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0.0 Abstract

This paper looks at empirical data from economics regarding wealth, earnings and income, alongside a 
flow model for an economy based on the general Lotka-Volterra models of Levy & Solomon.

The data and modelling suggest that a simple economic system might provide a tractable model for  
giving an exact statistical mechanical solution for an 'out of equilibrium' flow model. This might also 
include  an  exact  mathematical  definition  of  a  'dissipative  structure'  derived  from maximum entropy 
considerations.

This paper is primarily a qualitative discussion of how such a mathematical proof might be achieved.
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0.2 Introduction

This paper is a condensed extract from the full paper 'Why Money Trickles Up' which is available at  
econodynamics.org. The paper below is confined to a brief discussion of empirical data, mathematical  
background and modelling outputs. Background explanation and justification of assumptions has been 
kept to a minimum. The numbering in this paper follows that of 'Why Money Trickles Up', this may mean 
that numbering of equations may occasionally be out of order.

'The paper 'Why Money Trickles Up' is a wide-ranging paper that looks at the application of statistical  
mechanics and dynamics across economics and finance. It was found that a simple modelling approach,  
based on Lotka-Volterra and General Lotka-Volterra models had widespread application, giving solutions 
to wealth and income distributions, company size distributions, and also commodity and business cycles.

Unlike the exchange models widely used in econophysics, the GLV models used to generate the wealth 
and income distributions are 'flow' models, these are 'out of equilibrium' thermodynamic models, though 
they do come to dynamic equilibrium. It is the belief of the author that these flow models are maximum 
entropy flow models, analogous to the models described by Paltridge, Lorenz, Dewar and others primarily 
in the field of planetary ecology.

Although  the  models  in  'Why  Money  Trickles  Up'  explained  many  aspects  of  wealth  and  income 
distribution,  the  source  of  earnings  distributions;  the  distributions  of  wages  and  salaries,  remains 
unexplained. It is the belief of the author that these distributions, which give very good fits to Maxwell-
Boltzmann distributions, may allow the simple mathematical description of 'flow' systems by modelling 
them as a special variant of exchange models.

Section 1.1 of this paper briefly reviews the background empirical information on wealth and income 
distributions. Section 1.2 briefly summarises the Lotka-Volterra and General Lotka-Volterra models, while 
section 1.3 briefly reviews the outputs from the wealth and income modelling of 'Why Money Trickles Up'.  
Section 7.3 reviews the history of 'Maximum Entropy Production' and section 7.4 discusses the proposed 
approaches for modelling the statistical mechanics of 'out of equilibrium' thermodynamic systems.
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1.1 Wealth & Income Data – Empirical Information

Vilfredo Pareto first showed in 1896 that income distributions followed the power law distribution that 
now bears  his  name [Pareto  1896].  Despite  the differences between the economies studied,  Pareto 
discovered that the income of wealthy individuals varied as a power law in all cases. Research to the 
present day has confirmed this.

Typical graphs of income distribution are shown below. This is data for 2002 from the UK, and is an  
unusually good data set [ONS 2003].

Figure 1.1.1 here

Figure 1.1.1 above shows the probability density function. On these scales the log-normal appears to give 
a very good fit to the data.

Figure 1.1.2 here

Figure 1.1.2 above shows the same data, on a log-linear scale. The log-normal fit cannot describe the 
income of high-earners, above £900.

Figure 1.1.3 here

Figure 1.1.3 above shows the same data as a cumulative density function. The straight line Pareto power 
tail section is on the right-hand side. 

The Pareto distribution actually only applies to the top 10%-20% of earners, though it might include 
50% of income. The other 80%-90% of middle class and poorer people are accounted for by a different  
‘body’  of  the  distribution.  This  is  typically  modelled  by  a  log-normal  distribution.  The  author  has 
suggested that a Maxwell-Boltzmann distribution also provides a good fit to the main body of the income  
data that is equal to that of the log-normal distribution [Willis & Mimkes 2005].

The reasons for the split between the income earned by the top 10% and the main body 90% has been  
studied  in  more  detail  by  Clementi  and  Gallegati  [Clementi  &  Gallegati  2005a].  This  shows  strong 
economic regularities in the data. This suggests that the income gained by individuals in the power tail  
comes primarily from income gained from capital, while the income for the 90% of people in the main 
body of the distribution is primarily derived from wages. This view is supported by a data set form the US  
Department of Labor; Bureau of Statistics shown in figures 1.1.4 and 1.1.5.

Figure 1.1.4 here
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Figure 1.1.5 here

While this data has main bodies identical to the UK data, there is no sign whatsoever of the ‘power tail’, it  
is the belief of the author that the methodology for this US survey restricted the data to ‘earned’ or  
‘waged’ income, as the interest in the project was in looking at pay in services versus manufacturing  
industry. It is believed income from assets and investments was not included as this would have been 
irrelevant to the investigation.

This US data set has been included for a further reason, like the UK data of figure 1.1.1 there is a very  
clear offset from zero along the income axis.

This is important, as both the log-normal and Maxwell-Boltzmann distributions normally start at the origin  
of the axis. While it is straightforward enough to put an offset in, this is not normally necessary when 
looking at natural phenomena.

In recent years, the study of income distributions has gone through a small renaissance in the field of 
‘econophysics’,  see [Gabaix  2009, Chatterjee et  al  2007, Chatterjee & Chakrabarti  2007, Sinha 2005 
Bouchaud & Mezard 2000, Dragulescu & Yakovenko 2001, Nirei & Souma 2007, Souma 2001, Slanina 
2004]. The majority of these papers follow similar approaches; inherited either from the work of Gibrat,  
or from gas models in physics. Almost all the above models deal with basic exchange processes, with  
some sort of asymmetry introduced to produce a power tail.

All these models follow a traditional approach that assumes a static thermodynamic equilibrium.

It is important to note the difference between income and wealth. Trivially income is the time derivative 
of wealth. Without exception all the exchange models by all the various authors above, including those of 
Levy and Solomon, are wealth exchange models. I have not yet seen a model where income is an output.  
Despite this, the output distributions from these wealth models are often judged to be successful when  
they map well onto data derived from income studies.

An alternative approach to stochastic modelling has been taken by Moshe Levy, Sorin Solomon, and  
others [Levy & Solomon 1996].

They have produced work based on the ‘General Lotka-Volterra’ model. 

A  brief discussion of the origin and mathematics of GLV distributions is given below in section 1.2.

Figure 1.1.6 here

Figure 1.1.7 here

Figures 1.1.6 and 1.1.7 above show plots of UK income data against the GLV. The GLV is preferred for a  
number of reasons; these include the following:

The GLV has both a power tail and a ‘log-normal’-like main body. Other distributions investigated only  
model one or other of these.

The GLV has a ‘natural’ offset from zero. For the GLV the rise from zero probability starts at a non-zero x  
value.
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Thirdly the detailed fit of the GLV appears to be equivalent or better than the log-normal distribution, see  
Fig 1.1.8.

Figure 1.1.8 Reduced Chi Squared

Full Data Set Reduced Data Set

Boltzmann Fit 3.27 1.94

Log Normal Fit 2.12 3.02

GLV Fit 1.21 1.83

Remarkably, the figures in the second column show the GLV gives a marginally better fit even when the 
power law data is excluded.

However the main reason for using the GLV is that it allows an effective, intuitive and simple economic  
formulation. This is the main reason for preferring the GLV distribution, and is discussed in depth in the 
paper 'Why Money Trickles Up' (henceforth YMTU) [Willis 2011b]. In YMTU it is demonstrated that the 
(multiplicative) GLV can very effectively model wealth distributions. This then also gives an apparent GLV 
for total income.

