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Abstract

This paper proposes a new structural-break vector autoregressive (VAR) model

for predicting real output growth by the nominal yield curve information. We allow

for the possibility of both in-sample and out-of-sample breaks in parameter values

and use information in historical regimes to make inference on out-of-sample breaks.

A Bayesian estimation and forecasting procedure is provided which accounts for

the uncertainty of structural breaks and model parameters. We discuss dynamic

consistency when forecasting recursively with structural break models, which has

been ignored in the existing literature, and provide a solution. Applied to monthly

US data from 1964 to 2006, we find strong evidence of structural breaks in the

predictive relation between the yield curve and output growth in late 1979 and early

1983. The short rate has more predictive power for output growth than the term

spread before 1979 while the term spread becomes more significant since the break

∗I am grateful to my thesis advisor John Maheu for his invaluable guidance and support. For very

helpful comments, I thank Christian Gourieroux, Chuan Goh, Tom McCurdy, Martin Burda, Chun Liu,

Jean-Sebastien Fontaine, Jun Yang and seminar participants at the University of Toronto and the Bank

of Canada. Any errors that may remain are my own responsibility.
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of 1983. Incorporating the possibility of structural breaks improves out-of-sample

forecasts of output growth from 1 to 12 months ahead.

1 Introduction

Forecasting real economic activity such as output growth is an importance issue in empir-

ical economics. Research over the last few decades has found that the nominal yield curve

contains important predictive information for subsequent real economic growth. Exam-

ples of this voluminous literature include Harvey (1989), Laurent (1988,1989), Stock and

Watson (1989), Chen (1991), Estrella and Hardouvelis (1991), Plosser and Rouwenhorst

(1994), Davis and Fagan (1997), Estrella and Mishkin (1997,1998), Hamilton and Kim

(2002) and Ang, Piazzesi, and Wei (2006), among many others.

Recently there has been growing evidence that the relationship between the yield curve

and subsequent economic growth may be unstable over time; see, for example, Stock and

Watson (1999,2003), Estrella, Rodrigues, and Schich (2003) and Giacomini and Rossi

(2006). This forecasting instability poses a challenge for predicting output growth by

the yield curve. If the predictive relation experiences structural breaks in the past, it

may change in the future as well. Ignoring the possibility of future structural breaks

could result in biased and poor forecasts of output growth. This paper is the first in

the literature that studies the problem of forecasting output growth with the yield curve

information in the presence of both in-sample and out-of-sample structural instability.

In this paper, we take into account the possibility that structural breaks in the pre-

dictive relation between the yield curve and output growth have occurred in the past as

well as the possibility that they may occur in the future. In contrast to the existing work

on the stability of the yield curve’s predictive ability for output growth using univariate

models, we jointly model the dynamics of the output growth and the yield curve by a

tri-variate vector autoregressive (VAR) model of output growth, the short rate and the

term spread in conjunction with structural breaks. The short rate is the nominal interest

rate on short maturity government debt while the term spread is the difference between

nominal interest rates on long and short maturity government debts. They are commonly
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used in the literature to capture the predictive information in the yield curve for real

economic activity. Stock and Watson (2003) provides some economic motivations for the

use of these two interest rate variables for forecasting output growth. Ang et al. (2006)

shows that VAR forecasts of quarterly GDP growth using the short rate and term spread

are more accurate than univariate regressions of output growth on these two interest rate

variables at all horizons considered in their paper. Given the well-documented evidence

of structural changes in interest rates, e.g. Gray (1996), Ang and Bekaert (2002), Bansal

and Zhou (2002) and Pesaran, Pettenuzzo, and Timmermann (2006), jointly modeling the

structural breaks of the yield curve variables and output growth in a VAR model helps

avoid attributing structural changes in interest rates to the predictive relation between

the yield curve and output growth.

Built on the work of Chib (1998) and Pesaran et al. (2006), we model the structural

break process as a hierarchical hidden Markov chain1. The parameters of the VAR model

may take different values in different break segments and are assumed to be drawn from

a common meta distribution. As data in a new regime becomes available, the meta

distribution is updated by Bayes rule. Hence information in the parameters of previous

break segments is used to learn about parameters in the new regime in an efficient way.

Forecasts are made by integrating out the uncertainty about both the in-sample and out-

of-sample breaks and parameters. A Markov chain Monte Carlo (MCMC) algorithm is

developed to estimate the structural break VAR model, which extends the Pesaran et

al. (2006) method for univariate settings to multivariate models. We provide a careful

discussion of the prior on the number of in-sample regimes implied by the hierarchical

structure of this type of model. This is in contrast to Pesaran et al. (2006) which

imposes a uniform prior on the number of in-sample regimes and hence is inconsistent

with hierarchical priors on other model parameters. We also discuss the issue of dynamic

consistency, that is, the compatibility of assumptions through time concerning the possible

number of structural breaks, when forecasting recursively with structural break models in

1A partial sample of the alternative Bayesian models that allow for parameter shifts of random mag-

nitude and timing includes McCulloch and Tsay (1993), Giordani and Kohn (2006), Koop and Potter

(2007), Maheu and Gordon (2008) and Maheu and McCurdy (2007), among others.
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the way of Pesaran et al. (2006). A new forecasting approach is proposed that guarantees

the dynamic consistency in recursive forecasting with structural break models.

The proposed model is applied to the monthly US data from January 1964 to December

2006. We consider a full-break specification in which all parameters of the VAR model

are subject to structural breaks as well as a partial-break specification in which only

the intercept and covariance matrix of the VAR model have structural breaks. We find

that the full-break model is favored by the data despite the greater parsimony of the

partial-break model. A full-break specification with 2 in-sample breaks provides the best

description of the data among the models considered in this paper.

The break dates are identified at October 1979 and January 1983, which coincides

closely with the change in monetary policy regime with the advent of the US Fed chair-

man Volcker in late 1979. Before 1979, the short rate predicts output growth while the

term spread is largely insignificant. The regime between 1979 and 1983 is marked by ex-

ceptionally high volatilities of all three variables, during which neither the short rate nor

the term spread is able to predict output growth. The most recent regime since 1983 has

much lower volatility. During this period, the predictive power of the short rate largely

disappears while the term spread becomes significant. This new finding is in contrast to

the studies that do not consider the possibility of structural breaks. Most of the studies

in the literature find that the short rate has little marginal predictive content for output

growth once spreads are included, e.g. Plosser and Rouwenhorst (1994) and Stock and

Watson (2003). In contrast, Ang et al. (2006) finds that the short rate has more pre-

dictive power for quarterly GDP growth than term spreads. This paper, by taking into

account the possibility of parameter shifts, finds that the relative importance of the short

rate and term spread is changing over time and the spread has more predictive power for

output growth than the short rate in the most recent regime.

We perform recursive out-of-sample density forecasting exercises from January 2002

to December 2006 to compare the performance of the proposed structural break VAR

model with the conventional no-break VAR model. The results show that incorporat-

ing the possibility of structural breaks significantly improves the forecasting accuracy of
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output growth from 1 to 12 months ahead. The improvements in forecasting accuracy

are steady and almost continuous throughout the forecasting period. We also experiment

with imposing informative priors on the structural break VAR model for forecasting since

a number of studies (Litterman (1980,1986),Kadiyala and Karlsson (1997)) have advo-

cated their use in Bayesian VAR forecasting. We find that in our forecasting exercise,

informative priors do not necessarily lead to better forecasts than the conventional diffuse

priors.

