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Kurtosis modelling by means of theJ-transformation

Matthias Fischer and Ingo Klein
Department of Statistics and Econometrics,

University of Erlangen-Nuremberg

Abstract: TheH−family of distributions orH−distributions, introduced by
Tukey (1960, 1977), are generated by a single transformation of the standard
normal distribution and allow for leptokurtosis represented by the parame-
ter h. Alternatively, Haynes, MacGillivray and Mengersen (1997) generated
leptokurtic distributions by applying theK−transformation to the normal
distribution. In this study we propose a third transformation – the so-called
J−transformation – and derive some properties of this transformation. More-
over, so-called elongation generating functions (EGF’s) are introduced. By
means of EGF’s we are able to visualize the strength of tail elongation and to
construct new transformations. Finally, we compare the three transformations
towards their goodness-of-fit in the context of financial return data.

Keywords: kurtosis; variable transformation; normal transformation; tail
elongation.

1 Introduction

Using the Gaussian distribution as a statistical model for data sets is widespread, espe-
cially in practice. However, departure from normality seems to be more the rule than
the exception. Take, for instance, the distribution of continuous returns (i.e. differences
of consecutive log-prices) of financial data which displays more kurtosis than that per-
mitted under the assumption of normality (cf. Fama, 1965). Roughly the same phe-
nomenon can be observed for the mass-size distribution of aeolian sand deposits (cf.
Barndorff-Nielsen, 1977). In order to construct distributions which are more leptokur-
tic than the normal distribution, several methods have been developed in the statisti-
cal literature. So-called normal-variance mixtures are very popular, where the scale-
parameter of a Gaussian distribution itself is assumed to follow a distribution on the
positive axis. For example, mixing the zero-mean normal distribution with the gener-
alized inverse Gaussian distribution leads to the symmetric hyperbolic distribution. Al-
ternatively, a non-linear transformation can be applied to a standard normal distribu-
tion to obtain a more flexible distribution family. This approach dates back to Tukey
(1960, 1977), who introduced theH−transformation, where a parameterh controls the
amount of kurtosis and elongation, respectively. One property of theH−transformed
normal distribution (”H−distribution”) is that moments exist only up to a certain or-
der (see also MacGillivray, 1981, MacGillivray and Belanda, 1988 and Martinez and
Iglewicz, 1984). Haynes et al. (1997) proposed another transformation, the so-called
K−transformation, which exhibits similar properties than theH−transformation, but en-
sures that all moments of theK−transformed normal distribution (”K−distribution”)
exist. However, empirical studies of leptokurtic data show (cf. Fischer et al., 2003) that
the fit ofK−distributions is worse than that of theH−distribution, especially in the tails.
The aim of this paper is ”to bridge this gap”, i.e. to introduce a transformation – we call
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it J−transformation – that induces a distribution with existing moments but with a simi-
lar goodness-of-fit than theH−distribution. By means of so-called elongation generating
functions we show that the strength of tail elongation of theJ−transformation is less than
that of theH−transformation but higher than that of theK−transformation.

2 Elongation versus kurtosis

According to Hoaglin (1984, p. 148) and probably also to Tukey,elongationis closely
related to the notion of ”tail strength”. Investigating the elongation of data or distribu-
tions means comparing the tail strength of empirical or theoretical distributions with the
tail strength of the Gaussian or normal distribution. I.e. while tail strength is an absolute
concept, elongation is (through the comparison with the normal distribution) a relative
concept. The normal distribution has an undefined tail strength, but a neutral elongation
which is assigned to zero by a suitable elongation measure. In general, transformations
which shorten the tails can be considered, too. However, within this work, we focus
on tail-increasing transformations or, equivalently, on elongation measures which are re-
quired to be positive. Note that elongation is one component of the shape of distributions
which is independent of location and scale.

On the other hand, the notion ofkurtosisis not uniquely defined in the literature. Origi-
nally, kurtosis was identified with the fourth standardized moment which should serve as
a measure for the ”sharpedness” or the ”peakedness” of a distribution (see, for example,
Oja (1981), p. 165). Kaplansky (1945) has already exemplified that the fourth standard-
ized moment does not preserve a peakedness order. In the sense of Finuncan (1964), the
fourth standardized moment is a measure for ”a prominent peak and a prominent tail”,
whereas Ali (1974) reduces this notion to a measure of tail strength. Darlington (1970)
even speaks of a measure of bi-modality. At the latest in the work of Oja (1981) kurtosis
is discussed apart from the notion of the fourth standardized moment. Oja discusses a
kurtosis model, introduces a kurtosis ordering and finally shows that the fourth standard-
ized moment preserves that ordering under certain conditions and therefore can be seen
as a specific kurtosis measure. The kurtosis model of Oja (1981) is based on van Zwet
(1964), who introduced a partial ordering of kurtosis�S on the set of symmetric distri-
bution functionsF s. Let F, G ∈ F s andµF denote the location of symmetry ofF , then
�S is defined by

(A) F �S G : ⇐⇒ G−1(F (x)) is convex forx > µF

and means thatG has higher kurtosis thanF . Balanda and MacGillivray (1990) gener-
alized this partial ordering of van Zwet by using so-called spread functions defined as
symmetric differences of quantiles:

SF (u) = F−1(u)− F−1(1− u), u ≥ 0.5.