It is the belief of the author that the earnings distributions from the US are in fact the product of a  
dynamic equilibrium process that produces an ‘additive GLV’ distribution, in contrast to the ‘multiplicative 
GLV’ distributions that are produced for wealth.

Background on the formation of power laws, log-normal laws and related processes, is given in three  
very  good  papers  by  Newman  [Newman  2005],  Mitzenmacher  [Mitzenmacher  2004]  and  Simkin  & 
Roychowdhury [Simkin & Roychowdhury 2006].

One  basic  point  from  the  papers  is  that  there  are  many  different  ways  of  producing  power  law 
distributions, but the majority fall into three main classes.

The first class gives a power law distribution as a function of two exponential distributions; of two growth 
processes.

The second class gives power law distributions as an outcome of multiplicative models. This is the route  
that  Levy  and  Solomon  have  followed  in  their  work,  and  forms  the  basis  for  the  GLV  distribution 
discussed in detail in the next section.

The third class for producing power laws uses concepts of ‘self-organised criticality’ or ‘SOC’.

1.2 Lotka-Volterra and General Lotka-Volterra Systems

1.2.1 Lotka-Volterra systems
Lotka-Volterra systems [Lotka 1925, Volterra 1926] are used to describe the dynamics of populations in  
ecological systems. A basic Lotka-Volterra system consists of a population of prey (say rabbits) whose 
size is given by x, and a population of predators (say foxes) given by y. When no predators are present 
this means that the population of the rabbits is governed by:

dx
dt

= ax 1.2.1a 
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where  a  is the population growth rate.

This would give exponential growth in the population of the rabbits. In the absence of any rabbits to eat,  
it is assumed that there is a natural death rate of the foxes:

dy
dt

= −cx 1.2.1 b

where c is the population die-off rate. This would give an exponential fall in the fox population.

When the foxes encounter the rabbits, two further effects are introduced, firstly the rate at which rabbits  
are killed is proportional to the number of rabbits and the number of foxes (ie the chance of foxes  
encountering rabbits), so:

dx
dt

= −x y 1.2.1 c

where  α is a constant, and the –ve sign indicates that such encounters are not good for the rabbits. 
However these interactions are good for the foxes, giving:

dy
dt

=  x y 1.2 .1d 

Where γ is again a fixed constant.

Taken together, the results above give a pair of differential equations:

dx
dt

= ax − x y

= x a −  y 1.2 .1 e

for the rabbits, and:

dy
dt

= x y − cy

= y x − c

= y −c  x  1.2 .1f 

for the foxes.
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1.2.2 General Lotka-Volterra (GLV) systems

As the name implies, the General Lotka-Volterra system (GLV) is a generalisation of the Lotka-Volterra 
model to a system with multiple predators and prey. This can be represented as:

dx i

dt
= x i ri  ∑

j=1

N

a i , j x i x j 1.2 .2a

= x i r i  ∑
j=1

N

ai , j x j 1.2.2 b

here, dxi/dt is the overall rate of change for the i-th particular species, out of a total of N species. This is  
made up of two terms.

The first term is the natural growth (or death) rate, r i, for the species, where xi is the population of 
species i. This rate ri is equivalent to the growth rate 'a' in equation  (1.2.1e) or the death rate '-c' in 
equation (1.2.1f).

The second term gives the sum of all the interactions with the j number of other species. Here a i,j is the 
interaction rate defining the relationship between species i and j.

ai,j is negative if species j is a predator feeding on species i, positive if species i is a predator feeding on 
species j, or can be of either sign for a heterotroph. a i,j is equivalent to the α of equation (1.2.1e) or the γ 
of equation (1.2.1f).

Equations  (1.2.2a)  and  (1.2.2b)  are  generalisations  of  equations  (1.2.1e)  and  (1.2.1f)  for  many 
interacting species.

For  each species  in  the system,  potentially  N-1 interaction  rates  a i,j are  needed,  while  N!  separate 
differential equations are needed to describe the whole system, which is problematic.

Fortunately in many systems it is possible to make simplifying assumptions. As an example Solomon 
[Solomon 2000] proposes the following difference equation as a possible explanation for the power law 
distribution  of  city  population  sizes.  This  equation  describes  changes in  the distribution  in  terms of 
discrete time-steps from time t to time t+1:

wi ,t1 = t wi , t  a t w t − c t wt wi , t 1.2 .2c

The terms on the right hand side, in say the year 2003, the year t, add up to give the population w of  
city i in the year 2004 on the left hand side, which is at time t+1.

In equation (1.2.2c), λ is the natural growth rate of the population w of city i, but is assumed that λ is 
the same for each city. at is the arrival rate of population from other cities, which is multiplied by the 
average population w of all the cities. The final term gives the rate of population leaving each city, 
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which is due to the probability ct of an individual meeting a partner from another city. This is given by 
multiplying the average population w with the population of city i.

Leaving aside the detail of the model, important generalisations have been made to produce a more  
tractable model.

In this case λ, a and c are universal rates, applicable to all members of the system.

λ and a both give ‘positive autocatalytic’ (positive feedback) terms which increase the population w of  
each city. While the negative value of c ensures that the population of each city has an element of  
decrease.

In the absence of the negative feedback term, the populations of the cities can increase indefinitely to  
infinity without reaching a stable solution.

In the absence of the positive autocatalytic growth of the  λ in the first term on right hand side, the 
second and third terms will cause all of the population to end up in a single city.

Normally  one  or  more  variables  are  assumed  to  be  stochastic;  that  is  they  can vary  randomly.  In 
Solomon’s example above, all three of λ, a and c are assumed to be stochastic. This stochasticity need 
not be large; it can be small fluctuations around a long-term mean, but it ensures that a locally stable 
solution is not reached, and that the system evolves into a single long term equilibrium solution.

By moving from the Lotka-Volterra model to a general Lotka-Volterra model, with numerous agents, Levy 
& Solomon have moved from a chaotic/dynamic problem to a statistical mechanical problem. In their 
mathematical  analysis  of  the GLV,  Levy  and  Solomon show that  the entropy  of  multip le  Boltzmann 
distributions gives the power law tails found in the GLV distribution [Levy & Solomon 1996].

Levy  and  Solomon show that  the  above  system can  give  a  stable  resultant  probability  distribution 
function of populations over the various cities of the form:

P w = e−−1 /w/ w1 1.2 .2 d

Which is the general form of the GLV distribution. Or more specifically:

P w = K e−−1/w /L/ w /L1 1.2 .2e

1.3 Wealth & Income Modelling

The  author  carried  out  a  modelling  exercise  that  was  successful  in  modelling  wealth  and  income 
distributions. This is discussed in full in the paper 'Why Money Trickles Up' [Willis 2011b]. This was based 
on the model shown in figure 1.3.5.

Figure 1.3.5 here
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The income stream Y has been split into two components; e is the earnings; the income earned from 
employment as wages and salaries, in return for the labour supplied.

Y = e  

π is the ‘profit’ and represents the payments made by firms to the owners of capital, this can be in the  
form of dividends on shares, coupons on bonds, interest on loans, rent on land or other property, etc.

All  of  this  real  capital  is  assumed  to  be  owned  by  households,  in  the  form  of  paper  assets,  W, 
representing claims on the real assets in the form of stocks or shares. More complex assets are ignored,  
as are personal assets such as housing, cars, jewellery, etc. It is assumed that all the real wealth K is  
owned in the form of shares (stocks) in the various firms.

This paper wealth is represented as W in total, or w i for each of i individuals.

