JOURNAL OF APPLIED ECONOMETRICS, VOL. 2, 227-235 (1987)

A PARAMETRIC TEST OF THE NEGATIVITY OF THE
SUBSTITUTION MATRIX

DAVID A. KODDE* AND FRANZ C. PALMt

*Catholic University of Nijmegen, Economic Institute, Thomas van Aquino-straat 6,
6526 EM Nijmegen, The Netherlands
tUniversity of Limburg, Department of Economics, P. O. Box 616, 6200 MD
Maastricht, The Netherlands

SUMMARY

The negativity of the substitution matrix implies that its latent roots are non-positive. When inequality
restrictions are tested, standard test statistics such as a likelihood ratio or a Wald test are not
2 g . . . o . .
x“-distributed in large samples. We propose a Wald test for testing the negativity of the substitution
matrix. The asymptotic distribution of the statistic is a mixture of x*-distributions. The Wald test provides
an exact critical value for a given significance level. The problems involved in computing the exact critical
value can be avoided by using the upper and lower bound critical values derived by Kodde and Palm
(1986). Finally the methods are applied to the empirical results obtained by Barten and Geyskens (1975).

1. INTRODUCTION

An important result in economic theory is the negativity of the substitution matrix S. The
semi-negative definiteness of the substitution matrix corresponds to the second-order conditions
for optimizing behaviour of economic agents. As a consequence, all latent roots of the substitu-
tion matrix must be nonpositive. The difficulty in testing the negativity restrictions is due to
the presence of multiple inequality constraints on the latent roots. Whereas equality restrictions
from microeconomics, such as homogeneity, adding-up and symmetry have been extensively
tested in the literature, the negativity restriction has received far less attention in empirical
work. Obviously the compiexity of the multiple inequality constraints on nonlinear transforma-
tions of the parameters is responsible for the modest attention. A likelihood ratio test of the
negativity restriction of § requires parameter estimates which satisfy the inequality constraints.
Lau (1978) shows how to impose these constraints on the estimates. Barten and Geyskens (1975)
apply Lau’s technique in consumer analysis. However, since the estimates must satisfy inequal-
ity constraints, the familiar likelihood ratio test is not x*-distributed in this case, see e.g.
Gouriéroux et al. (1980 and 1982). Deaton (1974) proceeds in a different manner. He deter-
mines the latent roots of S, which is estimated without imposing the inequality constraints on
its roots, and employs a Wald-type test to check whether the positive roots differ significantly
from zero. The size of this test is not correct, since estimated roots with a negative value are
disregarded and the number of positive latént root estimates is random. As an alternative one
might propose to use order statistics to check whether or not the largest latent root differs
significantly from zero. This procedure is not always correct since all latent roots must be non-
positive. Finally, it is possible to test each latent root separately and to control the overall level
of significance by using the Bonferroni inequality (see e.g. Savin, 1980, 1983). However, since
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the individual latent roots will be correlated, the size of the test is not correct asymptotl_caély.

In this paper we show that the Wald or distanc; test of Kodde ar§d Paim (1986), whtx)i is
capable of testing multiple nonlinear equality and inequality const.ramts, solvgs the problems
mentioned above. The procedure does not require estimates subject to t_he m‘equahty con-
straints, the size of the test is asymptotically correct and no problems arise with a random

r of positive latent root estimates. o

nu"}nhieplan gf the paper is as follows. In section 2 we deal with the properties of the substitution
matrix S in a general problem of optimization. Section 3 outlines the elements gf the test
required for testing the inequality constraints on S. In section 4 we show how. to 1mpl.en.1ent
the test to check the negativity of S. A joint test of the negativity and of equality restrictions
on S is also discussed. Section 5 reconsiders the empirical results of Barten and Geyskfans (1975)
using results related to the distance test. In section 6 we summarize the most important
conclusions.