The rest of the paper is organized as follows. Section 2 describes the structural break

VAR model and the estimation method. Section 3 explains the forecast procedure. The

empirical estimates are presented in Section 4. Section 5 is the conclusions. Technical

details of the estimation algorithm are presented at the appendices.

2 The Model

We consider a tri-variate VAR model of the output growth, the short rate and the term

spread for forecasting output growth, which has been found to produce superior out-of-

sample forecasts of GDP growth than univariate OLS regressions (Ang et al. (2006)).

The VAR model is assumed to be subject to a random number of structural breaks

which separate different regime segments. A subset of the VAR coefficients may change

their values in different regimes. Formally, the structural break VAR model is

yt = µst
+ Φst

yt−1 + ǫt, ǫt ∼ N(0, Σst
) (1)

where yt ≡ (gt, rt, xt)
′, gt is the output growth, rt is the short rate and xt is the term

spread at time t, t = 1, 2, ..., T .

The regimes are indexed by a state variable st ∈ {1, 2, . . . , K} following the transition
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matrix

π =




π1,1 1 − π1,1 0 ... 0

0 π2,2 1 − π2,2 ... 0

...

0 0 ... πK−1,K−1 1 − πK−1,K−1

0 0 ... 0 1




(2)

where πi,j is the probability of moving to regime j given that the current regime is i. Note

that at each point of time, the state variable st can either stay in the current regime or

jump to the next one. The transition terminates in regime K. We will denote πi ≡ πi,i for

notational simplicity. A break occurs at time t if st 6= st−1. Note st = K implies that K

regimes, or, K − 1 breaks, have occurred in the data up to time t.

This formulation of structural break model is originally proposed by Chib (1998) and is

used extensively in many subsequent studies of the literature, e.g. Pastor and Stambaugh

(2001), Kim, Morley, and Nelson (2005), Pesaran et al. (2006), Liu and Maheu (2008)

and He and Maheu (2008). It has two major benefits. First, it automatically imposes an

ordering of the regime segments and hence solves the identification problem of regimes.

Moreover, this formulation of structural breaks can be viewed as a hidden Markov model

(HMM), facilitating the marriage with the existing large literature on HMM and hence

development of efficient estimation methods (Scott (2002)). The regime-switching model

of Hamilton (1988) can be viewed as a special case of this setup if identical states are

assumed to recur (Pesaran et al. (2006)).

Chib (1998) has developed an efficient Bayesian MCMC algorithm for estimating this

class of structural break models. But the Chib method can not handle the possibility of

out-of-sample breaks during forecasting horizons and hence is not well suited for out-of-

sample forecasts unless one is willing to assume that no new breaks could occur out of

sample.

To perform forecasts while taking into account possible out-of-sample breaks, we need

to model the underlying process of the parameters in different regimes. In this paper,

we follow Pesaran et al. (2006) and posit hierarchical priors for the regime parameters.
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Parameters in each regime are assumed to be drawn from a common meta distribution.

As data from new regimes become available, the meta distribution is updated by Bayes

rule. Hence information in the parameters of previous regimes is used to learn about

parameters in the new regime in an efficient way. This method has the attractive feature

that it retains the sampling efficiency of the Chib method while conveniently modeling

the underlying process of the regime parameters and hence is well suited for out-of-sample

forecasts. We develop a new MCMC algorithm to estimate this class of models, extending

the Pesaran et al. (2006) method for univariate settings to multivariate models.

Let φk = vec
(
[µk Φk]

′) be the vector containing the elements of µk and Φk. We assume

that the linear coefficients φk, the covariance matrices Σk and the transition probabilities

πk are independently drawn from the following distributions respectively.

φk ∼ N(b0, B0)

Σk ∼ IW (Ω0, v0 + 3)

for k = 1, 2, ..., K, where IW denotes the inverse Wishart distribution, and

πk ∼ Beta(α0, β0)

for k = 1, 2, ..., K − 1.

At the next level of the hierarchy, we assume that

b0 ∼ N(a0, A0)

B0 ∼ IW (D0, d0)

Ω0 ∼ IW (Ψ0, f0)

v0 ∼ Gamma(ρ0, λ0)

α0 ∼ Gamma(q0, γ0)

β0 ∼ Gamma(r0, δ0)

where a0, A0, D0, d0, Ψ0, f0, ρ0, λ0, q0, γ0, r0 and δ0 are hyper-parameters and are specified

a priori. This hierarchical structure creates dependence between parameters in different

7



regimes. Given an estimation sample, model parameters from different in-sample regimes

φk, Σk and πk are used to update the distributions of the hierarchical prior parameters

b0, B0, Ω0, v0, α0 and β0 by Bayes rule. Inference on parameters of possible out-of-sample

regimes is then based on the updated distributions of these hierarchical prior parameters.

Hence information contained in in-sample estimates is efficiently used to produce forecasts

outside the estimation sample.

To conduct Bayesian estimation, we divide the parameters into 3 blocks for a given

number of in-sample regimes K: the latent states S = (s1, s2, ..., sT ), parameters of

the hierarchical priors Θ0 = (b0, B0, Ω0, v0, α0, β0) and the other model parameters Θ =

(φ1, ..., φK , Σ1, ..., ΣK , π1, ..., πK−1). A Gibbs sampler is developed to estimate this hier-

archical structural break model, which iterates sampling from the following conditional

distributions

• S|Θ0, Θ

• Θ0|S, Θ

• Θ|S, Θ0

The details of the algorithm are provided at Appendix A.

Inference on the number of in-sample regimes K is conducted based on the posterior

distribution p(sT = K|YT ), K = 1, 2, ..., K, since according to the transition matrix of

Equation (2), the number of in-sample regimes K equals the state variable at the end of

data sample sT . In theory, the possible number of in-sample regimes K can be as large

as the number of observations T , i.e. a structural break at every period of time. But in

practice, it can often be set to be a relatively small number K < T provided that the

posterior distribution p(sT = K|YT ) does not support going beyond K in-sample regimes.

Applying Bayes rule, the posterior distribution p(sT = K|YT ) can be decomposed as

p(sT = K|YT ) ∝ p(sT = K)p(YT |sT = K)

where p(sT = K) is the prior probability and p(YT |sT = K) is the marginal likelihood of

YT given K in-sample regimes. There is a significant Bayesian literature on methods of
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computing the marginal likelihoods, e.g. Gelfand and Dey (1994), Newton and Raftery

(1994), Chib (1995), Fruhwirth-Schnatter (1995, 2004), Meng and Wong (1996), and Chib

and Jeliazkov (2001). Miazhynskaia and Dorffner (2006) provides a nice comparison of the

various methods of computing marginal likelihoods. In this paper, we adopt the modified

harmonic mean method of Gelfand and Dey (1994) which has been found to be accurate

(Miazhynskaia and Dorffner (2006)) while computationally convenient. The details of

implementing the modified harmonic mean method for the structural break VAR model

are provided in Appendix B.

The prior p(sT = K) on the number of in-sample regimes K is implied by the hierar-

chical prior on transition probabilities πk, k = 1, 2, ..., K − 1, as

p(sT ) =

∫
p(sT |π1, ..., πK−1)

K−1∏

k=1

p(πk|α0, β0)p(α0, β0)dπ1 · · · dα0dβ0

This distribution has no closed form but can be simulated by using the approximation

p(sT ) ≈
1

n

n∑

i=1

p̂(sT |π
(i)
1 , ..., π

(i)

K−1
)

where π
(i)
k ∼ Beta

(
α

(i)
0 , β

(i)
0

)
, α

(i)
0 ∼ Gamma (q0, γ0) and β

(i)
0 ∼ Gamma (r0, δ0). One can

sample a path {1, s
(i)
2 , s

(i)
3 , · · · , s

(i)
T ; s

(i)
T ≤ K} conditional on each draw of π

(i)
k , α

(i)
0 , β

(i)
0

and keep s
(i)
T as a draw from p(sT ). The prior probability p(sT = K) can be computed

as
∑n

i=1 I{s
(i)
T = K}/n, where the indicator function I{s

(i)
T = K} = 1 if s

(i)
T = K and 0

otherwise. This is in contrast to Pesaran et al. (2006) which imposes p(sT = K) = 1/K

and hence is inconsistent with the actual prior p(sT = K) implied by the hierarchical

priors on other model parameters.

