
show that y is Lorenz. We will do this by contradiction.

So, assume that y is not a Lorenz allocation. Since it is definitely a core allo-
cation, there must be another core allocation, say y + d with d # 0, that (weakly)
Lorenz dominates y. Now, since x is in the relative interior of A(=) N F, we can
find an n > 0 as well as a permutation ¢ such that x 4+ nd is a core element and o
is an order for both  and x + nd. Then, again since x is an element of the relative
interior of A(X)NF, o is also an order for y. Now let 7 be an order for y 4 d. Then
we have for all k =1,...,n,

k
Z?Ja( +Zd0< Z?Hda( Z?Hd

The first inequality follows from the fact that 7 is an order for y 4+ d and the second
inequality follows from the fact that y + d Lorenz dominates y. Now the above
inequalities imply that

|\/
.
I M -
I

N

Q0

k
Y do(i) 20
=1
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for all k =1,...,n. Thus, it follows that
k

k k k
Z(x +nd)s(iy = Z To(i) + 772 do(iy = Z%(i)-
i=1 =1 =1

i=1 i= i—
Hence, since n > 0 and d # 0, this contradicts the assumption that x is a Lorenz
allocation. 0

This lemma by itself is not yet sufficient to conclude that the Lorenz set is the
union of a number of Lorenz polytopes. In order to draw that conclusion we also
need to know that each Lorenz allocation is an element of the relative interior of
some Lorenz polytope. It is not so difficult though to specify such a Lorenz polytope,
even for an arbitrary core allocation. In order to do this, let x be a core allocation.
Define the weak order <, on N by

i 2z J if and only if z; < z;.

Furthermore, let F(z) be the collection of core allocations y for which

y(S) = v(S)

holds as soon as z(S) = v(S). Obviously, F(x) is a face of the core of v. Therefore
the following definition makes sense.

Definition 2. The set A(=,) N F(x) is called the Lorenz polytope® associated
with the allocation x.

It is not difficult to prove that x is an element of the relative interior of its
associated Lorenz polytope. This enables us to prove

Theorem 1. The Lorenz set is the union of a (necessarily finite) number of Lorenz
polytopes.

Proof. Let x be a Lorenz allocation. As we just remarked, the allocation z is an
element of the relative interior of its associated Lorenz polytope. Hence, since each
such a Lorenz polytope is therefore automatically contained in the Lorenz set by
Lemma 1, the proof is complete. O

3.2. Polyhedral complexes

It is possible to say a little bit more about the collection of Lorenz polytopes that
constitute the Lorenz set. They form a particularly nice structure that can be
expressed as follows.

Definition 3. Let I be a finite set of indices. A (finite) collection
P:={P|iel}

h1t is easy to check that this is indeed a Lorenz polytope.
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of polytopes is called a polyhedral complez if for each 7, j € I the intersection P; N P;
is an element of P and a face of both F; and P;.

Now let us say that a Lorenz polytope is relevant if it is a subset of the Lorenz
set. Let R be the collection of all relevant Lorenz polytopes.

Theorem 2. The collection R is a polyhedral complez.

Proof. Take two relevant Lorenz polytopes A(=<1) N F and A(=2) N G. We have
to show that the intersection

R:=(A(Z1)NF)N(A(Z2)NG)
is a relevant Lorenz polytope and a face of both A(=<1) N F and A(=2) NG.

A. First we will show that R is a Lorenz polytope. (Once we have that, relevance
is immediate.) To this end, define < by writing ¢ < j if there is a sequence
i1,12,...,1, in N such that ¢+ = i1, i = 7 and

11 o i o R i

where each question mark indicates either index 1 or index 2.! It is straight-
forward to check that < is indeed a weak order. Furthermore, H := F N G is
clearly a face of the core of v. We will show that R equals A(<)N H. Since the
reverse inclusion is trivial, we will only show that R is a subset of A(<)N H.

So, take an allocation = in R. Since this is clearly an element of H, we
only need to show that it is included in A(=). To this end, assume that ¢ < j.
We have to show that x; < z;. However, since ¢ < j, there is a sequence
11,12, ...,1, in N such that ¢+ = i1, i = 7 and

11 o i o R i

where the question mark indicates either index 1 or index 2. Now, since x is
an element of both A(=<;) and A(=<3), this implies that

X1 =iy STy <0 STy, =@

which concludes this part of the proof.