2. THE NEGATIVITY OF THE SUBSTITUTION MATRIX

Major parts of economics postulate optimizing behaviour of economic agents as a basis for the
analysis. For instance, it is assumed that households maximize utility and firms minimize costs
subject to appropriate constraints. The assumption of optimizing behaviour implies @ number
of restrictions on the model used in the analysis. We will be concerned with the restrictions on
the substitution matrix. Consider the maximization of & function f(x) with respect to x, subject
to a vector of m independent constraints g(x) =0, where x is a vector of dimension r(m < n).
For this problem the Lagrangean is given by L(x, g)= f(x) — ¢’ g(x), where g is a vector of
m Lagrange multipliers. A necessary and sufficient second-order condition for a maximum sub-
ject to constraints is given by

y' Ay <0, 2.1
subject to
By=0,y =0, 2.2)

where A is the Hessian matrix of L(x, g) with respect to x and B = dg(x)[dx’, see Samuelson
(1947). The substitution matrix S=A*~A*B'(BA*B')"'BA*, where A" denotes the
Moore-Penrose generalized inverse of A, see e.g. Rao (1973), is the submatrix corresponding
to A of the inverse of the bordered Hessian matrix. The semi-negative definiteness of the
substitution matrix, i.e.

2'8S750,2#0 (2.3)

with the inequality being strict if z is not a linear combination of the columns of B’ follows
from the second-order conditions for utility maximization. Proofs have been given by
Lancaster (1968), Pauwels (1979), Phlips (1974) and Samuelson (1947), among others.

On theoretical grounds the substitution matrix has to satisfy two additional restrictions.
First, the symmetry, S = S’, is a consequence of Young’s theorem. The second restrictions are
the adding-up property BS = 0 and the homogeneity of S, SB’ = 0. The conditions of symmetry
and negativity, and the homogeneity and adding-up properties, are the so-called integrability
conditions which are necessary and sufficient for utility maximization.

3. JOINT TESTING OF EQUALITY AND INEQUALITY CONSTRAINTS

In this section we provide a brief description of tests for the type of restrictions discussed in
the preceding section. We first present the distance or Wald test for jointly testing composite
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hypotheses of nonlinear equality and inequality constraints under Ho. Then we consider the
relationships between the distance test and the likelihood ratio test. An advantage of the
distance test is that it can be applied when consistent, asymptotically normal estimates of the
parameters in the model are available. For the details we refer the reader to Kodde and Palm
(1986). Suppose that we are willing to test the p restrictions in

Ho: k1 (60) =0, h2(8g) = 0 against Hy: A1 (@) # 0, ha(Bo) £ 0 3.1

where h1(6p) and h2(0p) are respectively g X 1 and (p — ¢) X | vector valued functions of the
vector of parameters § evaluated at the true parameter value §p. Under f; the parameters are
not restricted. We assume that # can be consistently estimated by 8, such that the asymptotic
distribution is given by

TY2(§ - 66)AN(0, Q), (3.2)

@ere T denotes the sample size and the covariance matrix Q can be consistently estimated by
. We transform A(8) = (h{6)', h2(#)")’ into a new parameter vector

v=(yi,vi) where y;= T"?h;(8),i€ (1,2). (3.3)

The argument 6 in y has been deleted for the ease of the presentation. When y is evaluated at
6 it will be denoted as 5. The large sample covariance matrix of + is given by

L = (3h[86')Q(0h'[0), (3.4)

which is consistently estimated by evaluating (3.4) at § and Q. In order to obtain the distance
test we have to determine the minimum distance from the data (i.e. ¥) to the closest feasible
point under Hp and F; respectively in the metric of the covariance matrix X. The distance to
the closest point under Hp equals

Dy=min(¥ - v)' Z"'F —7)s (3.5

hzo

and the minimum distance estimator is denoted by 4. The distance to the closest point under
the hypothesis H; equals 0, D; =0, since the minimum distance estimator equals the
unrestricted estimator ¥. The distance test is given by

