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Analytical approximation of the transition density

in a local volatility model

Stefano Pagliarani∗, Andrea Pascucci†

May 4, 2011

Abstract

We present a simplified approach to the analytical approximation
of the transition density related to a general local volatility model. The
methodology is sufficiently flexible to be extended to time-dependent
coefficients, multi-dimensional stochastic volatility models, degenerate
parabolic PDEs related to Asian options and also to include jumps.

1 Introduction

Analytical approximation methods in option pricing have attracted an
ever increasing interest in the last years. This is due to the demand for more
sophisticated pricing models, including local, stochastic volatility and/or
jumps, that generally cannot be solved in closed-form: for these models, the
practical issue of the implementation is striking, in particular in the calibra-
tion and risk management processes that are typically very demanding and
computationally time-consuming. The main advantage of the analytical ap-
proaches with respect to other numerical methods, such as finite-difference
and Fourier inversion, is that in general the first ones are much faster and
precise, at least under certain model parameter regime. Secondly, analytic
formulae retain qualitative model information and preserve an explicit de-
pendence of the results on the underlying parameters.

The application of asymptotic expansions and singular perturbation meth-
ods in mathematical finance has been studied by several authors: one of the
first results was obtained by Whalley and Wilmott [32] in the study of
transaction costs; in the seminal paper [19] Hagan and Woodward derived
an asymptotic expansion formula for the implied volatility in a local volatil-
ity (LV) model where the volatility function can be written as the product
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of two independent functions of time and underlying, the prototype example
being the constant elasticity of variance (CEV) model; the approximation of
more general one-dimensional LV models, using different deterministic and
probabilistic techniques, was studied among others by Howison [23], Wid-
dicks, Duck, Andricopoulos and Newton [33], Capriotti [5], Gatheral, Hsu,
Laurence, Ouyang and Wang [16], Benhamou, Gobet and Miri [3]. A fur-
ther different approach based on heat kernel expansion and the parametrix
method was proposed by Corielli, Foschi and Pascucci [8], Constantinescu,
Costanzino, Mazzucato and Nistor [7], Cheng, Costanzino, Liechty, Mazzu-
cato and Nistor [6], Kristensen and Mele [25].

Asymptotic methods for two-factor stochastic volatility models were
studied by Hagan, Kumar, Lesniewski and Woodward [17] who introduced
the SABR model; further improvements were proposed by Fouque, Papan-
icolaou, Sircar and Solna [15], Berestycki, Busca and Florent [4], Antonelli
and Scarlatti [1]. In [26] Lesniewski introduced a geometric approach to
the approximation of stochastic volatility models using the heat kernel ex-
pansion on a Riemann manifold: this approach was further developed by
Hagan, Lesniewski and Woodward [18], Paulot [29], Taylor [31] and Henry-
Labordère who in [20] generalized the SABR to a model with mean-reverting
volatility, the so-called λ-SABR.

In this paper we are mainly concerned with one-dimensional LV models
of the form

dSt = µ(t, St)dt+ σ(t, St)StdWt; (1.1)

we present in this simplel framework a methodology that can be applied
to multi-dimensional models, jump-diffusion models and even in the case of
ultraparabolic pricing equations such as PDEs for Asian options: these and
other issues are covered in the forthcoming paper [14].

The starting point of our analysis is the paper by Hagan and Woodward
[19]. We develop the approach in [19] and show how it can be simplified and
adapted to derive an expansion directly of the density of the underlying pro-
cess, with the possibility of incorporating time-dependency and even jumps.
Our main result is an expansion of the transition density Γ(t, S0;T, S) of S
in (1.1) of the form

Γ(t, S0;T, S) ≈ G0(t, S0;T, S) +

N∑

n=1

Jn
S0
G0(t, S0;T, S), N ≥ 1, (1.2)

where the main termG0(t, S0;T, S) is the density in a suitable Black&Scholes
model, while Jn

S0
is a differential operator containing derivatives with respect

to the variable S0: thus the terms of the expansion (1.2) are linear combi-
nations of Black&Scholes sensitivities (Greeks). We show how to compute
the explicit expression of the operators Jn

S0
at any order by using an iter-

ative algorithm that is straightforward to implement by using a symbolic
computational software.
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From (1.2), we can easily derive the prices and the Greeks of plain vanilla
options: for instance, for a Call option with strike K and maturity T , we
have

C(t, S0) =

∫
Γ(t, S0;T, S) (S −K)+ dS

≈
(
1 +

N∑

n=1

Jn
S0

)∫
Γ0(t, S0;T, S) (S −K)+ dS

=CBS(t, S0) +

N∑

n=1

Jn
S0
CBS(t, S0),

where CBS denotes a Black&Scholes price. Formula (1.2) can also be used to
price efficiently American options and other exotic derivatives. We remark
that the accuracy of the approximation is independent of the smoothness
of the payoff function because the operators of the expansion act directly
on the transition density of the process and not on the payoff function.
Another key feature of our approach is that at any order the approximated
density integrates to one (cf. Remark 2.5), thus avoiding the introduction of
arbitrage opportunities: for instance, the approximated option prices verify
the Put-Call parity.