B. By symmetry it is sufficient to show that R is a face of A(=<1)NF. To this end,
take two allocations x and y in A(=<1) N F and assume that z := %x + %y is an
element of R. We have to show that x and y are elements of R. Since they are
elements of A(=1) by the way we chose them, we only have to show that they
are elements of A(=<z) and H.

B1. In order to show that = and y are elements of H, notice that x and y are
elements of the core of v. So, since z = %x + %y is in particular an element of
the face H of the core of v, x and y must also be elements of H.

iMeaning that both orders <; and <2 are allowed to be used in the same displayed sequence of
inequalities.
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B2. The only thing left to show is that = (and then also y) is an element of A(=<2).
So, take ¢ and j with ¢ <o j. We have to show that x; < ;. We will do this by
contradiction. So, assume that x; > ;. Then, since x is an element of A(=1)
and =1 is complete, we know that ¢ =1 j. So, since y is also an element of
A(=1), we know that y; > y;. Hence,

1 1 1 1
Zi = 5:& + §yz > §$j + §yj = zj.
Thus we get that z; > z;. This though contradicts the fact that z is an element
of R C A(=2) and i <5 j. O

Remarks. A relevant Lorenz polytope is called mazimal if it is not properly
contained in any other relevant Lorenz polytope. Obviously, we now have that the
Lorenz set is the union of maximal Lorenz polytopes. Note that it follows from
the previous Theorem that every relevant Lorenz polytope is a face of a maximal
relevant Lorenz polytope. Il

3.3. Connectedness

Finally in this section we will show that the Lorenz set is connected. First we need
some notation.

Definition 4. Let G be a closed set of Lorenz allocations. The set of core alloca-
tions that are weakly Lorenz dominated by some allocation in G is denoted by D(G).

Notice that G is automatically a subset of D(G). Furthermore we have

Lemma 2. D(G) is a closed set.

Proof. Let (z'),.y be a sequence of allocations in D(G) converging to some
limit 2. We have to show that x is an element of D(G).

Since 2! is an element of D(G), we can take an allocation 3 in G such that y
weakly Lorenz dominates z¢. Furthermore, since G is assumed to be a closed subset
of the core of v, it is compact. So, we can assume w.l.o.g. that the sequence (y")remn
converges to some allocation y in G. It is also clear that x is a core element, since it
is the limit of a sequence of core elements. So, it is sufficient to show that y weakly
Lorenz dominates x.

To this end, notice that, by taking subsequences, we can guarantee that there
are two permutations o and 7 of N such that o is an order for each 2! and 7 is an
order for each yt. So, since each y* weakly Lorenz dominates the corresponding x?,
we know that

k k

D i 2 ; To i)

=1
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for all £ = 1,...,n. Since these inequalities remain true when we take limits, and
o and 7 are still orders for the limits x and y respectively, we get that y weakly
Lorenz dominates x. O

Using this result we can show

Theorem 3. The Lorenz set is connected.

Proof. We will show this by contradiction. So, assume that the Lorenz set of v
is not connected. Then, since the Lorenz set is closed, it can be divided into two
non-empty, closed and mutually disjoint sets, say F' and G. First notice that D(F)
and D(G) are closed by Lemma 2. They are also not empty, since they include the
non-empty sets F' and G, respectively. So, since — by Lemma 4 in the Appendix —
D(F) and D(G) cover the connected set C(v), Z := D(F) N D(G) is not empty.
Since Z is also clearly compact, it follows that Z contains at least one element
that is not Lorenz dominated by any other element of Z. Let z € Z be such a
point. Then, since z is an element of D(F'), we can choose an allocation z in F
that weakly Lorenz dominates z. Similarly we can choose an allocation y in G that
weakly Lorenz dominates z. So, since D(F') and D(G) form a closed cover of the
core of v, there must be an element of the line segment

{pr+ (1 —py|0<p<1},

say w = p*zr+ (1 —p*)y, that is an element of Z = D(F)N D(G). However, z is not
an element of G and y is not an element of F', since F' and G are disjoint. So, 0 <
p* < 1, which implies that w (strictly!) Lorenz dominates z. This contradicts the
fact that z is not Lorenz dominated by any other element of Z. Hence, the Lorenz
set is connected. O

4. Computational Aspects

In this section we will discuss several methods that can be used to calculate Lorenz
allocations. First we will explain how the entire Lorenz set may be computed using
the results from the previous section. Secondly we will present some algorithms for
the computation of a single Lorenz allocation.

4.1. Computation of all Lorenz allocations

The results from the previous section enable us to compute the Lorenz set in a
finite number of steps. To see this, notice that by Theorem 1 computation of the
Lorenz set boils down to the question whether we can determine the collection R
of all relevant Lorenz polytopes.

