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Over a fimite planning peniod, a firm has two sharcholders who trade shares at a fixed price.
External transactions are disregarded. The total amount of shares is fixed and the majority
shareholder decides on the rate of dividend pavyout. Each sharcholder maximizes a profit
functional comprised of total earnings from share transactions plus dividends, and capital gains at
the honzon date. The shareholders are subject to personal taxation on dividends and capital gains.
Decisions on investments and borrowing /lending are made by a manager who maximizes
accumulated profits after corporate taxation.

The problem 1s modelled as an open-loop Stackelberg differential game such that the manager is
the leader; the shareholders are followers, playing a Nash game. The latter game 1s analyzed by
using standard techniques of optimal control theory. The analysis off the manager’s problem is
done by using a path-connecting procedure.

1. Introduction

This paper deals with the influence of corporate as well as personal taxation
on the optimal investment, financing, and dividend policies of a firm. Recent
contributions 1n this area include Ludwig (1978), Yli-Liedenpohja (1978).
van Loon (1983), and van Schijndel (1986a, b, 1987). See also the survey article
by Lesourne and Leban (1982). These studies. however, assume no separation
of ownership and management, i.e., the shareholders are also the managers of
the firm. The main topic in this research i1s the determination of optimal
policies for capital investments, dividends, and debt. In this connection, the
question of corporate taxation is important and was the first to receive

*

"he authors wish to thank the reviewers for constructive comments on carlier versions of the
paper.

0165-1889 /89 /$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



I3

S. Jorgensen et al., Optimal investment, financing, and dividends

attention 1n the literature. Later works [for instance, van Schijndel
(1986a,b,1987)] also considered the impact of different personal tax rates of
the shareholders.

The purpose of this paper is to relax the assumption of nonseparated
ownership and management. Within the framework of a financial model of the
firm we consider a company with a manager and (for mathematical conve-
nience) only two shareholders. The latter have different personal tax rates
which, 1n turn, differ from the corporate tax rate. The manager controls the
investment rate and 1s in charge of debt management too. The shareholders
control the rate of dividend pay-out and can buy and sell shares from each
other. No emissions of new stock are undertaken during the time period under
consideration and there are no external transactions with shares. Thus, in this
respect, the company 1s viewed as a closed system.

To model a situation with multiple decision-makers we apply the theory of
differential games. Various conceptual problems arise here, and we shall
briefly discuss some of them. The main body of the paper is devoted to the
analysis of a noncooperative game where the manager 1s a Stackelberg leader,
announcing at the start of the game an investment policy and the stockholders
respond rationally (as followers) by choosing a dividend policy as well as the
amount of internal trade with shares. Because of the complexity of the model,
a closed-form solution 1s apparently not attainable but a number of qualitative
results can be stated.

The paper 1s organized as follows: in section 2 we establish a differential
game model as an open-loop Stackelberg game. This section also contains our
reflexions on some conceptual difficulties in the modelling process. In section 3
the Stackelberg game 1s analyzed; we characterize the structure of optimal
policies and discuss their economic implications. Section 4 concludes the paper
with a brief summary of our main results and contains also some suggestions
for further research.

2. Model formulation

2. 1. Preliminaries

In this section we develop a deterministic dynamic model of a corporate
firm with a manager (M) and two shareholders ( P, and P,, respectively). Let
t denote time and [0, 7'] a planning period of fixed duration. Define:

K = K(t): stock of capital goods. K(0) = K, > 0 and fixed.

Y = Y(1): debt (Y > 0); lending (Y <0).

Z: common stock at nominal value. Z > 0 and constant.

R = R(t): cumulative retained earnings. R(0) = R, > 0 and fixed.
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This yields the balance equation
K(t)=Y(t)+Z+ R(1). (1)

Notice that we have assumed that issue of new shares is not allowed. i.e.. Z is
constant. Suppose that

— the firm operates under decreasing returns.
— corporate tax 1s proportional to profit,
— depreciation 1s proportional to the stock of capital goods.

— borrowing /lending do not carry any transactions costs and can be effected
at

the same rate of interest,
— dividends are paid out in cash (not in shares).

The flow of retained earnings is given by

E=(1-f)(G(K)—aK—-rY)—-D, (

9
S—

where

D = D(t): dividend payout rate,

E = E(t): retained earnings rate,

G=G(K(t)): gross revenue. G>0, G' >0, G” <0,
a: depreciation rate. ¢ > 0 and constant,

/: corporate tax rate. 0 < f < 1, constant,

r: 1nterest rate on debt/lending. » > 0 and constant.

Cumulative retained earnings are given by

R(r)=R,+ [E(s)ds. (3)
()

and (2)—(3) yields our first state equation:

R=E=(1-=f)G(K)=aK—-rY)-D. (4)

Let I =1(r) denote the rate of (gross) investment in capital stock. Then our
second state equation becomes

K=1-—aKk. (5)

- o w  w e
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Now we turn to the division of common stock. Z. between the shareholders
P, and P.:

Z,=Z(t): P’s part of Z-Z,(0) = Z.,> 0 and fixed, such that Z = Zy ¥ Lo

Since Z 1S constant. we obtain

Z==Z (6)

J J

In (6), and in the sequel, we have i =1,2; ;=1.2; i # . Suppose that P, and
P, may trade shares but not sell to/buy from others. Define

e

B, = B,(t): purchase rate of P,
S; = §,(t): selling rate of P..

From (6) we obtain
Z,=B,—-S =S-S5, . (7)

Under the assumptions we only need one of the equations in (7) and take
Z,=S8,— 8, as our third state equation. Henceforth we refer to this equation
as (7). We shall suppose that the shareholders can agree that, if P. wants to
sell, P, must buy. (Hence, a shareholder always has the option to leave the
company, but no shareholder can be forced to give up a majority position or
leave the company). The implication is that only the selling rates are control
instruments of the shareholders. We also assume that p, the price at which
share transactions take place, is fixed (positive).
To construct the payoffs of the shareholders define:

7. tax rate on personal income for P; 0 <t <1,
T,. lax rate on capital gains for P; 0 <7, <1,

and suppose that P, has a high personal tax rate whereas P, is in the opposite
position. To reflect this let

T2 T 20, (8)

Dividends are paid out continuously as a fraction of common stock and total
dividends amount to D = CZ, where

C = C(1): dividend payout fraction.
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Shareholder P, receives dividends (before taxation) in amount of D, = CZ..

!

Obviously, D, + D, = D.

Assume that each shareholder maximizes his net income stream from share
transactions plus dividends, and his share of the firm’s equity capital at r = T.
after capital gains taxation. The payoff functional of P, becomes

Ji = f()T[p(SI—SJ) +(1-1)CZ,]ds

+[(1—- )R(T)+Z] ZAT) (9)
T o
The manager maximizes total profits after corporate taxation,
T
J=[{0=1)[G(K)=-aK-ry]dr! (10)
0

[In what 1s to follow we assume that the manager i1s the leader in a
Stackelberg game and the shareholders are followers, playing a Nash game
vis-a-vis each other.” For reasons of tractability we suppose that all players
employ open-loop strategies. The pros and cons of such strategies are well
known and we shall not pursue the subject any further here. Shareholder P,
has Z,,> Z/2 which means that he is initially in control of the dividend
policy, C(7). We shall assume that P, wishes to be in control throughout the
game and impose the state constraint.

Zi\t ) =Z/2, Wi, (11)
for which P, 1s responsible. Shareholder P, must guarantee satisfaction of

Z, <Z o Z,>0, V. (12)

'We have not incorporated discounting in the payoffs. For the sharcholders we can assume a
zero discount rate because the possibility of lending money offers the sharcholders an alternative
investment opportunity with a rate of return equal to r. Hence a shareholder has a time preference
rate of (1 — 7 )r. For the manager it turns out that incorporation of a discount rate does not
change qualitatively the results. This 1s contrary to what i1s known from models of the same
structure but where management and ownership are nor separated [see. for instance, van Loon
(1983)]. The reason is, briefly stated, that the discount rate in such models influences the dividend
policy. However, in the present model where management and ownership are separated. the
dividend policy is not a control instrument of the manager.

ﬂ

"A motivation [or the choice of this particular scenario can be found in section 2.2 which also
contains some alternative possibilities that might be considered.

