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VOLATILITY MODELS WITH INNOVATIONS FROM NEW
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Email: Matthias.Fischer@wiso.uni-erlangen.de

summary

Generalized autoregressive conditional heteroskedasticity (GARCH) processes
have become very popular as models for financial return data because they are
able to capture volatility clustering as well as leptokurtic unconditional distri-
butions which result from the assumption of conditionally normal error distri-
butions. In contrast, Bollerslev (1987) and several follow-ups provided evidence
that starting with leptokurtic and possibly skewed (conditional) error distribu-
tions will achieve better results. Parallel to these flexible but to some extend
arbitrary chosen parametric distributions, recent years saw a rise in suggestions
for maximum entropy distributions (e.g. Rockinger and Jondeau, 2002, Park
and Bera, 2009 or Fischer and Herrmann, 2010). Within this contribution we
provide a comprehensive comparison between both different ME densities and
their parametric competitors within different generalized GARCH models such
as APARCH and GJR-GARCH.

Keywords and phrases: GARCH; APARCH; Entropy density; Skewness; Kurtosis

1 Introduction

Introduced by Engle (1982) and extended by Bollerslev (1986), generalized autoregressive
conditional heteroskedasticity (GARCH) processes have become very popular as models for
financial return data because they are able to capture both ”distributional” stylized facts
(e.g. thick tails and high peakedness) and stylized facts concerning the time structure (e.g.
volatility clustering). Succeeding generalizations can be divided into three major classes:
First of all, models that take asymmetric behaviour of volatility into account. Secondly,
models with time-varying skewness and kurtosis rather than just time-varying variance
and volatility, respectively. Thirdly, models based on a residual distribution different from
the Gaussian one. It was already detected by Black (1976) that stock return volatility is
strongly asymmetric: Negative returns are followed by larger increases in volatility than
equally large positive returns. Both APARCH specification of Ding et al. (1993) which
includes, among others, the TS-GARCH model (see Taylor, 1990 and Schwert, 1989 and
1990), the GJR-GARCH model (see Glosten et al., 1993) and the T-GARCH (see Zakoian,
1994) as special cases, and the (exponential) EGARCH model of Nelson (1991) account for
this effect. In addition, there is no reason to assume that higher moments – in particular
skewness and kurtosis represented by the third and fourth standardized moments – should
be time-invariant. Allowing them to be time-varying may improve the approximation of the



actual return distributions. Such types of models (so-called autoregressive conditional den-
sity (ARCD) models) were introduced by Hansen (1994). For other contributions see Harvey
and Siddique (1999) or Hueng and McDonald (2005). Unfortunately, there is no systematic
or significant evidence for time-varying higher moments. Finally, although GARCH mod-
els with conditionally normal errors imply leptokurtic unconditional distributions, Bollerslev
(1987) found evidence that starting with leptokurtic and possibly skewed (conditional) error
distributions will achieve better results. Bollerslev (1987), for instance, uses the Student-
t distribution whereas Mittnik et al. (1998) advocate the stable distribution and Fischer
(2004, 2006) found evidence in favour of generalized hyperbolic secant families. Parallel to
these parametric distributions, recent years saw a rise in suggestions for maximum entropy
(ME) distributions examined by econometricians, see e.g Rockinger and Jondeau (2002),
Park and Bera (2009) or Fischer and Herrmann (2010), as well as by physicians, see. e.g.
Quéiros (2005). All these approaches allow or can easily be extended to allow for kurtosis
and skewness if presented in the unified framework following Herrmann (2009). Until now
the ME approaches have only been compared with either the gaussian distribution (which
for all suggestions appears as a special or limiting case) or with each other. The purpose
of this contributions is to extend these new models to asymmetric volatility dynamics and
to compare them to their most successful parametric peers. The presented approach is
three-fold: Firstly, rather than compare plain GARCH models with MED density we use
generalized variance specifications such as APARCH and GJR-GARCH. Secondly, a com-
prehensive comparison is provided between flexible parametric families and MED families.
Thirdly, we compare the goodness-of-fit within the MED class.