For  the income models  it  was further  assumed that  the paper  wealth of  the households  accurately  
represents the actual physical capital owned by the companies, so the total real capital invested in the  
firms is equal to the total value of financial assets held by individuals.

In this model it was assumed that there was a steady state, so the totals of W and K are both constant.  
This means that the model has no growth, and simply continues at a steady equilibrium of production  
and consumption. So:

total C = total Y = total My

Note that although the totals of C and Y are the same, they may not be the same for individuals. Some 
individuals may consume less than they earn, or vice versa.

Other important base assumptions of the model were: 

• The economy is isolated; there are no imports or exports.

• There is no government sector, so no taxation or welfare payments, government spending, etc.

• There is no unemployment; all individuals are employed, with a given wage, either from a uniform 
distribution or a normal distribution depending on the model.

• Labour and capital are assumed to be complementary inputs and are not interchangeable at least  
in the short term.

• The role of money is ignored.

• There is no debt included in the income models.

The paper wealth W will be split between N individuals, although the total capital and wealth is fixed,  
individual wealth is allowed to vary, so:

∑ wi , t = ∑ w i ,t1 = W = K = constant 1.3 e
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Where  wi is the wealth of individual i.

Looking at a single individual in the box on the right of figure 1.3.5, in one time unit, from t to t+1, the  
change in wealth is given by the following equation:

wi , t1 = wi , t  e i , t  i , t − Ci , t 1.3h

In a single iteration, the paper wealth w of an individual i increases by the wages earned e plus the 
profits received π. The individual’s paper wealth also reduces by the amount spent on consumption C.

Although the totals  of  My  = Y = C  some individuals  can consume less  than their  income,  and  so 
accumulate more wealth W, others can consume more than their income and so reduce their total W.

Looking at the third and fourth terms on the right hand side of (1.3h) in the first model:

Firstly π, the income from returns. It is assumed that the economy consists of various companies all with  
identical risk ratings, all giving a uniform constant return; r on the investments owned, as paper assets,  
by the various individuals. Here r represents profits, dividends, rents, interest payments, etc. To prevent 
confusion with other variables, r will normally be referred to as the profit rate.

This gives:

i ,t = wi , t r 1.3j for each of the i agents.
    

For the final term consumption; C is assumed to be a simple linear, stochastic, function of wealth. So:

Ci , t = wi , t 1.3n 

Taken together and substituting into (1.3h) this gives the difference equation for each agent as follows:

wi ,t1 = w i, t  ei , t  w i, t r − wi , t 1.3o

Equation (1.3o) is the base equation for  a single agent in all the income models. It is worth noting how 
simple this equation is. Here w is the only variable. e, r and Ω are all constants; e and r are absolute 
constants Ω is constant over the long term, but is stochastic in the short term.

The second term on the RHS, the earned income e, provides a constant input that prevents individual  
values of wealth collapsing to zero, it also gives the offset from zero in the shape of the GLV distribution.  
Note that this is additive, where in the models of Levy & Solomon in section 1.2 above this term was 
multiplicative. In the modelling of YMTU the earnings distribution e i,t was defined exogenously as either a 
uniform or normal distribution.
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The third term on the RHS is a multiplicative term and gives a positive feedback loop. The fourth term is  
also multiplicative and gives negative feedback.

There is an important subtlety in the model above. In the original textbook economic model the total  
income and consumption are made equal by definition. In the models in this paper, income is fixed, but  
consumption varies with wealth. The negative feedback of the final consumption term ensures that total 
wealth  varies  automatically  to  a  point  where consumption  adjusts  so  that  it  becomes  equal  to  the  
income. 

This automatically brings the model into equilibrium. If income is greater than consumption, then wealth,  
and so consumption, will increase until C=Y.

If income is less than consumption, the consumption will decrease wealth, and so consumption, until  
again, C=Y.

Most income models produced in econophysics are exchange models. In these exchange models total  
wealth is fixed exactly and wealth is simply exchanged during the running of the model.

The GLV model of YMTU discussed above is a flow model, it is an 'out of equilibrium' model in terms of  
traditional thermodynamics. Total wealth is not fixed in the model. Wealth is continuously created and 
destroyed.  However,  because of  the self-regulating consumption  term,  total  wealth does come to  a  
constant value. The system does come to a dynamic equilibrium, in the sense that all the parameters of  
the system come to constant values.

In all  the income models studied, the total income Y per time unit  was fixed, and unless otherwise 
specified, the earned income was fixed equal to the returns income. So:

Y = ∑ ei  ∑i = constant , always 1.3p and

∑ e i = ∑i = Y
2

usually 1.3q

So unless otherwise specified, the total returns to labour are equal to the total returns to capital. This  
accords with the real world where, the share of labour earnings out of total income can vary typically  
between 0.75 and 0.5. This is known as Bowley’s Law, and represents as close to a constant as has ever 
been found in economics, figure 1.3.8 below gives an example for the USA. In developing economies, 
with  pools  of  reserve  subsistence  labour,  values  can  vary  more  substantially.  Young  gives  a  good 
discussion of the national income shares in the US, noting that the overall share is constant even though 
sector shares show long-term changes [Young 2010]. Gollin gives a very thorough survey of income 
shares in more than forty countries [Gollin 2002].

Figure 1.3.8 here

[St Louis Fed 2004]

Because of the importance of Bowley's law, it is useful to define some ratios:
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Profit rate r =
∑

W
1.3r

Where profit can refer to any income from paper assets such as dividends, rent, coupons on bonds,  
interest, etc.

Income rate  =
Y
W

1.3s 

which is the total earnings over the total capital. Here total earnings is all the income from wages and all  
the income from financial assets added together.

Bowley ratio  =
∑ e

Y
1.3t

Profit ratio  = ∑
Y

1.3u

These two define the wages and profit respectively as proportions of the total income. Following from the  
above, the following are trivial:

   = 1 1.3v 

Profit ratio  =
r


1.3w 

Bowley ratio  = 1 −
r


(1.3x)

We also define:

Consumption rate  =
C
W

4.5c 

and given that:
Consumption = Income

C = Y 4.5b

Then clearly:
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 =  4.5n 

This then gives alternative definition of the profit ratio and Bowley ratio that emerged from the modelling 
of YMTU:

 =
r


4.5h 

 = Bowley ratio

= 1 − r


4.5k 

Both the above are derived trivially by substituting from (4.5n) into (1.3w) and (1.3x). In fact (4.5h) and 
(4.5k) give the fundamental definitions of ρ and ß. For a full explanation of this see the full paper 'Why 
Money Trickles Up' or the shorter paper 'The Bowley Ratio' [Willis 2011a, 2011b].

Using a modelling approach based on equation 1.3o it was possible to generate full explanations of both 
wealth and income distributions, examples are shown in figures 1.4.4.1 to 1.4.4.4.

Figure 1.4.4.1 here

Figure 1.4.4.2 here

Figure 1.4.4.3 here

Figure 1.4.4.4 here

It can be seen from the figures above that the modelling gave full fits for the GLV to both wealth and  
income. For a full discussion of the results, see the full paper 'Why Money Trickles Up'.

These models explain the distributions for wealth fully, they also explain the distributions of income as a  
sum of investment income and and an externally defined, exogenous, distribution of earned income. The 
models do not explain the origin of this distribution of earned income, that is the main point of the 
discussions further in this paper.

An investigation was carried out into the effect of the profit ratio and Bowley ratio, along with other 
modelling inputs, on the value of α, the key parameter of the GLV in equation (1.2.2). It can be seen in 
figure 1.6.5 that there appears to be a strong relationship between ρ  and α.
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Figure 1.6.5 here

From the modelling it was possible to extract the following relationships for α, here v is the variance of 
the distribution of Ω.

