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Abstract

This paper axiomatizes the robust control criterion of multiplier prefer-

ences introduced by Hansen and Sargent (2001). The axiomatization relates

multiplier preferences to other classes of preferences studied in decision theory,

in particular the variational preferences, recently introduced by Maccheroni,

Marinacci and Rustichini (2006). The paper also establishes a link between the

parameters of the multiplier criterion and the observable behavior of the agent.

This link enables measurement of the parameters on the basis of observable

choice data and provides a useful tool for applications.

Keywords

Ambiguity aversion, model uncertainty, robustness.

∗I am indebted to my advisor Eddie Dekel for his continuous guidance, support, and encourage-
ment. I am grateful to Peter Klibanoff and Marciano Siniscalchi for many discussions which resulted
in significant improvements of the paper. I would also like to thank Jeff Ely, Todd Sarver, and
seminar audiences at Berkeley, Bocconi, CEMFI, Chicago, Collegio Carlo Alberto, Columbia, Duke
(Fuqua), Harvard, Hebrew University, LSE, NYU (Econ and Stern), Northwestern, Penn, Princeton,
Stanford (Econ and GSB), UCL, University of Iowa, University of Minnesota, Warwick, Washington
University (Econ and Olin), Yale, and the Hansen–Sargent conference for graduate students. This
project started after a very stimulating conversation with Tom Sargent and was further shaped by
conversations with Lars Hansen. I’m very grateful to Wolfgang Pesendorfer (the editor) and three
anonymous referees for their insightful and helpful comments. All errors are my own.
†Department of Economics, Harvard University. E-mail: tomasz strzalecki@harvard.edu.

This version: December 8, 2009.



Electronic copy available at: http://ssrn.com/abstract=1523822

1 Introduction

The Expected Utility criterion ranks payoff profiles f according to

V (f) =

∫
u(f) dq, (1)

where u is a utility function and q is a subjective probability distribution on the states

of the world. A decision maker with such preferences behaves as if he is certain that

the state is distributed according to the probabilistic model q.

In order to model situations where the decision maker does not have enough

information to formulate a single probabilistic model and have full confidence in it,

for example when it is hard to statistically distinguish between similar probabilistic

models, Hansen and Sargent (2001) formulated the criterion

V (f) = min
p

∫
u(f) dp+ θR(p‖q), (2)

where θ ∈ (0,∞] is a parameter and the function R(p‖q) is the relative entropy of p

with respect to q. Relative entropy, otherwise known as Kullback–Leibler divergence,

is a measure of “distance” between two probability distributions. An interpretation of

equation (2) is that the decision maker has some best guess q of the true probability

distribution, but does not fully trust it. Instead, he considers many other probabili-

ties p to be plausible, with plausibility diminishing proportionally to their “distance”

from q. The role of the proportionality parameter θ is to measure the degree of trust

of the decision maker in the reference probability q, or, in other words, the concern

for model misspecification. Higher values of θ correspond to more trust; in the limit,

when θ = ∞, the decision maker fully trusts his reference probability and uses the

expected utility criterion (1).

Multiplier preferences (2) also belong to the more general class of variational

preferences studied by Maccheroni, Marinacci, and Rustichini (2006a), which have

the representation

V (f) = min
p

∫
u(f) dp+ c(p), (3)

where c(p) is a “cost function”. The interpretation of (3) is like that of (2), and

multiplier preferences are a special case of variational preferences with c(p)=θR(p‖q).
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In general, the conditions that the function c(p) in (3) has to satisfy are very weak,

which makes variational preferences a very broad class. In addition to expected utility

preferences and multiplier preferences, this class also nests the maxmin expected

utility preferences of Gilboa and Schmeidler (1989), as well as the mean-variance

preferences of Markowitz (1952) and Tobin (1958).

An important contribution of Maccheroni et al. (2006a) was to provide an ax-

iomatic characterization of variational preferences. Because variational preferences

are a very broad class of preferences, it is desirable to establish an observable distinc-

tion between multiplier preferences and other subclasses of variational preferences.

This is, for example, the case with the maxmin expected utility preferences of Gilboa

and Schmeidler (1989): a strengthening of the Maccheroni et al.’s (2006a) axioms

restricts the general cost function to be in the Gilboa and Schmeidler (1989) class.

The main finding of this paper is that the Sure Thing Principle of Savage (imposed

on the Anscombe–Aumann domain) characterizes the class of multiplier preferences

within the class of variational preferences. This is possible because, as the main

theorem shows, the class of multiplier preferences is precisely the intersection of the

class of variational preferences and the class of Second-Order Expected Utility (SOEU)

preferences with representation

V (f) =

∫
φ(u(f)) dq, (4)

for some real valued function φ.1 Figure 1 depicts the relationships between these

classes.2 The Sure Thing Principle axiom used in the characterization is standard in

the literature; in particular, it is not in any way related to the very specific functional

form of relative entropy—it’s the interaction between the axioms that delivers the

representation.

The proposed axiomatic characterization is important for three reasons. First, it

provides a set of testable predictions of the model that allow for its empirical veri-

fication. This will help evaluate whether multiplier preferences, which have already

1For axiomatic characterizations of such preferences see Neilson (1993, 2009), Nau (2001, 2006),
Ergin and Gul (2009), and Grant, Polak, and Strzalecki (2009).

2Hansen and Sargent also introduced a closely related class of constraint preferences, represented
by V (f) = min{p|R(p‖q)≤η}

∫
S

(u ◦ f) dp, which are a special case of Gilboa and Schmeidler’s (1989)
maxmin expected utility preferences; see Figure 1. Due to their greater analytical tractability,
multiplier—rather than constraint—preferences are used in applications.
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Figure 1: Relations between classes of preferences: VP—variational preferences,
MP—multiplier preferences, SOEU—second order expected utility preferences, EU—
expected utility preferences, MEU—maxmin expected utility preferences, CP—
constraint preferences.

proved useful in modeling behavior at the macro level,3 are an accurate model of indi-

vidual behavior. Second, the axiomatization establishes a link between the parameters

of the multiplier criterion and the observable behavior of the agent. This link enables

measurement of the parameters on the basis of observable choice data alone, without

relying on unverifiable assumptions. Finally, the axiomatization is helpful in under-

standing the relation between the multiplier preferences and the axiomatic models of

ambiguity aversion motivated by the Ellsberg (1961) paradox, where people exhibit

a preference for choices involving objective rather than subjective probabilities.

The paper is organized as follows. Section 2 introduces some notation and ba-

sic concepts, as well as the definition of multiplier preferences. Section 3 presents

an axiomatic characterization of multiplier preferences within the class of variational

preferences. Section 4 studies another choice domain, introduced by Ergin and Gul

(2009), and presents a fully subjective axiomatization of multiplier preferences. Sec-

tion 5 concludes.

3See Woodford (2006); Barillas, Hansen, and Sargent (2009); Karantounias, Hansen, and Sar-
gent (2009); Kleshchelski and Vincent (2009); Benigno and Nisticò (2009); Li and Tornell (2008);
Maenhout (2004).
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2 Preliminaries

2.1 Setup

Decision problems considered in this paper involve a set S of states of the world, which

represents the possible contingencies that may occur. One of the states, s ∈ S, will be

realized, but the decision maker has to choose the course of action before learning s.

Let Σ denote a sigma-algebra of events in S.4 The set of all finitely additive probability

measures on (S,Σ) is denoted ∆(S) and endowed with the weak∗ topology, where a

net {pd}d∈D converges to p if pd(A) → p(A) for all A ∈ Σ; the set of all countably

additive probability measures is denoted ∆σ(S); its subset consisting of all measures

absolutely continuous with respect to q ∈ ∆σ(S) is denoted ∆σ(q).