Finally, the smaller the time lag T − t is, the faster the convergence of
the expansion is. Thus, for longer maturities, it is advantageous to split the
time interval in order to get a significant improvement of the accuracy. In
Remark 2.4, we show how this can be done by using the expansion (1.2) and
also in this case we find explicit formulae.

The layout of the paper is as follows. In Section 2 we present our main
results and provide the full detail of the proof in a simplified setting. In
Section 3 we carry the expansion out to order two (i.e. N = 2 in (1.2))
for the general LV model (1.1). The numerical Section 4 investigates the
effectiveness of the approximation obtained in two relevant models: in the
case of a quadratic LV model we test the expansion against standard Monte
Carlo approximation; secondly, we analyze more extensively the CEV model
and compare ours to the earlier approximations by Hagan and Woodward
[19] and by Henry-Labordère [20].

Acknowledgements. This paper is based on the talk given by the second
author at the MathFinance Conference held in Frankfurt on March 14-15,
2011. The Mathematica notebook with the implementation of the formulae
of this paper is available on the web site of the authors.
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2 Analytical approximation of parabolic fundamen-

tal solutions

In this section we present the approximation technique in the simplest
case of a differential operator of the form

L =
a(x)

2
∂xx + ∂t, (t, x) ∈ R

2, (2.3)

where a is a smooth function such that

a0 ≤ a(x) ≤ C, x ∈ R,

for some positive constants a0 and C. For simplicity of exposition, we only
consider time-independent coefficients and refer to Section 3 for the general
case. By taking the Taylor expansion of a with starting point x̄ ∈ R, we
have

L = L0 +

∞∑

k=1

αk(x− x̄)k∂xx (2.4)

where
L0 =

α0

2
∂xx + ∂t, α0 = a(x̄), (2.5)

is the 0-th order approximation of L and

αn =
1

2n!
∂n
xa(x̄), n ≥ 1.

We denote by Γ(t, x;T, y) the fundamental solution of L evaluated at (t, x)
with pole in (T, y): from the probabilistic point of view, Γ(t, x;T, y) is the
transition density of the solution to the SDE

dXt =
√

a (Xt)dWt, (2.6)

where W is a standard Wiener process: precisely, y 7→ Γ(t, x;T, y) is the
density of the random variable Xt,x

T , where Xt,x denotes the solution of

(2.6) with initial condition Xt,x
t = x.

We aim to approximate Γ by an expansion of the form

Γ(t, x;T, y) =
∑

k≥0

Gk(t, x;T, y) (2.7)

where the
(
Gk
)
k≥0

is defined recursively in terms of the solutions of a se-
quence of Cauchy problems. More precisely, the leading term of the expan-
sion

G0(t, x;T, y) :=
1√

2πα0(T − t)
exp

(
− (x− y)2

2α0(T − t)

)
, x, y ∈ R, t < T,

(2.8)
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is the fundamental solution of L0 in (2.5). Moreover, for any (T, y) ∈ R
2,

we denote by G1(·, ·;T, y) the solution of the Cauchy problem
{
L0G1(t, x;T, y) + α1(x− x̄)∂xxG

0(t, x;T, y) = 0, t < T, x ∈ R,

G1(t, x;T, y) = 0, x ∈ R,

(2.9)
and by G2(·, ·;T, y) the solution to
{
L0G2 + α1(x− x̄)∂xxG

1 + α2(x− x̄)2∂xxG
0 = 0, t < T, x ∈ R,

G2(t, x;T, y) = 0, x ∈ R.

(2.10)
In general, we put

ΓN (t, x;T, y) =

N∑

n=0

Gn(t, x;T, y), N ≥ 0,

and we define recursively the sequence (Gn)n∈N by setting




L0Gn +

n∑
k=1

αk(x− x̄)k∂xxG
n−k = 0, t < T, x ∈ R,

Gn(t, x;T, y) = 0, x ∈ R.
(2.11)

Remark 2.1. The particular choice of the Cauchy problems (2.11) comes
from the fact that

L0ΓN =

N∑

n=0

L0Gn =

(by (2.11))

= −
N∑

n=0

n∑

k=1

αk(x− x̄)k∂xxG
n−k = −

N∑

k=1

αk(x− x̄)k∂xx

N∑

n=k

Gn−k

= −
N∑

k=1

αk(x− x̄)k∂xxΓ
N−k, (2.12)

and passing to the limit as N → ∞, from (2.12) and (2.4) we get

L

∞∑

n=0

Gn = 0.

Moreover, formally we have

ΓN (T, x;T, y) = G0(T, x;T, y) = δ(x− y),

for any N ≥ 0, where δ is the Dirac delta centered at the origin.
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In order to compute the explicit solution to problems (2.11), we recall
some properties of the Gaussian density Γ0 = G0 in (2.8). First of all, we
shall use the following general reproduction (or semigroup) property of Γ0

(cf., for instance, [28]): for any t < s < T and x, y ∈ R, we have

∫

R

Γ0(t, x; s, η)Γ0(s, η;T, y)dη = Γ0(t, x;T, y). (2.13)

Moreover we need the following elementary lemma.