D=Dy— D= Dg. (3.6)
Under Hy the large sample distribution of D is a mixture of x2-distributions
P—q
sup PriD>c|)= 2, Prix*(p—-Dzelw@=gq,i, L2~ ZaLi'Cw), (3.7
nz0 =0

where the weights w denote the probability that precisely / of the p— g elements of vz are
strictly positive. The covariance matrix in the probability weights is set equal to the conditional
covariance matrix of 7> given 7. For the derivation of the test and the weights w, we refer to
Kodde and Palm (1986) and the references therein.

When we only test inequality constraints, g =0 the expressions (3.5) and (3.7) specialize
accordingly. Then the weights w in (3.7) depend on £. When ¥ is an efficient estimate of y (e.g.
a maximum-likelihood estimate) the Wald or distance test (3.6) is asymptotically equivalent to
the likelihood ratio (LR) test and the Lagrange multiplier test (LM) or Kuhn—Tucker test (KT).
Along the lines of the proof in Gouriéroux ef al. (1980, 1982), a well-known ordering of these
tests for other types of models and hypotheses, KT = LR = D, can be shown to hold in the more
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general case considered in (3.1). Compared with the LR and LM test, the advantages of the
D test are threefold: first the computation of D does not require an efficient estimate of X.
Second, the distance test can also be applied when v is not efficiently estimated, although then
some power will be lost and the equivalence mentioned above does not hold any longer. Third,
for nonlinear inequality restrictions the test has local properties only. It is therefore important
to evaluate the restrictions in the neighbourhood of the true parameter value fo. The fact that
the distance test is based on unrestricted parameter estimates only, ensures that in large samples
under Hy, the test statistic will indeed be evaluated at a value of 6 close to 6. Kodde and Palm
(1986) give upper and lower bounds for the critical value for jointly testing equality and in-
equality restrictions for various significance levels. These bounds can be used in all three tests.

4, TESTING THE RESTRICTIONS ON THE SUBSTITUTION MATRIX

In practice it is often possible to derive a consistent, asymptotically normally distributed
estimate of the substitution matrix along with a consistent estimate of its asymptotic covariance
matrix. The estimate of S may or may not be obtained subject to symmetry, homogeneity and
adding-up constraints.

4.1. Testing Negativity

As stated in section 2, the quadratic form in (2.3) has to be semi-negative definite. Let S be
a consistent symmetric estimator of S such that T2 vec (S — So)AN(0, Q), with Sp being the
true value of S. We assume that S is not estimated subject to negativity and homogeneity restric-
tions. Notice, there is no lack of generality in assuming that S is symmetric since we can replace
Sby [S+S' 1/2 in (2.3). As S has been estimated subject to the symmetry condition, the
covariance matrix @ as given above is singular. When deriving the distribution of the latent
roaots one has to restrict oneself to the freely varying elements of S. Under Hy, S is semi-negative
definite. Therefore all latent roots of S, N\;,i=1,..., n, must be smaller than or equal to zero
under Ha,

Hoiyi=—~T"* 720, i=1,..,n (4.1)

In order to apply the distance test we first compute the unrestricted latent roots of S, which
we denote by \;, i =1, ..., n, and we define ¥' = (¥1, ..., ¥») where 3; = — T*/?\;. The computa-
tion of the asymptotic covariance matrix of ¥ given in (3.4) requires the partial derivatives of
the latent roots with respect to the elements of S. In the appendix we show that the first-order
partial derivative of A; with respect to vec’(S) equals

aNifavec’ (S)=2(g! ® gi)— vec' (Dy), 4.2)

where g; denotes the latent vector of S corresponding to A\; and ® is the Kronecker-matrix pro-
duct and D; is a diagonal matrix with the squared elements of g; on the diagonal. The partial
derivative in (4.2) must be computed for every latent root. Now the distance test is given by
(3.5). We reject the semi-negativity of the substitution matrix if the distance between the
unrestricted estimated latent roots and the most favourable point under Hy exceeds the exact
critical value or the upper bound critical value given in Kodde and Palm (1986).