- - - - - . - - - -
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and the following control constraints are imposed

g C<C* (€™ eonstant>0) (shareholder P, ), (13a)

08 <8S"  (S™ constant > 0) (shareholder P,),’ (13b)

0<I<I™ (IMconstant>0) (manager). (13c)
The state variable K must satisfy the obvious constraint

K >0, (14)

which holds whenever 7 > 0. [This 1s easily seen from (5).] Now, it can be
argued [see, for example, van Loon (1983)] that debts must not exceed a
certain fraction of equity capital, that 1s,

Y<k(R+Z), k = constant > 0.

This inequality 1s equivalent to

K<(1+k)(R+2Z). (15)
Using (14) yields
K=Y+Z+R>0= —Y<Z+R,

which means that, in case of lending (1.e., Y < 0), the total amount lent cannot
exceed total equity capital. Notice that satisfaction of (14) guarantees that this
will actually hold. Since debt management is a responsibility of the manager.
we assume that he guarantees satisfaction of (15).

In summary, we have posed an open-loop Stackelberg differential game with
the following components:
K=1-ak, K(0)=K,>0.
R=(1-f)|G(K)-aK
—r(K—-Z-R)|-CZ, R(0)=R,>0,

=0 S ZA0) = Ziu>Z/2,

1 2

3 . e . . .
" The assumption of a common upper bound on the §,’s is motvated partly by mathematical
convenience, partly by lack of reason for supposing the opposite.
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and P,, P, play - for a fixed I(t) — the Nash game:

(

T

P;: max «le=f [p(Sl—Sj)+(1—frl)C21]dr
0< C=C™ '\ 0
LS €8

- [(1 — £ JR{T ) + Z] ZI(T)/Z}

subject to (4), (5), (7)., and Z, — Z/25%0,

2% max {J3=Lr[p(33—51)+(1—frﬁ)C(Z—Zl)ldt

-I-[(] —'rg)R(T) + Z](Z— ZI(T))/E\*

subject to (4), (5), (7), and Z Z.. 2N,

M solves the optimization problem

M: max "(J=fT(l—f)[G(K)—aK—r(K—f—R)]d(
()

2 L&\

b

e

subject to (4), (5), (7). K< (1+k)(R+ Z).

and the followers’ rational reactions.

2.2. Discussion of some open issues

The model of section 2.1 poses some conceptual difficulties that deserve
consideration. In what follows, we discuss two such aspects.

2.2.1. Hierarchical relationships

(1) In this paper we assume that ownership and management are divided
such that the shareholders have delegated the daily operations of the firm to a
manager. The latter (M) decides upon the investment plan, I(r), and the
amount of debt/lending, Y(¢). [Notice that the variable Y, by using (1), can be
eliminated from the model.] We take M as the leader in a Stackelberg game
where M at the start of the game announces his control path /(r). The
shareholders, P, and P,, are followers and play a Nash game. Technically, we
solve (first) the Nash game for P, and P,, who choose C, S|, and S,, taking /
as given. This results in reaction functions C(/) and S,(/), where [ is
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considered a time-varying parameter. Next, we solve the leader’s optimal
control problem with respect to /.

(2) Bagchi (1984) considers a reverse case, namely a hierarchical game with
the shareholders as leaders and the manager as follower. Thus, M decides on
investment /, taking C, §,, and S, as given. This yields M ’s reaction function
I(C, §,,S,). Next, the Nash game between P, and P, is played to determine
C, S,, and &§..

In case (1), the manager is in a stronger position since he can impose his
strategy upon the shareholders. Such a scenario could emerge when the
manager 1S authorized to control the firm’s investment and debt management.
without interference from the shareholders. The latter make their decisions
rather passively (in particular, the dividend policy) in view of the announced
policy of the manager. In case (2), the shareholders announce their decisions
first, and the manager has no other choice than to react rationally upon this.

(3) A three-level hierarchy with, for example, P, at the highest level, P, at
the middle level, and M at the lowest level may also be conceived.

(4) Assuming that the owners manage the firm, the shareholders control C,
I (and the selling rates). This one-decision-maker (optimal control) problem
has been studied by, for instance, van Loon (1983) and van Schijndel (1987),
but 1n these works no share transactions take place.

2.2.2. Control of dividend policy

There are also open questions regarding the determination of the dividend
rate, C. If Z,, is greater than Z/2, P, initially has the voting power to fix C.*
However, 1t may happen that Z, changes over time as a result of buying and
selling, and P, may lose control of C if, at some instant, Z,/Z goes below one
half. Thus, it may happen that C changes from being a control of P, to being a
control of P, and perhaps changes back again to P, at some later instant of
time. Such a situation 1s not well understood in the differential game literature,
and 1t 1s not clear how to handle it in an appropriate way. Let us briefly look

at some proposals.

(A) In this paper we argue that, if P, initially controls C, he is reluctant to
give up his control. Hence, he wants to satisfy the constraint Z, > Z/2
tor all r. Formally, we add the constraint to the model and make P,
responsible for its satisfaction.’

4 ‘ : : .
We assume that all shares have equal voting rights, although in practice some shares may have
limited (or no) voting rights.
“If P, could decide on the dividend policy, he would pursue a completely different strategy than
the one of P, due to P,’s low personal tax rate.
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(B) Change the dividend term, CZ, into C,Z and let C, be a control variable
of the majority shareholder. This implies (among other things) that the
dynamuics for the state variable R [cf. (4)] will switch as majority switches.
Such a situation may call for the use of control theory with switching
dynamics [Luhmer (1983)].

(C) A formulation with nice properties is the following.® Let the dividend
payout rate, C, be determuned as C =wu, + (1 — w)u,, where w = Zl/f
and u; and u, are continuous control variables of P, and P,, respectively.
This formulation means that each shareholder’s possibility of influencing
the dividend percentage depends on his voting strength, expressed by the
amount of shares in his possession.

Proposal (B) offers an intuitively appealing and flexible way to deal with the
problem of switches in majority, but i1s technically complicated. Proposal (C)
gives a smooth, but not quite realistic, approximation.

3. Analysis of the differential game

3.1. The shareholders’ problem

[n section 3.1 we solve the Nash game for the shareholders, taking the
investment policy /(7) as a fixed time function. First, we determine optimal
selling policies, §* and S,*, of the shareholders P, and P,, respectively. Next.
we prove infeasibility of certain §,, S, combinations and establish an optimal
pair (8%, §5%) 1in a general form, taking into account the satisfaction of the
state constraints. Finally, the optimal dividend policy, C*, of shareholder P, is
characterized.

3.1.1. Optimal selling policies

We use (1) to eliminate the variable Y. For the majority shareholder P,
define the Hamiltonian H' and the Lagrangian L' as follows:

H'=N,[p(S,-8,)+(1-7)CZ,] +N(S,—S,) +Ns(] - aK)
+N;[(1=f)|[G(K)—aK-r(K-=Z—-R)| - CZ] (16)

where ?\II=?\II.(r) (1=1,3) are piecewise continuously differentiable costate
variables and N, = constant > 0, and

L'=H'+.(Z,-2Z/2). (17)

6 . . :
We are indebted to Paul van Loon for this suggestion.
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We have adjoined the state variable constraint Z, > Z/2 directly to the
Hamiltonian by a piecewise continuous multiplier function o' = v'(¢). If an
optimal solution exists, 1t satisfies the necessary conditions

(CF, §iF) = aigmax HHU Z¥, K* R*:C. 8, SET. N B B0 )

DgC<CM
D<= 8™
(18)
Condition (18) yields
B f'Cu'dq
No(L—7)Z*—N,ZZ20 = C* = { unspecified, (19)
02
and
" SM.
Xop — A, % 0 = §*= 1 unspecified, (20)
0.

The costate variables and the multipliers satisfy

M= i (e =g, (21a)

N, =aX, = N,(1-£)[G(K*)—a-r], (21b)

A, = —N,(1-=/)r, (21c)

1 1 * ~ -

v' >0 v Z*=2Z/2)=0, (22)

N(T) =No[(1=7,)R*(T) + Z|/Z ++' (23a)

sl T ) =0, (23b)

A13(T)=)\1{}(1—~;q)21*(T)/? (23c)

v 20,  y(ZT)-2Z/2)=0, ¥'=constant. o)
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Lemma 1. N,>0, and we put N, =1.
Proof. Omitted. It can be obtained from the authors upon request.
From (21a) we obtain
A, <0, (25)
and i1ntegration in (21a), using (23a), yields

Ny =[(1-7,)R%(T)+ Z|/Z

+fT[(l—Tl)C*(5) ul(s)]ds ol (26)

[

which is positive for all € [0, T']. Note that A| has the interpretation of the
shadow price of a unit of Z,, as assessed by P,. Hence this shadow price is
positive but nonincreasing.