The set Z denotes the possible consequences and ∆(Z) denotes simple probability

distributions on Z. An element of ∆(Z) is called a lottery. A lottery paying off z ∈ Z
with probability 1 is denoted δz. For any two lotteries π, π′ ∈ ∆(Z) and a number

α ∈ (0, 1) the lottery απ + (1− α)π′ assigns probability απ(z) + (1− α)π′(z) to each

prize z ∈ Z.

The possible choices of the decision maker, called acts, are mappings from S to

∆(Z).5 Formally, an act is a finite-valued, Σ-measurable function f : S → ∆(Z); the

set of all such acts is denoted F(∆(Z)). If f, g ∈ F(∆(Z)) and E ∈ Σ, then fEg

denotes an act with fEg(s) = f(s) if s ∈ E and fEg(s) = g(s) if s /∈ E.

The choices of the decision maker are represented by a preference relation %,

where f % g means that the act f is weakly preferred to the act g. A functional

V : F(∆(Z))→ R represents % if for all f, g ∈ F(∆(Z))

f % g if and only if V (f) ≥ V (g).

An important class of preferences are the Expected Utility (EU) preferences, where

the decision maker has a probability distribution q ∈ ∆(S) and a utility function

that evaluates each consequence u : Z → R. A preference relation % has an EU

4The set S may be infinite or finite. When S is finite it is assumed that Σ = 2S .
5This setting was introduced by Fishburn (1970); settings of this type are usually named after

Anscombe and Aumann (1963), who were the first to work with them.
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representation (u, q) if a functional V : F(∆(Z))→ R represents %, where

V (f) =

∫
S

(∑
z∈Z

u(z)f(s)(z)

)
dq(s).

In each state of the world s the decision maker computes the expected utility of

the lottery f(s) and then averages those values across states. By slightly abusing

notation, define the affine function u : ∆(Z) → R by u(π) =
∑

z∈Z u(z)π(z). Using

this definition, the Expected Utility criterion can be written as

V (f) =

∫
S

u(f(s)) dq(s). (5)

Risk aversion is the phenomenon where sure payoffs are preferred to ones that are

stochastic but have the same expected monetary value. If Z = R, i.e., lotteries have

monetary payoffs, then risk averse EU preferences have concave utility functions u.

Likewise, one preference relation is more risk averse than another if it has a “more

concave” utility function. More formally, an EU preference represented by (u1, q1) is

more risk averse than one represented by (u2, q2) if and only if q1 = q2 and u1 = φ◦u2,

where φ : R → R is a strictly increasing concave transformation. A special role will

be played by the class of transformations φθ, indexed by θ ∈ (0,∞]

φθ(u) =

− exp
(
− u

θ

)
for θ <∞,

u for θ =∞.
(6)

Lower values of θ correspond to “more concave” transformations, i.e., more risk aver-

sion.

2.2 Sources of Uncertainty and the Ellsberg Paradox

Observe that every act f : S → ∆(Z) involves two sources of uncertainty: first, the

payoff of f is contingent on the state of the world, for which there is no objective

probability given; second, given the state, f(s) is an objective lottery.

The existence of two sources of uncertainty enables a distinction between purely

objective lotteries, i.e., acts which pay the same lottery π ∈ ∆(Z) irrespectively of the

state of the world and purely subjective acts, i.e., acts that in each state of the world
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pay off a degenerate lottery δz for some z ∈ Z, which possibly depends on s. With a

slight abuse of notation, let ∆(Z) denote the set of purely objective lotteries. Note

that given q ∈ ∆(S) each purely subjective act f induces a purely objective lottery

πf ∈ ∆(Z) defined by πf (z) = q(f−1(z)) for all z ∈ Z.

An EU decision maker has a the same attitude toward objective lotteries and

toward subjective acts. From the representation (5) it follows that for any two purely

objective lotteries π′ % π if and only if∑
z∈Z

u(z)π′(z) ≥
∑
z∈Z

u(z)π(z)

and for any two purely subjective acts f ′ % f if and only if∑
z∈Z

u(z)πf ′(z) ≥
∑
z∈Z

u(z)πf (z).

In particular, any purely subjective act f is indifferent to the objective lottery πf

that it induces.

However, more general preferences need not have such a uniform decision attitude

and they may be source sensitive, i.e., exhibit more aversion to one source than the

other. This is illustrated by the Ellsberg’s (1961) Paradox, which demonstrates that

most people prefer choices involving risk (i.e., situations in which the probability is

well specified) to choices involving ambiguity (where the probability is not specified).

Example 1 (Ellsberg Paradox). Consider two urns containing colored balls. The

decision maker can bet on the color of the ball drawn from each urn. Urn I contains

100 red and black balls in unknown proportion, while Urn II contains 50 red and 50

black balls.

In this situation, most people are indifferent between betting on red from Urn I

and on black from Urn I; this reveals that, in the absence of evidence against sym-

metry, they view those two contingencies as interchangeable. Moreover, most people

are indifferent between betting on red from Urn II and on black from Urn II; this

preference is justified by their knowledge of the composition of Urn II. However, most

people strictly prefer betting on red from Urn II to betting on red from Urn I, thereby

displaying ambiguity aversion.

Ambiguity aversion cannot be reconciled with the EU model. To see that, let the
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state space S = {R,B} represent the possible draws from Urn I.

Betting $100 on red from Urn I corresponds to an act fR = (δ100, δ0) while betting

$100 on black from Urn I corresponds to an act fB = (δ0, δ100). On the other hand,

betting $100 on red from Urn II corresponds to a lottery πR = 1
2
δ100 + 1

2
δ0, while

betting $100 on black from Urn II corresponds to a lottery πB = 1
2
δ0 + 1

2
δ100. These

correspondences reflect the fact that betting on Urn I involves subjective uncertainty,

while betting on Urn II involves objective risks. Note in particular, that πR = πB.

Suppose that the subjective probability of drawing red from Urn I is q and black

from Urn I is 1−q. Observe that V (πR) = V (πB) = 1
2
u(100)+ 1

2
u(0), whereas V (fR) =

qu(100) + (1− q)u(0) and V (fB) = (1− q)u(100) + qu(0). Because of the indifference

V (fR) = V (fB) it follows that q = 1
2
; hence, V (fR) = V (fB) = 1

2
u(100) + 1

2
u(0). It

follows that πB ∼ πR ∼ fR ∼ fB, contradicting the typical Ellsberg choices. N

As the above example shows, the Ellsberg pattern of choices cannot be explained

by a model with a unique probability measure and with uniform aversion to both

sources. In the literature there have been two main approaches to this problem.

The first one replaces the probability measure q with some other measure of belief

that captures the decision maker’s lack of information about the source, see, e.g.,

the Choquet model of Schmeidler (1989), Maxmin model of Gilboa and Schmeidler

(1989), or variational preferences of Maccheroni et al. (2006a). The other approach is

to keep q but to introduce another parameter that captures the higher aversion toward

variability coming from one source than another, as in the SOEU model (Neilson,

1993, 2009; Nau, 2001, 2006; Ergin and Gul, 2009; Grant et al., 2009). As this paper

shows (see Section 3.3), the multiplier preferences have both representations and for

this reason they belong to both families of models.

2.3 Multiplier Preferences

Hansen and Sargent (2001) and Hansen, Sargent, Turmuhambetova, and Williams

(2006) introduced the class of multiplier preferences where the decision maker does

not know the true probabilistic model p, but has a “best guess”, or approximating

model q, also called the reference probability. The decision maker thinks that the true

probability p is somewhere near the reference probability q. The notion of distance

used by Hansen and Sargent is relative entropy.
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Definition 1. Let a reference measure q ∈ ∆σ(S) be fixed. The relative entropy

R(·‖q) is a mapping from ∆(S) into [0,∞] defined by

R(p‖q) =


∫
S
(log dp

dq
) dp if p ∈ ∆σ(q),

∞ otherwise.

A decision maker who is concerned with model misspecification computes his

expected utility according to all probabilities p, but he does not treat them equally.