2 A primer on GARCH models and its generalizations

Let P0, . . . PT denote the time-discrete prices of an arbitrary asset from time t = 0 to
t = T. Usually – rather than the prices themselves – the log-returns R1, . . . , RT defined by
Rt ≡ log(Pt/Pt−1) = log(Pt)− log(Pt−1) are analyzed. In general, the standard models for
the returns in financial econometrics are of the form

Θm(L)Rt = µ+ Ut, t = 1, . . . , T

with
Ut|Ft−1 ∼ D(0, h2

t , η) or Ut = htεt with εt ∼ D(0, 1, η), (2.1)

where Θm(L) is a polynomial in the lag operator L of order m which allows to include linear
dependence from the own history Rt−1, . . . , Rt−m and µ ∈ R. Moreover, the distribution
of the residuals Ut (conditioned on the information set Ft−1 up to time t − 1) is assumed
to follow a standardized1 distribution D with shape parameter η and time-varying variance
h2
t . For reasons of simplicity, assume that Θm(L) ≡ 1 and µ ≡ 0, i.e. Rt = htεt. Otherwise,

1This means in particular that scale parameter and variance parameter ht are identically.
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replace Rt by R∗t ≡ Θm(L)Rt − µ in the sequel. In the GARCH(1, 1) specification of
Bollerslev (1986),

h2
t = α0 + α1R

2
t−1 + β1h

2
t−1 = α0 + α1h

2
t−1ε

2
t−1 + β1h

2
t−1, α0 > 0, α1, β1 ≥ 0, (2.2)

where the fundamental ARCH model of Engle (1982) is included for β1 = 0. GARCH
models have been generalized in many different ways: In order to capture leverage effects
(i.e. asymmetric behaviour of volatility for positive or negative returns), Zakoian (1994)
introduced the T-GARCH model with standard deviation defined by

ht = α0 + α+
1 R

+
t−1 − α

−
1 R
−
t−1 + β1ht−1, α+

1 ≥ 0, α−1 ≥ 0, (2.3)

where R+
t ≡ max{Rt, 0} and R−t ≡ min{Rt, 0}. Imposing Box-Cox-transformations on

both conditional standard deviation and asymmetric absolute returns essentially leads to
the APARCH-specification of Ding et al. (1993), namely2

hλt = α0 + α1(|Rt−1| − cRt−1)λ + β1h
λ
t−1, |c| ≤ 1, λ ≥ 0. (2.4)

Equation (2.4) reduces to (2.3) for λ = 1, α1 = α−1 /(2− α
+
1 ) and c = 1− α+

1 (2− α+
1 )/α−1 .

Moreover, equation (2.2) is achieved for λ = 2 and c = 0. Restricting λ = 2 for the APARCH
includes the GJR-GARCH model of Glosten, Jagannathan and Runkle (1993). Although
there might be some further (theoretical) generalizations, using the APARCH specification
for the variance equation will capture the conditional volatility sufficiently well.

3 Time-varying volatility based on maximum entropy

Contrary to parametric volatility models the maximum entropy models are characterized
by the dynamics of the conditional moments of Ut|Ft−1 in time, e.g. as

E(Ut|Ft−1) = 0, (3.1)

E(U2
t |Ft−1) = h2

t = α0 + α1R
2
t−1 + β1h

2
t−1, (3.2)

but might also assume the more sophisticated volatility dynamics as presented above. Fol-
lowing Jaynes’ (1957) principle of maximum entropy, the conditional distribution is chosen
as the distribution which has maximal entropy within the set of distributions consistent to
these conditional moments. Formally this may be written as

Ut|Ft−1 ∼ME, with fME = argmax
f

(H(f), f ∈ D) , (3.3)

where H denotes some entropy measure and D the set of distributions consistent with
equations 3.1 and 3.2. Entropy H may be measured using some differentiable, convex
function φ as

H(f) = −
∫
D(X)

φ(f(x))dx, (3.4)

2This model is sometimes also referred to as Power GARCH or P-GARCH model.
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such that if D admits a density function fME with

φ′(fME(x)) =
k∑
i=0

λigi(x), (3.5)

it is at the same time the solution to the entropy maximization task above, see Kesavan
and Kapur (1989). In these cases the solution’s functional form is defined, but the λi have
to be derived using numerical algorithms for dual problems. Such dual problems are given
in Kapur (1994), for efficient algorithms see e.g. Rockinger and Jondeau (2002) or for
generalized entropy measures Herrmann (2009).

The main advantage of the maximum entropy approach is its flexibility. The first source
of flexibility is the choice of the measure for entropy. For the measures examined in this
work see table 1.3

Author φ(f) fME(x) Parameter Example

Shannon −f ln(f) exp
(
−
∑k
i=0 λigi(x)

)
- Gaussian

Havrda-Charvat 1
1−α

(∑k
i=0 λigi(x)

) 1
α−1

α Student t

Kapur −f ln(f)+ 1

exp(−∑k
i=0 λigi(x))−c

c -

1
c (1 + cf) ln(1 + cf)

Table 1: Suggestions for Measures of Entropy.