Now first of all, notice that it is not difficult to list all Lorenz polytopes. The
sets A(=) are given by a finite number of linear inequalities after all (depending on
the specific choice of <) and the faces of the core of v are also available in the form
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of a finite number of linear inequalities. The difficult part is to determine whether
or not the intersection A(=)NF of a given pair of such sets is relevant. For this, we
first need to compute a specific element, say z, of the relative interior of A(=X)N F.
This can be done using standard linear optimization techniques. Then, by Lemma 1
it is sufficient to check whether z is a Lorenz allocation. This can be done as follows.
Let o be an order for z. Define

1
agi(z) = §(Za(k> ~ Zo(1))

for every k and [ with [ < k. Furthermore, given a vector A = (Ag)i<k, define, for
the sake of brevity, the vector d(A, z) in IR"™ by

d(/\, Z) = Z /\klakl(z)dg(k)g(l)j
<k

Consider the following linear program LP(z).

maximize E Akt (z)
<k

x+d(A z) e C(v)
subject to ¢ >, A <1
A > 0.

Now let 11 be any optimal solution of LP(z). It is shown in Arin et al. (2000) that z is
a Lorenz allocation if and only if d(u, 2) = 0. Thus, we can also use standard linear
optimization techniques to check whether or not the allocation z in the relative
interior of A(<X)N F is Lorenz.

4.2. Computation of one Lorenz allocation

In this section we will provide two techniques for the computation of Lorenz allo-
cations. The first technique is based on the fact that maximization of certain real-
valued functions over the core of the game v yields elements of the Lorenz set v.
The second technique is based on lexicographic maximization of the Lorenz curve
over the core of v.

4.3. Real-valued maximization

In order to define the class of functions we will consider, let 8 = (51,...,0,) be a
vector with 8; > 0 for all i. The f-Lorenz function g is defined as follows. Let z
be any allocation. Let o(z) be an order for . Then

n k
() = Bk Y Tog))-
k=1 i=1

INotice that this definition does not depend on the specific choice of the order o for z.
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Notice that this definition is sound, since it does not depend on the particular choice
of o(x).

We are interested in the collection O(3) of allocations z in the core of v for
which

lp(z) = 1s(y)

for any core allocation y of v. First of all, notice that O(3) is not empty and compact,
since lg is a continuous function and the core of v is compact. Furthermore we have
that lg(x) > lg(y) if « Lorenz dominates y. So, O(8) is a subset of the Lorenz set.
We will show that it is even a (automatically relevant) Lorenz polytope.

Theorem 4. The set O(B) is a Lorenz polytope.

Proof. A. First we will show that O(f3) is convex. To this end, notice that the
(B-Lorenz function satisfies the following two properties.

o [g(ax) = alg(x) for all a > 0 and all x € R™.
o lg(x+y) >lg(x) +1s(y) for all z,y € R™. Moreover, if there are indices ¢ and j
such that z; < x; and y; > y;, then Ig(x +y) > Ig(z) + l3(y).

Hence, if  and y both maximize the S-Lorenz function over the core of v, then
so does Az + (1 — Ay for all A € [0,1]. It follows that O(f) is a convex set.

B. In this part we will show that O(f) is a Lorenz polytope. Since O(8) is
convex, its relative interior is not empty. Hence, we can choose an allocation z in
the relative interior of O(f3). Let A(=,) N F(z) be its associated Lorenz polytope.
We will show that this Lorenz polytope is equal to O(f3).

Since the restriction of g to this polytope is a linear function that attains its
maximum in the allocation z in the relative interior of the polytope A(=,)NF(z), Ig
must be constant on this polytope. Hence, this polytope must be a subset of O(f).

In order to show the converse inclusion, take an allocation x in O(5). We have
to show that x is an element of the above Lorenz polytope A(=<.) N F(z). Since
z is in the relative interior of O((3), there exists a real number € > 0 such that
z+e(z — ) is still an element of O(B). This though implies in particular that x
and z + e(z — x) are core elements, while z is an element of the face F(z) of the
core of v. So, x must be an element of F(z) as well.