Lemma 2.2. For any x, y ∈ R and t < T , we have

∂yΓ
0(t, x;T, y) = −∂xΓ

0(t, x;T, y), (2.14)

yΓ0(t, x;T, y) = xΓ0(t, x;T, y) + (T − t)α0∂xΓ
0(t, x;T, y). (2.15)

Proof. Formula (2.15) is obvious by symmetry, while formula (2.14) follows
from the identity

∂xΓ
0(t, x;T, y) = − x− y

(T − t)α0
Γ0(t, x;T, y).

By Lemma 2.2, the partial derivative ∂y acts as −∂x on Γ0(t, x;T, y).
Moreover, if mx denotes the product operator

mxf = xf, (2.16)

then, for any c ∈ R, the operator my+c acts as

mx+c + (T − t)α0∂x

on Γ0(t, x;T, y). More generally, we also have

(y + c)kΓ0(t, x;T, y) = mk
y+cΓ

0(t, x;T, y)

= (mx+c + (T − t)α0∂x)
k Γ0(t, x;T, y)

for any k ∈ N.

Proposition 2.3. The solution Gn of problem (2.11) is given by

Gn(t, x;T, y) = Jn
t,T,xΓ

0(t, x;T, y)

where Jn
t,T,x is a differential operator of the form

Jn
t,T,x =

3n∑

k=2

cn,k(T − t)pn,k(x− x̄)qn,k∂k
x (2.17)

6



with cn,k ∈ R, pk, qk ∈ N such that1

2pn,k ≥ n, (2.18)

and2

2pn,k + qn,k − k = n. (2.19)

The operators Jn
t,T,x in (2.17) can be computed iteratively (cf. Remark 2.4):

for instance, for n = 1, 2 we have

J1
t,T,x =α1(T − t)(x− x̄)∂2

x +
α1α0

2
(T − t)2∂3

x, (2.20)

J2
t,T,x =

α2

2
(T − t)

(
α0(T − t) + 2(x− x̄)2

)
∂2
x

+
(
α2
1 + α0α2

)
(T − t)2(x− x̄)∂3

x

+

(
1

6
(T − t)3α0

(
3α2

1 + 2α0α2

)
+

1

2
(T − t)2α2

1 (x− x̄)2
)
∂4
x

+
α0α

2
1

2
(T − t)3(x− x̄)∂5

x +
α2
0α

2
1

8
(T − t)4∂6

x. (2.21)

Proof. By the standard representation formula for solutions to the non-
homogeneous parabolic Cauchy problem with null final condition, we have

G1(t, x;T, y) =

∫ T

t

∫

R

Γ0(t, x; s, η)α1(η − x̄)∂ηηΓ
0(s, η;T, y)dηds =

(using notation (2.16))

= α1

∫ T

t

∫

R

mη−x̄Γ
0(t, x; s, η)∂ηηΓ

0(s, η;T, y)dηds =

(by (2.15))

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x)

∫

R

Γ0(t, x; s, η)∂ηηΓ
0(s, η;T, y)dηds =

(by parts)

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x)

∫

R

∂ηηΓ
0(t, x; s, η)Γ0(s, η;T, y)dηds =

(by (2.14))

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ∂xx

∫

R

Γ0(t, x; s, η)Γ0(s, η;T, y)dηds =

1By (2.18), the approximation is better for shorter times and larger n.
2By (2.19), there is a sort of parabolic homogeneity and the damping effect of T − t

and x− x̄ becomes stronger as the order of the approximation increases.
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(by the reproduction property (2.13))

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ds ∂xxΓ
0(t, x;T, y).

Thus we have

J1
t,T,x = α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ds ∂xx (2.22)

and integrating in s we get (2.20).
Concerning G2, we have

G2(t, x;T, y) = I1 + I2

where, proceeding as before,

I1 = α2

∫ T

t

∫

R

Γ0(t, x; s, η)(η − x̄)2∂ηηΓ
0(s, η;T, y)dηds

= α2

∫ T

t

(mx−x̄ + (s− t)α0∂x)
2 ∂xx

∫

R

Γ0(t, x; s, η)Γ0(s, η;T, y)dηds

= α2

∫ T

t

(mx−x̄ + (s− t)α0∂x)
2 ds ∂xxΓ

0(t, x;T, y),

and

I2 = α1

∫ T

t

∫

R

Γ0(t, x; s, η)(η − x̄)∂ηηG
1(s, η;T, y)dηds

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ∂xx

∫

R

Γ0(t, x; s, η)J1
s,T,ηΓ

0(s, η;T, y)dηds

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ∂xxJ̃
1
s,T,x

∫

R

Γ0(t, x; s, η)Γ0(s, η;T, y)dηds

= α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ∂xxJ̃
1
s,T,x dsΓ

0(t, x;T, y),

with

J̃1
s,T,x = α1(T − s) (mx−x̄ + (s− t)α0∂x) ∂

2
x +

α1α0(T − s)2

2
∂3
x.

In conclusion we have

J2
t,T,x =α2

∫ T

t

(mx−x̄ + (s− t)α0∂x)
2 ds ∂xx

+ α1

∫ T

t

(mx−x̄ + (s− t)α0∂x) ∂xxJ̃
1
s,T,x ds.