From (20) and (25)—(26) 1t 1s obvious that an optimal S, policy must be of
one of the following types:

(A) S* =0, which occurs if A, > p. Vr€[0, T].

S*¥=0o0n[0,¢) and S*=S"on [¢,, T], which occurs

(B) if \,>pforte[0,¢t,), Ay=patt=1t,and N, <p for (27)
1E (I 1 )
(C) S* = SM, which occurs if A, <p, Vr€][0, T].

The derivations of the optimal selling policy S,* for shareholder P, are very
much the same as the ones for P, and details are omitted. In (28), the
multiplier function Aj is the shadow price of a unit of Z,, as assessed by P,.
This shadow price 1s nonpositive and nondecreasing. The policy S,* takes one
of the following three forms:

(A S.¥ =0, which occurs if AJ < —p o [N} > p, Vi,
2 1 P jl="

S,*=0o0n [0, ¢,) and S;* =S on [1,, T], which occurs
(B) if A\j<—pforte[0,1,), Ni(t,)=—p and A} > —p (28)
Jar § € {1y T |,

(C) S;* =S¥, which occurs if A} > —p o |\ <p. Vi
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Table 1

Summary of conditions for occurrence of S;* policies.

Player P, Player P,
(A) Si*=0 if (A) $*=0 il
n:+']rl > p K+Y 2P
S*=8" on[n.T] if S §Y  on [ts; T] if
(k+y <p)A (K+7y°<p)A .
' | > T " ; '
(rc-l-yl +fr[(l —TI)C"(.';)+f'1(.a‘)]d5:>p) (rc-+-'y“ -'-f [(1—TZ)(*(--;)+f"(_s')]dx:=-p)
0 _ 0
(C) S> =S If (C) S*=S™ " if
I , T )
e -*f” [(1=7)C*(s) +v'(d)]|ds<p Rl ik f” [(1=7)C*(s) +*(s)]ds<p

w=[(1-1)RT)+Z|/Z

The results so far obtained for the optimal selling policies S* and S,* are
summarized in tables 1 and 2.’

Lemma 2. The regimes depicted in cells (2), (3), (4), and (7) of table 2 are
infeasible.

Proof. See appendix 1.

The lemma states that is never optimal for a player to sell at the maximal
rate for all 7 1if the other player does not sell at all, and vice versa. The lemma
also states that 1t 1s never optimal for a player to use a switching policy against
a zero selling policy of the other player, and vice versa.

The remaining regimes (6) and (8) [as well as (1) and (9)] are all subsumed
under regime (5). Therefore, we confine our interest to regime (5). The
switching instants (¢, and ¢,, respectively) are determined by

Mleh=v iy ]T[(1 —1,)C*(s) + v'(s)] ds = p.

[

"Notice in table 2 that in the zero-selling and 1n the maximum-selling case. we have Z, = Z,,
for all r <¢ < T. Also notice that whenever S* = $5* = S* on an interval. there is de facto no
trade; the shareholders simply exchange equal amounts of shares which means that the net
amount of trade 1s zero.
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Table 2

Summary of (§*, S$5*) regimes.

(A) (B) (O)
{ 0 on -0. [+ ) \
S =( S5y =« - S = M
) - lS‘” on [, T] -
(1) (2) (3)
The zero-selling case  Infeasible [nfeasible
(B) (4) (3) (6)
- Case (5
. () on |0, ) | __dbL ( 1
o e S _ [nfeasible The general case with 7, =0
§™ on (6T ]
E' " (6H>15)
(C) (7) (8) (9)
= 5 [nfeasible Case (5) The maximum-
with 7, =0 selling case
(1, <15) (ty =1, =0)

Notice that if ¢, =1,, then Z, = Z,, as in regimes (1) and (9). The following
lemma can be established, implying that if suffices to consider regime (5) for
the case of ¢; <.t5.

Lemma 3. If in regime (5) the switching instants are such that t, > t,, regime
(5) reduces to regime (1) or (9).

Proof. See appendix 2.

[n what follows we look at the situation where the state constraint Z, > Z /2
could become binding. For this purpose, consider regime (5) with ¢, <, and
the inequality

Zo—SM(t,—1,)>Z/2 & SM(t,—1,)<Zyy— Z/2, (30)

which is satisfied if, for example, Z,, is much larger than Z/2 (i.e., P, has
initially a comfortable majority), S* is relatively small, or ¢, is close to ¢,. It
turns out that the policy §, depends on whether (30) i1s satisfied or not.
Obviously, Z, = Z,, on [0, 7;) and no constraints are binding. On [7,, 7,) we
have Z, <0 implying that (12) cannot be binding; hence v-=0. The same
holds true on the interval [7,, T]: v>=0on [7,, T] and y* = 0. It may happen.
however, that (11) becomes tight for some ¢ in the interval [¢,, z,). But note
that 1f (11) does not become binding in (¢, ¢5) it never does. For r € [¢,, 1,) we
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have
Ly = gy = SY(t - t),

and suppose that Z, hits its lower bound (Z/2) at t =7, (7, > t,). There are
twoO subcases to consider.

() If i, >1t,, then Z, > Z/2, Vt €[ty 1,], and the policy for S, 1s policy (B)
given by (27). It 1s easy to see that this situation occurs if (30) 1s satisfied.

(II) If 7, <t,, then Z,(f;) = Z/2. Since we have made P, responsible for the
satisfaction of the constraint (11), this player must switch from §, = S"
to S, =0 on the interval [z}, 7,). This will keep Z, equal to its lower
bound on (¢, ¢,). When P, switches (at t=1¢,) from S,=0to S, =S¥,
P, resumes his policy S, =S". This situation occurs if (30) is not
satisfied.

To summanze: for ¢, <, and if (30) does not hold, the S, policy should be
modified such that

op =l =l Sy on[0,1,),

S*m§¥ o Z =T~ SMr=1) onilt E)
(31)

S*=0= Z,=2Z/2 on [ £.6 )

SOV oy 7. =72 on [1,.T].

We proceed with a characterization of the optimal dividend policy, C*.
Integration in (21c) and using (23c) yields

Ny=exp{(1=f)r(T-1)}|[(1-7,)Z*(T)/Z]. (32)

which is positive for all 1 € [0, T']. The costate X' represents the shadow price
of a unmit of R, as assessed by P,. Using (21c¢) yields

Aol YMieln. Tl (33)

Hence the shadow price of a unit of R (evaluated by P,) is positive but strictly
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decreasing. We get the following types of C policies:

(CM
. Zl =
CE[O,C‘M] if (1—7) > E)\13H
.
C , Z : Z(T) (34)
0 (1_'71)“?'—.5(1'%) ~
| xexp ({1 =) (T~=1)]

where the following lemma can be proved.
Lemma 4. A singular C(t) is infeasible.
Proof. See appendix 3.
Next, we determine which types of dividend policies can occur under the

optimal selling policies 1in regimes (1), (5) (¢, <¢,), and (9). Using (34) and
table 2 we obtain the following results:

Regime (1) and (9): C*=0.

Regime (5) (t, <t,): Recall that C* =0 on [r, T]. The C* policy is one of
the types given by

(1) C¥%=0 .for 1€[0.i;),

(ii) C¥=0 for 1=0,2),
C*=C" for rel|t, 1t), (35)

C*=0. for i@ 6)

(ifi) ~ C*=CY for r€|0.4).
C*=0 . for tE{f, 1 ).