Finally we need to show that z is an element of A(=,). We will show this by
contradiction. So, assume that ¢ <, j and x; > x;. Then, since z is an element of
O(B) and z is an element of the relative interior of O(3), we know that there exists
an € > 0 such that y := (1 + )z — ez is still an element of O(F). This though,
since y; < y;, implies that lﬁ(%x + %y) is strictly larger than %l,g(x) + %lg(y). This
contradicts the assumption that = and y are elements of the set O(f3). |
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Remarks. One way to compute an element of O(3) works as follows. Given a
permutation o, consider the set

Clo) :={zcC() | ro1) < < Tom)}

of core allocations for whom o is an order. Clearly this set is bounded and given
by a number of linear inequalities. So, since /3 coincides with the linear function

n k
T Y Be Y To
k=1 =1

on C(o), we can use linear optimization techniques to compute a (core) allocation
z(o) that maximizes [z over this set C(0).X Now evaluate lg in each z(0) we can
thus construct. Choose an allocation x(7) such that

lp(x(7)) = lg(2(0))

for all other allocations x (o). This allocation x(7) must necessarily be an element of
O(B) (and hence a Lorenz allocation). Moreover, if we use an optimization technique
that automatically generates interior solutions to the linear programs to be solved,
O(B) will be equal to the Lorenz polytope associated with x(7). O

4.4. Lexicographic maximization

The second technique to generate Lorenz allocations works as follows. Let x be an
allocation and let o(x) be an order for x. The Lorenz curve of x is the vector

O(z) = (%(@(1)7%(@(1) +xa($)(2)7"'»zxa(a¢)(i)> .
=1

Now it is easy to verify that a core allocation x for which 6(z) is lexicographically
greater than 6(y) for any other core allocation y' is automatically a Lorenz allo-
cation. Thus, if we can find a core allocation where 6 attains its lexicographical
maximum over the core, we have found a Lorenz allocation.

To pursue this idea a little bit further, let 7 be some permutation of the elements
of N, and define the vector function 8™ by

0" ({E)k = G(x)ﬂ(k) .

Then also any core allocation = for which 6™ (x) is lexicographically greater than
0™ (y) for any core allocation y will be a Lorenz allocation.

Remarks. Lexicographic maximization of the vector 8™ leads to a unique solu-
tion. This is seen as follows. Suppose that x and y both maximize ™. Then

kProvided of course that this set is not empty. However, at least one such set will not be empty,
because the game v is assumed to be balanced.

I'We say that 6(z) is lexicographically greater than 6(y) if 6(x) # 0(y) and 6(z); > 6(y); for the
first coordinate ¢ for which 6(z) and 6(y) are different.
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Zle To(x)(i) = Zf:l Yo (y) (1) for k = 1, ey Ny and it follows that Lo(x)(k) = Yo(y)(k)
for K =1,...,n. Hence, the coordinates of x are the same numbers as the coordi-
nates of y, but they are possibly permuted. However, if they are permuted, then
one easily shows that %x + %y Lorenz dominates both x and y, a contradiction.
We conclude that x = y. O

Given a permutation m, the allocation that lexicographically maximizes the
function ™ over the core of v is denoted by z(7).

The allocation z(7w) can be computed as follows. For 1 < k < n, define the
vector ¢, in IR™ by

(1 i<k
k=0 else.

Now take a (for the moment) fixed permutation o. First write Go(o) := C(o,v).

Now for 1 < k < n we can inductively define G, (o) as the set of allocations x in
Gi—1(0) for which

(Cak)s T) = (Cr(i)> V)

for all other allocations y in Gr_1(c). All these sets can be computed in terms
of finite systems of linear (in)equalities and, moreover, G, () is a one-point set.™
Denote the unique allocation in G,(c) by y(o). Now for each such allocation we
can compute its “permuted” Lorenz curve

((en) y(@))s- -+ (exguy, (o))

The allocation y(7) whose permuted Lorenz curve is lexicographically bigger than
the permuted Lorenz curve of any other y(o) will be equal to z(7).

Intuitively, lexicographic maximization of ™ corresponds to the maximization
of a B-Lorenz function, where B 1) > Br) for i = 1,...,n — 1. According to
this intuition one expects that the set of solutions that maximize 0™ is a Lorenz
polytope, and since this set consists solely of the allocation z(w), this allocation
should be an extreme point of a maximal Lorenz polytope by Theorem 2. The
following theorem shows that this intuition is correct.

Theorem 5. The allocation z(m) is an extreme point of a mazimal Lorenz polytope.