(2.23)

and integrating in s we get formula (2.21). Eventually, the general expression
(2.17) can be proved by induction.
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Remark 2.4. The proof of Proposition 2.3 provides a constructive algorithm
that can be used to compute higher order approximations iteratively. In
particular this can be done by means of a symbolic computation software
to get the explicit expression of the operators Jn

t,T,x in (2.17): for instance,

using Mathematica one can find the expression of J1
t,T,x in (2.22) or J2

t,T,x

in (2.23) by writing just one line of code. Moreover, since the derivatives of
the Gaussian density Γ0 can be expressed in terms of Hermite polynomials,
the computation of the terms of the expansion is extremely fast.

According to (2.7), the N -th order approximation of Γ is given by

ΓN (t, x;T, y) =

N∑

n=0

Gn(t, x;T, y).

By Proposition 2.3 we have

ΓN (t, x;T, y) = Γ0(t, x;T, y) +AN
t,T,xΓ

0(t, x;T, y), (2.24)

where Γ0 ≡ G0 is the Gaussian density in (2.8) and AN
t,T,x is the differential

operator

AN
t,T,x =

N∑

n=1

Jn
t,T,x, N ≥ 1. (2.25)

Remark 2.5. From formula (2.24), we infer that

∫

R

ΓN (t, x;T, y)dy = (1 +AN
t,T,x)

∫

R

Γ0(t, x;T, y)dy = 1.

Thus, a general property of the approximated density ΓN is that it integrates
to one.

More generally, a nice feature of the approximation formula (2.24) is
that AN

t,T,x acts as a differential operator in the variable x (starting point of
the underlying stochastic process). As a consequence, the price of an option
with payoff function ϕ is simply given by

C(t, x) =

∫
Γ(t, x;T, y)ϕ(y)dy

≈ (1 +AN
t,T,x)

∫

R

Γ0(t, x;T, y)ϕ(y)dy = CBS(t, x) +AN
t,T,xCBS(t, x),

where CBS denotes the option price in a Gaussian model (Black&Scholes).
The financial interpretation is that the approximated price is given by the
B&S price plus higher order terms defined by a linear combination of Greeks
of the option.
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The approximation formula for the density is useful to price American
options and other exotic derivatives. The Greeks/sensitivities can be easily
computed as well: indeed, notice that

∂xC(t, x) ≈ ∂xCBS(t, x) + ∂xAN
t,T,xCBS(t, x)

so that the problem of the irregularity of the payoff function (typical of
Monte Carlo approximation) is overcome.

Remark 2.6. Even if not stated explicitly, the approximation result of
Proposition 2.3 depends on the choice of starting point x̄ of the Taylor expan-
sion. With the specification x̄ = x, we get a particularly simple expression
of the operators Jn

t,x,T in (2.20)-(2.21):

J1
t,T,x =

α1α0(T − t)2

2
∂3
x, (2.26)

J2
t,T,x =

α2α0

2
(T − t)2∂2

x +
α0

6

(
2α0α2 + 3α2

1

)
(T − t)3∂4

x +
α2
0α

2
1

8
(T − t)4∂6

x,

J3
t,T,x =

α0

3
(4α1α2 + 3α0α3)(T − t)3∂3

x

+
α0

12

(
6α3

1 + 16α0α1α2 + 3α2
0α3

)
(T − t)4∂5

x

+
α2
0α1

12

(
3α2

1 + 2α0α2

)
(T − t)5∂7

x +
α3
0α

3
1

48
(T − t)6∂9

x.

Other specifications of x̄ can be used to minimize the approximation error.

Remark 2.7. The approximation can be further improved by using the re-
production property (2.13) and exploiting the fact that the approximation is
more efficient for short maturities because of the presence of powers of T − t
in the coefficients of the expansion. We first note that, integrating by parts
and by (2.14), for J1

t,T,x as in (2.26) we have
∫

R

Γ0(t, x; s, η)
(
1 + J1

s,T,η

)
Γ0(s, η;T, y)dη =

=
(
1 + J1

s,T,x

) ∫

R

Γ0(t, x; s, η)Γ0(s, η;T, y)dη =

(by the reproduction property)

=
(
1 + J1

s,T,x

)
Γ0(t, x;T, y). (2.27)

Then, for any t < s < T and x, y ∈ R, we have

Γ(t, x;T, y) =

∫

R

Γ(t, x; s, η)Γ(s, η;T, y)dη

≈
∫

R

(
1 + J1

t,s,x

)
Γ0(t, x; s, η)

(
1 + J1

s,T,η

)
Γ0(s, η;T, y)dη

=
(
1 + J1

t,s,x

) ∫

R

Γ0(t, x; s, η)
(
1 + J1

s,T,η

)
Γ0(s, η;T, y)dη =

10



(by (2.27))

=
(
1 + J1

t,s,x

) (
1 + J1

s,T,x

)
Γ0(t, x;T, y).

In general, for any t < s1 < · · · < sN < T we have

Γ(t, x;T, y) ≈
(
1 + J1

t,s1,x

) (
1 + J1

s1,s2,x

)
· · ·
(
1 + J1

sN ,T,x

)
Γ0(t, x;T, y),

that is easily computable and may improve the approximation for long ma-
turities.