Probabilities closer to his “best guess” have more weight in his decision.

Definition 2. A relation % has a multiplier representation if it is represented by

V (f) = min
p∈∆(S)

∫
S

u(f(s)) dp(s) + θR(p‖q),

where u : ∆(Z)→ R is a non-constant affine function, θ ∈ (0,∞], and q ∈ ∆σ(S). In

this case, % is called a multiplier preference.

The multiplier representation of % may suggest the following interpretation. First,

the decision maker chooses an act without knowing the true distribution p. Second,

“Nature” chooses the probability p in order to minimize the decision maker’s expected

utility. Nature is not free to choose, but it incurs a “cost” for using each p. Prob-

abilities p that are farther from the reference measure q have a larger potential for

lowering the decision maker’s expected utility, but Nature has to incur a larger cost

in order to select them.

This interpretation suggests that a decision maker with such preferences is con-

cerned with model misspecification and makes decisions that are robust to such mis-

specification. He is pessimistic about the outcome of his decision which leads him

to exercise caution in choosing the course of action. Such cautious behavior is rem-

iniscent of the Ellsberg paradox, as in Example 1 above. In fact, as Example 2 in

Section 3.4.2 shows, multiplier preferences can be used to model such behavior.
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3 Axiomatization with Objective Risk

3.1 Variational Preferences

To capture ambiguity aversion, Maccheroni et al. (2006a), henceforth MMR, introduce

the class of variational preferences, with representation

V (f) = min
p∈∆S

∫
S

u(f(s)) dp+ c(p), (7)

where c : ∆S → [0,∞] is a cost function.

Multiplier preferences are a special case of variational preferences where c(p) =

θR(p ‖ q). The variational criterion (7) can be given the same interpretation as

the multiplier criterion (2): Nature wants to reduce the decision maker’s expected

utility by choosing a probability distribution p, but she is not entirely free to choose.

Using different p’s leads to different values of the decision maker’s expected utility∫
S
u(f(s)) dp, but comes at a cost c(p).

In order to characterize variational preferences behaviorally, MMR use the follow-

ing axioms.

Axiom A1 (Weak Order). The relation % is transitive and complete.

Axiom A2 (Weak Certainty Independence). For all f, g ∈ F(∆(Z)), π, π′ ∈ ∆(Z),

and α ∈ (0, 1),

αf + (1− α)π % αg + (1− α)π ⇒ αf + (1− α)π′ % αg + (1− α)π′.

Axiom A3 (Continuity). For any f, g, h ∈ F(∆(Z)) the sets {α ∈ [0, 1] | αf + (1−
α)g % h} and {α ∈ [0, 1] | h % αf + (1− α)g} are closed.

Axiom A4 (Monotonicity). If f, g ∈ F(∆(Z)) and f(s) % g(s) for all s ∈ S, then

f % g.

Axiom A5 (Uncertainty Aversion). If f, g ∈ F(∆(Z)) and α ∈ (0, 1), then

f ∼ g ⇒ αf + (1− α)g % f.

Axiom A6 (Nondegeneracy). f � g for some f, g ∈ F(∆(Z)).

Axiom A8 (Weak Monotone Continuity). If f, g ∈ F(∆(Z)), π ∈ ∆(Z), {En}n≥1 ∈
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Σ with E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1

such that πEn0f � g.

MMR show that the preference % satisfies Axioms A1–A6 if and only if % is

represented by (7) with an affine and non-constant u : ∆(Z)→ R and c : ∆S → [0,∞]

that is convex, lower semicontinuous, and grounded (achieves value zero). Moreover,

Axiom A8 guarantees that function c is concentrated only on countably additive

measures (observe, that Axiom A8 holds trivially if S is finite).

The conditions that the cost function c satisfies are very general. For example, if

c(p) =∞ for all measures p 6= q, then (7) reduces to (5), i.e., preferences are expected

utility. Similarly, setting c(p) = 0 for all measures p in a closed and convex set C and

c(p) =∞ otherwise, denoted c = δC , reduces (7) to the representation of the Maxmin

Expected Utility preferences of Gilboa and Schmeidler (1989).

As mentioned before, multiplier preferences also are a special case of variational

preferences. They can be obtained by setting c(p) = θR(p ‖ q). The next section

shows that pinning down this functional form is possible with Savage’s P2 applied to

all Anscombe–Aumann acts.6

3.2 Axiomatization of Multiplier Preferences

Axiom P2 (Savage’s Sure-Thing Principle). For all E ∈ Σ and f, g, h, h′ ∈ F(∆(Z))

fEh % gEh⇒ fEh
′ % gEh

′.

Definition 3. An event E ∈ Σ is non-null if there exist f, g, h ∈ F(∆(Z)) such that

fEh � gEh.

Theorem 1. If S has at least three disjoint non-null events, then Axioms A1–A6,

A8, and P2, are necessary and sufficient for % to have a multiplier representation

(2). Moreover, in this case two triples (θ′, u′, q′) and (θ′′, u′′, q′′) represent the same

multiplier preference % if and only if q′ and q′′ are identical and there exist α > 0

and β ∈ R such that u′ = αu′′ + β and θ′ = αθ′′.

The two cases: θ = ∞ (lack of concern for model misspecification) and θ < ∞
6If the existence of certainty equivalents of lotteries is assumed, i.e., for any π ∈ ∆(Z) there

exists z ∈ Z with z ∼ π, then P2 can be weakened and imposed only on purely subjective acts.

11



(concern for model misspecification) can be distinguished on the basis of the Indepen-

dence Axiom.7 In the case when θ is finite, its numerical value is uniquely determined,

given u. A positive affine transformation of u changes the scale on which θ operates,

so θ has to change accordingly. This is reminiscent of the necessary adjustments of

the CARA coefficient when units of account are changed.

In addition, it should be mentioned that there exists an axiomatization by Wang

(2003) of a class of preferences that includes multiplier preferences as a special case.

However, his result is formally unrelated and it assumes different primitives: pref-

erences are defined on triples (f, C, q), where f is an act with monetary payoffs,

C ⊆ ∆(S) is a set of probability measures and q ∈ ∆(S) is a reference measure.

In particular, his axioms impose consistency conditions as the elements C and q are

varied exogenously. In contrast, here C = ∆(S) and q is fixed and derived from

preferences.

3.3 Sketch of the Proof

The following variational formula (see, e.g., Proposition 1.4.2 of Dupuis and Ellis,

1997) plays a critical role in the analysis of multiplier preferences. For any bounded

and Σ-measurable function ξ : S → R and q ∈ ∆σ(S).

min
p∈∆S

∫
S

ξ dp+ θR(p‖q) = φ−1
θ

(∫
S

φθ ◦ ξ dq

)
. (8)

This formula implies that the variational

min
p∈∆S

∫
S

u(f(s)) dp+ θR(p‖q) (9a)

and the SOEU ∫
S

φθ

(
u
(
f(s)

))
dq(s) (9b)

representations are ordinally equivalent, establishing the necessity of the MMR and

Savage axioms.

7The weaker Certainty Independence Axiom is also sufficient for making such a distinction.
Alternatively, Machina and Schmeidler’s (1995) axiom of Horse/Roulette Replacement or Grant
and Polak’s (2006) axiom of Betting Neutrality could be used.
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The sufficiency argument relies on the fact that the MMR axioms guarantee the

existence an affine utility function u : ∆(Z)→ R and a functional I that maps utility-

valued acts to reals, such that the functional f 7→ I(u(f)) represents the preferences.