4.2, Testing Negativity and Homogeneity

We first consider testing for negativity of § when S is estimated subject to homogeneity con-
straints. Then we deal with the joint test of negativity and homogeneity.
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Suppose S is estimated subject to SB' =0, where we can regard B as a fixed given matrix.
As stated above, z'Sz < 0 for z not being a linear combination of B'. Therefore, all latent roots
of §, for which the latent vector is not a linear combination of B’ must be strictly smaller than
zero, Ni <0, i=1,...,n—m. The latent roots which belong to the latent vector manifold of
B’ have value 0. The distance test is found by applying the following procedure. Compute
yi= —TY*N, i=1,...,n ~ m where \’s are the latent roots of S not belonging to the B'-space.
Use (4.2) to obtain an estimate of the asymptotic covariance matrix of 4. Finally, determine
the distance in (3.5). The null hypothesis has to be rejected if D is larger than the critical value
in (3.7), where the number of inequality restrictions equals n — m.

A remark ought to be made about the above procedure. The distance test was originally
designed to test restrictions of the type v = 0 and not v > 0. However, this causes no additional
difficulties since the difference between the spaces y = 0 and vy > 0 has measure zero.

Next we consider the problem of jointly testing the homogeneity and negativity constraints,
for which the null hypothesis is

Hy:SB' =0

. . . 4.
z'Sz < 0, z is not a linear combination of B’. “3)

Under the alternative hypothesis these restrictions need not be satisfied. The constraint SB' =0
implies n X m equality restrictions whereas z'Sz < 0 implies n — m latent roots of S to be
negative. The remaining m roots must be zero.

When unrestricted estimators of B and S are used, SB’ will not be zero in small samples and
there is a problem which latent roots must be smaller than zero and which roots should be equal
to zero. Testing SB’ = 0 and z'Sz = 0 without any restrictions on A instead of (4.3) remedies
the latent root selection problem but introduces dependencies on the restrictions, and the
distance test does not apply any more. Instead we transform the null hypothesis into

Hy:SB' =0
4.4)
7'CSCz < 0, with z not being a linear combination of B’,

where C= I — B'(BB')” !B is a symmetric matrix of dimension n. Under Ho, SB’ =0 so that
CS = SC = § = CSC, therefore (4.3) and (4.4) are equivalent. The rank of CSCis n ~ m so that
CSC has always m zero latent roots and there is no selection problem. The remaining n —m
roots should be negative under Hy.

Let S be a consistent symmetric estimator of S and B a consistent estimator of B, such that
TY2(8 - 60)4N(0, Q), where 8, and 8 are the true value and an estimate of 6 respectively, with
6 = [vec'(S), vec'(B)]', and where the covariance matrix  is consistently estimated by Q.
Define the following magnitudes

v1 = T'? vec(BS) (4.5)
’YZ’ =(’YZI,"" ’YIZn—m) Wlth Y2i= Tl/z)\i’i=19'--;n_m (4'6)
v=0i 1), .7

where \; denotes the latent roots of CSC which do not belopg to the null space. When these
magnitudes are evaluated at the consistent estimates B and S they will be denoted as i, y2, ¥
and X; respectively. The distance test for jointly testing the set of equality and inequality restric-
tions is given in (3.5). The distance test can be computed when a consistent estimate of the
covariance matrix L is available. The covariance matrix is given by (3.4). In the appendix we
provide the formulae for the partial derivative matrices in (3.4). Evaluating the right-hand side
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of (3.4) at consistent estimates 2, B and S yields a consistent estimate X. The null hypothesis
(4.3) is rejected when the value of D exceeds the critical value of (3.7), where the number of
inequality restrictions equals n — m and g=n X m. When B is fixed the procedure specializes
accordingly.