In the sense of Balanda and MacGillivray (1990), an arbitrary continuous, monotone in-
creasing distribution functionF has less kurtosis than an equal distribution functionG
if

(B) F �S∗ G : ⇐⇒ SG(S−1
F (x)) is convex forx > F−1(0.5).
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If F is symmetric,F−1(u) = −F−1(1− u) for u > 0.5, so thatSF (u) = 2F−1(u) u ≥
0.5. This means that the spread function essentially coincides with the quantile func-
tion. It can be shown that (A) and (B) coincide in this case. Furthermore, Balanda und
MacGillivray (1992, p. 1234) use kurtosis (in a very broad sense) as tail strength, peaked-
ness or similar concepts.

Groeneveld (1998) states a whole class of quantile-based kurtosis measures which pre-
serves the kurtosis ordering mentioned above. It is generally accepted that kurtosis can-
not be characterized only by the fourth standardized moments. One component of this
concept is the tail strength which is also denoted by elongation, if a comparison is based
on the tail strength of the normal distribution. Therefore, elongation measures are specific
kurtosis measures.

3 Elongation transformations: A review

Let Z be a standard normal variate. Note that most of the results can be also derived for
a random variable which is symmetric around the median0 and which has continuous
distribution function. Define

X ≡ T(Z) = Z ·W (Z) (1)

whereT is a suitable elongation transformation. Hoaglin (1983) postulated some plau-
sible requirements toT. Firstly, T should preserve symmetry, i.e.T(z) = T(−z) for
z ∈ R and we therefore have to discussT only on the positive axis. Secondly, the ini-
tial distributionT should hardly be transformed in the centre, i.e.T(z) = z + O(z2)
for z ≈ 0. Finally, in order to increase the tails of the distribution, we have to assure
thatT is accelerated strictly monotone increasing for positivez > 0, i.e. T′(z) > 0 and
T′′(z) > 0 for z > 0. Consequently,T is strictly monotone increasing and convex for
z > 0. Conversely, a shortening of the tails takes place, either ifT is strictly monotone
increasing with negative second derivation or ifT is not monotone but concave forz > 0.
Differentiability and monotony imply thatT′(0) = 0. An example which satisfies the
aforementioned conditions is theH−transformation of Tukey (1960, 1977) given by

Hh(z) ≡ z exp(hz2/2), z, h ∈ R. (2)

The corresponding distribution ofX from (1) is termed asfamily of H−distributions,
or simply asH−distribution. Hh(Z) introduces elongation through the factorh: In the
normal case, the distribution ofX is leptokurtic forh > 0 and platykurtic forh < 0. The
amount of kurtosis is determined by the parameterh. Forh < 0, the support of the random
variableX is a finite interval and the distribution ofX is U -shaped (cf. Klein and Fischer,
2002). A special case of theH−distribution is the normal distribution (h = 0). Moreover,
moments ofX only exists up to ordern < 1/h. Haynes et al. (1997) introduced another
elongation transformation (”K−transformation”) by

Kk(z) ≡ z(1 + z2)k, z, k ∈ R, (3)

where the elongation is governed by the parameterk. DifferentH− andK−transforma-
tions are plotted in figure 1, below. It can be proved that all moments ofK−transformed
normal distributions exist.
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Figure 1: Elongation transformations for different parameter values.

(a)H−transformation (b) K−transformation

4 J-transformation: Definition and properties

Basic elements of theJ−transformation are thehyperbolic cosine, the hyperbolic sine
and thehyperbolic tangensfunction which are given by

cosh(z) ≡ ez + e−z

2
, sinh(z) ≡ ez − e−z

2
and tanh(z) ≡ sinh(z)

cosh(z)
.

The corresponding graphs can be seen in figure 2(a), below. Note thatcosh(z)′ = sinh(z)
andtanh(z)′ = 1 − tanh(z)2. Next, theJ−transformation will be defined by means of
the hyperbolic cosine function.