Using the Havrda-Charvat entropy leads to stronger tails for α < 1, the Kapur entropy
for c > 0. Such that letting these freely adjust to the data gives flexibility with respect to
kurtosis. Another way to include higher moments is the inclusion of additional restrictions
for D, e.g. as

E(tan−1(Ut)|Ft−1) = m3, (3.6)

which implies a skewed set D or

E(ln(1 + U2
t )|Ft−1) = m4, (3.7)

which implies a leptokurtic set D.4 Here m3 and m4 denote the target values for higher
moments. Further suggestions for suitable moment functions have been compared in Park
and Bera (2009), but we found that this combination performed best.

3The entropy measure suggested by Havdra-Charvat is a monotonic transformation of Rényi’s entropy.
In physics it is usually denoted as Tsallis entropy.

4For restrictions on possible moment combinations see e.g. Fischer and Herrmann (2010).
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4 Application to fx data

4.1 Data set

We focus on the daily noon spot US dollar exchange rates ($/local currency) for the Euro
(EUR) over the period 3 January 1994 to 30 September 2007 (3453 observations)5. In a first
step, the data are transformed to percentual log-returns defined as Ri,t ≡ ln(Si,t/Si,t−1)·100.
Both prices and log-returns can be seen in figure 1, below. To get some information on the

Figure 1: Prices and log-returns

(a) Exchange Rates (b) Log-returns

underlying data set, table 2 summarizes some basic descriptive statistics.

µ̂ ŝ S K q0.25;0.75 q0.4;0.6 JB Q(30) Q2(30)

EUR -0.0071 0.575 -0.1067 4.238 0.6619 0.2411 227.1∗ 26.51 291.4∗

Table 2: Descriptive statistics of the data

In particular, the USD/EURO data set exhibits some skewness and leptokurtosis, measured
by the third and fourth standardized moments S and K. Moreover, the Jarque-Bera (JB)
test indicates non-normality. Finally, application of the Ljung-Box test to the returns (Q)
and the squared returns (Q2), respectively, suggests the presence of GARCH effects but no
significant correlation between different returns.

5The data are available from http://www.econ.queensu.ca/jae.
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4.2 Goodness-of-fit statistics

As a natural candidate for the goodness-of-fit we consider the maximum log-likelihood value
(LL) obtained from the ML estimation. It may be viewed as an overall measure of goodness-
of-fit and allows to judge which candidate is more likely to have generated the data. To
account for the different numbers of parameter k, we also calculate the Akaike information
criterion (AIC), given by

AIC = −2 · LL+
2N(k + 1)
N − k − 2

,

where N denotes the number of data. An alternative penalization of additional parameter
is given by the Bayesian information criterion as

BIC = −2 · LL+ k · lnN.

However, Boothe and Glassman (1987) presented arguments that non-nested model com-
parisons based on log-likelihood values may lead to spurious conclusions.

If the underlying model is correctly specified, the zero-mean and unit-variance returns
ε̂t|Ft−1 = (Rt − µ̂t)/ĥt can be assumed to be independent realizations of the distribution
D(0, 1, η̂), where η̂ denotes the ML estimator of the shape vector η. Such that we can mea-
sure the distance between the fitted theoretical distribution and the empirical distribution
of ε.

Wang et al. (2001) suggested the χ2 goodness-of-fit statistic which can be calculated by

χ2 =
Nc∑
i=1

(Hi − Fi)2

Fi
,

where Hi is the observed count frequency of ε in the i−th data class, Fi is the predicted
count frequency under the assumed theoretical model and Nc is the number of classes.

Alternatively the Kolmogorov distance may be used as

KS = 100 · sup
x∈R
|FD(x)− F̂ (x)|,

where FD denotes the cumulative distribution function of D(0, 1, η̂t) and F̂ the empirical
distribution of ε.