We conclude the analysis of the shareholders’ problem with some economic
interpretations of the optimal selling policies, as well as the optimal dividend
policy. For the selling policies, it suffices to interpret a selling policy of type C.
Using (26)—(27) yields the result that P, should sell shares at the maximal rate
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for all ¢, if and only if

[(l - 7,)R*(T) + f]/f+ for[(l —7,)C*(t) + o' (¢)| dr + ¥yt < p.
(36)

This amounts to saying that P, should sell at the maximal rate if the marginal
value, at the mnitial instant, of keeping a share is less than what could be
obtained by selling the unit. (Since X,(7) < AL(0), Vi€ (0, T], the argument
applies equally well for all ¢ € (0, T']). Inequality (36) can also be written as

s Dy |
[(1—T,;)R*(T)+Z‘ ZU | fT(l_Tl)C*(f)th)d’+j{‘}TUl(f)Zmdf

()
<Zyolr-71) (37)

Recall that Z,,> Z/2. On the left-hand side of (37) the first term is the
capital gain to be collected at + = T if P, does not sell shares. The second term
1S the accumulated dividend in the case of no selling. The last term is
nonnegative and identically zero if the constraint Z, > Z/2 never binds. The
term on the right-hand side 1s the (adjusted) sales value of Z,,. Hence, if (37)
holds, P, will be better off by selling all his initial stock of shares since the
sales value exceeds what can be collected in capital gain and dividends. But
notice that he cannot sell his initial amount of shares instantaneously; the best
to do 1s to decrease Z,, as fast as possible by selling at the maximal rate.

The expression (34) can be economically interpreted in the following way.
At any instant the firm has the possibility of using a dollar of its cash flow to
pay out as dividend or, alternatively, to retain the dollar and

—pay back a dollar of debt (or, if debt is already negative, to lend one dollar
more),

—finance a dollar of investment.

Notice that payment of interest on debt and corporate tax, i.e., rY and
fIG(K)—aK—rY], is mandatory and leaves no choice to the firm. To
shareholder P, the investment policy is given; hence P, can only choose
between dividends and /or reducing debt /increasing lending. In (34), the term
(1 —7,)Z,/Z represents the net amount which P, receives if one dollar of
dividend is paid out at time . Recall that A, has an interpretation as the
marginal contribution to optimal profits, caused by a marginal increase in
retained earnings (R). Hence, as long as the net benefit from one present
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Table 3

Qualitative conditions for occurrence of various dividend policies.

C* policy type Tax rates Initial amount of shares Net cost of debt
1 T >, ATE 2“'_/2 (1 —f)r large
2 T =T, Zyy>Z2/2
3 n =T, Lio=>2Z/2 (1 —/)r small

dollar of dividend exceeds the value of retaining the dollar, dividends should
be paid out, and vice versa. The second expression in (34) can also be
interpreted economically. The right-hand side represents the (net of capital
gains tax) amount which P, collects at 1 = T if the dollar at hand is used for
decreasing the debt. If debt i1s decreased by one dollar, then the instantaneous
interest cost 1s reduced by (1 — f)r; the value of this saving over the interval
[£,7T] equals

fT(l —f)rexp{(1 —=/f)rs}ds=exp{(1 = LI T =1}

[

Hence the term (1 —7,)Z, exp{(1 — f)r(T — r)}/f represents P,’s share of the
interest cost saved by not paying out a dollar of dividend at time r. (If the
firm lends money, an additional dollar yields interest income in amount of
exp{(l —f)r(T —1t)} on [¢t,T], and similar arguments as for the debt case
apply.)

[t 1s easy to establish some qualitative conditions for the occurrence of the
three dividend policies in (35). In table 3 such conditions are stated. Under
policy 1, no dividends are paid out since the decision is made by the majority
shareholder ( P,) who suffers from a high personal tax rate on dividends ().
has only a small majority, and the net cost of debt is large. In view of his
objective, dividends are discouraged by the high value of 7, and the relatively
small amount of shares in possession (Z,). The net cost of debt being large
implies that a high value of R(7) (which is desirable) should be achieved by a
cautious dividend policy rather than expanding K through debt-financed
investments. Under policy 3, dividends are initially paid out, motivated by a
relatively small personal tax rate of P, a comfortable amount of shares (which
increases the total amount of dividends received, CZ,), and a net cost of debt
being small. Here, a certain amount of dividends can be defended since
taxation on dividends now, and retained earnings later, is approximately the
same. Moreover, the loss of retained earnings incurred by the dividend payout
can be counterbalanced by attracting debt money (to invest and increase K)
since the cost of such funds is relatively low.
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3.2. The manager’s problem

The optimization problem of the manager consists of selecting a piecewise
continuous investment rate I(z), such that 0 < /(¢) < I™, to maximize the
payoft functional J given by (10), subject to the original state equations
(4),(5),(7), the six costate equations of the followers with their appropriate
boundary conditions, and the state variable inequality constraint (15).

Let p(r), my(2), and n,(r) be piecewise continuous multiplier functions and
let Ay(7), A5(1),..., Ay(1) be piecewise continuously differentiable costate vari-
ables. Let A, be a nonnegative constant.

[t may be convenient to transform the payoff (10). Using (4) we obtain

J= [(1-1)G(K)~aK~r(K-Z~-R)]dr
()

T —_ rT
=fﬁ Rd:+ZfU C*d1

;A
=f C*Zdr+ R(T) - R,
0

The Hamiltonian becomes
H=XAC*Z+A,(S*~S*)+A,(I-akK)

+A5{(1=f)[G(K)—ak = r(K-Z - R)| = C*Z]

A (= (1= 7)C* = v') + As[aN, - Ny(1 ~fHELK J=a=r]]

+A6(—)\13(1 —f)!‘) +A-((1 - Ty YJC* +1°

d
.q"-"'r

A [al =N (1= )G (K) —a—r)] +Ao(=2(1 = f)r).

and the Lagrangian is given by

L=H+p[(1+k)R+Z)=K]|+nq0+n,(IM=1).
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The set of necessary conditions 1s as follows:

* = argmax H, (38)
DLl <™
dL
a[“}\2+n1_"72=0~ (39)
. dC*  _ .
\, = iz, (Z(A;=Ay) + A (1=7) = A5(1 = n)]. (40a)
5\1=a)\2—(1—-f)(G’(K)—a—r)M
+(1=f)G"(K) AN, + A A5) + e, (40b)
A= —(1—=f)rA,—p(1+k). (40c)
| ds*

- P = P N (40d)
A= —al, (40e)
Ne=(1=f)rAe +Xs(1 =/ )G (K)—a—r). (40f)
A . 4

e A (40g)
Ao = —al,, (40h)
Ao=(1=f)rhs+As(1 = f UG (K)—a—r), (401)
u=0, pl(1+k)R+Z)-K]|=0 (41a)
mi=0, 7,20, n,(/"-1)=0 M, 20 (41b)
M(T)=[A(T)-A(T)](1=-1,)/Z (42a)
A(T)=—a (42b)
MN(T)=a(l+k)+ [N (T) =2 (T)](1=7,)/Z+A,. (42¢)
«a>0. a|f(1+k)(R(T)+Z)-K(T)|=0. (43)
Ay (0) =A5(0) =A,(0) =A,5(0) =A4(0) =A,y(0) (44)



20 S. Jorgensen et al., Optimal investment, financing, and dividends

From (40e), (40f), (40h), (401), and (44), 1t appears that
As=A=Ag=Ay=0 for 0<r<T,. (45)

which is intuitively reasonable since the followers’ costates A5, A5, A5, A3 do
not have direct significance for the manager’s problem.

We shall make two assumptions that will simplify the analysis of the
optimality conditions. First, assume that /* is sufficiently large such that a
singular / 1s always feasible, that is, the constraint /7 < /" will never bind.
(This assumption 1s made for mathematical convenience but seems reasonable
in the light of the model’s financial structure. The model per se imposes
unlimited investments, neither by borrowing money nor by retaining profits.)
The assumption implies that the multiplier 7, is identically zero. Set n, = 7.
Second, to avoid contraction policies, assume that

G(K)>a+r for K=K,. (46)

Let us start the analysis with some observations concerning an optimal.
positive investment rate. (Obviously, for A, <0, no investment occurs). From
the Hamiltonian we see that [ will be singular whenever A, = 0. A necessary
condition for optimality of a singular control i1s given by the generalized
Legendre-Clebsch condition which requires that

(1-f/)AG"(K) <0,

which holds only if A; > 0. Notice that the costate A, is the shadow price of a
unit of K, as assessed by the manager, and A, is the shadow price of a unit of
R. Obviously, as seen above, A, <0 implies zero investment and, moreover.
A, <0 mmplies that singular, positive investment cannot be optimal. On a
singular path it holds that A, =\, = 0. Hence,

ANy=—N(1-/)G(K)—a—r)+p=0 (47)
and, whenever u 1s differentiable,
Ny=p—=(1=f)N(G(K)—a—r)=A(1-/)G"(K)(I—-aK)
= 0. (48)
Substituting from (5) and (40c¢) into (48) yields
i
\(1=/)G"(K)

PI ; =
| A3(1—f)c;”(1<)[(1_/)r}\3+“(1+/‘)]* (49)
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which shows that /% equals aK (i.e., investment is just at the replacement
level) if the state constraint (1 + k)(Z + R) > K does not bind. For I* = aK.
the corresponding value of K, say, K°, is implicitly given as the (unique)
solution of

G(K*)=a+r, (50)

which follows from (47)." Hence, I* = aK"® is constant.
Next we characterize four possible paths by using the complementary
slackness conditions.