Definition 1 (J−transformation) For z, j ∈ R, theJ−transformation is defined by

Jj(z) ≡ z cosh(z)j = z

(
exp(z) + exp(−z)

2

)j

. (4)

For j = 0, J0(z) coincides with the bisecting line. Forj > 0, lim
z→∞

Jj(z) = ∞ and

lim
z→−∞

Jj(z) = −∞. On the contrary, forj < 0, lim
z→∞

Jj(z) = lim
z→−∞

Jj(z) = 0. Typical

curves forj = 0.2, 0.5,−0.1 can be seen in figure 2(b), below.

Figure 2: Hyperbolic functions andJ−transformations.

(a) Hyperbolic functions (b) J−transformation
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Lemma 1 (Derivatives of theJ−transformation) The first two derivatives ofJj are

J′j(z) = cosh(z)j + jz cosh(z)j tanh(z) = cosh(z)j(1 + jz tanh(z)) (5)

and
J′′j (z) = j cosh(z)j

(
z + 2 tanh(z) + z tanh(z)2(j − 1)

)
. (6)

Becausez tanh(z) is non-negative for allz ∈ R, J′j(z) ≥ 1 for positivej. In this case,
lim
z→∞

J′j(z) = lim
z→−∞

J′j(z) = ∞. Let z∗p denote the positive root of1 + jz tanh(z). For

j < 0, the first derivative is both positive iff|z| < z∗p and negative iff|z| > z∗p . Now,
lim
z→∞

J′j(z) = lim
z→−∞

J′j(z) = 0. Consequently,Jj isn’t a one-to-one mapping with maxi-

mum atz∗p and minimum at−z∗p . Some curves ofJ′j andJ′′j are illustrated in figure 3.

Figure 3: Derivatives of theJ−transformation.

(a) 1st derivative (b) 2nd derivative

Note that the inverse mappingJ−1
j (x) of Jj(z), namely

Jj
−1(x) ≡ {x|f(x|z) = x cosh(x)j − z = 0}

has no closed form and therefore be approximated numerically.

Lemma 2 (J− versusH−, K− transformation) Supposej = h = k > 0 and c∗ ≈
2.98. The following relations hold between theJ−transformation on the one hand and
theH−/K−transformation on the other hand:

|Jj(z)| ≤ |Hh(z)| for j = h and z ∈ R. (7)

|Jj(z)|
{
≤ |Kk(z)| for j = k and z ∈ [−c∗, c∗],
≥ |Kk(z)| for j = k and |z| > c∗.

(8)

Proof: Supposez ≥ 0 andh = j ≡ c > 0. Then we have to show thatHc(z)−Jc(z) ≥ 0.
From (2) and (4), this difference is given by

z exp(0.5cz2)− z cosh(z)c = z exp(0.5cz2)− z exp(c ln(cosh(z))).

It is sufficient to show thatD(z) ≡ 0.5z2− ln(cosh(z)) ≥ 0. This, however, follows from
D(0) = 0, lim

z→∞
D(z) ≥ 0 andD′(z) = z − tanh(z) ≥ 0 for z ≥ 0.

Similarly, usingKk(z) = z exp(k ln(1 + z2)), equation (8) can be verified.�
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5 Generating elongation transformations by means of elon-
gation generating function

First we introduce the class of elongation generating function which can be used to com-
pare the strength of elongation for different transformations and to construct new trans-
formations.

Definition 2 (Elongation generating function) A functionf : R → R is called an elon-
gation generating function (EGF) or of classΥ if the following requirements are satisfied:

E1 Smoothness:f is aC2-function.

E2 Anti-symmetry:f(−z) = −f(z).

E3 Positivity onR+: f(z) > 0 for z > 0.

E4 Tail elongation condition:z f ′(z)
f(z)

≥ −2 for z > 0.

Note that conditionE4’ (f ′(z) > 0 for z > 0) together withE3 imply conditionE4 which
ensures that the second derivation of the corresponding transformation will be positive

(cp. Theorem 1). Because ofz f ′(z)
f(z)

=
df
dz
f
z

, E4 can be interpreted as an elasticity condition.

Moreover,E1 andE2 imply thatf(0) = 0.

Example 5.1 (EGF’s) Functions which belong toΥ are

• f1(z) = sinh(z) (”elongation generating function of exponential-type”),

• f2(z) = z (”linear elongation generating function”),

• f3(z) = tanh(z) (”asymptotic constant elongation function”) and

• f4(z) = z
1+z2 (”asymptotic zero elongation function”).

The corresponding graphs offi andf ′i , i = 1, . . . , 4 can be seen in figure 4, below.

Figure 4: Different elongation generating functions.