Whereas KS emphasizes deviation around the median of the distribution, AD0 defined
by

AD0 = sup
x∈R

|FD(x)− F̂ (x)|√
FD(x) · (1− FD(x))

emphasizes discrepancies in the tails of the distribution. Instead of just the maximum de-
viation, one should also have a look at the second and the third largest value, denoted by
AD1 and AD2.
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4.3 Parametric competitors

For a general comprehensive overview on successful parametric distribution family we refer
to Bao, Lee and Saltoglu (2004) or Fischer (2010). Within our empirical analysis we fo-
cus on popular multi-parametric distributions which have already been successfully applied
to financial return data. Among them, the Student-t distribution (T) and the generalized
Student-t (GT) distribution of McDonald and Newey (1988) together with its skew counter-
part (SGT2) developed by Grottke (2001). In contrast, McDonald (1991), and McDonald
and Bookstaber (1991) used the exponentially generalized beta of the second kind (EGB2)
distribution which generalizes the logistic distribution in a natural way. Similarly, the
less-known but rather flexible generalized secant hyperbolic (GSH) distribution of Vaughan
(2002) and its skew generalization of Fischer (2004) is taken into consideration. In addition,
Theodossiou’s (2000) skewed family of the generalized error distribution (SGED). Last, but
not least we included the inverse hyperbolic sine (IHS) distribution which is used success-
fully, for instance, in Choi (2001) to model asymmetric and fat-tailed distributions.

4.4 Empirical Results

The results of the maximum likelihood estimations are summarized in table 3 and 4. For
reasons of brevity, only the different goodness-of-fit measures were reported herein. Results
for the specific parameter estimators for the different distribution families are available
from the authors by request. First of all, the highest log-likelihood LL and the lowest of
the other goodness-of-fit measures (representing the most favourable choice) were marked
bold for each of the four generalized GARCH models (plain GARCH, T-GARCH, APARCH
and GJR-GARCH). Across all variance specification, the results concerning the order of the
distribution families remains nearly constant.

Within the classical parametric families, both SGT2 and SGSH are pre-dominant if
only likelihood is taken into account. The logistic distribution gives by far the best results
if additional parameters are penalized. For the likelihood-based measures all three MED
densities are outperformed. However, if we focus on the tail-related Anderson-Darling statis-
tics MEHC dominates all other competitors while MEK exhibits the minimal χ2-value and
Kolmogorov-Smirnov distance, respectively.

Within the entropy density, MED minimizes the log-likelihood and maximizes AIC and
BIC. Above that conditional non-normality in the sense of Bollerslev (1987) is rejected
for nearly all multi-parametric families. Finally, the close theoretical relation between the
Student-t distribution and the MEHC distribution is recovered for the underlying data set.
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5 Summary

This work extends the new approaches of maximum entropy volatility models to more so-
phisticated volatility dynamics and compares these to the the to most flexible parametric
models known in econometrics. Using maximum entropy specifications with similar flexi-
bility with respect to skewness and kurtosis we find that the maximum entropy densities
give results similar to their parametric peers as far as overall fit is concerned. But if we
compare the fit in the tails, only the Havrda-Charvat density – that may be related to t-type
distributions – competes with its parametric peers.
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GARCH(1,1)