For simplicity, assume that u(∆Z) = R. MMR show that the functional I has the

translation invariance property that I(u ◦ f +k) = I(u ◦ f) +k for any act f and any

k ∈ R. On the other hand, axiom P2 together with the MMR axioms implies that

the preferences have a SOEU representation∫
S

φ
(
u(f(s))

)
dq(s) (10)

for some strictly increasing function φ.8 Moreover, Axioms A3 and A5 imply that φ

is continuous and concave and Axiom A8 implies that q is countably additive. This

representation, together with translation invariance, implies that∫
S

φ
(
u(f(s))

)
dq(s) ≥

∫
S

φ
(
u(g(s))

)
dq(s)

iff ∫
S

φ
(
u(f(s)) + k

)
dq(s) ≥

∫
S

φ
(
u(g(s)) + k

)
dq(s),

which by uniqueness of the SOEU representation implies that there exist α(k) >

0, β(k) ∈ R such that φ(x + k) = α(k)φ(x) + β(k) for all x, k ∈ R. This is a

generalized Pexider equation, whose only solutions are φ = φθ for θ ∈ (0,∞], which

establishes the sufficiency of the axioms.

3.4 Discussion

3.4.1 Second-Order Expected Utility

It follows from the above proof that the class of multiplier preferences is precisely the

intersection of the class of variational preferences and the class of SOEU preferences.9

8Recall that Savage’s P2 axiom is imposed on F(∆(Z)), not just the purely subjective acts, as
in Savage (1972). The fact that imposing all Savage’s axioms on F(∆(Z)) implies SOEU has been
first shown by Neilson (1993); I am grateful to Peter Klibanoff for this reference.

9The fact that multiplier preferences rank purely subjective acts according to the EU criterion
has been observed before in various levels of generality by Jacobson (1973), Whittle (1981), Skiadas
(2003), and Maccheroni, Marinacci, and Rustichini (2006b). Because of this fact, it is not possible
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When viewed as a SOEU preference, multiplier preferences impose the condition

φ = φθ. When viewed as a variational preference, multiplier preferences impose

the condition c(p) = θR(p ‖ q). It is worthwhile to notice that this means that no

other variational preferences have a SOEU representation, i.e., assuming that c is

a statistical distance other than the relative entropy leads to models which do not

have a SOEU representation for any φ. Conversely, no other SOEU preference has a

variational representation, i.e., assuming that φ is a function other than the negative

exponential leads to models which do not have a variational representation for any c.

3.4.2 Source sensitivity of multiplier preferences

Focus on the case θ < ∞ and notice that from the SOEU representation (9b) it

follows that for any two purely objective lotteries π′ % π if and only if∑
z∈Z

u(z)π′(z) ≥
∑
z∈Z

u(z)π(z).

On the other hand, for any two purely subjective acts f ′ % f if and only if

∑
z∈Z

φθ(u(z))πf ′(z) ≥
∑
z∈Z

φθ(u(z))πf (z).

This means that the decision maker has a different attitude toward objective lotteries

and toward subjective acts, while behaving according to EU in each subdomain. In

particular, he is more averse toward subjective uncertainty (as captured by φθ ◦ u)

than toward objective risk (as captured by u). This phenomenon is called Second

Order Risk Aversion.10 What leads to the Ellsberg-type behavior are violations of

EU across those domains. The following example shows that, because of this property,

multiplier preferences can be useful for modelling Ellsberg-type behavior.

Example 2 (Ellsberg’s Paradox revisited). In the context of Example 1 consider a

multiplier preference with a parameter θ. Observe that V (πR) = V (πB) = φθ
(

1
2
u(100)+

to distinguish multiplier preferences from the EU preferences based on the preferences over purely
subjective acts alone and a setting with multiple sources of uncertainty, like the Anscombe–Aumann
or Ergin–Gul ones, is needed.

10This notion was introduced by Ergin and Gul (2009) in a setting with two subjective sources of
uncertainty (see Section 5).
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1
2
u(0)

)
, whereas V (fR) = qφθ

(
u(100)

)
+(1−q)φθ

(
u(0)

)
and V (fB) = (1−q)φθ

(
u(100)

)
+

qφθ
(
u(0)

)
. Because of the indifference V (fR) = V (fB) it follows that q = 1

2
; hence,

V (fR) = V (fB) = 1
2
φθ
(
u(100)

)
+ 1

2
φθ
(
u(0)

)
. By Jensen’s inequality, πB ∼ πR �

fR ∼ fB for all θ < ∞. This means that the decision maker prefers objective risk

to probabilistically equivalent subjective uncertainty, displaying behavior typical in

Ellsberg’s experiments. N

3.4.3 Measurement of Parameters

Ellsberg’s paradox provides a natural setting for the experimental measurement of

the parameters of the model because the intensity of the preference for betting on

the first urn rather than the second one, i.e., the premium that the decision maker is

willing to pay to switch between these two bets is directly related to the value of the

parameter θ.

Example 3. In the context of Examples 1 and 2 consider a multiplier preference with

a CRRA utility function u(z) = (w+ z)1−γ, where w is the initial level of wealth, and

parameter θ. Observe that V (πR) = V (πB) = φθ
(

1
2
w1−γ + 1

2
(w + 100)1−γ), whereas

V (fR) = V (fB) = 1
2
φθ
(
w1−γ) + 1

2
φθ
(
(w + 100)1−γ). Let x denote the certainty

equivalent of πR and πB, i.e., the amount of money that, when received for sure,

would be indifferent to πR and πB. Formally, x solves

(w + x)1−γ =
1

2
w1−γ +

1

2
(w + 100)1−γ. (11)

The observed value of the certainty equivalent x allows to compute the curvature

parameter γ using Equation (11); let γ(x) be the solution to this equation.11

Similarly, let y be the certainty equivalent of fR and fB, i.e., the amount of money

that, when received for sure, would be indifferent to fR and fB. Formally, y solves

φθ
(
(w + y)1−γ(x)

)
=

1

2
φθ
(
(w)1−γ(x)

)
+

1

2
φθ
(
(w + 100)1−γ(x)

)
. (12)

The observed value of the certainty equivalent y allows to compute the parameter θ;

using equation (12); let θ(x, y) be the solution to this equation. N

11If the utility function u belongs to some higher-dimensional family of utility functions, more
certainty equivalents need to be elicited in order to infer all of its parameters.
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The procedure described above suggests that simple choice experiments could be

used for empirical measurement of both u and θ. Such measurement of parameters

would very useful in applied settings, where it is important to know the numerical

values of parameters. For example, the macro-finance literature devotes a lot of

attention to the discrepancy between the micro- and macro-level estimates of the

curvature of u. By analogy, it would be valuable to know the micro-level estimate

of θ to be able to compare it to the value calibrated from the macro-level data. The

above procedure provides a simple “revealed-preference” method of comparison, that

is complementary to the heuristic method of “detection error probabilities” developed

by Anderson, Hansen, and Sargent (2000) and Hansen and Sargent (2007).

4 Axiomatization with two subjective sources

This section discusses a choice domain, which does not rely on the assumption of

objective risk: instead, there are two sources of subjective uncertainty, towards which

the decision maker may have different attitudes. This type of environment was dis-

cussed by Chew and Sagi (2008), Ergin and Gul (2009), and Nau (2001, 2006); for

an empirical application see Abdellaoui, Baillon, Placido, and Wakker (2009).

4.1 Subjective Sources of Uncertainty

Assume that the state space has a product structure S = Sa × Sb, where a and b

are two separate issues, or sources of uncertainty, towards which the decision maker

may have different attitudes. In comparison with the Anscombe–Aumann framework,

where objective risk is one of the sources, here both sources are subjective. Let Aa be

a sigma algebra of subsets of Sa and Ab be a sigma algebra of subsets of Sb. Let Σa be

the sigma algebra of sets of the form A× Sb for all A ∈ Aa, Σb be the sigma algebra

of sets of the form Sa × B for all B ∈ Ab, and Σ be the sigma algebra generated by

Σa ∪ Σb. Let F(Z) be the set of all simple acts f : S → Z; moreover, let Fa be the

set of acts that are Σa-measurable, and likewise for Fb. Let U denote the set u(Z).