3 Applications to local volatility models

We now consider the more general dynamics of a LV model in the risk-
neutral measure

dSt = rStdt+ σ(t, St)StdWt (3.28)

where σ(t, S) is a suitably regular function such that

σ1 ≤ σ(t, S) ≤ σ2, t > 0, S > 0, (3.29)

for some positive constants σ1, σ2. The pricing Cauchy problem is

{
LC(t, S) = 0, t < T, S > 0,

C(T, S) = ϕ(S), S > 0,

where

L =
σ2(t, S)S2

2
∂SS + rS∂S + ∂t − r. (3.30)

The function
u(t, x) = er(T−t)C(t, ex)

solves the parabolic Cauchy problem

{
Lu(t, x) = 0, t < T, x ∈ R,

u(T, x) = ϕ(ex), x ∈ R,

where

L =
a(t, x)

2
(∂xx − ∂x) + r∂x + ∂t, (t, x) ∈ R

2, (3.31)

and
a(t, x) = σ2(t, ex).

For sake of simplicity, we just consider the case of time-independent volatility

σ(t, S) = σ(S), (3.32)
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so that a(t, x) = a(x). This assumption is not restrictive: in the time-
dependent case, the method does not present any further difficulty, even if
it leads to longer computations. Hereafter, we fix x̄ ∈ R and we use the
notation

α0 = a(x̄) ≡ σ2(ex̄), αn =
1

2n!
∂n
xa(x̄), n ≥ 1.

By using the method presented in Section 2, we get the following approx-
imation formula for the density of S. We omit the proof since it is based on
the same technique presented in Section 2.

Proposition 3.1. Let Γ(0, S;T, y) be the transition density of S0,S
T in

(3.28). Then we have

Γ(0, S;T, y) ≈ 1

y
ΓN (0, log S;T, log y), (3.33)

where
ΓN (0, x;T, z) = (1 +AN

0,T,x)Γ
0(0, x;T, z),

and

Γ0(t, x;T, z) =
1√

2πα0(T − t)
exp

(
−
(
x− z + (T − t)

(
r + α0

2

))2

2α0(T − t)

)

is the fundamental solution of the operator

L0 =
α0

2
(∂xx − ∂x) + r∂x + ∂t, (t, x) ∈ R

2.

Moreover AN
0,T,x is the differential operator in (2.25), whose explicit expres-

sion can be found iteratively proceeding as in the proof of Proposition 2.3:
in particular, for N = 2 we have

J i
0,T,x =

3i∑

n=1

f i
n(x)∂

n
x , i = 1, 2, (3.34)

where

f1
1 (x) =

1

4
α1T (−2rT − 4x+ 4x̄+ Tα0) ,

f1
2 (x) =

1

4
α1T (2rT + 4x− 4x̄− 3Tα0) ,

f1
3 (x) =

1

2
α0α1T

2,

f2
1 (x) =− T

12

(
4r2T 2α2 + 12 (x− x̄)2 α2 + T 2α0

(
α2
1 + α0α2

)

+ 6T
(
α0α2 − (x− x̄)

(
α2
1 + α0α2

))
− 2rT

(
6 (−x+ x̄)α2

+ T
(
α2
1 + 2α0α2

) ))
,

12



f2
2 (x) =

1

96
T
(
3T 3α2

0α
2
1 + 96 (x− x̄)2 α2 + 4r2T 2

(
3Tα2

1 + 8α2

)

+ 8T 2α0

(
(7− 3x+ 3x̄)α2

1 + 5α0α2

)

+ 12rT
(
−T (4− 4x+ 4x̄+ Tα0)α

2
1 − 8 (−x+ x̄+ Tα0)α2

)

+ 48T
(
α0α2 + (x− x̄)

(
(−3 + x− x̄)α2

1 − 3α0α2

)) )
,

f2
3 (x) =

1

48
T 2
(
−
(
12r2T 2 + 48 (−1 + x− x̄) (x− x̄)

+ 48T (1− x+ x̄)α0 + 9T 2α2
0 − 8rT (2− 6x+ 6x̄+ 3Tα0)

)
α2
1

+ 16α0 (2rT + 3x− 3x̄− 2Tα0)α2

)
,

f2
4 (x) =

1

96
T 2

(
3
(
4 (rT + 2x− 2x̄)2 + 4T (4− 5rT − 10x+ 10x̄)α0

+ 13T 2α2
0

)
α2
1 + 32Tα2

0α2

)
,

f2
5 (x) =

1

8
T 3α0 (2rT + 4x− 4x̄− 3Tα0)α

2
1,

f2
6 (x) =

1

8
T 4α2

0α
2
1.

Next, we give a second order approximation formula for the price of a
Call option. Precisely, let C(t, St) denote the price at time t of a Call option
with strike K and maturity T , written on an asset with dynamics given
by (3.28) with time-independent volatility (3.32). According to Proposition
3.1, we have the following

Corollary 3.2 (Call price). The second order approximation of C(t, St) is
given by u(t, log St) where

u(t, x) = (1 + J1
t,T,x + J2

t,T,x)CBS(t, x). (3.35)

In (3.35), J i
t,T,x, i = 1, 2, is3 as in (3.34) and CBS is the standard Black&Scholes

price function (expressed in terms of log-price of the asset)

CBS(t, x) = e−r(T−t)

∫

R

1

y
Γ0(t, x;T, log y)(y −K)+dy

= exN (d1)− e−r(T−t)KN (d2) ,

with

d1 =
2x− 2 logK + (T − t)(2r + α0)

2
√

(T − t)α0

, d2 = d1 −
√

α0(T − t).