3 Out-of-Sample Forecasts

In this section, we show how to produce out-of-sample forecasts of output growth from the

model proposed in Section 2. Given the posterior draws of parameters and latent states

based on time T information YT ≡ {y1, y2, ..., yT}, we forecast future values of output

growth, which is the first element of the vector y, by taking into account the uncertainty

about both in-sample and out-of-sample breaks and parameters.
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Let h be the forecasting horizon. The predictive distribution of output growth gT+h

integrates out uncertainty about the number of in-sample breaks by Bayesian model av-

eraging

p(gT+h|YT ) =
K∑

K=1

p(gT+h|YT , sT = K)p(sT = K|YT ) (3)

where K is the number of in-sample regimes in the data YT and has the upper limit K. The

weight used in the averaging, p(sT = K|YT ), is the posterior probability of the structural

break VAR model with K in-sample regimes. The other ingredient p(gT+h|YT , sT = K) is

the predictive distribution of output growth conditional on K in-sample regimes.

To integrate out the uncertainty about out-of-sample breaks, the conventional method,

e.g. Pesaran et al. (2006), applies the decomposition

p(gT+h|YT , sT = K) =

K+h∑

j=K

p(gT+h|YT , sT = K, sT+h = j)p(sT+h = j|YT , sT = K) (4)

that is, conditional on K in-sample regimes at time T , it is assumed that up to K + h

regimes could occur at time T + h. This approach is reasonable when viewed statically.

But once being put in a recursive forecasting context as in practice, it becomes logically

inconsistent if the upper limit of in-sample regimes K is kept fixed throughout. To see

this, consider the example K = K and h = 1. When making forecasts at time T , one

assumes that sT+1 = K + 1 is possible according to Equation (4). But after arriving at

T + 1, one assumes sT+1 ≤ K as the maximum number of in-sample regimes in the data

YT+1 is fixed at K, which is inconsistent with the assumptions made at time T . This

creates a dynamic inconsistency problem: assumptions concerning the possible number of

structural breaks are not consistent through time when forecasting recursively. Increasing

the upper limit K by 1 when moving 1 period forward is not an attractive solution since

the extra computation cost would soon become too high to be practical and the number

of possible structural breaks entertained should not be unboundedly increasing.

In this paper, we propose to set an upper limit on the total number of both in-sample
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and out-of-sample regimes

p(gT+h|YT , sT = K) =

min{K,K+h}∑

j=K

p(gT+h|YT , sT = K, sT+h = j)p(sT+h = j|YT , sT = K)

(5)

in order to be dynamically consistent. When forecasting h-periods ahead at any time T ,

the new method guarantees that the number of regimes assumed for time T + h satisfies

sT+h ≤ K regardless of the current regime sT . This will be consistent with the assumption

after one actually arrives at time T + h that the upper limit of the number of in-sample

regimes sT+h is K. This simple modification solves the dynamic inconsistency problem

suffered by the conventional method while entertaining no extra computation cost.

When viewed as a mixture distribution, sampling from the predictive distribution of

output growth p(gT+h|YT ) in Equation (3) is straightforward:

Step 1. Compute the posterior probabilities p(sT = K|YT ) for K = 1, 2, ..., K.

Step 2. Sample indices k ∈ {1, 2, ..., K} from a multinomial distribution with the poste-

rior probabilities p(sT = K|YT ) as parameters.

Step 3. If k = K, then sample g
(i)
T+h from the predictive distribution p(gT+h|YT , sT = K)

according to Equation (5).

The resulting sample of output growth {g
(i)
T+h}

n
i=1 will provide a complete distribution of

the future output growth based on the current information set. The predictive mean of

any function of the output growth f(gT+h) can be consistently estimated as

E[f(gT+h)|YT ] ≈
1

n

n∑

i=1

f(g
(i)
T+h)

There are two important ingredients for this forecasting method. One is the posterior

probability of in-sample regimes p(sT = K|YT ), whose computation has been discussed in

detail in the preceding section of model description. The other ingredient is the predictive

distribution

p(gT+h|YT , sT = K) =

min{K,K+h}∑

j=K

p(gT+h|YT , sT = K, sT+h = j)p(sT+h = j|YT , sT = K)
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which is used in Step 3 above. For ease of exposition, consider first the predictive distri-

bution conditional on the relevant model parameters. Let θ denote the set containing the

in-sample parameters φK , ΣK and out-of-sample parameters πK , πK+1, φK+1, ΣK+1,...,

πmin{K,K+h}, φmin{K,K+h}, Σmin{K,K+h}, that is,

θ =
(
φK , ΣK , πK , πK+1, φK+1, ΣK+1, ..., πmin{K,K+h}, φmin{K,K+h}, Σmin{K,K+h}

)

We have

p(gT+h|YT , sT = K, θ)

=

min{K,K+h}∑

j=K

p(gT+h|YT , sT = K, sT+h = j, θ)p(sT+h = j|YT , sT = K, θ) (6)

Consider the component distribution

p(gT+h|YT , sT = K, sT+h = j, θ)p(sT+h = j|YT , sT = K, θ), j ≥ K

of Equation (6), which specifies a total of j regimes at time T + h with K in-sample

regimes and j − K out-of-sample regimes. For the case j > K, i.e. j − K out-of-sample

breaks occurring during T +1, ..., T +h, it is needed to integrate over all possible locations

of the out-of-sample breaks. Let τk be the location of the k-th break point. Applying the

law of total probability, we have

p(gT+h|YT , sT = K, sT+h = j, θ)p(sT+h = j|YT , sT = K, θ)

=
∑

1≤i1<i2...<ij−K≤h

p(τK = T + i1, τK+1 = T + i2, ..., τj−1 = T + ij−K |YT , sT = K, θ)·

p(gT+h|YT , sT = K, τK = T + i1, τK+1 = T + i2, ..., τj−1 = T + ij−K , θ) (7)

This integrates over all possible locations of out-of-sample breaks. The probability of the

out-of-sample break scenario in the first term of Equation (7) is given by

p(τK = T + i1, τK+1 = T + i2, ..., τj−1 = T + ij−K|YT , sT = K, θ)

= πi1−1
K (1 − πK)πi2−i1−1

K+1 (1 − πK+1) · · ·π
h−ij−K

j (8)
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The clearest way of writing out the predictive densities under each scenario of out-of-

sample breaks

p(gT+h|YT , sT = K, τK = T + i1, τK+1 = T + i2, ..., τj−1 = T + ij−K , θ)

which is the second term in Equation (7), is to use recursive equations. Since the densities

under specific scenarios of out-of-sample breaks are Gaussian, we only need to specify their

means and variances. Let µ(i), Σ(i) be the mean and covariance matrix of the predictive

distribution of yT+i from the structural break VAR model of Equation (1). We have

µ(1) = µsT+1
+ ΦsT+1

yT ,

Σ(1) = ΣsT+1
,

µ(i) = µsT+i
+ ΦsT+i

µ(i − 1),

Σ(i) = ΣsT+i
+ ΦsT+i

Σ(i − 1)Φ′
sT+i

(9)

where sT+i is the index of the regime at T + i, i = 1, 2, ..., h. Let e ≡ (1 0 0)′. It can

be shown (Lutkepohl (2006)) that the density of output growth gT+h, which is the first

element of the vector yT+h, is

gT+h|YT , sT = K, τK , τK+1, ..., τj−1, θ ∼ N(e′µ(h), e′Σ(h)e) (10)

where µ(h) and Σ(h) track the specific scenario of out-of-sample breaks τK ,τK+1,...,τj−1

by tracking the out-of-sample states sT+1, ..., sT+h according to Equation (9). For the case

j = K, i.e. no out-of-sample breaks, it is straightforward to show

p(sT+h = K|YT , sT = K, θ) = πh
K (11)

and the predictive density p(gT+h|YT , sT = K, sT+h = K, θ) can be obtained from Equa-

tions (9) and (10) by setting sT+1 = · · · = sT+h = K.