Path 1 2 3 4

L C ol | RN +
) 0 0 + +

Parh [: This 1s a boundary path - K=(1+k )(f+ R). Moreover, A, =0
and the control 7 is singular — /* is given by (49). The control, say, /”, which
will maintain K equal to (1 + k& )(Z + R) is given by

I"=aK+(1+k)[(1-F)

X|G(K)+aK—-r(K—Z—-R)| - C*Z].

From A, =\, =0, we obtain
p=(1-fUG(K)=a=r)x,;>0 = G(K)>a+r. (52)

whenever A, > 0. (Notice that, if A, =0, then path 1 cannot occur.) Next.
observe that

[b%aK — KR%O

[t 1s easy to show that, if C* =0 for all r on path 1, then R > 0. However.
R >0 may not hold in general, but R > 0 on a final interval since C* =0 in
such an interval. Path 1 is a feasible final path since the transversality
condition A,(7T) = 0 is satisfied. However, if K > 0, then G’( K ) decreases and.
If path 1 1s extended on a sufficiently long interval, it may happen that
G (K)>a+ r is violated.

HStricIl}’ speaking G'(K') =a + r does not need to hold in (47) if X\, =0.
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Path 2. On this path, where p=71=0, we have (1+ k) Z+ R)> K and
[ > 0. Then (49) yields I° = aK”® and K* is given by (50) whenever A, > 0.” To
satisfy (39), A, = 0 must hold which makes path 2 a feasible final path Notice
that K =0 and hence Y =R =0 or sgn( Y)= —scrn(R)

Path 3. On this path we have p=0 and (1 + k)(Z + R) > K. Moreover.
n > 0 implies /=0 and hence K < 0. It must hold that at least one of R. Y is
negative. Notice that path 3 is infeasible as a final path since A, = —n < 0.

Path 4. This is a boundary path and /= 0. Furthermore, K, R, Y <0 and
A, = —n < 0 makes path 4 infeasible as a final path. Notice that R decreases
irrespective of whether C =0 or C > 0.

An mmitial feasible path 1s a path which satisfies the fixed initial conditions.
[f we assume that the firm has maximal debt at r=0, the initial values
K(0), R(0) must satisfy'’

(1+k)(Z+ R(0)) =K(0). - (53)

Van Loon (1983) argues that, if we in (53) had strict inequality (i.e., debt less
than maximal), the firm would instantaneously attract the missing amount of
debt and invest it. After that, the firm start on a feasible path. A mathemati-
cally stringent argumentation for assumption (53) can be found in Feichtinger
and Hartl (1986, p. 378).

Recall that paths 3 and 4 are infeasible as final paths; path 2 is a feasible
final path and path 1 may be a feasible path. The procedure is now to work
backwards from =T and consider a feasible final path. A first question to
answer 1s the following: 1s path 1 or path 2 a candidate for an optimal solution
for the entire planning period? Path 1 is a candidate for an optimal solution
for all r+ only if G'(K)>a+r holds throughout the interval [0, T]. It is.
however, questionable if this actually will be satisfied. Path 2, on the other
hand, can never be optimal on [0, 7] if A;(0) > 0 since (46) is then violated.

The next step 1s to determine which path can precede a final path. Therefore
we test for each feasible final path which paths can precede those final paths.
The testing procedure utilizes the properties of paths 1-4 described above as
well as continuity properties of state and costate variables. If the set of feasible
preceding paths 1s not empty we repeat the coupling procedure. The procedure
stops when no more paths can precede a feasible string of policies. Note that

"If A, =0 on an interval, then K* is not uniquely determined by (47), that is, G'(K)=a +r
does not necessarily hold. This could cause difficulties in the coupling procedure to follow since
the arguments employed require that G'(K)=a + r be satisfied. In appendix 4 this issue is
discussed in more detail.

""See van Loon (1983), van Schijndel (1987).
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the initial condition (53) must hold. [A precise description of the coupling
technique can be found in appendix 5; see also van Loon (1983).] It turns out
that there i1s only one coupling satisfying all necessary conditions. We can
prove the following proposition:

Proposition I. The only policy strings consisting of paths [—-4 that satisfy the
necessary optimality conditions are

(*) Path 1 — Path 2,
(* *) Path 1 throughout [0, T'].

Proof. See appendix 3.

In figs. 1 and 2 we have depicted the evolution of some key variables for the
case of C policies of type 1 and 3 (cf. table 3) for the case of a policy string
‘path 1 — path 2’. In fig. 1 we have the case of zero dividends. 1t occurs If.
among other things, the majority shareholder’s personal tax rate i1s high
and /or the net cost of debt 1s large. Initially (on path 1) K, R, and Y are all
increasing and debt 1s maximal. Gross investment, 7, 1s greater than deprecia-
tion, aK, which implies an increasing stock of capital goods. Retained
earnings, R, increase since no dividends are paid out and G'(K)>a + r on
path 1. The latter condition means that a marginal unit of investment gives the
firm a return, G'( K') — a, being greater than the interest rate. This justifies that
debt 1s increased (maximally). However, since K increases, G'( K ) decreases.
and at r =t,,, G'( K ) reaches 1ts stationary level where G'(K)=a + r, and we
get on path 2. Here, K 1s constant and R 1s increasing. Investment is at the
replacement level and since retained earnings still increase, the remaining cash
1S used to pay oft debt, 1.e., Y decreases. Depending on the parameters of the
problem, lending may occur from some instant, say, f,. On path 2 the
evolution of Y 1s given by

Y=—(1-f)(G(K*)—aK?*-rY),
which has the solution

G(K*) - aK®

r

Y:

+ Yy, exp{ = (1 =/)r(1,—1)}.

where Y, 1s the level of debt at the coupling instant r=1¢,,. In fig. 1 the
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Fig. 1. Optimal policies for capital stock ( K') and debt/lending (Y) when no dividends are paid
out.

instant ¢, (where lending starts) is given by

« ® = & & 8 & & b A 4 © 9 % 8 & 4 L = g 8 N 0k

ly =1, A-7) ln(G(K‘)—aK"—r}’l_-_,_)/

(54)

Notice that, if t,> T, then Y >0 for all r € [0, T'] and lending does not occur.
E£q. (54) shows that a no-lending case emerges if ¢,, and Y,, are large, i.e., the
expansion period is long compared to the period of stationary evolution, and
the level of debt incurred after the expansion period is large. This seems to be
intuitively reasonable.
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F1g. 2. Optimal policies for capital stock (K) and debt/lending (Y) when maximal dividends are
paid out on an initial interval ending at 7=, such that i 2 b

In Lemma 5 we prove that. if the Interest rate r is sufficiently large (which
implies that the net cost of debt, (1 —f)r, is large), lending is unlikely to

Lemma 5. The instant Ly glven by (54) is increasing as a function of the
parameter r, i.e., dt,/dr is positive.

Proof. See appendix 6.

The lemma states that for increasing values of r. {y increases and 1, > T is
likely to be the case. implying that Y is positive for all ¢ € [0, I']. Hence, if
debt is very costly, no dividends will be paid out (cf. table 3) and. moreover,
lending is unlikely to occur.
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In fig. 2 we turn to the case of maximal dividend payment on an initial
interval, followed by zero dividends for the rest of the planning period. This case
occurs 1f, for example, the majority shareholder’s personal tax rate is comfort-
ably low, see also table 3. Consider fig. 2 where the dividend policy switches
before the coupling instant ¢,,. On the intervals [7,,,,) and [t,,, T] the
evolution of K, R, and Y are the same (qualitatively speaking) as in fig. 1.
Notice that, if r 1s very low, lending (on the interval (¢, T']) could occur here.
Depending on the actual value of C*, two situations can be distinguished.