In a similar way symmetry can also be tested jointly with negativity and/or homogeneity.
Symmetry implies #(n — 1}/2 equality restrictions on the vector of parameters 4.

5. AN APPLICATION OF THE DISTANCE TEST

Barten and Geyskens (1975) have used two sets of data to illustrate the estimation of the matrix
S. They also report the logarithmic likelihood ratio values for various sets of equality and
inequality restrictions, The data have been taken from the OECD. The first set refers to the
Netherlands, years 1950—-1969 and consists of expenditures per capita on five commodity
groups. The second set consists of data on expenditures per capita on four commodity groups
for the Federal Republic of Germany, years 1950~1968. The change from 1959 to 1960 has been
deleted from the sample of Germany (in view of a change in definition of the area in 1960 due
to the inclusion of the Saar and West Berlin). The model is the Rotterdam system of consumer
demand equations.

Barten and Geyskens report the values given in Table I for the log-likelihood ratio statistic.
In addition, we give the number of equality restrictions g and the total number of restrictions
p =g+ n—m(with n being 5 for the Netherlands and 4 for Germany and m = 1) and the lower
and upper bound values for the critical level of the distance test for size o = 0-05. These values
have been obtained by Kodde and Palm (1986).

The likelihood ratio test is asymptotically equivalent to the distance test or Wald test based

Table I. Log-likelihood ratio statistics

Homogeneity
Hy No constraints Homogeneity Symmetry
H, Homogeneity,
Symmetry,
Negativity
Netherlands
log-likelihood ratio statistic 5-98 2:-84 0-036
number of restrictions
r 15 10 0
19 14 4
critical value
lower bound 22956 19-045 2-706
upper bound 29-545 23-069 8-761
Germany
log-likelihood ratio statistic 11-86 9:92 4-10
number of restrictions
D 10 6 0
q 13 9 3
critical value
lower bound 19-045 13401 2-706

upper bound 21-742 16:274 7-045
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on efficient estimates of the parameters. Therefore the bounds for the critical level also apply
to the likelihood ratio test. If maximum likelihood estimation is not possible the elements of
the substitution matrix can for instance be derived from consistent single-equation estimation
of the Rotterdam demand system. In that case the distance test can still be applied, although
a loss of power may occur compared with using a consistent and efficient estimation procedure.
With one exception, the log-likelihood ratio statistics in Table I are smaller than the lower
bound, indicating that in line with the conclusion reached by Barten and Geyskens (1975) the
null hypothesis cannot be rejected. For Germany, the test of the negativity only, conditionally
on homogeneity and symmetry, is inconclusive, as the log-likelihood ratio statistic lies between
the lower and upper bound critical values. This finding is in line with the conclusion by Barten
and Geyskens (1975) that the negativity hypothesis cannot be firmly rejected for the German
data. To reach a conclusion about the significance of the negativity hypothesis in this case, the
weights w in (3.7) have to be numerically determined. As the lower and upper bounds coincide
when only one inequality is tested (the length of the inconclusive interval increases monoton-
ically with the number of inequality restrictions given the number of equalities), an alternative
procedure could consist in testing the inequalities one by one or using a separate induced test
based on e.g. Bonferroni’s inequality (see e.g. Savin, 1980). Separate testing of the inequalities
may also give insight into which roots lead to the inconclusive result.

6. SUMMARY AND CONCLUSIONS

We discussed how the distance or Wald test can be applied to test the negativity of the substitu-
tion matrix, possibly jointly with the homogeneity restrictions. The method can be easily
extended to test for symmetry. The hypotheses discussed in this paper imply that certain latent
roots of the substitution matrix must be smaller than zero. The method tests whether the
distance between an unrestricted estimate of the latent roots of S and the most favourable point
under Hop is not significantly different from zero. The large sample distribution of the test
statistic is a mixture of y2-distributions. The exact critical value of the test in large samples can
be determined. In the application presented in section 5, the lower and upper bound critical
values derived by Kodde and Palm (1986) appeared to be sufficient to reach a conclusion in all
cases but one. Finally, we like to note that a similar procedure can be used to test concavity
or quasi-concavity constraints.
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APPENDIX

In this appendix we provide formulae for the first-order partial derivative matrices which are
necessary to compute the asymptotic covariance matrix.