When there is uncertainty surrounding the parameters, the predictive distribution
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p(gT+h|YT , sT = K) needs to integrate over the parameters.

p(gT+h|YT , sT = K)

=

∫
p(gT+h|YT , sT = K, θ)p(θ|YT , sT = K)dθ

≈
1

n

n∑

i=1

p(gT+h|YT , sT = K, θ(i)) (12)

where the components in θ(i) are π
(i)
k ∼ Beta(α

(i)
0 , β

(i)
0 ) for k = K, ..., min{K, K + h},

φ
(i)
k ∼ N(b

(i)
0 , B

(i)
0 ) and Σ

(i)
k ∼ IW (Ω

(i)
0 , v

(i)
0 ) for k = K + 1, ..., min{K, K + h}. The pa-

rameters {α
(i)
0 , β

(i)
0 , b

(i)
0 , B

(i)
0 , Ω

(i)
0 , v

(i)
0 , φ

(i)
K , Σ

(i)
K }n

i=1 are posterior draws from the structural

break VAR model based on the information set YT and K in-sample regimes. Comput-

ing the conditional predictive density p(gT+h|YT , sT = K, θ(i)) of Equation (12) follows

discussions in the preceding paragraph. To sample from this distribution, one can first

simulate a path of out-of-sample regimes {s
(i)
T+1,...,s

(i)
T+h} based on the transition proba-

bilities π
(i)
K ,...,π

(i)

min{K,K+h}
and then sample g

(i)
T+h from the predictive distribution under

the simulated path of regimes according to Equations (9) and (10).

4 Empirical Results

We use monthly nominal zero-coupon yield data with maturities of 3 months and 5 years

from the Center for Research in Security Prices (CRSP) spanning January 1964 to Decem-

ber 2006. Prior to this period, there were few traded long bonds. So data on long yields

before 1964 may be unreliable (Fama and Bliss (1987)). The short rate is the 3-month

yield from the Fama-Bliss risk-free rate file. The term spread is constructed as the 5-year

yield minus the 3-month yield, with the 5-year yield data derived from the Fama-Bliss

discount bond file. Ang et al. (2006) finds that this term spread has the best predictive

power for quarterly GDP growth among all the maturities of spreads considered in their

paper. All yield data are continuously compounded. Data on real output growth is the

log growth rate of industrial production index from the FRED dataset of the US Federal

Reserve. A plot of the data is presented in Figure 1. All data are scaled up by 100 in

estimation.
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4.1 In-Sample Estimates

First, we conduct an in-sample study of the full-sample data from January 1964 through

December 2006. The purpose is to identify if there are structural breaks in the predictive

content of the yield curve for output growth and, if so, how the predictive relations change

over time.

Let m = 3 be the number of variables in the structural break VAR model. The

priors are set to be: b0 ∼ N(0, 100Im(m+1)), B0 ∼ IW (Im(m+1), m(m + 1) + 4), Ω0 ∼

IW (0.001Im(m+1), m+4), v0 ∼ Gamma(2, 3), α0 ∼ Gamma(20, 1) and β0 ∼ Gamma(2, 0.05),

where Im(m+1) denotes a m(m + 1) × m(m + 1) identity matrix. These priors are diffuse

over realistic ranges of values for the parameters. We set the upper limit on the number of

in-sample regimes K to be 5. As will be seen below, the posterior distribution on the num-

ber of in-sample regimes does not support going beyond 5. Table 1 contains the simulated

prior distribution on the number of in-sample regimes implied by the hierarchical prior of

transition probabilities. It can be seen that the prior probability p(sT = 1) = 0.733 and

hence the prior strongly favors no break in the data. We discard 5,000 initial draws and

retain the next 80,000 for posterior analysis. The chain mixes well. The acceptance rates

of the Metropolis-Hastings steps are all in the range between 0.3 and 0.5. As an example,

the posterior draws of the predictive coefficient of the term spread in the first regime is

presented in Figure 2.

We estimate the no-break VAR model as well as the full-break VAR model of Equation

(1) with 1 to 4 in-sample breaks, that is, K = 1, 2, ..., 5. The marginal likelihoods peak

at 2 in-sample breaks and diminishes as more breaks are introduced. The resulting log

marginal likelihoods are presented in Table 2. It can be seen that the full-break VAR

model with 2 in-sample breaks has the largest marginal likelihood. Table 2 provides the

posterior distribution of the number of in-sample regimes K along with its simulated prior

distribution. The posterior probability p(sT = 3|YT ) is 0.998. So there is overwhelming

evidence supporting 3 in-sample regimes or 2 in-sample breaks. The large difference in

the prior and posterior distributions of K suggests that the data is informative about

the number of in-sample regimes. Table 3, 4 and 5 provide the parameter estimates
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of the full-break VAR model with 3 in-sample regimes. The slope coefficients of the

full-break VAR model exhibit smaller differences across regimes than the intercepts and

covariance matrices. So a partial-break VAR model in which only the intercept and

the covariance matrix have structural breaks is also investigated. We find that the log

marginal likelihoods of the partial break VAR model with 1, 2 and 3 in-sample breaks are

-1044.06, -1004.06 and -1000.45 respectively, significantly below those of the corresponding

full-break VAR models.

Based on the estimates of marginal likelihoods, the full-break VAR model with 2 in-

sample breaks is found to provide the best description of the data among the models

considered. The posterior median of the first break date is October 1979 with the 95%

credible set between July 1979 and October 1979 while the posterior median of the second

break date is January 1983 with the 95% credible set between November 1982 and March

1985. The posterior distributions of the break dates are plotted in Figure 3. These

estimates of break dates are broadly consistent with the findings of previous studies using

univariate models. For example, Estrella et al. (2003) suggests a break around September

1983 when forecasting monthly industrial production growth by term spread. Pesaran et

al. (2006) finds evidence of breaks in an AR(1) model of monthly 3-month T-bill rates at

September 1979 and September 1982. Maheu and Gordon (2008) finds evidence of break

in an AR(2) model of quarterly GDP growth at the 3rd quarter of 1983.

There seems to be a compelling connection of the break dates to the change in the

monetary policy regime with the advent of the US Fed chairman Volcker in the late

1979. Some fundamental changes in the Fed’s operating procedure took place beginning

at October of that year. The move to a monetary policy regime targeting money growth

was essentially over by 1983. These dates coincide closely with the estimates of break

dates. As will be seen below, the behavior and relation of the data series vary greatly

across regimes identified by these break dates.