(a) If C™ is sufficiently low, R = (1—f/NG(K)—aK—-rY)— C™Z remains
positive on [0, 7,,] and fig. 1 applies.

(b) For C* sufficiently large, R becomes negative and K as well as Y decrease
on the interval [0,7,). See fig. 2. In such a situation the firm initially
follows a contraction policy. Investment is below the replacement level.
implying a decreasing K. Even if investment is low, the cumulative
retained earnings decrease since large amounts of dividends are distributed
and debt 1s paid off at the same time.

[f the dividend policy switches after the coupling instant, i.e., 7, > t,,, the
value of C™ again becomes significant.

(a) For CY sufficiently low, the situation will be as in fig. 1.

(B) For large values of C", R becomes negative. implying that K decreases.
But K > 0 must hold on some interval before the coupling instant ¢,,; cf.
appendix 5. Hence, for 7, > 1, and in case of a large value of C*, the
feasibility of the string path 1 — part 2 may be lost.

To conclude this section, we briefly study the case T — 0, that is, the case of
a ‘small’ planning period. This can be done in two ways. First, we could see
what happens to the solution when, formally, T tends to zero. Thus, we study
the limiting game T — 0. For practical purposes this amounts to analyzing the
game with a small, but finite 7. Second, a static game could be played at r = 0.
Such a game, however, does not make very much sense in the scenario at hand.
and 1t turns out that its solution is rather trivial. Hence we consider the first
alternative.

For a sufficiently short planning horizon, there is reason to believe that the
optimal selling policies of the shareholders will be S* = S,* = S™ [cf. Case (9)
in table 2]. From table 1 we see that, for T close to zero, the condition for
occurrence of the maximume-selling policy (approximately) becomes

= Z![}
[(1—TQ)R(T)+Z]_—Z_<F;ZH]‘ (55)
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assuming that the state constraints Z,(7) > Z /2 and Z5( 1) =0, respectively,
are not binding. (This 1s likely to be the case when T 1s small). Hence.
maximal selling 1s optimal 1if the capital gain to be collected at t= T, if no
shares are sold on [0, 7], does not exceed the proceeds to be obtained by
selling the whole initial amount of shares. Eq. (3) shows that, for a small 7,
R(T)= R, and (55) will hold if R 1s not too large. In summary, if the firm
starts with a relatively small amount of retained earnings and the planning
horizon 1s small, we expect the shareholders to sell their initial holdings of
shares at the maximal rate. This 1s due to the fact that retained earnings
cannot increase that much as to make the collection of capital gains better
than getting the proceeds from selling out the initial volume of shares. In this
case we obtain C* =0 which, 1n a sense, confirms the use of maximal selling.

For the manager the solution of fig. 2 applies, at least qualitatively. [Notice
that in the present case, an initial phase of contraction (as in fig. 2) cannot
occur.] Due to the complexity of the manager’s problem and the fact that the
functions involved are partially unspecified, 1t seems difficult to characterize
precisely what happens to the solution of the manager’s problem for 7' — 0.
But from the payoft functional of the manager (cf. section 3.2) it can be seen
that J =0 for C*=0 and R(T)= R,. Hence, whatever paths for investment
and debt the manager might choose, his payoff will be negligible. We may
conclude that 1n the case of a small 7 (and a low 1nitial amount of retained
earnings) the manager’s problem tends to lose its significance.

4. Concluding remarks

[n this paper we studied a problem in the areas of ‘the dynamics of the firm’
and ‘corporate finance’. A deterministic, dynamic model was set up with the
purpose of characternizing optimal investment, financing, and dividend policies
of a firm with separation of management and ownership. In the latter respect,
the present work differs from, for instance, van Loon (1983) and van Schijndel
(1987) where no such separation exists. To model the possible conflicts
between management and shareholders, a Stackelberg-differential game ap-
proach was applied and with a view to tractability we assumed open-loop
controls.

More specifically, within the framework of a financial model of the firm, we
assumed that a manager controls the firm’s investment policy over a fixed
planning period. With the manager being the Stackelberg leader, the share-
holders respond rationally to the announced investment policy by choosing a
dividend policy and policies for the internal trade of shares. The dividend
policy 1s decided by the majority shareholder and each shareholder receives
dividends in proportion to the fraction of shares he possesses. At the end of
the game the owners receive their respective parts of the corporate assets.
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An important aspect of the scenario 1s the presence of taxation. Here. we
considered corporate as well as personal taxes; the latter being charged on the
streams of income and on the terminal capital gains.

The solution of the Nash game played by the shareholders was obtained by
standard methods of optimal control. Due to linearity, the dividend policy as
well as the share trading policies turned out to be bang-bang policies. The
manager's problem was only solvable in a qualitative way and we applied a
path-connecting procedure designed by van Loon (1983). Here, the optimal
string of paths was a simple two-path sequence. At a termunal interval the
investment policy 1s designed to maintain the stock of capital goods at an
optimal stationary level and debt 1s gradually paid off. Depending on the
parameters of the problem even lending may occur during this final phase. The
initial phase 1s an expansion phase if no dividends are paid out; for a
sufficiently large rate of dividend pay out, an initial time interval of contrac-
tilon can occur, however.

In order to obtain our results, a number of assumptions were made. Those
we find most crucial are the following:

(1) The firm 1s 1n some respects “a closed system’. Although debt money can
be attracted /paid off and lending 1s possible, the amount of common
stock 1s fixed. This means that funds cannot be obtained by emissions of
new shares. Moreover, the existing shareholders were not permitted to
buy /sell shares from /to investors outside the firm.!

(2) The price of a share traded between the shareholders was considered fixed
and constant. This assumption obviously deprives the shareholders from a
range of interesting options.

(3) Control of the dividend policy cannot switch during the play. This means
that the shareholder who 1nitially has the majority of shares will continue
to be in this position throughout the planning period. Here we assumed
that the high-taxed shareholder had the majority of shares. Of course,
different results would have been obtained if the low-taxed shareholder has
had the majority.

(4) The strategies of the manager as well as the shareholders are open-loop.
implying that the players are supposed to stick to predetermined plans
that are independent of the current state of the game.

An obvious task for future research would be to relax these assumptions.
However, one should be prepared to face considerable difficulties in the set-up
as well as the analysis of such a model.

"'The assumption of no new share emissions may not be unrealistic. Kirg and Fullerton (1984)
state that in their U.S. study, new shares issues accounted for only 8% of all new equity finance for
(nonfinancial) corporations over the period 1970-79 and the tax advantage of internal finance
over new shares issues appeared to be quite large.

il L = s = - e - L - - - - - E
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Appendix 1: Proof of Lemma 2

We shall prove that the regimes (2), (3), (4), and (7) in table 2 are infeasible.
Consider regime (3): It occurs 1if

od oyt 3 p, (A.1)
and
K+“{2+‘[T[(1—'TE)C*(S)+UE(S)]dS<[). (A.2)
0

[f v2>0, then y! =0 and the inequalities (A.1)-(A.2) cannot be satisfied.
(This is also true for y!' =y~ = 0.] We conclude that regime (3) occurs only 1if
v! > 0. This implies Z,(T)=Z/2,

K+yl>p,

and
K+ fr[(l —7,)C*(s) + UE(S)] ds <p.
0

By a similar reasoning, regime (7) occurs only it v >0 implying Z(T) = Z.

h:-i-y:‘::»p,

and
K + fT[(l -7, )C*(s) +Ul(:;)] ds < p:
0

Consider regime (2) which occurs if

fc—l—yl‘:»p
and

\

, . T :
{:«:+y3<p} A {rc+y“+f [(1—TE)C*(S)+U"(5)]d.3‘>p >
0 ;

This case occurs only if y' >0,

h:+y1:>p,
and

b

(k<p} A *{K‘f‘fT[(l—T:)C*(b‘)-l-U:(.‘f)]dS}p .
0 )




30 S. Jorgensen et al., Optimal investment, financing, and dividends

Similarly, regime (4) occurs only if y*> 0,

H+Yl>p,

and

{k<p} A H(K'I"[]T[(l —TI)C*(.S‘)-FUI(S)]CIS >p}.