More explicitly, putting x̄ = x and t = 0, we have

u(0, x) = CBS(0, x) +
Ke

−
(−2(rT+x)+Tα0+2 logK)2

8Tα0√
2πTα0

(Q1(x) +Q2(x)) (3.36)

3Due to time-homogeneity we have J
i
t,T,x = J

i
0,T−t,x.
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where

Q1(x) = −Tα1(x− logK)

2
,

and

Q2 (x) =
1

96α2
0

(
12x4α2

1 − 8rTx
(
−3x2 + Tα0

)
α2
1 + 4r2T 2

(
3x2 + Tα0

)
α2
1

− T 2α2
0

(
(12 + Tα0)α

2
1 − 16α0α2

)

− Tx2α0

(
−3 (8 + Tα0)α

2
1 + 32α0α2

)

− logK
(
− 24r2T 2xα2

1 − 48x3α2
1 + 8rT

(
−9x2 + Tα0

)
α2
1

− 2Txα0

(
3 (8 + Tα0)α

2
1 − 32α0α2

)

− logK
(
3
(
4r2T 2 + 24rTx+ 24x2 − Tα0 (8 + Tα0)

)
α2
1

− 32Tα2
0α2 + 12α2

1 logK (−2rT − 4x+ logK)
)))

.

4 Numerical tests

In this section we test the performance of the analytical approximation
formulae presented in the previous sections in the context of one-dimensional
local volatility (LV) models. Let us remark explicitly that when the underly-
ing asset is modeled by a geometric Brownian motion, then our approxima-
tion reduces to the standard Black&Scholes formula. For more complicated
models, we obtain accurate approximations of densities and prices for a rea-
sonably wide range of parameters. We first consider a standard quadratic
LV model and then we analyze in more details the well-known constant
elasticity of variance (CEV) model.

We assume that S solves the SDE (3.28) with

σ(t, S) = σ0
√

1 + (S − a)2

where σ0, a ∈ R+. In the following experiment we compare the second, third
and fourth order approximation of the Call price with an accurate Monte
Carlo (MC) simulation. In Figure 1 the dotted, dot-dashed and dashed
lines represent the relative errors of the (second, third and fourth order,
respectively) approximated Call prices, for maturities T = 0.25 (left) and
T = 1 (right). The values of the parameters are

K = 1, r = 5%, σ0 = 20%, a = 1, (4.37)

and the initial price S0 ranges from 0.5 to 1.5. A 200-steps Euler discretiza-
tion of the SDEs and a MC with 1.000.000 simulations have been used. We
marked by gray (light gray) the confidence regions where prices differ no
more than 2 (2.57) standard deviations from the simulated MC prices: in
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Figure 1: Relative errors of the second (dotted line), third (dot-dashed line) and
fourth (dashed line) order approximated Call prices (compared with MC prices).
The 95% and 99% MC confidence regions are marked by gray and light gray re-
spectively. A 200-steps Euler discretization of the SDEs and a MC with 1.000.000
simulations have been used. The parameters are as in (4.37) and T = 0.25 (left)
and T = 1 (right)
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Figure 2: Relative errors of the second (dotted line), third (dot-dashed line) and
fourth (dashed line) order approximated Call prices (compared with MC prices).
The 95% and 99% MC confidence regions are marked by gray and light gray re-
spectively. A 500-steps Euler discretization of the SDEs and a MC with 1.000.000
simulations have been used. The parameters are as in (4.37) and T = 2 (left) and
T = 3 (right)

other words, according to the MC approximation, the true price belongs to
the gray (light gray) region with probability 95% (99%).

In Figure 2 we repeat the same experiment for longer maturities, T = 2
(left) and T = 3 (right): in this case a 500-steps Euler discretization has
been used.

Next we consider the classical CEV model introduced by Cox [9]:

dSt = µStdt+ σSβ
t dWt. (4.38)

We are interested in this particular LV model because the difficulties in the
numerical approximation of the CEV model are similar to those of the SABR
model that is its stochastic volatility counterpart and is widely used to price
interest rate options. These difficulties are mainly caused by the fact that if
β ∈]0, 1[ the point 0 is an attainable state for S (see, for instance, Lindsay
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and Brecher [27]). As soon as S reaches zero, we have to keep it equal
zero (absorbing boundary): under this condition, Delbaen and Shirakawa
[11] proved the existence of a unique equivalent martingale measure under
which the dynamics of S are as in (4.38) with µ = r (r denotes the risk-free
rate); moreover the arbitrage free price at time t, of the option which pays
ϕ(ST ) at time T , is given by

C(t, S) = e−r(T−t)E
[
ϕ
(
St,S
T

)]
. (4.39)

Notice that, if we assume the origin as a reflecting boundary then the CEV
model admits arbitrage opportunities (cf. [11] or [22]).