Distribution k LL AIC BIC KS χ2 AD0 AD1 AD2

NORM 4 -2877.5 5765 5787.6 2.94 48.023 3.061 0.29 0.264

t 5 -2830.9 5673.8 5702.5 1.43 8.693 0.04 0.039 0.038

GT 6 -2829.1 5672.2 5707.1 1.27 6.115 0.052 0.05 0.05

SGT2 7 -2828.2 5672.4 5713.4 1.09 6.848 0.051 0.045 0.044

LOG 4 -2829.9 5669.8 5692.4 1.42 6.968 0.057 0.046 0.045

EGB2 6 -2829.6 5673.2 5708.1 1.38 7.23 0.051 0.041 0.04

SGED 6 -2829.8 5673.6 5708.5 1.1 10.187 0.122 0.06 0.058

IHS 6 -2830.3 5674.6 5709.5 1.4 7.552 0.04 0.038 0.038

GSH 5 -2829.8 5671.6 5700.3 1.4 6.631 0.054 0.044 0.043

SGSH 6 -2828.3 5670.6 5705.5 1.01 6.272 0.043 0.033 0.032

MED 6 -2829.4 5672.8 5707.7 1.01 5.383 0.139 0.05 0.048

MEHC 6 -2829.9 5673.8 5708.7 1.09 8.038 0.035 0.034 0.034

MEK 6 -2830.7 5675.4 5710.3 0.93 4.776 0.237 0.064 0.06

Threshold GARCH

Distribution k LL AIC BIC KS χ2 AD0 AD1 AD2

NORM 5 -2878.7 5769.4 5798.1 2.92 47.426 2.402 0.368 0.298

t 6 -2832.5 5679 5713.9 1.54 11.252 0.05 0.045 0.039

GT 7 -2830.6 5677.2 5718.2 1.43 7.912 0.057 0.052 0.046

SGT2 8 -2830.1 5678.3 5725.4 1.24 8.563 0.049 0.047 0.045

LOG 5 -2831.5 5675 5703.7 1.53 8.84 0.052 0.049 0.047

EGB2 7 -2831.4 5678.8 5719.8 1.52 9.629 0.051 0.048 0.045

SGED 7 -2831.6 5679.2 5720.2 1.18 9.766 0.111 0.057 0.057

IHS 7 -2831.8 5679.6 5720.6 1.59 10.532 0.051 0.046 0.042

GSH 6 -2831.4 5676.8 5711.7 1.51 8.511 0.049 0.047 0.045

SGSH 7 -2829.7 5675.4 5716.4 1.16 10.777 0.041 0.041 0.041

MED 7 -2830.5 5677 5718 1.22 9.176 0.116 0.05 0.047

MEHC 7 -2831.5 5679 5720 1.25 12.233 0.04 0.04 0.039

MEK 7 -2831.9 5679.8 5720.8 1.14 8.585 0.197 0.071 0.063

Table 3: Comparison of goodness-of-fit measures (I)
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APARCH

Distribution k LL AIC BIC KS χ2 AD0 AD1 AD2

NORM 6 -2876.6 5767.2 5802.1 2.89 48.863 2.958 0.293 0.284

t 7 -2830.2 5676.4 5717.4 1.52 9.971 0.042 0.041 0.04

GT 8 -2828.4 5674.9 5722 1.34 7.227 0.05 0.05 0.05

SGT2 9 -2826.7 5673.5 5726.7 1.19 8.758 0.05 0.046 0.045

LOG 6 -2829.2 5672.4 5707.3 1.5 7.878 0.055 0.046 0.046

EGB2 8 -2829.1 5676.3 5723.4 1.46 7.053 0.051 0.042 0.042

SGED 8 -2829.4 5676.9 5724 1.17 10.846 0.122 0.058 0.058

IHS 8 -2829.5 5677.1 5724.2 1.49 8.498 0.042 0.041 0.041

GSH 7 -2829.1 5674.2 5715.2 1.49 7.613 0.053 0.044 0.044

SGSH 8 -2827.5 5673.1 5720.2 1.09 7.652 0.044 0.037 0.037

MED 8 -2828.6 5675.3 5722.4 1.15 7.36 0.134 0.047 0.046

MEHC 8 -2829.2 5676.5 5723.6 1.15 9.123 0.038 0.037 0.037

MEK 8 -2830 5678.1 5725.2 1.06 7.231 0.231 0.061 0.058

GJR GARCH

Distribution k LL AIC BIC KS χ2 AD0 AD1 AD2

NORM 5 -2877.2 5766.4 5795.1 2.97 47.667 3.074 0.283 0.257

t 6 -2830.5 5675 5709.9 1.49 9.214 0.044 0.038 0.037

GT 7 -2828.7 5673.4 5714.4 1.34 6.938 0.057 0.051 0.05

SGT2 8 -2828.1 5674.3 5721.4 1.15 7.438 0.05 0.05 0.043

LOG 5 -2829.5 5671 5699.7 1.47 7.488 0.056 0.052 0.046

EGB2 7 -2829.4 5674.8 5715.8 1.44 7.642 0.051 0.046 0.04

SGED 7 -2829.7 5675.4 5716.4 1.15 11.262 0.122 0.064 0.057

IHS 7 -2829.9 5675.8 5716.8 1.48 8.42 0.046 0.04 0.038

GSH 6 -2829.5 5673 5707.9 1.45 7.146 0.054 0.05 0.043

SGSH 7 -2827.9 5671.8 5712.8 1.06 6.755 0.043 0.037 0.034

MED 7 -2829.1 5674.2 5715.2 1.11 7.273 0.138 0.056 0.048

MEHC 7 -2829.6 5675.2 5716.2 1.13 8.295 0.039 0.035 0.034

MEK 7 -2830.4 5676.8 5717.8 1.02 6.115 0.237 0.068 0.061

Table 4: Comparison of goodness-of-fit measures (II)
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