[Note that regimes (2) and (3) occur only if y' >0, implying Z,(T) = 2/2.
This makes some economic sense since regimes (2)—(3) both have S, =0.
Hence, knowing that his majority could ultimately be lost, P, prefers not to
sell at all. A similar interpretation applies to regimes (4) and (7) where v~ > 0.
implying Z(T)=Z. ie., Z,(T)=0.]

For regimes (2) and (3) we have Zl > (0, 1implying ZI(T):>Z“}>Z/2
(implying y' = 0) which contradicts Z,(T)= Z/2 (being implied by y' > 0).
Hence these two regimes are infeasible.

For regimes (4) and (7) we have Z, <0, implying Z,(T)< Z (implying
v= = 0) which contradicts Z,(T) = zZ (being implied by v2 > 0). Hence these
regimes are infeasible too. Q.E.D,

Appendix 2: Proof of Lemma 3

First notice that having r,> 7, in regime (5) implies that Z, > 0 for all 1.
When Z, i1s nondecreasing, C* is identically equal to zero [cf. (32)]. Moreover,
the constraint (11) cannot become binding; hence v! =0 for all ¢, and y! = 0.
Using (21a) shows that Al =0 for all 7, implying that A} = k. Using (26)—(27)
and table 1 we observe that S;* cannot switch and table 1 shows that, if k > p.
S* =0, and we conclude that S*=0, i.e., Z,=0. In summary, we have
t,=1t,=T as in regime (1) if k <p, S*=S", and S,* must be identically
equal to S™ in order to have Z, > 0. Hence Z, =0 and 7, = 1, = 0 as in regime
9). Q.E.D.

Appendix 3: Proof of Lemma 4

For a singular C 1t must hold that

- g 1
Z, = N\, and Z, = A\,

1 = 1—71'
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Using (21c¢) yields

——

; Z
Z,=-X;(1=1)r = —(1-f)rZ,,

1 =T

which implies, by (7), that

S, =8, =—(1-f)rzZ,.

Since for C > 0 the §,’s are strictly bang-bang and Z, > 0, it must hold that
S,=0and S, =S". Thus,

$¥=(1-f)rZ, = Z,=$"/((1~1)r).

which yields Z, =0 and S, = S,. But this contradicts S, =8M, S,=0, and we
conclude that a singular C 1s not feasible. QUL

Appendix 4

In this appendix we deal with the expression (47) which uniquely determines
K* and I’ on path 2 iff A,>0 throughout this path. In relation to the
coupling procedure described in appendix 5 the crucial question is the follow-
ing. What difference in the results of appendix 5 does it make if, roughly
speaking, A, =0 at the instant where path 2 is coupled (before or after)
another path? From appendix 5 it appears that the following cases must be
dealt with:

(A) Path 2 — Path 1.
(B) Path 4 — Path 2; Path 3 — Path 2: Path 1 — Path 2.

(A): First notice that on path 2 we have A\;(G(K)—a—r)=0 from (47).
Let 75, denote an instant just before the coupling instant ¢,, and let A;(z5;) = 0.
Hence G'(K) — a — r is undetermined at t = t,, and we may have

(1) G'<a+r or (2) G'=a+r or (3) G'>a+r.

[f (1) holds, path 2 cannot be coupled before path 1 since this would require
a jump 1n K. Recall that G' > a + r on path 1.

If (2) holds then the arguments of appendix 7 (path 2 — path 1 — path 2)
show that coupling i1s impossible. If (3) holds, consider the costate equation
(40c) just before and just after the coupling instant ,,. Assume that 7, is not
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a switching point of the dividend policy C. On path 2 we have
\5(13) = A5(13) =0,

whereas on path 1 (z5; denoting ‘just after’ z,,)

).\3(1';1) = —(1=f)rA;(t3) —n(l + k).

Whenever A, is continuous at =1, A;(f3,) = A;(f3;), implying A,(13,) =
—u(l + k) <0 and A,(r3;) <0. This, however, violates the necessary
Legendre-Clebsch condition that A, be non-negative. Hence, if A, =0 at
t = t5,, path 2 cannot be coupled before path 1. Following Feichtinger and
Hartl (1986, corol. 6.3), we know that A, 1s continuous if:

(1) 7 1s continuous at 7,, and the following constraint qualification (CQ) 1s
satisfied:

vectors (1,7,0) and (—-1.0.(1+A)(R+Z)—-K)

be linearly independent. CQ 1s satisfied for /> 0, but not for / =0. The
latter case 1s dealt with below.

(1) [ 1s discontinuous at f¢,, and ¢,, i1s an entry point where entry is
nontangential. Obviously, entry will be nontangential.

If 7(t,,) =0, then CQ 1s not satisfied and continuity of A, is not guaran-
teed. For this case we apply the following argument to prove infeasibility of
the coupling path 2 — path 1. We need to distinguish the cases C(z,,) = 0 and
C(t,)=CM:

(a) C(ty)=0. From (59) we have

N ) ’ rk \
O=a1\+(l+k)(l—f)h(}(1\)—(a. 1+k)1<. (A3)

But ¢'(K)>a+r=G(K)>G(K)K>(a+r)K>(a+rk/(1+k))K.
which shows that (A.3) cannot be satistied. Hence, with /(z,,) =0 the
coupling 1s infeasible.

(b) C(15) = C™. From (51) we have

rk

ka+1+k)K]. (A.4)

CMZ=aK+(1+k)1-7)|G(K) -
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We choose to regard (A.4) as a borderline case; it would only be by
comncidence that K(r,,) would satisfy (A.4). Hence, with I(7,,) =0 cou-
pling 1s infeasible.

(B):  Path 2 as final path. From (47c) we obtain that on path 2
Ay = )\3(T)e“_””T””.

Recall that Ay > 0 1s necessary for a singular path. Hence A; >0« A,(T) > 0.
Eqg. (40c) shows that }\350 for A, >0. If Ay(7) >0, then, at a coupling
Instant 7, (j=1,3,4), we have A,(7,,) >0 and I°, K* are well defined on
path 2. We choose to disregard the borderline case where A(7) = 0; cf. (42¢).

Appendix 5: Proof of Proposition 1

First consider path 2 as the final path. Let ¢, be the coupling instant
between path / and path ;j (such that path / precedes path /).

Path 4 = Path 2. On path 2, G'(K)=a + r; on path 4, G’( K ) increases since
K decreases. Hence, for a coupling path 4 — path 2 it must hold that
G'(K) <a+r on path 4. This makes path 4 infeasible as an initial path [cf.
(33)] and 1t must be preceded by some other path. Path 4 cannot be preceded
by neither path 1 nor path 2 since on these paths we have G'(K) > a + r and
G'(K)=ua+r, respectively. Could path 4 be preceded by path 3? Only if
G'(K) <a+ron path 3. But then the initial condition (53) cannot hold.

Path 3 — Path 2. 'The same conclusions as for path 4 — path 2 apply.

Path 1 — Path 2. This coupling is feasible. Notice that on path 1 it must hold
that K > 0 since G'(K)>a+r and G'(K) must decrease to G(K)=a + r.
Hence, on path 1, K> 0 at least on some interval before the coupling 1n-
stant 7,.

Now we have to check if path 2, 3, or 4 could precede the string
path 1 — path 2. We will do this checking for the dividend policies of type 1.
type 2, and type 3 [cf. (35)].

Path 4 — Path | — Path 2. Depending on the dividend policy we can have
C*=0or C*=C™" at the coupling instant 1.

C*(t4,)=0: From (5) we have R=(1—-/)[G(K)—aK —rY]. Since Y =
K — Z — R, and the state variables K and R are continuous. we have Y and R
continuous. On path 4, R <0 = R(t;,) <0.Butonpathl, R>0= R(1};)> 0.
which contradicts the continuity of R. Notice that both paths 1 and 4 are

boundary paths. We conclude that the coupling path 4 — path 1 is infeasible.
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C*(ty4)= C™: For path 4 is holds that R(z;;)<0. Since C* = C" across
t,;, R will be continuous at ¢ = t,,. Hence R(¢;;) < 0 must hold on path 1. On
path 4 we have I =0= K= —aK <0, and on pathlwehaveK I"—aK <0
for t — t,, (from the right) since R(r;,) <0. If 7*>0, K will be discontin-
uous at t,. Assume that Y is continuous. Then K=Y + R should be
continuous too, which contradicts what has just been stated. Hence Y is
discontinuous, but this contradicts that ¥ must be continuous since Y = kR.
In conclusion, the coupling path 4 — path 1 1s infeasible.