Estimates of the parameters for the full-break VAR model with 3 in-sample regimes

are presented in Table 3, 4 and 5. Parameters significant at the 95% level, that is, the

value of 0 is outside the 95% credible set, are marked by ”*” for visual convenience. For
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comparison, estimates of the corresponding no-break VAR model are presented in Table

6. It can be seen that, for the structural break VAR model, the covariances between the

innovations of the variables change over the 3 regimes and the second regime is marked

by high volatility of all three variables. Before this regime, it is the short rate that

significantly predicts output growth while the term spread is insignificant. During the

high-volatility regime, none of these variables can predict the output growth. After the

high-volatility regime, the predictive power of the short rate disappears while the term

spread becomes significant. Figure 4 plots the posterior distributions of the predictive

coefficients of the short rate and term spread in the 3 in-sample regimes. It can be seen

that the posterior distributions of these coefficients have undergone noticeable changes

during the sample period. In contrast, the no-break VAR estimates show that both the

short rate and term spread are significant over the whole sample period. Note that most

of the studies of predicting output growth involving short rates and term spreads found

that the short rate has little marginal predictive power once spreads are included, e.g.

Plosser and Rouwenhorst (1994) and Stock and Watson (2003). In contrast, Ang et al.

(2006) found that the short rate has more predictive power for GDP growth than term

spreads. Our approach differs from the existing studies by explicitly modeling the possible

structural instability of the predictive relation and finds that the relative importance of

short rates and term spreads is changing over time. In the most recent regime, the term

spread has more predictive power for output growth than the short rate.

4.2 Performance of Out-of-Sample Forecasts

To assess the usefulness of incorporating structural breaks in the predictive relation of the

yield curve and output growth, a recursive out-of-sample forecasting exercise is conducted

to compare the performance of the structural break VAR model with the no-break VAR

model, that is, at each point of time, only historically available information is used to

estimate the models and make forecasts. We focus on the forecast of output growth as

it is the major interest of this paper. Forecasts of all 3 variables from the VAR models

can be done in a similar way. We use the same diffuse priors as in the in-sample study
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of Section 4.1. The estimates are based on 80,000 posterior draws after discarding 5,000

initial draws.

We consider 4 forecasting horizons: 1-month-ahead, 3-months-ahead, 6-months-ahead

and 12-months-ahead, which are commonly used in practice. In forecasting, we assume

that there are at most 2 out-of-sample breaks during these forecasting horizons. This

assumption is plausible since an out-of-sample regime shorter than the considered fore-

casting horizons seems unlikely based on historical estimates. As a practical matter,

scenarios of more than 2 out-of-sample breaks have numerically negligible probabilities as

estimates of the transition probabilities πk are uniformly close to 1.

The log predictive Bayes factor for output growth is used to assess the models’ fore-

casting performances. Given a sample of data y1, y2,...,yT and the starting forecast date

τ , τ ≤ T − h, the log cumulative predictive likelihood of output growth is

T−h∑

t=τ

log (p(gt+h|Yt)) (13)

where h is the forecast horizon. Note that the starting forecast date τ ≤ T −h since T −h

is the last point in which a h-period ahead forecast can be evaluated given T data points.

For two competing models M1 and M2, the difference in their log cumulative predictive

likelihoods of output growth

T−h∑

t=τ

log

(
p(gt+h|Yt; M1)

p(gt+h|Yt; M2)

)
(14)

is the log predictive Bayes factor of output growth. Model M1 is favored by the data if

the log predictive Bayes factor is positive. This measure keeps the cumulative record of

out-of-sample forecasting performance of the models and is the central quantity of interest

for Bayesian model comparison (Geweke and Whiteman (2005)). As can be seen from

Section 3, the predictive distribution of output growth p(gt+h|Yt) under the structural

break VAR model is a mixture of normal distributions with different means and variances

and hence is likely to be highly non-Gaussian. Compared with traditional measures such

as the Root Mean Squared Error (RMSE), the predictive Bayes factor can provide a more

complete view of the forecasting performance in such cases.
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The model averaging approach of Equation (3) is used to compute the predictive likeli-

hoods of output growth p(gt+h|Yt) according to the formulas in Section 3, which integrate

out the uncertainty about both in-sample and out-of-sample breaks and parameters. For

each forecasting horizon h, the component models of Equation (3) are the full-break VAR

models with K = 1 to 5 in-sample regimes. For each component model with K in-sample

regimes, we compute the posterior probability p(st = K|Yt) and the predictive density

p(gt+h|Yt, st = K) which integrates over all possible scenarios of out-of-sample breaks ac-

cording to Equations (6) and (12). The sum of the product of these predictive densities

p(gt+h|Yt, st = K) and posterior probabilities p(st = K|Yt) is computed as in Equation

(3) and is recorded as the predictive likelihood of output growth p(gt+h|Yt). This pro-

cedure is repeated recursively from January 2002 to December 2006 for a 5-year period.

Similarly we compute the predictive likelihoods of output growth p(gt+h|Yt) recursively

for the no-break VAR model. The log predictive Bayes factor of output growth is then

computed based on the predictive likelihoods according to Equations (13) and (14).

Figure 5 plots the log predictive Bayes factors of the full-break VAR model against

the no-break VAR model. It can be seen that the full-break VAR model outperforms the

no-break VAR model in all of the 4 forecasting horizons, despite the fact that the no-break

model is more parsimonious. The predictive Bayes factors increase steadily throughout

the forecasting period2. At the end of the 5-year forecasting period, the log predictive

Bayes factors are more than 4.5 for all of the horizons, which translate into cumulative

predictive likelihoods of output growth from the structural break VAR model more than

90 times higher than those from the no-break VAR model. This forecasting exercise

illustrates the precision gain of moving from a no-break VAR model to the structural

break VAR representation.

2There is a drop in the predictive Bayes factors at the forecast of output growth in Sep 2005. This can

be explained by a sharp change of output growth around this period. The output growth rate is -1.64%

in August and jumps to 1.14% in September 2005, which are the lowest and highest output growth rates

during the forecasting period from Jan 2002 to Dec 2006. The average output growth rate during the

forecasting period is only 0.21%. Nevertheless forecasts of the break VAR model pick up momentum

shortly after this period.
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We experiment with imposing informative priors on the structural break VAR model

since in the Bayesian literature of VAR forecasting, the use of informative priors has

been frequently advocated, e.g. Kadiyala and Karlsson (1997). One popular choice is the

Litterman prior ( Litterman (1980,1986)). Kadiyala et al. (1997) specifies the Litterman

prior as a Gaussian prior distribution for parameters in the intercept and slope matrix of

VAR models. The mean of the prior is 1 for diagonal elements of the slope matrix and

equals 0 for the intercept and off-diagonal elements of the slope matrix. The variances of

the prior recommended in Kadiyala et al. (1997) are set as: 105σ2
i for the i-th element in

the intercept, 0.05 for the diagonal elements and
0.005σ2

i

σ2
j

for the off-diagonal (i, j) element

of the slope matrix, where σi is the residue standard error of an autoregression for variable

i. The covariances in the prior are set to be 0.