 =
1.36 1 − 

v1.15 1.6d or:

 = 1.36
v1.15 1.6 e

Equations (1.6d) and (1.6e) are deceptively simple and appealing, and their meaning is discussed below 
in more detail.

Before this is done, it is worth stressing some caveats.

Firstly the two equations (1.6d) and (1.6e) have been extracted empirically from a model. They have not  
been derived mathematically. Neither have they been extracted from real data. Although it is the belief of  
the author that the equations are important and are sound reflections of economic reality, this remains 
solely a belief until either the equations are derived exactly or supporting evidence is found from actual  
economic data; or, ideally, both.

Secondly  the nature of  the two variables β and v are different.  The Bowley ratio  is  well  known in  
economics and is an easily observed variable in national accounts. In contrast v is the variance in an  
assumed underlying distribution of consumption saving propensity. In real economics the shape of such a 
distribution is  controversial  and is  certainly  not  settled.  Indeed the discussions of  this  paper are an  
attempt to resolve this issue.

Although equation (1.6e) is simpler, equation (1.6d) is the key equation here. Indeed the more diligent  
readers may have noted the strong resemblance of equation (1.6d) with the exponent produced from 
equation (45) in Newman [Newman 2005], which gives a general formula for α as:

 = 1 − a / b 1.6f 

Where a and b are two different exponential growth rate constants.

This is of course exactly what we saw in equation (1.3w) where ρ is the ratio of two different growth 
constants, r and Γ.

Profit ratio  =
r


1.3w

The value of ρ is simply the growth rate that capitalists get on capital, divided by the growth rate that  
everybody (capitalists and workers) gets on capital.
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It is the combination of these two growth rates that creates and defines the power law tail of the wealth 
and income distributions. This is the first, and simplest class of ways to generate power laws discussed in 
Newman [Newman 2005].

And a curious thing has happened here. There are many different ways to produce power laws, but most 
of them fall into three more fundamental classes; double exponential growth, branching/multiplicative 
models, and self-organised criticality.

The  models  in  YMTU  were  firmly  built  on  the  second  group.  The  GLV  of  Levy  and  Solomon  is  a 
multiplicative model built along the tradition of random branching models that go back to Champernowne  
in economics and ultimately to Yule and Simon [Simkin & Roychowdhury 2006].

Despite these origins we have ended up with a model that is  firmly in the first  class of power law  
production, the double exponential model.

It is the belief of the author that this is because the first two classes are inherently analogous, and are 
simply different ways of looking at similar systems.

Much more tentatively, it is also the belief of the author that both the first two classes are incomplete 
descriptions of equilibrium states, and further input is need for most real systems to bring them to the 
states described by the third class; that of self organised criticality (SOC).

Going back to the wealth and income distributions; equation (1.6d) can define many different possible 
outcomes for α. Even with a fixed Bowley ratio of say 0.7, it is possible to have many different values for 
α depending, in this case, on the value of v.

It is worth noticing that there is a mismatch between the values for α given by the models and economic 
reality. The models give values of α of 4 and upwards for both wealth and income. In real economies the 
value of alpha can vary in extreme cases can between 1 and 8, but is typically close to a value of 2 see 
for example Ferrero [Ferrero 2010].

It is the belief of the author that in a dynamic equilibrium, the value of α naturally tends to move to a 
minimum absolute value, in this case by maximising v to the point where the model reaches the edge of  
instability. At this point, with the minimum possible value of α (for any given value of ρ or β) there is the 
most extreme possible wealth/income distribution, which, it is the belief of the author is a maximum 
entropy, or more exactly a maximum entropy production, equilibrium. This belief; that self-organised 
criticality  is  an equilibrium produced by maximum entropy production, is  discussed in more detail  in 
section 7.3 below.

It is the suspicion of the author that the unrealistic distribution for  Ω used in the modelling approach 
above results in a point of SOC, that is artificially higher than that in real economies. Indeed, it is a 
suspicion that movement towards SOC may of itself help to define underlying distributions of earnings 
and consumption. This is returned to in section 7.4.

7.3 Maximum Entropy Production

The models of 'Why Money Trickles Up' can not be described by standard models from the physics of 
thermal equilibrium.
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The models in the paper consist of sources of wealth generation in companies and sinks of consumption  
at households, with a continuous flow from one to the other. In this they resemble models that have 
continuous flows of heat in and out of the system and that have different temperatures in different parts  
of the model.

These are ‘out of equilibrium thermodynamics systems’, or simply 'non-equilibrium systems'; though it is 
the belief of the author that this nomenclature may need to be revisited.

Traditionally, such systems have been very difficult to describe mathematically, however recent work by 
Lorenz, Paltridge, Ackland & Gallagher, and others in the field of planetary ecology and, also that of  
Dewar,  Levy,  Solomon and others in the field of  theoretical  physics appear to have changed things 
substantially.

In early models Paltridge and Lorenz discovered that the earth appeared to act in a ‘deliberate’ manner, 
by  adjusting  the  temperatures  across  the  globe,  to  a  give  a  maximum  possible  rate  of  entropy  
production. Although it is early days, this principle of ‘Maximum Entropy Production’ or ‘MEP’ appears to 
be widely applicable, and also appears to make many previously insoluble systems much more tractable.

Analysis by other authors suggests that the same Maximum Entropy Production principle is true for the  
re-radiation of heat from Mars and Titan. It also appears that the use of MEP may be applicable to many 
other systems such as convection in the earth’s mantle, and turbulent systems. Ozawa et al give an 
excellent review of the history and uses of MEP, while the book edited by Kleidon & Lorenz gives much 
more detail [Ozawa et al 2003, Kleidon & Lorenz 2005].

In Paltridge’s model,  earth becomes what is known as a ‘dissipative structure’.  Dissipative structures  
include things such as planets, and life forms. Dissipative structures are counter-intuitive from a normal  
equilibrium  thermodynamic  point  of  view.  Dissipative  structures  are  highly  concentrated,  highly 
organised,  and  so  have  very  low  entropy.  From  the  point  of  view  of  ordinary  equilibrium 
thermodynamics, they shouldn’t exist.

However from an MEP point of view, dissipative structures do make sense. The existence of the low 
entropy structures facilitates more rapid entropy flow through the system as a whole.

A classic example is that of Bénard convection cells. The convection cells are low entropy structures, but 
they allow much more rapid transfer of heat from the bottom of the cells to the top.

Similarly, the earth’s atmosphere operates as a dissipative structure moving hot equatorial air to the  
poles. The circulation of the oceans carries out exactly the same functions.

Interestingly, it also appears that the existence of plants changes the earths albedo in ways that also 
maximises  entropy  production.  Animals,  then  appear  as  efficient  redistributors  and  processors  of  
vegetable matter.

When looked at in this manner almost everything on planet earth becomes a dissipative structure. This 
includes of course human society, and indeed, human economic systems.

In parallel with the above work in the field of ecology; Levy, Solomon and various co-workers have 
carried  out  pioneering  theoretical  work  looking  at  the  dynamics  of  the  Generalised  Lotka-Volterra 
distribution and how it works mathematically.

In  their  mathematical  analysis  of  the  GLV,  Levy  and  Solomon  show  that  the  entropy  of  multiple  
Boltzmann distributions gives the power law tails found in the GLV distribution [Levy & Solomon 1996].