(a) Different EGF’s (b) Corresponding 1st derivative
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Theorem 1 (Construction of elongation transformations) Assumef ∈ Υ. Then

Tθ,f (z) ≡ zW (z) ≡ z exp

(
θ

∫ z

0

f(u) du

)
(9)

is an elongation transformation with parameterθ in the sense of Hoaglin (1983).

Proof: From equation (9),Tθ,f (z) = z + O(u2) for z ≈ 0, Moreover,Tθ,f is symmetric
around the origin. Finally, forz > 0

T ′
θ,f (z) = W (z)(1 + zθf(z)) > 0 and

T ′′
θ,f (z) = W (z)θ(2f(z) + zf ′(z) + zθf(z)2) > 0. (10)

This follows from the assumptions onf . �

Example 5.2 (E−, H−, K− and J−transformation) The elongation generating func-
tions from example 5.1 correspond to the following transformations:

1. E−transformation:Ee(z) ≡ z exp(e cosh(z)).

2. H−transformation of Tukey (1960):Hh(z) = z exp(hz2/2).

3. J−transformation:Jj(z) = z cosh(z)j.

4. K−transformation of Haynes et al. (1997):K∗
k(z) = z(1 + z2)k/2.

By the end of this work we will focus on theJ−transformation, becauseH− andK−trans-
formation have been extensively studied in the literature. Further discussion of theE−trans-
formation is factored out to future research.

6 J−transformed symmetrical distributions: Density, quan-
tiles, moments and kurtosis ordering

Let Z denote a standard normal distribution, for simplicity. Most of the following results
can be applied to arbitrary symmetric distributions as well. From the previous section it
follows thatJj is a kurtosis family in the sense of Hoaglin (1983). Let the random variable
X be defined as

X ≡ µ + σ · Jj(Z), µ, j ∈ R, σ > 0. (11)

Obviously, the properties of the distribution ofX (which we simply callJ−distribution)
depend on the sign ofj. For j = 0, X reduces to a normal distribution with meanµ and
varianceσ. In particular, forj > 0, J′j(z) ≥ 1 andJ′′j (z) > 0 for z > 0. Therefore,Jj is
strictly monotone increasing and convex forz > 0 and makes the tails of the distribution
of X longer. Applying methods of variable transformations, the following theorem is
easily obtained:
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Theorem 2 (Density and quantiles ofX) Assumej > 0.

1. Let J−1
j denote the inverse mapping ofJj. Then the probability density function

fX(x) can be determined by

fX(x; µ, σ, j) =
fZ(J−1

j (x−µ
σ

))

J′j(J
−1
j (x−µ

σ
))

.

2. Thep-quantiles ofX can be obtained from thep-quantiles ofZ by means of

xp = µ + σ · zp cosh(zp)
j. (12)

DifferentH−, J−, K−transformed Gaussian densities with identical parameterh = j =
k = 0.8 are shown in figure 5. The inequalities of Lemma 2 are especially illustrated in
figure 5(b).

Figure 5: Normal,H−, J− andK−distributions.

(a) Transformed Gaussian densities (b) Zoom of (a)

Note that forj < 0, Jj is not a one-to-one mapping. However,Jj,1(z) ≡ Jj(z) for
|z| < z∗p is strictly monotone increasing andJj,2(z) ≡ Jj(z) for |z| > z∗p is strictly
monotone decreasing. LetJ−1

j,i denote the inverse function ofJj,i, i = 1, 2. Then, the
corresponding density is given by

fX(x; µ, σ, j) =
fZ(J−1

j,1(
x−µ

σ
))

J′j(J
−1
j,1(

x−µ
σ

))
+

fZ(J−1
j,2(

x−µ
σ

))

J′j(J
−1
j,2(

x−µ
σ

))
.

for µ + σJj(zp) < x < µ + σJj(zp). The ambiguity ofJj for negativej makes the
calculation of the quantiles ofX slightly more complicated. Details are neglected within
this work and we refer to Klein and Fischer (2002) for a similar discussion in the context
of symmetricalH−distributions.

Theorem 3 (Existence of moments)LetZ denote a Gaussian random variable and de-
fineXj ≡ Jj(Z) for j > 0. Then all moments ofXj exist.
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Proof: By assumption,Z is symmetrically distributed around0. Consequently,Xj =
Jj(Z) = Z(1

2
eZ + 1

2
e−Z)j is also symmetrically distributed around0 for j > 0. In

particular,

E(Xk
j ) = 2

∫ ∞

0

Jj(z)kfZ(z)dz ≤ E(Xk
j′), for j < j′,

provided that this integral exists. The last inequality can be derived from

j < j′ ⇒ Jj(z) ≤ Jj′(z) for all z > 0.