Path 3 — Path | — Path 2. Depending on the dividend policy we can have
C*(t3;) =0 or C*(t5,)=CHM.

C*(ty,) = 0: On path 3 it holds that A, <0 and A, =a),— (1 = f)[G'(K
— a — r]A,, whereas on path 1 we have )\__— A, = 0. C0n51der the LOUplan
instant 75,. Since path 1 1s singular, we must have A;(75;) > 0 and f\_-_,(t;'l) =
A,(73;) = 0. Hence, on path 3 it must hold that

j\l(tli_l) =—-(1-/)[G'(K) —a—r|X\(15) 20.

Thus, G'(K)—a—r <0 on path 3 as K — K(t5,). However, on path 1 (which
1s to follow) G'(K(t5;) —a—r >0 and to retain continuity of K it must hold
that G'(K(t5,)) =a + r. But K >0 on path 1, implying that G'( K') become
less than a + r as t increases. This contradicts the requirement (52). Hence,
the coupling path 3 — path 1 is infeasible.
~C*(ty,)=C™: Consider the coupling instant ¢, and recall that (1 + k)
(£ + R)— K=0 on path 3, whereas (1 +k)WZ+ R)— K=0 on path 1. If o
is an entry point, then (1 + k)(Z + R) — K > 0 on some interval (55 = & L5
e > 0.'% But then path 3 violates the initial condition (53). Hence, if ¢,, is an
entry point, we must have a path which precedes path 3. Such a path can only
be path 1. Consider the following policy string.

Path 1 Path 3 Path 1
i A i 3

0 [)3 [3)

At t =0 1t holds that G'(K') > a + r, and this can continue to hold on path 1
If K does not increase so much that G'(K') < a + r occurs. To couple path 3 at
t,; we must have G'(K(t,3) > a + r. Working backwards from ¢ = T, we must
have G'(K(1;)<a+r by the same argument as stated for the coupling
path 3 — path 1 in the case where C*(z,,) = 0. The contradiction now follows.
Since K <0 on path 3, G'(K) will increase as ¢ increases from t3 tO 4.

12 . . = ; . <
[f 75, 1s not an entry point, (1 + A)(Z + R) — K =0 on some interval (ry;, — 8. t3,). We return
to this case later on.
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[t only remains to consider the policy string 1 = 3 — 1, when 5, is not an
entry point. Hence (1 + k) Z + R) — K =0 on some interval to the left of ¢,,.
But then path 3 as well as path 1 are boundary arcs on an interval containing
t;; and the arguments stated for the coupling path 4 — path 1 — path 2

(C* = C") apply. In conclusion, the coupling path 3 — path 1 is infeasible.

Path 2 — Path 1 — Path 2

C*(ty5,)=0: On path.2, G(K)=a+r and K=0. On path 1, G'(K) >
a+r and K >0, implying that G'(K) decreases. Obviously this coupling i1s
infeasible.

C*(t5) = C™: On paths 1 and 2 we have A, =\, = 0. Hence,

0= (1-=fNG(K)—a-r)\,; on path 2.

0=—-(1-f)(G(K)—a—-r)\;+p onpathl. (A.5)

Furthermore, A; >0 on path 1, G'(K)=a+ r on path 2, and G(K)>a + r
on path 1. By continuity of K we must have G'(K)=a+ r on path 1 at
{ = 1,,. But then p(75;) =0 in (A.5). Now, R(¢5;)=0, and since R must be
continuous across /,,, we must have R(r5,) =0. This implies K(¢5;)=0 and
[”=aK on path 1. Notice that /=aK and K(r;;)=0 on path 2. Hence
[ =aK s continuous across f,,. Extending by continuity of the control.
[ =aK on an interval [t,,,,, + ¢) implies K=0 and hence G(K)=a + r.
This, however, violates the condition G'(K') > a + r on path 1. In conclusion,
the coupling path 2 — path 1 is infeasible.

We have now established that no path can precede the string path 1 —
path 2. Our analysis also shows that when we take path 1 as the final path. no
paths can be coupled before path 1. Hence, we have only two candidates for
an optimal policy, namely

()  Path1— Path?2

(* =) Path 1 throughout [0.7T]. Q.E.D.

Appendix 6: Proof of Lemma 5
Define

1 G &K* ) =aK*—#Yy |
A= —- In — e (A.6)
(L= F )¢ | G(K') —aK® )
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and note that 4 > 0. Eq. (54) can be written as

to=1;, + A4,

which vyields

dt, dt, dA
= + —
dr dr dr

First we note that

dA 1 {1 [ G{K?*)—aK*—rY;,
— =4 1 ‘ ‘
dr (1-f)r*l \ G(K*)-aK®
| rYlE 120
CG(K*)—aK*—rY,| <7
for
GLEKY) = ok =¥y rYi, ”
In - , + _ = = 0
G(K*)— aK* G{KT ) —agK"—r¥s ™

To simplify the notation define

a=rY,, and B=G(K*)-aK"’.

Hence (A.8) becomes

m(ﬂ_a) 20 = ln(l a)i ——

p B—a =

Defining z = «/f yields in (A.9)

In(1—z) 2 = In(1/(1-z)=z/(1-2z).

Define
yv=1/(1-1:z),

which yields in (A.10)

)
Inysy-—1.

(A7)

(A.10)

(A.11)

But y —1>1Iny for all y >0, except at y =1 where In y =y — 1. However.
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y =1 cannot occur since y=1=:z=0=a=0=r=0and/or Y;, =0. Com-
paring (A.8) with (A.11) we conclude that d 4 /dr > 0.

The second step is to calculate dz,,/dr. On path 1, K > 0 implies i < 0 and
u decreases from pu(0) to zero at the start of path 2. The multiplier 1 may
jump, at f=1t,,, from some positive pu(t,5) to zero. From (48) we know that,
whenever u 1s differentiable, then

p=(1-f)A(G(K)—a—r)+(1-f)AG"(K)K,
and A\, is given by (40c), i.e.,
po=(1=f NG(K)=m=r}p(l+k)=(1=F)rd;)
+(1-f)AG"(K)K. (A.12)

In (A.12) define

_ 2

d6=—(1-f)(G(K)—a—r)rA;+ (1 = f)NG"(K)K,
y=(1-f)NG(K)=a-r)(1+k).
and notice that ¢ <0 and ¢ > 0 on path 1. Then (A.12) can be written

bt yp=a. (A.13)

By integration in (A.13) we obtain

u=exp(—fu"¢(s)ds){u(0)+]{}p(s)exp(hfn’lp(f)d?)ds}. (A.14)

At t=1t,, we have

l,b(s‘)ds){u(O) + .Lruqb(.&‘)e.‘(p(f{:yb('r)d’l')dS},-

[

i

1 (172) = exp| - |

50 (A.15)

From (A.5) (and the remarks below that equation) we know that u(z,5) =0
and (A.15) holds with equality. Let

!

ds =0, (A.16)

F(ty,,r)=un(0)+ j:”qb(s)exp('/[‘:yb(*r)d'r
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and recall that ¢ and ¢ depend on r. Hence, by (A.16), 7,, is implicitly given
as a function of r. By the implicit function theorem we obtain

A5 dF/dr
dr dF/dt,,
[ #(dexp| [ y(r)dr| [ == dr
oA : 8(}5(5)
] +exp(f01,b('r)d'r) e }ds
qb(flg)f‘-xp( (:IEH!I(T)d’T

_1/(95(*’12)6}(13’( “!IZ‘P(T)dT))

s j T Tk 5 \) — A

< [Cexp| [w(r)ar ) {=o()(1 - /)1+4)
—(1=fNG(K)=a—=r)A-f)Ay+(1=f)'rA;}ds.
(A.17)

In (A.17) we have ¢(t,,) <0, and

6(s)1+k)s+(1=f)(G(K)—a—r)Ay=(1=f)rk,<0
(A.1R)

1s sufficient for d¢,/dr > 0. But G'(K(t,5)) =a+ r must hold to guarantee
continuity of K [cf. the remarks below (A.5)]. Then (A.18) holds since ¢ < 0.

We have shown thatdA4 /dr >0, d¢,/dr > 0, and using (A.7) completes the
proof. LB D,
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