In contrast the Maxwell-Boltzmann distribution of a normal thermodynamic equilibrium comes from an 
additive process. This is a direct conservation law, in such a system the addition and subtraction are 
direct and total energy is conserved absolutely. This results in a distribution with an exponential tail.

The GLV comes from a multiplicative process. And multiplicative process cannot be directly conservative.  
The GLV process does however remain conservative in total, at least in the long term; the process of this  
conservation is discussed further below.

Because of its multiplicative nature, the output of the GLV includes a power law tail.
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This can be seen as analogous to the central limit theorem.

Under the CLT an additive process gives a normal distribution, a multiplicative process gives a log-normal 
distribution, with an exponential tail.

Under an additive, maximum entropy process, the output is a Maxwell-Boltzmann distribution, with an 
exponential  tail.  Under a multiplicative,  maximum entropy production process,  the product  is  a GLV  
distribution, with a power tail.

'One sees therefore that a power law is as natural and robust for a stochastic multiplicative process as  
the Boltzmann law is for an equilibrium statistical mechanics system. Far from being an exception and  
requiring fine tuning or sophisticated self-organising mechanisms, this is the default.’[Levy & Solomon 
1996]

As such, the GLV distribution might better be considered to be a ‘log-Maxwell-Boltzmann’ distribution.

Within the fields of ecology, these ideas have been taken forward in some very interesting work by  
Ackland & Gallagher [Ackland & Gallagher 2004] on the modelling of ecosystems. This modelling shows 
that, by using simple GLV models, and some very basic assumptions it is possible to produce full food 
webs with all the complexity of a real ecosystem. This model allows and includes for constant evolution 
and transformations of predators and prey within the system. Despite this the overall parameters of the  
food web become highly stable in things such as numbers of predators, prey, varieties of species, etc.

It is particularly interesting that a large array of different species, different types of dissipative structures,  
appears so as to maximise the total biomass flow.

“We monitored this during our simulations and found a remarkable result—the total flow of resource  
(and hence total biomass) increases with time reaching a plateau after many thousands of steps—the  
steady-state  linkstrength  ensemble  distribution  appears  to  be  the  one  which  maximizes  the  use  of  
resource. This type of optimisation is consistent with what has been observed in other ecological models.  
If  the  model  is  recast  in  terms of  flow and dissipation,  the  maximization  principle  is  equivalent  to  
maximum entropy production: the mathematical equivalent of ‘‘entropy production’’ is just the total death  
rate, and hence the flow out.”  [Ackland & Gallagher 2004]

It is the belief of the author that the economies of the world are acting in exactly the same manner. An 
economy is an MEP dissipative structure, and when it is at equilibrium it is maximising the rate of entropy 
production. It should be noted that this is not just an analogy. In entropy production terms, the human 
economic system is simply a complicated and interesting sub-section of the MEP function of the earth as 
a whole.

Returning to the mathematics, Dewar [Dewar 2005] has produced a seminal paper that derives maximum 
entropy  production  from  the  first  principles  of  information  theory  and  simple  maximum  entropy 
considerations.

This  derivation of a Maximum Entropy Production (MEP) approach appears to be applicable to non-
equilibrium systems in general.

Instead of looking at the counting of all possible statistical states, and finding the most probable, Dewar 
looks at the counting of all possible paths through a flow system, and finds that these can be counted 
using the same maximum entropy approach used by Boltzmann, Gibbs, etc.

Dewar does this by maximising the path information entropy, following the ideas of Shannon and Jaynes.  
This  follows from Shannon’s  interpretations  of  information entropy and Jaynes generalisation  of  the 
maximum entropy approach as a general recipe for statistical inference.
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I have not yet seen any theoretical work formally linking the work of Dewar to that of Levy & Solomon,  
however  I  am  firmly  convinced  that  they  are  isomorphous;  that  Levy  &  Solomon’s  mathematical 
derivations of the GLV should also be reproducible via working from Dewar’s principals of path entropy.

It is my belief that Levy, Solomon and Dewar have produced some very important and very general 
principles. I believe that the max entropy production model, and GLV distributions will be found to give  
general and stable descriptions of many complex systems that have hitherto been seen as insoluble.

What Dewar, Levy and Solomon’s systems consist of are three critical elements; a source, a sink, and 
some sort of self-limiting behaviour. 

This model is potentially very powerful, as this simple model is typical of many complex systems. The 
sources and sinks are typically energy, but can also be population, or the wealth created in an economic 
system, or many other things.

The reason such systems are very common is because most other systems are inherently dull, at least in  
the longer term.

Without the source, the system quickly disappears.

Without the sink the system will quickly explode and disappear.

Without the self-balancing mechanism the system will  either explode or disappear depending on the 
direction of the imbalance.

The  self-balancing  mechanism  is  the  key  to  the  long-term  preservation  of  the  process,  and  this  
reintroduces the conservation principle.

In a classical ‘static’ thermodynamic equilibrium conservation is absolute.

In a Dewar, Levy, Solomon type ‘dynamic thermodynamic equilibrium’, conservation is approximate and 
long  term.  Input  and  output  can  differ  over  the  short  term,  but  are  brought  back  into  balance 
automatically in the long term. Indeed such systems can wander backwards and forwards in a Lotka-
Volterra type manner at a macroscopic level, while maintaining GLV type equilibrium at a microscopic 
level.

In economics the source is production, the sink is consumption. Going way back to section 1.2 and  
section  1.3  there was a  discussion  of  the  different  ways  of  producing  power  laws.  These  different  
methods  were combinations  of  two exponential  processes,  multiplicative  process,  and  self-organised 
criticality (SOC). As discussed in section 1.3 it is the belief of the author that the first two processes, 
double  exponentials  and  multiplicative  processes  are  in  fact  different  ways  of  describing  the  same 
process. In the GLV this becomes obvious if you look at the difference equation (1.3o), which can be 
seen as either a way of multiplying the variables (a multiplicative process) or a way of modelling two 
different growth rates (double exponential  process).  However a single GLV can have many different  
possible equilibria. Dewar ties this together, and shows that dynamic systems tend to a single point of 
maximum entropy production point, a single dynamic equilibrium, at the limit of stability, at the point of  
self organised criticality.

This appears to be typical of many systems, and may explain the fact that many power law distributions  
have  values  between two  and  three  even though  they  arise  from substantially  different  underlying  
models (see Newman table 1 for example [Newman 2005]).

Indeed Dewar points out that many very chaotic systems; systems close to ‘self organised criticality’ such 
as earthquakes,  avalanches,  forest  fires and the archetypal  sandpiles,  can be characterised by slow 
steady underlying growth rates (eg tectonic plate movement for earthquakes, tree growth rate for forest 
fires). He also explains that such systems can be included in the Maximum Entropy Production modelling 
approach, even though such systems are traditionally characterised as being very far from equilibrium.
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Financial markets, especially asset markets, also show many of the characteristics of such SOC systems 
with steady growth intermittently interrupted with dramatic crashes.

An example, for those that can remember them, is the traditional old-fashioned egg-timers. When well-
built, these represented a very well behaved sandpile. In a high quality egg-timer, the sand is very fine,  
with equal sized smooth grains, the sand is dry and friction is very low. In such an egg-timer the sandpile  
has a near constant, flattish, inverted conical shape, and close observation shows that the avalanches are 
small but near-continuous. With a ‘normal’ sandpile the sand behaves much more erratically. With a little 
‘stickiness’, caused by damp or a wide distribution of grain sizes, the pile can build up significantly into 
steeper and steeper hills as grains are added at the top. Eventually a dramatic collapse occurs which 
changes the steep hill into a much shallower one, then the process restarts.