Ergin and Gul (2009) axiomatized preferences which are general enough to ac-

commodate probabilistic sophistication and even second-order probabilistic sophisti-

cation. An important subclass of those preferences are second-order expected utility
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preferences represented by

V (f) =

∫
Sb

φ

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dqb(sb) (13)

where the measures qa ∈ ∆(Sa) and qb ∈ ∆(Sb) are convex-ranged,12 u : Z → R,

and φ : Dφ → R is a strictly increasing and continuous function with domain Dφ :=

{
∫
Sa
u(f(sa, sb)) dqa(sa) | f ∈ Fa}. To characterize preferences represented by (13),

Ergin and Gul (2009) use the following axioms.

Axiom P1’. (Weak Order) The preference % is complete and transitive

Axiom P2’. (Sure Thing Principle) For all events Ea ∈ Σa and Eb ∈ Σb and acts

f, g, h, h′ ∈ Fa and f̃ , g̃, h̃, h̃′ ∈ F

(a) fEah
′ % gEah iff fEah

′ % gEah
′

(b) f̃Eb
h̃′ % g̃Eb

h̃ iff f̃Eb
h̃′ % g̃Eb

h̃′

Axiom P3’. (Eventwise Monotonicity) For all z, z′ ∈ Z, f ∈ F , and all nonnull

events E ∈ Σ: zEf % z′Ef iff z % z′.

Axiom P4’. (Strong Comparative Probability)

(a) For all x � y and x′ � y′, and h, h′ ∈ Fa and disjoint A,A′ ∈ ΣA: xAyA′h �
yAxA′h iff x′Ay

′
A′h
′ � y′Ax

′
A′h
′.

(b) For all f, g, f ′, g′ ∈ Fa such that f � g and f ′ � g′, and for all h̃, h̃′ ∈ F and

disjoint B,B′ ∈ Σb: fBgB′h � gBfB′h iff f ′Bg
′
B′h
′ � g′Bf

′
B′h
′.

Axiom P5’. (Nondegeneracy) There exist x, y ∈ Z such that x � y.

Axiom P6’. (Small Event Continuity) For all f, g ∈ F with f � g, and all z ∈ Z

(a) there exists a partition E1, . . . , En ∈ Σa of S such that for all i zEi
f � g and

f � zEi
g,

(b) there exists a partition F1, . . . , Fm ∈ Σb of S such that for all j zFj
f � g and

f � zFj
g .

12A measure q is convex ranged if for every E ∈ Σ and every α ∈ (0, 1) there exists Σ 3 E′ ⊆ E
with q(E′) = αq(E). It is well known that this requirement is equivalent to nonatomicity for
q ∈ ∆σ(S). Any measure on R that has a density with respect to the Lebesgue measure has this
property; in applications of multiplier preferences, q is most often a Normal distribution.
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There is a close relationship between representations (13) and (10). The role of

objective risk is now taken by a subjective source: issue a. For each sb, the decision

maker computes the expected utility of f(·, sb) and then averages those values using

function φ.

4.2 Second-Order Risk Aversion

In the Anscombe–Aumann framework, concavity of the function φ is responsible for

second-order risk aversion, i.e., higher aversion towards subjective uncertainty than

towards objective risk. This property is a consequence of the axiom of Uncertainty

Aversion (Axiom A5). Similarly, in the present setup, the concavity of function φ

is responsible for higher aversion towards issue b than towards issue a. This prop-

erty was introduced by Ergin and Gul (2009) who formally defined it in terms of

mean-preserving spreads. However, this definition refers to the probability measures

obtained from the representation and hence is not expressed directly in terms of

observables.13

In the presence of other axioms, the following purely behavioral axiom is equivalent

to Ergin and Gul’s (2009) definition.

Axiom A5’ (Second Order Risk Aversion). For any f, g ∈ Fb and any E ∈ Σa if

f ∼ g, then fEg % f .

This axiom is a direct subjective analogue of Schmeidler’s (1989) axiom of Uncer-

tainty Aversion (Axiom A5).

Theorem 2. Suppose % satisfies axioms P1’–P6’ and certainty equivalents exist, i.e.,

for any f ∈ F(Z) there exists z ∈ Z with z ∼ f . Then Axiom A5’ is satisfied if and

only if the function φ in (13) is concave.14

13Theorems 2 and 5 of Ergin and Gul (2009) characterize second-order risk aversion in terms of
induced preferences over induced Anscombe–Aumann acts and an analogue of Axiom A5 in that
induced setting. However, just as with mean-preserving spreads, those induced Anscombe–Aumann
acts are constructed using the subjective probability measure derived from the representation.

14The full analysis that does not rely on the existence of certainty equivalents is contained in
Appendix B.
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4.3 Axiomatization of Multiplier Preferences

The additional axiom that delivers multiplier preferences in this framework is Con-

stant Absolute Second Order Risk Aversion.

Axiom A2’ (Constant Absolute Second Order Risk Aversion). For any event E ∈ Σa

for all f, g ∈ F(Z), h, h′ ∈ Fa

fEh % gEh⇒ fEh′ % gEh′.

In addition, a technical axiom, similar to Axiom A8, is needed.

Axiom A8’ (Fb-Monotone Continuity). If f, g ∈ F(Z), x ∈ Z, {En}n≥1 ∈ Σb with

E1 ⊇ E2 ⊇ · · · and
⋂
n≥1En = ∅, then f � g implies that there exists n0 ≥ 1 such

that xEn0f � g.

Theorem 3. Axioms P1’–P6’, A2’, A5’, and A8’ are necessary and sufficient for %

to be represented by V , where

V (f) = min
pb∈∆Sb

∫
Sb

(∫
Sa

u(f(sa, sb)) dqa(sa)

)
dpb(sb) + θR(pb‖qb)

and u : Z → R, θ ∈ (0,∞], and qa ∈ ∆(Sa), qb ∈ ∆σ(Sb) are convex-ranged measures.

4.4 Sketch of the Proof

By Theorem 3 of Ergin and Gul (2009) Axioms P1’–P6’ are equivalent to % being

represented by (13). Assume for simplicity that certainty equivalents exist and that

u(Z) = R. By Theorem 2 Axiom A5’ is equivalent to φ : R → R being concave.

Moreover, it is easy to see that Axiom A8’ is equivalent to qb being countably additive.

A direct verification establishes that Axiom A2’ is necessary.

To establish the sufficiency of Axiom A2’, observe that by convex-rangedness of qa

there exists an event E ∈ Σa such that qa(E) = 1
2
. For all k ∈ R and f ′, g′ ∈ Fb

Axiom A2’ (applied to f, g, h, and h′ such that u(f) = 2u(f ′) and u(g) = 2u(g′) and

u(h) = 0 and u(h′) = k) implies that∫
Sb

φ
(
u(f(s))

)
dq(s) ≥

∫
S

φ
(
u(g(s))

)
dqb(sb)
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iff ∫
S

φ
(
u(f(s)) + k

)
dq(s) ≥

∫
Sb

φ
(
u(g(s)) + k

)
dqb(sb),

which, by the same argument as in the proof of implies that φ = φθ.

5 Conclusion

One of the challenges in decision theory lies in finding decision models that would do

better than Expected Utility in describing individual choices, but would at the same

time be easy to incorporate into economic models of aggregate behavior.

This paper studies the model of multiplier preferences which is known to satisfy

the latter requirement. By obtaining an axiomatic characterization of this model, the

paper studies its individual choice properties, which helps to determine whether it

also satisfies the first requirement mentioned above.

The axiomatization provides a set of testable implications of the model, which will

be helpful in its empirical verification. The axiomatization also enables measurement

of the parameters of the model on the basis of observable choice data alone, thereby

providing a useful tool for applications of the model.

Appendix: Proofs

Let B0(Σ) denote the set of all real-valued Σ-measurable simple functions and let

B0(Σ, K) be the set of all functions in B0(Σ) that take values in a convex set K ⊆ R.