The density of S can be expressed explicitly in terms of special functions:
precisely, for r = 0 we have

Γ(t, S;T, y) =

√
yS

1
2
−2βe

−S2(1−β)+y2(1−β)

2(1−β)2σ2(T−t)

(1− β)σ2(T − t)
I 1

2(1−β)

(
(Sy)1−β

(1− β)2σ2(T − t)

)
,

(4.40)
where Iν(x) is the modified Bessel function of the first kind defined by

Iν(x) =
(x
2

)ν ∞∑

k=0

x2k

22kk!G(ν + k + 1)

and G is the Gamma function. For the case r 6= 0, we refer for instance to
Davydov and Linetsky [10].

More explicit results on the precise asymptotic behaviour of Γ at bound-
ary points have been recently proved by Ekström and Tysk [13]: in the case
r = 0 and β ∈ [1/2, 1[, they prove that

y 7→ Γ(t, S;T, y) ∼ y1−2β as y → 0+.

Notice that, due to absorption, the law of St,S
T has a Dirac delta component

at the origin and consequently the function Γ in (4.40) is not a density in
the standard sense because

∫ +∞

0
Γ(t, S;T, y)dy < 1,

and part of the mass is concentrated at the origin. In general this fact is
difficulty captured by heat kernel expansions based on Gaussian functions,
such as those proposed by Hagan and Woodward [19], Henry-Labordère [21],
Paulot [29], Gatheral, Hsu, Laurence, Ouyang and Wang [16], Taylor [31]
and also by our expansion presented in the previous sections. For this reason,
alternative approximations were proposed by Doust [12], Barjaktarevic and
Rebonato [2] in the more general setting of the SABR model.
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Figure 3: CEV (solid line) and Gaussian (dashed line) densities

Remark 4.1. It is not restrictive to assume, as we shall systematically do
in the sequel, that S0 = 1: indeed, we can always rescale the CEV equation
by setting Xt =

St

S0
and we get

dXt = rXtdt+ σIX
β
t dWt

where σI = σSβ−1
0 is the so-called CEV normalized volatility. Even in the

case of interest rate models where S represents an interest rate with values
of the order of 1%, typically σI ranges from 10% to 50%.

The relationship between CEV stochastic equations and PDEs was es-
tablished by Janson and Tysk [24] who proved a Feynman-Kac type theorem:
precisely, they showed that, if the payoff function ϕ is continuous and poly-
nomially bounded (i.e. |ϕ(S)| ≤ C(1 + Sm) for some C and m), then the
function C in (4.39) is the unique, polynomially bounded classical solution
to problem





LβC(t, S) = 0, (t, S) ∈]0, T [×]0,+∞[,

C(T, S) = ϕ(S), S > 0,

C(t, 0) = e−r(T−t)ϕ(0), t ∈]0, T [,
(4.41)

where

Lβ =
σ2S2β

2
∂SS + rS∂S + ∂t + r, S > 0.

Applying the 2nd-order approximation result of Section 2 directly to
problem (4.41), we get exactly the classical Hagan-Woodward [19] formula
for Call prices: notice that the true density of ST is supported on R+ but it
is approximated by using a Gaussian density with support on R (cf. Figure
3). Indeed, except for the case β = 0, the pricing operator Lβ does not
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satisfy the uniform parabolicity condition (3.29): thus, for moderately large
values of σ and for long maturities, we have a “loss of mass” of the Hagan-
Woodward (HW) approximated density on R+ and consequently, as it has
been recognized by several authors, the HW approximation may become
inaccurate.

To partially fix this problem, we suggest to first perform the change
of variable S = ex to transform the Cauchy problem (4.41), posed on the
semi-strip ]0, T [×R+, into problem

{
Lβu(t, x) = 0, (t, x) ∈]0, T [×R,

u(T, s) = ϕ (ex) , x ∈ R,
(4.42)

with

Lβ =
σ2e2(β−1)x

2
(∂xx − ∂x) + r∂x + ∂t + r.

Since Lβ is defined on the entire real axis, it seems more natural to use of
the heat kernel expansion to approximate its fundamental solution; once we
have the approximation, we go back to the original variables to estimate
the density of S: we call this procedure the Log-approximation of the CEV
density. The idea is that, while the HW approximation shifts part of the
mass into the negative real axis, on the contrary the Log-approximation tries
to mimic the delta at zero by concentrating part of the mass close to the
origin. As we shall see later, the Log-approximation gives rather satisfactory
results when β is not too close to zero, that is when the CEV model is not
close to the normal one.

Figure 4 shows the graph of the CEV density

y 7→ Γ(0, S0;T, y)

in (4.40) with S0 = 1, β = 2
3 , σ = 0.5, r = 0 and maturities T = 1, 10, 20, 30.

For comparison we also plot the approximation by Henry-Labordère (cf. [21],
p.132), the HW approximation and the 4th-order Log-approximation of Γ.
In Figure 5 we consider the case β = 1

3 .
Notice that the LH, HW and Log approximations cannot reproduce the

delta component of the CEV process at the origin and can take negative
values. On the other hand, the integral over R+ of the Log-approximated
density is, by construction, equal to one (cf. Remark 2.5)

∫ +∞

0
ΓLog(0, S0;T, y)dy = 1

for any positive T and S0. This is not the case for the Gaussian approxima-
tion by Hagan-Woodward that verifies

∫ +∞

0
ΓHW(0, S0;T, y)dy ≤ 1. (4.43)
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Figure 4: CEV density with β = 2