In human managed forests this lesson has been learned, though at a cost. In the middle of the last  
century forest managers attempted to fight forest fires by removing undergrowth and ignition sources.  
This  appeared  to  work  in  the  short  run,  but  eventually  this  simply  led  to  much  larger,  and  more 
devastating and dangerous fires.  In recent decades foresters now often manage nature reserves by 
deliberately starting fires on a frequent basis. This results in a steady stream of much smaller fires.

For the reasons above, I believe that the nomenclature of such systems needs to be reviewed. In many 
cases I believe that many complex systems that are currently described as ‘out of equilibrium’ should be 
described as being in ‘dynamic thermodynamic equilibrium’ or ‘MEP equilibrium’. This form of equilibrium 
is  reached  when the system has  reached the  point  of  maximum entropy  production  and  continues  
indefinitely in that state.

7.4 The Statistical Mechanics of Flow Systems

In this  section I  would like to make some suggestions as to possible ways forward for a statistical  
analysis of the flow systems described by Levy, Solomon and Dewar.

I would like to do this by attempting to reduce these models to equivalent exchange models.

The modelling in YMTU does not use exchange models, primarily because they do not provide models 
that realistically capture the processes of real economic systems. For these reasons I have built  the 
models  in  YMTU  following  the  flow pattern  of  the  GLV of  Levy  and  Solomon.  However  for  a  core 
production of the statistical mechanics I believe appropriately designed exchange models may be useful  
proxies for flow models.

Very many exchange models have been produced by econophysicists, with many different underlying 
mechanisms.  In  a  very  perceptive  paper;  ‘The  Rich  Are  Different!:  Pareto  Law  from  asymmetric  
interactions in asset exchange models’ [Sinha 2005] Sitabhra Sinha points out that these models share a 
very basic pattern. When these models have a symmetric pattern of exchange they produce a traditional  
Maxwell-Boltzmann distribution. When the exchange mechanism is made to be asymmetric, then a power  
law is produced. Indeed; in one case an asymmetric mechanism was deliberately introduced to assist the 
poor, but instead produced a power law tail; so giving the opposite result of that intended.

I believe it is a similar simple asymmetry that drives the multiplicative flow models of Levy, Solomon and 
Dewar.

If we go back to the base equation (1.3o) for a single agent in the economic models from section 1.3:

wi ,t1 = w i, t  ei , t  w i, t r − wi , t 1.3o

I would firstly like to generalise this to the following:
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w i , t1 = wi ,t  e i , t −   wi ,t r − w i ,t 7.4a 

The term τ represents what economists normally call 'non-discretionary spending'. This is assumed (in my 
discussions)  to  be  a  base  constant  value  that  includes  for  basic  housing,  as  well  as  minimum 
requirements for food, clothing,  heating etc.  All  other  spending is  assumed to be discretionary,  and 
proportional to wealth and so included in Ω.

If we now do a summation of equation (7.4a) across all individuals we get:

∑ wi , t1 = ∑w i, t  ∑ e i ,t − ∑   ∑ w i ,t r − ∑ w i ,t 7.4b

Let us then assume that the dynamic flow model is at a dynamic equilibrium, ie that it is neither growing  
nor shrinking through time, though it  is still  flowing. At this  equilibrium the total wealth is constant 
between times steps, so the term on the left hand side is equal in value to the first term on the right 
hand side. This gives:

0 = ∑ ei , t − ∑   ∑ w i ,t r − ∑ wi , t 7.4c

The obvious way to balance this economic flow system is as an accounting identity as follows:

∑ e i , t  ∑ w i, t r = ∑  ∑ wi , t 7.4d 

This balances the total incomes on the left and the total consumption on the right. And indeed this would  
be the natural way to balance any similar physical flow system model, because this is the way to balance  
the flows in and out of the system.

However,  from a point  of  view of  statistical  analysis,  I  believe it  would  be more fruitful  to  show a  
different balance as:

∑ e i , t − ∑ = ∑ wi , t − ∑ w i ,t r or:

∑ e i, t −  = ∑ w i ,t  − r  7.4e

This gives additive (but flowing) things on the left hand side of the exchange system and multiplicative  
(flowing) things on the right hand side of the exchange system.

Given that τ, r and Ω are all constants it also reduces a somewhat complex flow system to an exchange 
system with only two variables, the earnings, ei,t, , on the left hand side and the wealth, w i,t, , on the right 
hand side.

This, I believe, is close to the base model that Sinha was describing; an asymmetric exchange model.

In equation (7.4e) the left hand side additive flows must balance with the right hand side multiplicative  
flows.

In a normal exchange model both sides of equation (7.4e) would be additive, and indeed identical.
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I believe this model, with only two variables and lots of boundary conditions, may be simple enough to  
be  tractable  to  a  traditional  statistical  mechanical  analysis  on  the  lines  of  Dewar,  or  indeed 
Champernowne.

Before moving into further discussion I would first like to follow the maths through a little more. I would 
like to do two things. Firstly I would like to neglect  τ for the moment; we will come back to  τ later. 
Secondly I would like to divide by Ω. That then gives us the following:

∑ 
ei , t


 = ∑ wi , t 1 − r


 7.4f 

This brings us back to some old friends. The term (1-r/Ω) gave us our definition of α, the exponent of the 
powertail,  included in equation (4.5q). Equation (7.4f) itself is just a restatement of Bowley’s law as 
defined in equation (1.3x) of this paper. These relations imply that the suggested approach in this section 
may have promise.

A second observation, which may be completely wrong, is that equation (7.4e) has the feel of a simple  
differential equation, with wealth on one side, and earnings, the time derivative of wealth, on the other.  
Instinctively the solution of this would be of exponential form.

Given that the solution of a symmetric exchange is Maxwell-Boltzmann with an exponential tail, then a 
solution  of  (7.4e)  could  reasonably  be  expected  to  be  a  Maxwell-Boltzmann  with  an  exponential-
exponential,  or a power law tail, as per Reed and Hughes or Baek, Bernhardsson and Minnhagen or 
others [Reed & Hughes 2002, Baek et al 2011].

An alternative approach is to look at equation (7.4e) from a maximum entropy, statistical mechanical 
point of view, but now you need to maximise the entropy over two different distributions.

On the left hand side, you have a traditional additive term that should produce a standard Maxwell-
Boltzmann distribution of earnings. On the right-hand side you also have a distribution to maximise,  
however  in  this  case  the  distribution  is  multiplicative,  and  so  the  ladder  of  energy  levels  are 
proportionately distributed. So the resultant Maxwell-Boltzmann is exponential-exponential, or power law.  
This  seems  very  close  to  the  original  model  built  by  Champernowne,  and  rediscovered  by  Levy  & 
Solomon [Simkin & Roychowdhury 2006].

It may be possible to maximise each of these entropies independently, however it seems likely that the 
distributions on each side will affect each other.

At this point it is worth looking at the left hand side in more detail, as this may answer a quandary 
discussed back in section 1.1,  though it raises as many questions as it answers. In this section it was 
noted that returns from waged employment appear to follow an offset Maxwell-Boltzmann distribution, or 
an ‘additive GLV distribution’.

Looking at equation (7.4e) the answer to why earnings are distributed as a Maxwell-Boltzmann becomes,  
in one sense, trivial.

The  distribution  is  a  Maxwell-Boltzmann  because  that  is  the  maximum  entropy  solution  for  the 
distribution of earnings. For a statistical mechanic that is good enough.

Indeed, statistical mechanics would predict a Maxwell-Boltzmann distribution of earnings even when all 
the individuals had identical skills.