In the course of the proof of Theorem 1 a result of Grant et al. (2009) will be

invoked that delivers a SOEU representation on each finite partition of S. The fol-

lowing theorem shows that these representations can be “patched” together to obtain

an overall SOEU representation on S.

Let Ξ denote the set of all finite partitions of S that are composed of events in Σ;

let Ξ3 ⊆ Ξ denote the set of all such partitions that contain at least three non-null

events. For any G ∈ Ξ let A(G) be the algebra generated by G. For any G ∈ Ξ3

let FG(∆(Z)) denote the set of acts in F(∆(Z)) that are measurable with respect

to A(G).
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Definition 4 (Ξ3-SOEU). A preference % on F(∆(Z)) is Ξ3-SOEU iff for any G ∈ Ξ3

the restriction of % to FG(∆(Z)) has representation f 7→
∑

E∈G φG(uG(f(E)))pG(E)

with a nonconstant affine function uG : ∆(Z)→ R with range UG, a strictly increasing,

continuous, and concave function φG : UG → R and measure pG : A(G) → [0, 1] such

that at least three events in G have nonzero probability.

Theorem 4. Suppose that Ξ3 6= ∅ and that % satisfies Axioms A1, A4, and P2.

The preference % is Ξ3-SOEU if and only if there exists a measure p ∈ ∆(S) and a

nonconstant affine function u : ∆(Z) → R with range U , and a strictly increasing,

concave and continuous function φ : U → R such that % is represented by f 7→∫
S
φ(u(f(s))) dp(s).

Proof. The sufficiency of the representation is straightforward. For necessity, let

G,G ′ ∈ Ξ3. The restrictions of % to FG(∆(Z)) and to FG′(∆(Z)) coincide on constant

acts ∆(Z). Thus, from the uniqueness of the von-Neumann-Morgentstern utility, it

follows that uG and uG′ are identical up to a positive affine transformation. Fix any

two prizes z � z′ and for each G ∈ Ξ3 normalize uG so that uG(z) = 1 and uG(z
′) = 0.

Define u to be the common utility function for all G ∈ Ξ3.

Let Ḡ ∈ Ξ3 be some fixed element of Ξ3. For any G,G ′ ∈ Ξ define G ≥ G ′ iff G is

finer than G ′, i.e,. for every E ∈ G there exists F ∈ G ′ with E ⊆ F . For any G,G ′ ∈ Ξ

let G ∨G ′ be their coarsest common refinement and let G ∧G ′ be their finest common

coarsening.

Lemma 1. If E ∈ Σ is non-null, then for any finite Σ-measurable partition {F1, . . . Fn}
of E at least one of the sets F1, . . . Fn is non-null.

Proof. Claim 1: For any non-null E ∈ Σ there exist π, ρ, σ ∈ ∆(Z) such that

ρEσ � πEσ. Proof: there exist f, g, h ∈ F(∆(Z)) such that fEh � gEh and by P2

choose h to equal to some σ ∈ ∆(Z) different than any of the prizes given by f and g.

Let {E1, . . . , En, E
c} be a partition of S with respect to which both fEσ and gEσ are

measurable. Let ρ be the most preferred element among {f(Ei) | i = 1, . . . , n} and

let π be the least preferred element among {g(Ei) | i = 1, . . . , n}. By A4, ρEσ % fEσ

and gEσ % πEσ. Thus ρEσ � πEσ.

Claim 2: For any non-null E ∈ Σ and any two-element Σ-measurable partition

{F1, F2} of E at least one of the sets F1, F2 is non-null. Proof: Suppose that there
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exists a two-element Σ-measurable partition {F1, F2} of E such that both sets F1, F2

are null. Then ρFi
h ∼ πFi

h for any h ∈ F(∆(Z)) and all i = 1, 2. In particular,

ρEσ = ρF1(ρF2σ) ∼ πF1(ρF2σ) = ρF2(πF1σ) ∼ πF2(πF1σ) = πEσ. Contradiction with

Claim 1.

Claim 3: (Inductive step). If for any non-null E ′ ∈ Σ and any n-element Σ-

measurable partition {F1, . . . Fn} of E ′ at least one of the sets F1, . . . Fn is non-

null, then for any non-null E ∈ Σ and any n + 1-element Σ-measurable partition

{F1, . . . Fn+1} of E at least one of the sets F1, . . . Fn+1 is non-null. Proof: By Claim 2,

at least one of the sets F1∪ · · · ∪Fn =: E ′ and Fn+1 are non-null. If the latter is true,

this concludes the proof. If E ′ is non-null, then the premise of this claim applied to

the set E ′ and its partition {F1, . . . Fn} concludes the proof.

Lemma 2. G ∨ G ′ ∈ Ξ3 for any G ∈ Ξ3 and G ′ ∈ Ξ.

Proof. By assumption, there are at least three disjoint non-null sets in G. By Lemma 1

for any such set E ∈ G there is at least one non-null member of {E ∩ F | F ∈ G ′}.
Thus, there are at least three non-null members of G ∨ G ′.

Lemma 3. The functions {φG}G∈Ξ3 and measures {pG}G∈Ξ3 can be chosen in such

a way that there exists φ : U → R such that φG = φ for any G ∈ Ξ3 and for any

G,G ′ ∈ Ξ3 the restrictions of measures pG and pG′ to A(G ∧ G ′) coincide.

Proof. For each G ∈ Ξ3 normalize φG so that φG(u(z)) = 1 and φG(u(z′)) = 0. First,

let G,H ∈ Ξ3 such that G ≥ H. Observe, that FH(∆(Z)) ⊆ FG(∆(Z)), so both

(φH, pH) and (φH, pH) represent preferences on FH(∆(Z)). By the uniqueness of the

expected utility representation, the restriction of pH to G coincides with pG and the

functions φH and φG are identical up to a positive affine transformation, which by the

above normalization assumption implies that they are equal.

Second, let G,G ′ ∈ Ξ3. By Lemma 2, G ∨ G ′ ∈ Ξ3. Furthermore, G ∨ G ′ ≥ G and

G ∨ G ′ ≥ G ′. From the above paragraph it follows that φG = φG∨G′ = φG′ . Let φ be

this common function. Also the restriction of pG∨G′ to A(G) coincides with pG; hence

the restriction of pG∨G′ to A(G ∧G ′) coincides with the restriction of pG to A(G ∧G ′).
Likewise, the restriction of pG∨G′ to A(G ′) coincides with pG′ ; hence the restriction of

pG∨G′ to A(G ∧ G ′) coincides with the restriction of pG′ to A(G ∧ G ′).
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Lemma 4. There exists p ∈ ∆(S) such that p(E) = pG(E) for any E ∈ Σ and any

G ∈ Ξ3 with E ∈ G.

Proof. For any E ∈ Σ define the partition GE := Ḡ ∨ {E,Ec}; by Lemma 2, GE ∈ Ξ3.

Define the function p : Σ → [0, 1] by p(E) := pGE
(E). Let E,F ∈ Σ such that

E∩F = ∅. Let GEF := Ḡ∨{E,F, (E∪F )c}. By Lemma 2, GEF ∈ Ξ3 and by Lemma 3,

pGE
(E) = pGEF

(E) because E ∈ A(GE ∧ GEF ). Likewise, pGF
(F ) = pGEF

(F ) because

F ∈ A(GF ∧GEF ). Also, pGE∪F
(E∪F ) = pGEF

(E∪F ) because E∪F ∈ A(GE∪F ∧GEF ).

By definition, p(E ∪ F ) = pGE∪F
(E ∪ F ) = pGEF

(E ∪ F ) = pGEF
(E) + pGEF

(F ) =

pGE
(E) + pGF

(F ) = p(E) + p(F ). Hence, p ∈ ∆(S).