3
(thick line), HL approximation (dot-dashed

line), HW approximation (dotted line) and 4th-order Log-approximation (dashed
line) with parameters S0 = 1, σ = 0.5, r = 0 and maturities T = 1, T = 10, T = 20
and T = 30
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Figure 5: CEV density with β = 1

3
(thick line), HL approximation (dot-dashed

line), HW approximation (dotted line) and 4th-order Log-approximation (dashed
line) with parameters S0 = 1, σ = 0.5, r = 0 and maturities T = 1, T = 10, T = 20
and T = 30
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Figure 6: Integral of the HW density as a function of the volatility σ ∈ [5%, 50%]
and maturity T ∈ [ 1

2
, 30] in the CEV model with β = 1

2

In Figure 6 the value of the integral in (4.43), expressed as a function of
the volatility σ ∈ [5%, 50%] and maturity T ∈ [12 , 30], is plotted; the other
parameters are β = 1

2 , r = 0 and S0 = 1. Also the integral of the LH density
is generally different from one, as shown in Figure 7.

Call and Put prices (×10)

Bessel 4th-Log 2nd-Log HW Call HW Put LH Call LH Put

T = 1 1.19345 1.19345 1.19344 1.19346 1.19174 1.19359 1.1939
T = 5 2.63769 2.63768 2.63737 2.63855 2.40181 2.64278 2.70363
T = 10 3.67286 3.67295 3.67201 3.67825 2.39639 3.69572 3.53664
T = 20 5.01275 5.01915 5.02073 5.0513 1.97434 5.11899 3.14135
T = 30 5.89194 5.91281 5.92962 6.00219 1.64068 6.14735 1.87179

Table 1: ATM Call and Put options in the CEV model with β = 1
2 , σ = 30%

and r = 0 computed by convolution with the “Bessel” density in (4.40) (sec-
ond column), the 4-th order Log-approximated density (third column), the 2-
nd order Log-approximated density (fourth column), the Hagan-Woodward
approximated density (fifth and sixth columns) and the Henry-Labordère
approximated density (seventh and eighth columns)

This fact is noteworthy because when the integral in (4.43) is different
from one, then option prices produced by the approximated density ΓHW

give rise to arbitrage opportunities. Indeed let us recall that, according to
the Put-Call parity, when r = 0 the prices of at-the-money (ATM) Call and
Put options must coincide. In Table 1, for the set of parameters β = 1

2 ,
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Figure 7: Integral of the LH density as a function of the volatility of the volatility
σ ∈ [5%, 50%] and maturity T ∈ [ 1

2
, 30] in the CEV model with β = 1

2

σ = 30%, r = 0, K = S0 = 1, we report the numerical results obtained by
direct integration of the payoff functions of Call and Put options, convoluted
with the “Bessel” density in (4.40) (second column), with the 4-th order Log-
approximated density (third column), with the 2-nd order Log-approximated
density (fourth column), with the Hagan-Woodward approximated density
(fifth and sixth columns) and with the Henry-Labordère approximated den-
sity (seventh and eighth columns) respectively. In Table 2 we report the
analogous results in the case β = 1

10 .
For the Bessel and Log-approximated densities, Puts and Calls have

indeed the same price and in the table we report the common value; on the
contrary, Put prices in the HW and LH approximations become uncorrect
for long maturities and violate the Put-Call parity formula.

We recall that Hagan and Woodward give in [19] a well-known approx-
imation formula of the implied volatility: the formula is rather satisfactory
because it is obtained from the approximation of Call prices that are not
affected by the singularity of the density at the origin. However, as the
previous analysis shows, the HW approximation is less satisfactory from the
more general point of view of the estimate of the density function, especially
for pricing purposes.

We conclude this section by showing a comparison between the HW and
Log approximation formulae of Call options: we take as reference values,
the prices computed using the exact density in (4.40) (cf. Shaw [30]) with
parameters r = 5% and S0 = 1. For each test we consider the strike ranging
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Call and Put prices (×10)

Bessel 4th-Log 2nd-Log HW Call HW Put LH Call LH Put

T = 1 1.19596 1.19595 1.19587 1.19597 1.19418 1.19601 1.19531
T = 5 2.66435 2.66417 2.66094 2.66665 1.91262 2.66744 1.97186
T = 10 3.71811 3.73689 3.72705 3.75773 1.74907 3.76049 1.75563
T = 20 4.97979 5.10287 5.11945 5.2761 1.4027 5.28507 1.16869
T = 30 5.72782 5.84894 6.02539 6.41517 1.18081 6.43251 0.63639

Table 2: ATM Call and Put options in the CEV model with β = 1
10 , σ = 30%

and r = 0 computed by convolution with the “Bessel” density in (4.40) (sec-
ond column), the 4-th order Log-approximated density (third column), the 2-
nd order Log-approximated density (fourth column), the Hagan-Woodward
approximated density (fifth and sixth columns) and the Henry-Labordère
approximated density (seventh and eighth columns)

from 1
2 to 2, maturities from 1

10 to 30 years and typical values of the volatility
σ = 30% and σ = 80%. We first consider maturities T ≤ 5: in Figures 8
and 9 we plot the relative errors for β = 2

3 and β = 1
3 respectively. Figures

10 and 9 are analogous but for longer maturities, up to 30 years.
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