In the context of the structural break VAR model, the relevant hyper-parameters in

the hierarchical priors are a0, A0, d0 and D0 as defined in Section 2. We set a0 to be

the mean of the Litterman prior3, A0 = 0.1Im(m+1), d0 = m(m + 1) + 50 and D0 the

covariance matrix of the Litterman prior scaled by d0 − m(m + 1) − 1, where m = 3

is the number of variables in the VAR. These values of hyper-parameters calibrate the

distribution for parameters in the intercepts and slope matrices of the structural break

VAR model to center around the Litterman priors with small variation. Table 7 reports

the log cumulative predictive likelihood from Jan 2002 to Dec 2006 for the structural

break VAR model with this informative prior along with those from the structural break

VAR model with diffuse prior and no-break VAR model. Among the structural break

VAR models, the informative prior produces better 1-month-ahead forecasts while being

outperformed in 6-months-ahead forecasts by the diffuse prior. For the horizons 3 and

12 months, performances of the two priors are close. Nevertheless both produce superior

forecasts than the no-break VAR model.

3For the diagonal element in the slope matrix of VAR corresponding to output growth, the mean is

set to be 0.3 instead of 1 since, unlike the short rate and term spread which are highly persistent, the 1st

order autocorrelation of output growth is about 0.3
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5 Conclusion

In this paper, we present a new structural break VAR model for predicting real output

growth by the nominal yield curve which allows for the possibility of both in-sample and

out-of-sample breaks in parameter values. We jointly model structural breaks in the out-

put growth and yield curve. A Bayesian estimation approach is provided which extends

the method of Pesaran et al. (2006) for univariate models to multivariate settings. We

provide a discussion of the prior on the number of in-sample regimes implied by the hier-

archical structure of this type of model. This is in contrast to Pesaran et al. (2006) which

imposes a uniform prior on the number of in-sample regimes and hence is inconsistent

with hierarchical priors on other model parameters. A new forecasting method is pro-

posed which guarantees dynamic consistency when forecasting output growth recursively

in real time. The empirical application focuses on the monthly US data from 1964 to

2006. We find strong evidence of structural breaks in the predictive relation between the

yield curve and output growth in late 1979 and early 1983. Before 1979, the short rate

has more predictive power for output growth than the term spread while the term spread

becomes more significant since the break of 1983. In the forecasting exercise, we find that

incorporating the possibility of structural breaks produces more accurate out-of-sample

forecasts of output growth than the no-break VAR model at all horizons considered in

this paper.

Appendix A: Gibbs Sampler for the Structural Break

VAR Model

For a given number of in-sample regimes K, let Θ = (φ1, ..., φK , Σ1, ..., ΣK , π1, ..., πK−1),

Θ0 = (b0, B0, Ω0, v0, α0, β0), S = (s1, s2, ..., sT ) and YT = (y1, ..., yT ). The posterior distri-

bution of interest is p(S, Θ, Θ0|YT ). A Gibbs sampler is used to sample from this posterior

distribution. Detailed discussions on Markov chain Monte Carlo methods of which Gibbs

sampling is a special case can be found in Chib (2001), Koop (2003) and Geweke (2005).
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1. Sample S from p(S|YT , Θ, Θ0).

Sampling the latent states S follows Chib (1998). The steps are as follows:

(1). Compute the filtering density p(st|Yt, Θ) for t = 1, 2, ..., T by the Hamilton filter

(Hamilton (1989)). This involves repeatedly applying a prediction and a filtering step.

p(st = k|Yt−1, Θ) = p(st−1 = k|Yt−1, Θ)πk + p(st−1 = k − 1|Yt−1, Θ)(1 − πk−1)

p(st = k|Yt, Θ) ∝ p(st = k|Yt−1, Θ)p(yt|Yt−1, st = k, Θ)

for k = 1, 2, ..., K, where the likelihood p(yt|Yt−1, st = k, Θ) = N(yt|µk +Φkyt−1, Σk). The

filter starts at p(st = 1|Y0, Θ) = 1.

(2). Set sT = K.

(3). Given st+1 = k, sample st as

st =





k, with probability ct;

k-1, with probability 1 − ct.

where ct ∝ p(st = k|Yt, Θ)p(st+1 = k|st = k, Θ). Note s1 = 1.

2. Sample πk from p(πk|YT , Θ πk
, Θ0, S) for k = 1, ..., K − 1, where Θ πk

is the subset

of Θ excluding the parameter πk.

πk ∼ Beta(α0 + nkk, β0 + 1)

where nkk is the number of one-step transition from state k to state k in the sequence S.

3. Sample φk from p(φk|YT , Θ φk
, Θ0, S) and Σk from p(Σk|YT , Θ Σk

, Θ0, S), k =

1, 2, ..., K, where Θ φk
and Θ Σk

are the subsets of Θ excluding the parameter φk and

Σk respectively.

The conditional posterior densities of φk and Σk depend only on the data in regime

k. Therefore, let {yt : t = nk−1 + 1, nk−1 + 2, ..., nk} be the data in regime k, Ŷk be a

(nk − nk−1) × 3 matrix of data with each row as an observation yt, ŷk = vec(Ŷk) be a

vector stacking the columns of Ŷk. Let x̂k be a (nk−nk−1)×3 matrix stacking observations

ynk−1
, ynk−1+1, ..., ynk−1, X̂k be a (nk − nk−1) × 4 matrix concatenating a (nk − nk−1) × 1

vector of 1’s horizontally with x̂k and Ẑk = I3 ⊗ X̂k, where ⊗ denotes the Kronecker

product. The conditional posterior densities of φk and Σk are

φk ∼ N(bk, Bk)
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Σk ∼ IW (Ωk, vk)

where

Bk =
(
Ẑ ′

k(Σ
−1
k ⊗ Ink−nk−1

)Ẑk + B−1
0

)−1

bk = Bk

(
Ẑ ′

k(Σ
−1
k ⊗ Ink−nk−1

)ŷk + B−1
0 b0

)

Ωk = Ω0 +

nk∑

t=nk−1+1

(yt − µk − Φkyt−1)(yt − µk − Φkyt−1)
′

vk = v0 + (nk − nk−1)

4. Sample b0 from p(b0|YT , Θ, Θ0 b0 , S), where Θ0 b0 denotes the subset of Θ0 excluding

the parameter b0.

b0 ∼ N(a, A)

where

A =
(
KB−1

0 + A−1
0

)−1

a = A

(
B−1

0

K∑

k=1

φk + A−1
0 a0

)

5. Sample B0 from p(b0|YT , Θ, Θ0 B0
, S), where Θ0 B0

denotes the subset of Θ0 exclud-

ing the parameter B0.

B0 ∼ IW

(
D0 +

K∑

k=1

(φk − b0)(φk − b0)
′, d0 + K

)

6. Sample Ω0 from p(Ω0|YT , Θ, Θ0 Ω0
, S), where Θ0 Ω0

denotes the subset of Θ0 exclud-

ing the parameter Ω0, (Metropolis step).

Since the conditional posterior density of Ω0 is non-standard, a Metropolis-Hastings

step is introduced to sample Ω0. At iteration j, the proposal distribution for Ω
(j)
0 is

IW
(
(c1 − m − 1)Ω

(j−1)
0 , c1

)
, which calibrates the mean of the proposal at Ω

(j−1)
0 . The

free parameter c1 controls the variation of the proposal: a bigger value of c1 implies smaller

variation and hence higher acceptance rate of the Metropolis step. m is the dimension

of yt. Note the prior density is p(Ω0) = IW (Ω0|Ψ0, f0) and the likelihood function is
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p(Σ1, ..., ΣK |Ω0, v0) =
∏K

k=1 IW (Σk|Ω0, v0). For any candidate draw Ω∗
0 from the proposal

distribution, the resulting acceptance probability is given by

ζ1 = min



1,

IW (Ω∗
0|Ψ0, f0)

∏K

k=1 IW (Σk|Ω
∗
0, v0)IW

(
Ω

(j−1)
0 |(c1 − m − 1)Ω∗

0, c1

)

IW (Ω
(j−1)
0 |Ψ0, f0)

∏K

k=1 IW (Σk|Ω
(j−1)
0 , v0)IW

(
Ω∗

0|(c1 − m − 1)Ω
(j−1)
0 , c1

)





With probability ζ1, the candidate draw Ω∗
0 is accepted and Ω

(j)
0 = Ω∗

0. Otherwise, Ω
(j)
0 =

Ω
(j−1)
0 .