However two questions are raised immediately; why is it offset? And what is the actual mechanism for 
creating the distribution?
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The first question is one for which the answer is not at first obvious. Intuitively, the maximum entropy 
distribution would extend to zero, because, given a fixed total amount of incomes, this would also allow  
the maximum values of earnings in the tail to increase, and so give a wider total spread, which would  
have a higher overall maximum entropy.

However, although the model above attempts to reduce the system to an exchange model, it must be 
remembered that it is a flow system that is being analysed. I believe that Dewar is absolutely correct that 
these systems must be modelled by maximising the entropy flow, not just by maximising the entropy.

So, with two distributions, one on each side of the exchange, the simplistic (traditional) solution would be 
to maximise the joint entropy of the two distributions;  that is to multiply  the two different partition  
functions  and  maximise  the  single  resultant  function.  However,  both  distributions  are  modelling 
distributions of flow. As well as maximising the entropy embodied in the two distributions, there is a 
simultaneous need to maximise the entropy embodied in the size of the flows. Hopefully this will be a  
straightforward trade off between the three (four?) different entropies being enumerated. Intuitively,  
given this extra contribution to total entropy from the flow, an offset Boltzmann distribution may achieve  
extra entropy flow to compensate for its narrower spread and the lower entropy in its distribution.

Going back to the concept of dissipative structures and negentropy generators, a narrower Boltzmann 
distribution for earnings could be seen as a dissipative structure in its own right. This distribution has  
lower entropy, but is capable of allowing larger entropy flows through the system. Ultimately, if it allowed 
very high entropy flows the earnings distribution might even collapse into a very low entropy uniform 
distribution, or, as is often seen in both real world monopolies and many econophysics models, all wealth  
and income would go to one individual.

With  a  dissipative  structure  approach,  presumably  there  is  a  negentropy  flow  associated  with 
‘maintaining’ the dissipative structure in its low entropy form; Maxwell’s demon is continually at work 
narrowing the spread of the earnings distribution. However if this negentropy flow is smaller than the 
entropy flow through the system, enabled by the dissipative structure, then the flow system as a whole,  
including the dissipative structure can be stable and long-lived.

In the example of economics, as long as a factory is making money, it is worth diverting part of the 
profits to maintain it. If a proposed new factory is predicted to be profitable in the long-term, it is worth 
borrowing money to build it.

The second question; of the mechanism for creating income distributions, is also problematic.

For the right hand side of equation (7.4e) the mechanism of wealth condensation producing a feed-back  
loop for increasing wealth via returns on assets discussed in YMTU seems, to me at least, very plausible.

The self-organisation of salaries into a Maxwell-Boltzmann distribution is a harder process to visualise;  
people do not randomly exchange jobs and salaries with each other.

The first problem is letting go of the fundamental economic belief that people are fairly rewarded for  
their employment. In fact when employers take on new employees they don’t do a detailed analysis of  
the individual’s probable contribution of wealth to the company. They decide if the employee is needed,  
they look at the market rates for the skills required and they pay the going rate. Certainly overall wage  
levels are checked carefully against total revenues, and deadwood is chopped back wherever possible.  
But wages are set externally in the market, not internally by potential wealth creation.

Note also, that in a stable economy, the total sum  Σe of earnings available will  be fixed, giving the 
boundary condition necessary for a Maxwell-Boltzmann distribution to develop.

Given that wages are set in the market, a maximum entropy distribution becomes more possible. As long  
as there is a minimum amount of stochastic churn in the jobs market, with competition and movement 
up and down a ladder of earnings levels, then creation of a Maxwell-Boltzmann distribution becomes 
possible.

Moving  to  a  different  issue,  an  element  that  is  missing  from all  the  models  of  YMTU,  is  that  of 
unemployment. Wright’s models are superior in this regard, and may shed light on this dynamic [Wright 
2005 & 2009].
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Equation (4.7e), and a Maxwell-Boltzmann distribution, especially an offset one, would seem to imply 
that all would have jobs and earnings.

I  can  see  two  possible  causes  for  persistent  mass  unemployment.  A  first  explanation  is  given  by 
reintroducing τ, the compulsory consumption or non-discretionary spending. It is possible that when the 
values of ei,t at the low end of the distribution becomes less than the value of τ individuals are removed 
from the distribution altogether.

A second source of persistent unemployment could come from a combination of the maximum entropy 
flow, dissipative  structure model  combined with differing actual  skill  levels.  With differing skill  levels  
greater flows of entropy might be achieved by diverting all earnings to highly skilled individuals with no  
flows to the low skilled. Although the distribution would have lower entropy, total entropy flows might be 
higher.

Finally, and much more speculatively, I would like to consider what might happen when equation (7.4e)  
does not balance.

∑ e i, t −  = ∑ w i ,t  − r  7.4 e

I think that equation (7.4e) will balance in many situations of flow systems. Most physical and biological  
systems will come to a dynamic equilibrium when the flows in and out of the system are equivalent. This  
will define a pair of distributions and an entropy flow that will have a combined system maximum entropy  
production.

However for  most  economic systems the above is  not true. Once a market system is  installed in a 
country, the economy starts growing and is characterised by long-term persistent levels of growth. The 
growth level is so persistent that this can also be characterised as being stable, in that the parameters of  
the system; gdp growth rate, interest rates, stock-market growth rates, etc, are very stable over decades  
or even centuries. For newly industrialising economies this is characterised as having high levels of gdp  
growth up to 10% per annum, with associated high interest rates and stock-market rates. Ω is typically 
low. For mature economies, gdp growth and interest rates are typically 2-4% and Ω is typically higher.

In these cases Ω can be seen as the external variable. Given this external value of Ω, it could then be 
possible that there is a set level of gdp growth, interest rates and stock-market returns that gives a 
maximum entropy production output for the sum of the terms represented by equation (7.4e).

If this was the case then the persistence of endogenous growth would have an explanation.

Even  more  speculatively,  let  us  reintroduce  τ to  the  discussion.  τ will  be  defined  somewhere 
endogenously within the economic system. It  will  basically  be defined in terms of  the proportion of 
average wage level required to provide basic housing, food, heating, etc. In a developing society it will  
probably be defined largely by the subsistence wage level needed to provide basic food and shelter. In 
an advanced economy it will be defined by basic housing rental costs and ultimately the costs of scarce 
land. This might explain the very similar rates of growth seen in industrialising economies. It could also 
explain the higher long term growth rates in the US, with its plentiful land compared to the lower rate for  
the UK, were land has been scarce for centuries.

If τ can be defined endogenously within the system, then Ω should be definable endogenously in terms 
of  τ. People will need to save enough during their working lives to pay for their annual  τ during their 
retirement.

In theory, then the whole system becomes an endogenous equilibrium, with the only real exogenous 
factor being scarce land prices in advanced economies.
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11. Conclusion

It  is of course possible that the earnings distributions seen in figures 1.1.4 and 1.1.5 are genuinely 
exogenous and defined, for example, by earnings ability. If this is the case, then the majority of the 
discussions above are simply wrong.

It remains however an extraordinary coincidence that these earnings distributions can be fitted by a 
Maxwell-Boltzmann distribution. It is the belief of the author that economics is providing high quality raw 
data which may allow the investigation of the detailed statistical mechanics of stable, flowing, 'out of 
equilibrium systems'.

In the 1970s Paltridge solved the first 'out of equilibrium system' mathematically from a macroscopic 
point of view. Economics may provide the first 'out of equilibrium' system to be solved exactly from a  
statistical mechanical point of view. This may mean that the 'offset-Boltzmann' distribution for earnings  
may be the first 'dissipative structure' that is described exactly in mathematical terms.