Suppose G ∈ Ξ3 and E ∈ G. Then E ∈ A(G ∧ GEF ) and by Lemma 3 pG(E) =

pGE
(E). Hence, by definition, p(E) = pG(E).

Conclusion of the proof of Theorem 4

For any act f ∈ F(∆(Z)) define V (f) :=
∫
φ(u(f(s)) dp(s). To verify that V

represents % let f, g ∈ F(∆(Z)). Let Gfg ∈ Ξ be a partition such that both f and g

are measurable with respect to A(Gfg). Let G := Gfg ∨ Ḡ. By Lemma 2, G ∈ Ξ3. By

assumption, f % g iff
∑

E∈G φG(uG(f(E))pG(E) ≥
∑

E∈G φG(uG(g(E))pG(E). Since

uG = u, φG = φ (by Lemma 3), and p(E) = pG(E) for all E ∈ G (by Lemma 4) it

follows that f % g iff
∑

E∈G φ(u(f(E))p(E) ≥
∑

E∈G φ(u(g(E))p(E).

A Proof of Theorem 1

The necessity of the axioms was shown in the sketch of proof (Section 3.3); this section

focus on sufficiency. Uniqueness follows from Corollary 5 of Maccheroni et al. (2006a)

A.1 Niveloidal Representation

By Lemmas 25 and 28 of Maccheroni et al. (2006a) and Lemma 22 in Maccheroni,

Marinacci, and Rustichini (2004), Axioms A1-A6 imply that there exists a non-

constant affine function u : ∆(Z) → R and a normalized concave functional I :

B0(Σ,U) → R, such that for all f % g iff I(u ◦ f) ≥ I(u ◦ g) where U := u(∆(Z)).

Moreover, within this class, u is unique up to positive affine transformations.
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For any y ∈ intU define Uy := {x ∈ U | x + y ∈ U}. The functional I has

the property that I(ξ + y) = I(ξ) + y for all y ∈ U and ξ ∈ B0(Σ,Uy). Wlog,

U ∈ {R,R+,R−, [0, 1]}; the inclusion of the endpoints does not matter for further

analysis.

A.2 Utility Acts

For each act f , define the utility act associated with f as u ◦ f ∈ B0(Σ,U). The

preference on acts induces a preference on utility acts: for any ξ′, ξ′′ ∈ B0(Σ,U)

define ξ′ %u ξ
′′ iff f ′ % f ′′, for some ξ′ = u ◦ f ′ and ξ′′ = u ◦ f ′′. The choice of

particular versions of f ′ and f ′′ is irrelevant, because ξ′ %u ξ
′′ iff I(ξ′) ≥ I(ξ′′).

From Section A.1 it follows that ξ′ %u ξ
′′ iff I(ξ′) ≥ I(ξ′′) iff I(ξ′ + y) ≥ I(ξ′′ + y)

iff ξ′ + y %u ξ
′′ + y for all y ∈ intU and all ξ′, ξ′′ ∈ B0(Σ,Uy).

A.3 Second-Order Expected Utility

By Proposition 7 of Maccheroni et al. (2006a) the preference % is ambiguity averse

in the sense of Ghirardato and Marinacci (2002). Observe that for any G ∈ Ξ3 there

is a natural bijection between FG(∆(Z)) and (∆(Z))|G| that preserves the axioms

A1-A6, P2, and the ambiguity aversion in the sense of Ghirardato and Marinacci

(2002). Thus, by Theorem 2 of Grant et al. (2009), for any G ∈ Ξ3 the restriction of

% to FG(∆(Z)) has an additive representation f 7→
∑

E∈G φG(uG(f(E)))pG(E) with

a nonconstant affine function uG : ∆(Z) → R with range UG, a strictly increasing,

continuous, and concave function φG : UG → R and measure pG : A(G) → [0, 1] such

that at least three events in G have nonzero probability. By Theorem 4 above, the

preference % has an additive representation∫
S

φ
(
u
(
f(s)

))
dq(s).

where the measure q ∈ ∆(S) and the function φ : U → R is strictly increasing,

concave and continuous.

By Theorem 1 in Section 1 of Villegas (1964), Axiom A8 implies that q ∈ ∆σ(S).
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A.4 Proof that φ = φθ

For any y ∈ intU define φy(x) := φ(x+ y) for all x ∈ Uy. It follows from A.2 and A.3

that
∫
S
φy ◦ ξ′ dq ≥

∫
S
φy ◦ ξ′′ dq iff

∫
S
φ ◦ ξ′ dq ≥

∫
S
φ ◦ ξ′′ dq for all ξ′, ξ′′ ∈ B0(Σ,Uy).

Thus, (φ, q) and (φy, q) are EU representations of the same preference on B0(Σ,Uy).
By the uniqueness (up to positive affine transformation) of the EU representation it

follows that φ(x + y) = α(y)φ(x) + β(y) for all y ∈ intU and all x ∈ Uy. This is a

generalization of Pexider’s equation (see equation (3) of Section 3.1.3, p. 148 of Aczél,

1966). If U is unbounded, then by Corollary 1 in Section 3.1.3 of Aczél (1966), up

to positive affine transformations, the only strictly increasing concave solutions are

of the form φθ, for θ ∈ (0,∞]. If U is bounded, then wlog assume that intU = (0, 1)

and define the set R := {(x, y) ∈ R2 | x > 0, y > 0, x + y < 1} and functions

m, l, n, k : (0, 1) → R by m := α, l := β, n := φ|(0,1), and k := φ|(0,1). The following

functional equation holds: k(x+y) = m(y)n(x)+l(y) for all (x, y) ∈ R. It follows from

the Corollary in Aczél (2005) that either k(x) = Cx+B + Pω or k(x) = ωδeCx +B

for some arbitrary parameters B,P,C, ω, δ with Cωδ 6= 0. It follows that φ is an

exponential function up to positive affine transformations; by concavity, φ = φθ in

the interior of U . By continuity of φ, this extends to the whole set U .

A.5 Conclusion of the Proof

Combining the results of Sections A.3 and A.4, f % g iff
∫
S
(φθ ◦ u ◦ f) dq ≥∫

S
(φθ ◦ u ◦ g) dq. Because q ∈ ∆σ, by the variational formula, it follows that f % g iff

minp∈∆S

∫
S
(u ◦ f) dp+ θR(p‖q) ≥ minp∈∆S

∫
S
(u ◦ g) dp+ θR(p‖q).

B Proof of Theorem 2

In order to relax the assumption of existence of certainty equivalents, the following

definition will be used.

Definition 5. Act f ∈ Fa(Z) is symmetric with respect to E ∈ Σa if for all z ∈ Z

fEz ∼ zEf.
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Symmetric acts have the same expected utility on each “half” of the state space.15

Axiom A5” (Second Order Risk Aversion). If acts f, g ∈ Fa are symmetric with

respect to E ∈ Σa, then for all F ∈ Σb

fFg ∼ gFf ⇒ (fFg)E(gFf) % fFg.

The proof of Theorem 2 follows from the proof of the following stronger theorem

Theorem 5. Suppose % satisfies axioms P1’–P6’. Then Axiom A5” is satisfied if

and only if the function φ in (13) is concave.

Proof. By Theorem 3 of Ergin and Gul (2009) Axioms P1’–P6’ are equivalent to %

being represented by (13).

B.1 Necessity

Suppose f ∈ Fa(Z) is symmetric with respect to E ∈ Σa. Let α = qa(E). Axiom

P5’ and representation (13) imply that there exist z′, z′′ ∈ Z with z′ � z′′. Thus,

fEz
′ ∼ z′Ef and fEz

′′ ∼ z′′Ef imply that∫
E

(u ◦ f) dqa + (1− α)u(z′) = αu(z′) +

∫
Ec

(u ◦ f) dqa, (14)∫
E

(u ◦ f) dqa + (1− α)u(z′′) = αu(z′′) +

∫
Ec

(u ◦ f) dqa. (15)

By subtracting (15) from (14)

(1− α)[u(z′)− u(z′′)] = α[u(z′)− u(z′′)];

thus, α = 1
2

and therefore ∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa.