7. Sample v0 from p(v0|YT , Θ, Θ0 v0
, S), where Θ0 v0

denotes the subset of Θ0 excluding

the parameter v0, (Metropolis step).

A Metropolis-Hastings step is used to sample v0. At iteration j, the proposal distribu-

tion for v
(j)
0 is Gamma

(
v

(j−1)
0 /c2, c2

)
, which calibrates the mean of the proposal at v

(j−1)
0 .

The free parameter c2 controls the variation of the proposal: a bigger value of c2 implies

larger variation and hence lower acceptance rate of the Metropolis step. Note the prior

density is p(v0) = Gamma(v0|ρ0, λ0) and the likelihood function is p(Σ1, ..., ΣK |Ω0, v0) =
∏K

k=1 IW (Σk|Ω0, v0). For any candidate draw v∗
0 from the proposal distribution, the re-

sulting acceptance probability is given by

ζ2 = min




1,
Gamma(v∗

0 |ρ0, λ0)
∏K

k=1 IW (Σk|Ω0, v
∗
0)Gamma

(
v

(j−1)
0 |v∗

0/c2, c2

)

Gamma(v
(j−1)
0 |ρ0, λ0)

∏K

k=1 IW (Σk|Ω0, v
(j−1)
0 )Gamma

(
v∗
0|v

(j−1)
0 /c2, c2

)






With probability ζ2, the proposed draw v∗
0 is accepted and v

(j)
0 = v∗

0 . Otherwise, v
(j)
0 =

v
(j−1)
0 .

8. Sample α0 from p(α0|YT , Θ, Θ0 α0
, S), where Θ0 α0

denotes the subset of Θ0 exclud-

ing the parameter α0, (Metropolis step).

A Metropolis-Hastings step is used to sample α0. At iteration j, the proposal distribu-

tion for α
(j)
0 is Gamma

(
α

(j−1)
0 /c3, c3

)
, which calibrates the mean of the proposal at α

(j−1)
0 .

The free parameter c3 controls the variation of the proposal: a bigger value of c3 implies

larger variation and hence lower acceptance rate of the Metropolis step. Note the prior

density is p(α0) = Gamma(α0|q0, γ0) and the likelihood function is p(π1, ..., πK−1|α0, β0) =
∏K−1

k=1 Beta(πk|α0, β0). For any candidate draw α∗
0 from the proposal distribution, the re-
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sulting acceptance probability is given by

ζ3 = min



1,

Gamma(α∗
0|q0, γ0)

∏K−1
k=1 Beta(πk|α

∗
0, β0)Gamma

(
α

(j−1)
0 |α∗

0/c3, c3

)

Gamma(α
(j−1)
0 |q0, γ0)

∏K−1
k=1 Beta(πk|α

(j−1)
0 , β0)Gamma

(
α∗

0|α
(j−1)
0 /c3, c3

)





With probability ζ3, the proposed draw α∗
0 is accepted and α

(j)
0 = α∗

0. Otherwise, α
(j)
0 =

α
(j−1)
0 .

9. Sample β0 from p(β0|YT , Θ, Θ0 β0
, S), where Θ0 β0

denotes the subset of Θ0 excluding

the parameter β0, (Metropolis step).

A Metropolis-Hastings step is used to sample β0. At iteration j, the proposal distribu-

tion for β
(j)
0 is Gamma

(
β

(j−1)
0 /c4, c4

)
, which calibrates the mean of the proposal at β

(j−1)
0 .

The free parameter c4 controls the variation of the proposal: a bigger value of c4 implies

larger variation and hence lower acceptance rate of the Metropolis step. Note the prior

density is p(β0) = Gamma(β0|r0, δ0) and the likelihood function is p(π1, ..., πK−1|α0, β0) =
∏K−1

k=1 Beta(πk|α0, β0). For any candidate draw β∗
0 from the proposal distribution, the re-

sulting acceptance probability is given by

ζ4 = min



1,

Gamma(β∗
0 |r0, δ0)

∏K−1
k=1 Beta(πk|α0, β

∗
0)Gamma

(
β

(j−1)
0 |β∗

0/c4, c4

)

Gamma(β
(j−1)
0 |r0, δ0)

∏K−1
k=1 Beta(πk|α0, β

(j−1)
0 )Gamma

(
β∗

0 |β
(j−1)
0 /c4, c4

)





With probability ζ4, the proposed draw β∗
0 is accepted and β

(j)
0 = β∗

0 . Otherwise, β
(j)
0 =

β
(j−1)
0 .

This completes the algorithm for sampling from the structural break VAR model.

Appendix B: Marginal Likelihood of the Structural

Break VAR Model

In this paper, we adopt the modified harmonic mean (MHM) method of Gelfand and Dey

(1994) to compute the marginal likelihood. The basic idea of the MHM method is to

utilize the simple identity

1

p(Yt|st = K)
=

p(Θ, Θ0|Yt, St = K)

p(Θ, Θ0|St = K)p(Yt|Θ, Θ0, St = K)
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Note the priors of Θ and Θ0 are independent of the number of in-sample regimes. So

p(Θ, Θ0|St = K) = p(Θ0)p(Θ|Θ0). Also the likelihood of Yt does not depend on Θ0 given

the value of Θ. So p(Yt|Θ, Θ0, St = K) = p(Yt|Θ, St = K).

For any density function h(Θ, Θ0) whose support is contained in that of p(Θ, Θ0|Yt, St =

K), it is easy to show that

1

p(Yt|st = K)
=

∫
h(Θ, Θ0)

p(Θ0)p(Θ|Θ0)p(Yt|Θ, St = K)
p(Θ, Θ0|Yt, St = K)dΘdΘ0

Given a sample of posterior draws {Θ(j), Θ
(j)
0 }n

j=1 from p(Θ, Θ0|Yt, St = K), the log

marginal likelihood can be computed as

log (p(Yt|st = K)) ≈ −log

(
1

n

n∑

j=1

h(Θ(j), Θ
(j)
0 )

p(Θ
(j)
0 )p(Θ(j)|Θ

(j)
0 )p(Yt|Θ(j), St = K)

)

The likelihood function p(Yt|Θ, St = K) can be obtained as a by-product from the Hamil-

ton filter in the estimation process.

One condition for this numerical integration is that the function h(Θ,Θ0)
p(Θ0)p(Θ|Θ0)p(Yt|Θ,St=K)

needs to be bounded above for the rate of convergence to be practical (Geweke(1999)).

Geweke (1999) proposes a convenient implementation of h(·) which satisfies the above

condition. The function h(·) is chosen to be a truncated Gaussian density with the

mean and covariance matrix constructed from posterior draws of p(Θ, Θ0|Yt, St = K).

Specifically, let Θ̃ = {Θ, Θ0}, Θ = 1
n

∑n

j=1 Θ̃(j) and Ω = 1
n

∑n

j=1

(
Θ̃(j) − Θ

)(
Θ̃(j) − Θ

)′
.

Define Θ̂ ≡

{
Θ̃ :

(
Θ̃ − Θ

)′
Ω

−1
(
Θ̃ − Θ

)
≤ χ2

p(m)

}
, where m is the dimension of Θ̃ and

χ2
p(m) is the p×100 percent critical value of a χ2 distribution with m degrees of freedom.