First, we derive the sensitivity of the latent roots with respect to a matrix in (4.2), see also
Neudecker (1967), Phillips (1982) and Magnus (1985). Let X be the vector of n roots of S, with
S being symmetric. For simplicity, we assume that the roots are distinct. Let Q be the matrix
of orthonormal latent vectors of S. Then we have

SQ=QA and Q'Q=1, (A.1)
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where A is a diagonal matrix of the latent roots . Let P be the n x n? selection matrix such
that Pvec(A) = \. In matrix differential form, (A.1) becomes

dSQ+ 5dQ ~ dQA = QdA
Q'dSQ+ Q'SdQ - Q'dQA = dA.
After using Q'S = AQ' and vectorization we obtain
(@ ®@ Q" vee(dS) + [T ®A)~ (A @D & Q' )vec(dQ) = vec(dA). (A2)
Premultiplying with P yields
P(Q' ® Q' )vec(dS) = Pvec(dA) = d\, (A.3)

because P[(I ® A) — (A ® D] =0, since the term within brackets is a diagonal matrix with
zeros on the diagonal for elements selected by P. By applying the implicit function theorem
to (A.3) we find the desired result

M Javec' (S)= P(Q' ®Q'). (A.4)

The perturbations are not assumed to be symmetric. Application of the chain rule to the i-th
now of (A.4) immediately yields the derivative for symmetric perturbations which is given in
(4.2).

Next we obtain the partial derivatives required in section 4.2. Since vy, = T'/? vec(BS). We
have v = T"%(S ® Ly)vec(B) so that

dyifavec’ (B) = TV (S ® L). (A.5)
Similarly we have
dy1favec’ (8) = TV*(1, ® B). (A.6)
The partial derivatives of y2 with respect to S and B can be obtained from
giCSCqy = i, (A7)

where A\; and g; are the first non-zero latent root and the corresponding latent vector of CSC

respectively. The analysis proceeds analogously for the other non-zero roots. Differentiating
(A.7) gives

2(dq,)' CSCqy + 2q{ CS(dCYq + g1 C(dS)Cqi = dh. (A.8)

Since ¢{g1 =1 we have 2(dgi)'q: =0 so that the first term of (A.8) equals zero because
CSCq = Mq:. Another useful result is Cg, = ¢; which follows from

MCqy = CCSCqy = CSCq1 = Mqa. ‘ (A.9)
Because C equals I — B’ (BB')™ !B, we have
dC= —(dB)' (BB')"'B+B'(BB') '[(dB)B’ + B(dB)' 1(BB') 'B~B'(BB')" 'dB. (A.10)
Substituting (A.10} into (A.8) and using Bg, = BCqg; = 0 along with Cq; = q, we have
d\ = q{ (dS)g: — 2¢{SB' (BB") ™ '(dB)q. (A.11)

On vectorizing (A.11) applying the implicit function theorem and using the chain rule to
account for the symmetry of the perturbations the result emerges

a\ifdvec’ (S) =2(g{ ® qi )~ vec' (Dy)
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and

ONifdvec’ (BY= —2(¢f ® qiSB'(BB')™ ). (A.12)

where D is a diagonal matrix with the squared elements of ¢, on the diagonal.

For the other partial derivatives of the latent roots we substitute the corresponding latent
vectors instead of g; in (A.12) and we get the result. Notice in order to obtain the partial
derivatives with respect to v we must multiply the formulae in (A.12) by T2
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