15Symmetric acts are acts that can be “subjectively mixed”, i.e, mixed using states rather than
probabilities. Such subjective mixtures are different from subjective mixtures studied by Ghirardato,
Maccheroni, Marinacci, and Siniscalchi (2003), whose construction relies on range-convexity of u. In
the present setting, subjective mixtures are not needed under range-convexity of u.
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Let f, g ∈ Fa(Z). Denote U(f) =
∫
Sa

(u◦f) dqa and U(g) =
∫
Sa

(u◦g) dqa. Because

f and g are symmetric with respect to E ∈ Σa,∫
E

(u ◦ f) dqa =

∫
Ec

(u ◦ f) dqa =
1

2
U(f)∫

E

(u ◦ g) dqa =

∫
Ec

(u ◦ g) dqa =
1

2
U(g).

Let F ∈ Σb and β := qb(F ). If fFg ∼ gFf , then

βφ
(
U(f)

)
+ (1− β)φ

(
U(g)

)
= βφ

(
U(g)

)
+ (1− β)φ

(
U(f)

)
.

Thus,

(2β − 1)φ
(
U(f)

)
= (2β − 1)φ

(
U(g)

)
.

If β 6= 1
2
, then U(f) = U(g) and trivially

V
(
(fFg)E(gFf)

)
= βφ

(
1

2
U(f) +

1

2
U(g)

)
+ (1− β)φ

(
1

2
U(g) +

1

2
U(f)

)
= βφ

(
U(f)

)
+ (1− β)φ

(
U(g)

)
= V (fFg).

If β = 1
2
, then

V
(
(fFg)E(gFf)

)
=

1

2
φ

(
1

2
U(f) +

1

2
U(g)

)
+

1

2
φ

(
1

2
U(g) +

1

2
U(f)

)
= φ

(
1

2
U(f) +

1

2
U(g)

)
≥ 1

2
φ
(
U(f)

)
+

1

2
φ
(
U(g)

)
= V (fFg),

where the inequality follows from concavity of φ.

B.2 Sufficiency

B.2.1 Convexity of Dφ

Suppose k, l ∈ Dφ and α ∈ (0, 1). Wlog k < l. Let f, g ∈ Fa be such that k = V (f)

and l = V (g). Define A = mins∈S u(f(s)) and B = maxs∈S u(g(s)) and let x, y ∈ Z be

such that u(x) = A and u(y) = B. By convex-rangedness of qa, there exists E ∈ Σa

with qa(E) =
(
B − [αk + (1− α)l]

)
(B − A)−1. Verify, that U(xEy) = αk + (1− α)l.

Hence, Dφ is a convex set.
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B.2.2 Convexity of φ

Suppose k, l ∈ Dφ and let f, g ∈ Fa be such that k = U(f) and l = U(g). Define

k = mins∈S u(f(s)), k̄ = maxs∈S u(f(s)), l = mins∈S u(g(s)), and l̄ = maxs∈S u(g(s)).

Let x, x̄, y, ȳ be such that u(x) = k, u(x̄) = k̄, u(y) = l, u(ȳ) = l̄. Also, define κ = k̄−k
k̄−k

and λ = l̄−l
l̄−l . By convex-rangedness of qa there exist partitions {Eκ

1 , E
κ
2 , E

κ
3 , E

κ
4 } and

{Eλ
1 , E

λ
2 , E

λ
3 , E

λ
4 } of Sa such that Eκ

1 ∪Eκ
2 = Eλ

1 ∪Eλ
2 , qa(E

κ
1 ∪Eκ

2 ) = qa(E
λ
1 ∪Eλ

2 ) = 1
2
,

qa(E
κ
1 ) = qa(E

κ
3 ) = κ

2
, and qa(E

λ
1 ) = qa(E

λ
3 ) = λ

2
.

Define acts f ′ = xEκ
1 x̄E

κ
2 xE

κ
3 x̄E

κ
4 and g′ = yEλ

1 ȳE
λ
2 yE

λ
3 ȳE

λ
4 . Verify that f ′ and

g′ are symmetric with respect to E = Eκ
1 ∪Eκ

2 = Eλ
1 ∪Eλ

2 and satisfy U(f ′) = k and

U(g′) = l. By convex-rangedness of qb, there exists F ∈ Σb with qb(F ) = 1
2
. Verify

that V (f ′Fg
′) = 1

2
φ(k) + 1

2
φ(l) = V (g′Ff

′). Hence, by Axiom A5’,

φ

(
1

2
k +

1

2
l

)
=

1

2
φ

(
1

2
k +

1

2
l

)
+

1

2
φ

(
1

2
l +

1

2
k

)
= V

(
(f ′Fg

′)E(g′Ff
′)
)

≥ V (f ′Fg
′) =

1

2
φ(k) +

1

2
φ(l).

As a consequence,

φ

(
1

2
k +

1

2
l

)
≥ 1

2
φ(k) +

1

2
φ(l) (16)

for all k, l ∈ Dφ. By Theorem 3 of Ergin and Gul (2009) the function φ is continuous

on Dφ; hence, by Theorem 86 of Hardy, Littlewood, and Pólya (1952) φ is concave.

C Proof of Theorem 3

By Theorem 3 of Ergin and Gul (2009) Axioms P1’–P6’ are equivalent to % being

represented by (13). Let E ∈ Σa be such that qa(E) = 1
2
. For any v ∈ Dφ define a

preference %v on F as follows. Let h ∈ Fa be such that
∫
Ec u(h(sa, sb)) dqa(sa) = 1

2
v

and for any f, g ∈ F(Z) define f %v g iff fEh % gEh. (Because of Axiom A2’,

the choice of particular h does not matter.) Define φv(u) := φ(1
2
u + 1

2
v). From

representation (13), it follows that %v is represented by∫
Sb

φv
(

2

∫
E

u(f(sa, sb)) dqa(sa)

)
dqb(sb).
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By Axiom A2’, %v=%0 for all v ∈ Dφ. Hence, φv and φ0 are equal up to positive

affine transformations, i.e., φ(1
2
u + 1

2
v) = α(v)φ(1

2
u) + β(v) for all u, v ∈ Dφ. If Dφ

is unbounded, then by Corollary 1 in Section 3.1.3 of Aczél (1966) the function φ

belongs to the exponential class.

If Dφ is bounded, then wlog assume that intDφ = (0, 1). Define the set R :=

(0, 1)2 and the functions k : (0, 2) → R by k(u) = φ(1
2
u) and l,m, n : (0, 1) → R

by l := β, m := α, and n(u) = φ(1
2
u). The following functional equation holds:

k(u + v) = m(v)n(u) + l(v) for all (u, v) ∈ R. It follows from the Corollary in Aczél

(2005) that either k(w) = Cw + B + Pω or k(w) = ωδeCw + B for some arbitrary

parameters a,B, P, C, ω, δ with Cωδ 6= 0. Because n and k coincide on (0, 1), it

follows that φ is an exponential function up to positive affine transformations in the

interior of U . By continuity of φ, this extends to the whole set U .

In both cases φ belongs to the exponential class, i.e., it is either linear, or strictly

concave, or strictly convex. To eliminate the last possibility, observe that Axiom A5’

applied to acts f = xFy, g = yFx and events E and F with qb(F ) = 1
2

and qa(E) = 1
2

implies that φ(1
2
u(x) + 1

2
u(y)) ≥ 1

2
φ(u(x)) + 1

2
φ(u(y)) for all x, y ∈ U .

It follows from Theorem 1 in Section 1 of Villegas (1964) that Axiom A8’ delivers

countable additivity of qb. An application of the variational formula concludes the

proof.
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