The implementation of h(·) is given by

h
(
Θ̃
)

=
1

p(2π)0.5m
∣∣Ω
∣∣0.5 exp

(
−0.5

(
Θ̃ − Θ

)′
Ω

−1
(
Θ̃ − Θ

))
IΘ̂

where

IΘ̂ =





1, if Θ̃ ∈ Θ̂;

0, otherwise.

A smaller value of the truncation probability p will likely result in better behavior of the

numerical integration since more tail draws are discarded. But greater simulation error

may occur as fewer draws are retained in the set Θ̂. In practice, it is usually chosen to be

in the range (0.9, 1).
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Table 1: Distributions of the Number of In-Sample Regimes

K = 1 K = 2 K = 3 K = 4 K = 5

prior p(sT = K) 0.733 0.181 0.054 0.019 0.013

posterior p(sT = K|YT ) 0 0 0.998 0.002 0
This table reports the prior and posterior distributions of the number of in-

sample regimes in the full-break VAR model for the monthly US data from

January 1964 through December 2006.

Table 2: Model Comparison by Marginal Likelihoods

No-Break 1-Break 2-Break 3-Break 4-Break

log ML -1131.81 -1008.69 -978.27 -983.65 -992.68
This table reports the log marginal likelihoods of the no-break VAR model and

the full-break VAR models with 1 to 4 in-sample breaks for the monthly US

data from January 1964 through December 2006.
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Table 3: Parameter Estimates of the Full-Break VAR Model: Regime 1

µ1 =




0.567∗

(0.106, 1.040)

0.039

(−0.259, 0.335)

0.114

(−0.127, 0.355)




Φ1 =




0.321∗ −0.072∗ 0.084

(0.188, 0.454) (−0.145,−0.001) (−0.050, 0.218)

0.035 0.993∗ 0.042

(−0.044, 0.116) (0.947, 1.038) (−0.041, 0.124)

−0.004 −0.012 0.917∗

(−0.069, 0.060) (−0.049, 0.025) (0.850, 0.983)




Σ1 =




0.621∗

(0.505, 0.762)

−0.013 0.218∗

(−0.068, 0.040) (0.178, 0.268)

−0.005 −0.134∗ 0.142∗

(−0.049, 0.038) (−0.169,−0.105) (0.115, 0.174)




This table reports the posterior means and 95% credible sets for regime

1 parameters of the full-break VAR model with 2 in-sample breaks yt =

µst
+ Φst

yt−1 + ǫt, ǫt ∼ N(0, Σst
), where yt=(output growth, short rate, term

spread), for the monthly US data from January 1964 through December 2006.

Parameters significant at the 95% level are marked by ”*”.
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Table 4: Parameter Estimates of the Full-Break VAR Model: Regime 2

µ2 =




0.414

(−0.364, 1.233)

0.196

(−0.511, 0.959)

0.153

(−0.510, 0.823)




Φ2 =




0.351∗ −0.046 0.041

(0.064, 0.632) (−0.115, 0.021) (−0.131, 0.210)

0.449∗ 0.981∗ 0.093

(0.061, 0.852) (0.911, 1.049) (−0.141, 0.337)

−0.295∗ −0.008 0.832∗

(−0.577,−0.025) (−0.068, 0.049) (0.663, 0.994)




Σ2 =




0.860∗

(0.526, 1.387)

0.508∗ 1.949∗

(0.102, 1.091) (1.121, 3.196)

−0.268 −1.082∗ 0.865∗

(−0.632, 0.003) (−1.830,−0.604) (0.526, 1.407)




This table reports the posterior means and 95% credible sets for regime

2 parameters of the full-break VAR model with 2 in-sample breaks yt =

µst
+ Φst

yt−1 + ǫt, ǫt ∼ N(0, Σst
), where yt=(output growth, short rate, term

spread), for the monthly US data from January 1964 through December 2006.

Parameters significant at the 95% level are marked by ”*”.

34



Table 5: Parameter Estimates of the Full-Break VAR Model: Regime 3

µ3 =




0.112

(−0.086, 0.331)

−0.001

(−0.010, 0.097)

0.091

(−0.023, 0.214)




Φ3 =




0.115 0.003 0.075∗

(−0.005, 0.233) (−0.030, 0.032) (0.006, 0.144)

0.077∗ 0.990∗ 0.016

(0.018, 0.135) (0.976, 1.004) (−0.018, 0.050)

0.056 −0.007 0.942∗

(−0.011, 0.123) (−0.026, 0.010) (0.903, 0.981)




Σ3 =




0.282∗

(0.238, 0.334)

0.032∗ 0.071∗

(0.015, 0.050) (0.056, 0.085)

0.001 −0.028∗ 0.094∗

(−0.019, 0.020) (−0.039,−0.017) (0.079, 0.112)




This table reports the posterior means and 95% credible sets for regime

3 parameters of the full-break VAR model with 2 in-sample breaks yt =

µst
+ Φst

yt−1 + ǫt, ǫt ∼ N(0, Σst
), where yt=(output growth, short rate, term

spread), for the monthly US data from January 1964 through December 2006.

Parameters significant at the 95% level are marked by ”*”.
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Table 6: Parameter Estimates of the No-Break VAR Model

µ =




0.307∗

(0.115, 0.495)

0.021

(−0.127, 0.167)

0.068

(−0.049, 0.185)




Φ =




0.294∗ −0.032∗ 0.058∗

(0.212, 0.376) (−0.055,−0.008) (0.001, 0.117)

0.138∗ 0.989∗ 0.013

(0.074, 0.204) (0.970, 1.008) (−0.033, 0.059)

−0.042 0.001 0.935∗

(−0.094, 0.010) (−0.014, 0.016) (0.898, 0.971)




Σ =




0.458∗

(0.405, 0.515)

0.055∗ 0.288∗

(0.024, 0.087) (0.255, 0.326)

−0.027∗ −0.160∗ 0.180∗

(−0.052,−0.002) (−0.185,−0.137) (0.160, 0.204)




This table reports the posterior means and 95% credible sets for parameters of

the no-break VAR model yt = µ + Φyt−1 + ǫt, ǫt ∼ N(0, Σ), where yt=(output

growth, short rate, term spread), for the monthly US data from January 1964

through December 2006. Parameters significant at the 95% level are marked

by ”*”.
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Table 7: Comparing Log Cumulative Predictive Likelihoods of Output Growth

Forecasting Horizon No-Break VAR Full-Break VAR Full-Break VAR

with Diffuse Prior with Informative Prior

1 month -55.78 -48.86 -43.72

3 months -54.83 -46.64 -46.96

6 months -52.50 -46.42 -47.90

12 months -45.49 -40.81 -40.57
This table reports log cumulative predictive likelihoods of output growth
∑T−h

t=T−60
log(p(gt+h|Yt)), h = 1, 3, 6, 12, for the no-break VAR model and the

full-break VAR models with diffuse and informative priors during the period

Jan 2002-Dec 2006.
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Figure 1: The Monthly US Data: January 1964 to December 2006
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Figure 2: Posterior Draws of the Predictive Coefficient of Term Spread in Regime 1
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Figure 3: Posterior Distributions of the Break Dates
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Figure 4: Posterior Distributions of the Predictive Coefficients of Short Rate and Term

Spread
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Figure 5: Log Predictive Bayes Factors: Break vs. No Break (Note: A positive value of log

predictive Bayes factor favors the full-break VAR model.)
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