11.1 Afterword

This paper is a condensed extract from the full paper 'Why Money Trickles Up'. The full paper applies the 
same basic model to explain the power tail seen in company size distributions, it also provides models for  
booms and busts in commodity prices and macroeconomic business cycles. The full paper explains the 
Bowley ratio; the ratio of returns to labour and capital. The full paper also contains extensive background 
material on chaos, statistical mechanics, entropy and heterodox economics and finance. The abstract and 
paper structure for the full paper are given below in section 11.2.

The paper YMTU was researched and written in a little over a year, without financial support or academic 
supervision.

Foolishly, I have gone against a basic conclusion of this paper, and spent a significant portion of my own 
capital in producing it.

If you have found the paper of interest or value, any donation to defray the costs of writing it, no matter  
how small, would be gratefully received.

Those who wish to make a donation can do so by clicking on the Paypal link below:

click here to make donation

(Paypal accept all major credit cards, you do not need to have a Paypal account.)

11.2 Abstract & Structure of full paper 'Why Money Trickles Up'

Abstract
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This paper combines ideas from classical economics and modern finance with Lotka-Volterra models, and 
also the general Lotka-Volterra models of Levy & Solomon to provide straightforward explanations of a 
number of economic phenomena.

Using a simple and realistic economic formulation, the distributions of both wealth and income are fully  
explained. Both the power tail and the log-normal like body are fully captured. It is of note that the full  
distribution, including the power law tail, is created via the use of absolutely identical agents.

It is further demonstrated that a simple scheme of compulsory saving could eliminate poverty at little  
cost to the taxpayer. Such a scheme is discussed in detail and shown to be practical.

Using similar simple techniques, a second model of corporate earnings is constructed that produces a 
power law distribution of company size by capitalisation.

A third model is produced to model the prices of commodities such as copper. Including a delay to capital  
installation; normal for capital intensive industries, produces the typical cycle of short-term spikes and 
collapses seen in commodity prices.

The  fourth  model  combines  ideas  from  the  first  three  models  to  produce  a  simple  Lotka-Volterra 
macroeconomic model. This basic model generates endogenous boom and bust business cycles of the 
sort described by Minsky and Austrian economists.

From this model an exact formula for the Bowley ratio; the ratio of returns to labour to total returns, is 
derived. This formula is also derived trivially algebraically.

This derivation is extended to a model including debt, and it suggests that excessive debt can be 
economically dangerous and also directly increases income inequality.

Other models are proposed with financial and non-financial sectors and also two economies trading with 
each other. There is a brief discussion of the role of the state and monetary systems in such economies.

The second part of the paper discusses the various background theoretical ideas on which the models are 
built.

This includes a discussion of the mathematics of chaotic systems, statistical mechanical systems, and 
systems in a dynamic equilibrium of maximum entropy production.

There is discussion of the concept of intrinsic value, and why it holds despite the apparent substantial 
changes of prices in real life economies. In particular there are discussions of the roles of liquidity and 
parallels in the fields of market-microstructure and post-Keynesian pricing theory.

Structure of the Paper

Part A of this paper discusses a number of economic models in detail, Part A.I discusses a number of 
straightforward models giving results that easily accord with the real world and also with the models of 
Ian Wright. Part A.II discusses models that are more speculative.

Part B discusses the background mathematics, physics and economics underlying the models in Part A. 
The mathematics and physics is discussed in Part B.I, the economics in part B.II, the conclusions are in 
part B.III. Finally, Part C gives appendices.

Within Part A; section 1 discusses income and wealth distributions; section 1.1 gives a brief review of 
empirical information known about wealth and income distributions while section 1.2 gives background 
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information on the Lotka-Volterra and General Lotka-Volterra models. Sections 1.3 to 1.5 gives details of 
the models, their outputs and a discussion of these outputs.

Section 1.6 discusses the effects that changing the ratio of waged income to earnings from capital has on 
wealth and income distributions.

Sections 1.7 and 1.8 discuss effective, low-cost options for modifying wealth and income distributions 
and so eliminating poverty.

Finally, section 1.9 looks at some unexplained but potentially important issues within wealth and income 
distribution.

Sections 2.1 to 2.4 go through the background, creation and discussion of a model that creates power 
law distributions in company sizes.

Sections 3.1 to 3.4 use ideas from section 2, and also the consequences of the delays inherent in 
installing physical capital, to generate the cyclical spiking behaviour typical of commodity prices.

Sections 4.1 to 4.4 combine the ideas from sections 1, 2 and 3 to provide a basic macroeconomic model 
of a full, isolated economy. It is demonstrated that even a very basic model can endogenously generate 
cyclical boom and bust business cycles of the sort described by Minsky and Austrian economists.

In section 4.5 it is demonstrated that an exact formulation for the Bowley ratio; the ratio of returns to 
labour to total returns, can easily be derived from the basic macroeconomic model above, or indeed from 
first principles in a few lines of basic algebra.

In section 4.6 and 4.7 the above modelling is extended into an economy with debt. From this a more 
complex, though still simple, formulation for the Bowley ratio is derived. This formulation suggests that 
excessive debt can be economically dangerous and also directly increases income inequality. The more 
general consequences of the Bowley ratio for society are discussed in more depth in section 4.8.

In section 4.9 two macroeconomic models are arranged in tandem to discuss an isolated economy with a 
financial sector in addition to an ordinary non-financial sector. In section 4.10 two macroeconomic 
models are discussed in parallel as a model of two national economies trading with each other.

To conclude Part A, section 4.11 introduces the role of the state and monetary economics, while section 
4.12 briefly reviews the salient outcomes of the modelling for social equity.

In Part B, section 6.1 discusses the differences between static and dynamic systems, while section 6.2 
looks at the chaotic mathematics of differential equation systems. Examples of how this knowledge could 
be applied to housing markets is discussed in section 6.3, while applications to share markets are 
discussed in section 6.4. A general overview of the control of chaotic systems is given in section 6.5.

Section 7.1 discusses the theory; ‘statistical mechanics’, which is necessary for applying to situations with 
many independent bodies; while section 7.2 discusses how this leads to the concept of entropy.

Section 7.3 discusses how systems normally considered to be out of equilibrium can in fact be considered 
to be in a dynamic equilibrium that is characterised as being in a state of maximum entropy production. 
Section 7.4 discusses possible ways that the statistical mechanics of maximum entropy production 
systems might be tackled.

Moving back to economics; in section 8.1 it is discussed how an intrinsic measure of value can be related 
to the entropy discussed in section 7 via the concept of ‘humanly useful negentropy’.

Section 8.2 discusses the many serious criticisms of a concept of intrinsic value in general, with a 
discussion of the role of liquidity in particular.
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Section 9.1 looks at theories of supply and pricing, the non-existence of diminishing returns in 
production, and the similarities between the market-microstructure analysis and post-Keynesian pricing 
theory. Section 9.3 looks for, and fails to find, sources of scarcity, while section 9.4 discusses the 
characteristics of demand.

In section 10 both the theory and modelling is reviewed and arranged together as a coherent whole, this 
is followed by brief conclusions in section 11.

Sections 12 to 16 are appendices in Part C.

Section 12 gives a history of the gestation of this paper and an opportunity to thank those that have 
assisted in its formation.

Section 13 gives a reading list for those interested in learning more about the background maths and 
economics in the paper.

Section 14 gives details of the Matlab and Excel programmes used to generate the models in Part A of 
the paper.

Sections 15 and 16 give the references and figures respectively.
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Figure 1.3.8
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