Proof. It suffices to prove that {z(m)} equals the Lorenz polytope associated
with z(7). Recall that z(7) lies in the relative interior of its associated Lorenz poly-
tope A(=.(x))NF(2(m)). Now suppose that z(7) is not the only allocation in A(= ()
) N F(z(w)). Then there must be a non-degenerate line-segment
[a,b] C A(X;(x)) N F(z(m)), such that x lies in the relative interior of [a, b]. Observe
that each coordinate of 67 is linear on A(=(x)). Hence, the first coordinate must
be constant on the line segment [a, b], since otherwise either 6™ (a) or 8™ (b) would

™ Again, the condition is that we started with a non-empty set C(o).
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be lexicographically greater than 6™(z(m)). Knowing that the first coordinate is
constant, we can repeat the same argument to show that also the second coordi-
nate of 6™ is constant on [a,b], etc. It follows that the function 67 is constant on
[a,b]. This contradicts the fact that there is a unique vector that maximizes 6™
lexicographically. |

An obvious question now is: is every extreme point of a Lorenz polytope the lexi-
cographic maximum of some vector 67 The answer is negative. Let v be
a five-person game where v(N) = 11, v(1234) = 10.5, v(12) = »(13) = 7,
v(123) = 9.5, v(15) = 3.8 and v(S) = 0 otherwise. Lexicographic maximization
of the vector #(1:2:345) gives us the point a = (4.5,2.5,2.5,1,0.5). Maximization
of §G43.21) gives b = (3.5,3.5,3.5,0.2,0.3), and maximization of §(1:5%32) gives
¢ = (4,3,3,0.5,0.5). For all other permutations 7 the lexicographic maximum of
0™ coincides with a,b or c. One can check however that also d = %(53, 52,52,4,4)
is an element of the Lorenz set, and that it is even an extreme point of a maximal
Lorenz polytope. In fact, the maximal relevant Lorenz polytopes of the game v are
given by the three line segments [a, ], [d, b] and [c, d].

Appendix

In this section we will prove a Lemma needed in this paper. We will use the Lemma
of Zorn, a statement equivalent with the Axiom of Choice. First we need some
notation.

Let X be a non-empty set an let < be a partial order on X. So, < is assumed
to be reflexive and transitive.

A subset C of X is called a chain if for any two elements = and y of C' we have
at least one of the two inequalities x < y and y < x.

A chain C of X is said to have an upper bound if there exists an element a of
X such that z < a for all z in C.

An element a of X is called mazximal if for any = in X the inequality a < x only
holds if z < a holds as well. In words, there is no element x that is “really bigger”
than a.

Now the Axiom of Choice is equivalent with the following;:

Lemma 3. (Zorn) Suppose that every chain of X has an upper bound. Then X
has a mazximal element.

We can use this axiom in the following way. On the collection of core allocations
of v we can define the partial order <;* by writing « =<; y if the core allocation y
weakly Lorenz dominates the core allocation x. We will apply the Lemma of Zorn
to this partial order in order to prove:

Tt is very easy to check that =<; is indeed a partial order.
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Lemma 4. Every core allocation is weakly Lorenz dominated by a Lorenz
allocation.

Proof. Let x be a core allocation. Consider the set
X ={yeC)|r =y}

of core allocations that weakly Lorenz dominate x. Since X contains x this is
obviously not an empty set and =<; is a partial order on it. We will first check that
within X the condition of the Lemma of Zorn is satisfied.

To this end, let C be a chain in X. Let ¢ be a permutation of N. Let C(c) be
the collection of elements in C for which ¢ is an order.° Next, for i € N, define the
allocation z(o) by

k k—1
2(0)o(k) = sup Zya(i) — sup Z Yo ()"
yeC(o) ;1 yeC(o) ;-1
Since C(o) is a chain in the closed set X, it is easily verified that x(o) is also an
element of X. Moreover, it is an upper bound on C(o).

Now recall that C' is a chain. So, for any two permutations ¢ and 7 for which
C(o) and C(7) are not empty, we have at least one of the two inequalities z(o) =;
z(1) or xz(r) =; (o). This implies that there is a permutation p such
that x(p) weakly Lorenz dominates all other allocations x(c). This though implies
that z(p) is an upper bound for the entire chain C.

Now we can apply the Lemma of Zorn and we get a maximal element of X,
say z. This allocation weakly Lorenz dominates = by definition of X. Our claim is
that it is a Lorenz allocation. Suppose that z is not a Lorenz allocation. Since it is
a core allocation, there must be another core allocation w that Lorenz dominates
z. That is, z <; w, but not w =; z. However, z <; w implies that w is an element
of X by the transitivity of <;. Then though the fact that w =<; z does not hold
contradicts the assumption that z is a maximal element of X. O
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