It will be shown that the power moments ofXj for integer values ofj exist. If j is not
integer we can use the inequality

E(Xk
j ) ≤ E(Xk

[j+1])

to prove the existence of the power moments ofXj for arbitraryj > 0. Letµ′i, i = 1, 2, . . .
denote the power moments ofZ. Forj ∈ N, using quadratic completion,

E(Xk
j ) =

jk∑
i=0

(
jk

i

)
e1/2(2i−jk)2

k∑
p=0

(
k

p

)
µ′i(2i− jk)k−p. (13)

Note that becauseZ is standard normal,

µ′i = E(Zi) =

{
(i− 1)! for oddi

0 for eveni

for i = 1, 2, . . .. All power moments ofXj exist because all sums in equation (13) are
finite and all power moments ofZ exist, by assumption.�

Some values of the fourth standardized moments for theH−, J− andK−distribution are
given in the table 1, below.

Table 1: Fourth standardized moments.
h/j/k H J K

0 3.0000 3.0000 3.0000
0.01 3.1270 3.0593 3.0532
0.02 3.2694 3.1211 3.1079
0.05 3.8202 3.3222 3.2812
0.1 5.4417 3.7187 3.6039
0.2 11.3544 4.8265 4.3988
0.3 15.1050 6.5518 5.4438
0.4 15.6930 8.8264 6.7851
0.5 17.6393 10.8781 8.2289

Finally it will be shown that theJ−distributions can be ordered in the sense of van Zwet
(1964).

Theorem 4 (Kurtosis ordering) Let 0 < j1 < j2 and Xj = Jj(Z) for a symmetric
random variableZ. Then,Fj1 �S Fj2.
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Proof: According to condition (B) we have to show thatSFj2
(S−1

Fj1
(x)) is convex forx >

Fj1
−1(0.5). Assuming thatSFj2

(S−1
Fj1

(x)) is twice differentiable, it is sufficient to verify
that the second derivative is positive. Applying standard calculus and usingu ≡ Fj1(x),
the first derivative is given by

a(u) =
S ′Fj2

(u)

S ′Fj1
(u)

=
[u cosh(u)j2 ]

′

[u cosh(u)j1 ]′
=

cosh(u)j2 (1 + uj2 tanh(u))

cosh(u)j1 (1 + uj1 tanh(u))
(14)

From equation (14), the second derivative can be derived as

a′(u) =
[cosh(u)j2 (1 + uj2 tanh(u))]

′ · cosh(u)j1 (1 + uj1 tanh(u))

(cosh(u)j1 (1 + uj1 tanh(u)))2

−cosh(u)j2 (1 + uj2 tanh(u)) · [cosh(u)j1 (1 + uj1 tanh(u))]
′

(cosh(u)j1 (1 + uj1 tanh(u)))2 . (15)

With[
cosh(u)ji (1 + uji tanh(u))

]′
=

(
ji cosh(u)ji−1 sinh(u)

)
(1 + uji tanh(u)) + cosh(u)ji

(
ji tanh(u) + uji(1− tanh(u)2)

)
= ji cosh(u)ji

[
tanh(u) (1 + uji tanh(u)) + tanh(u) + u(1− tanh(u)2)

]
= ji cosh(u)ji

[
2 tanh(u) + u tanh(u)2(ji − 1) + u

]
, i = 1, 2,

and equation (15),a′(u) · (cosh(u)j1 (1 + uj1 tanh(u)))
2 is given by

j2 cosh(u)j2
[
2 tanh(u) + u tanh(u)2(j2 − 1) + u

]
·
(
cosh(u)j1 (1 + uj1 tanh(u))

)
−j1 cosh(u)j1

[
2 tanh(u) + u tanh(u)2(j1 − 1) + u

]
·
(
cosh(u)j2 (1 + uj2 tanh(u))

)
= cosh(u)j1+j2

[
(j2 − j1)2 tanh(u) + (j2(j2 − 1)− j1(j1 − 1))u2 tanh(u)2 + (j2 − j1)u

+2j2 tanh(u)uj1 tanh(u)− 2j1 tanh(u)uj2 tanh(u)

j2u
2j1 tanh(u)− j1u

2j2 tanh(u) + (j2 − j1)u
2j1j2 tanh(u)3

]
= cosh(u)j1+j2

[
(j2 − j1)2 tanh(u) + (j2

2 − j2
1 + (j1 − j2))u

2 tanh(u)2 + (j2 − j1)u

+(j2 − j1)u
2j1j2 tanh(u)3

]
≥ cosh(u)j1+j2

[
(j2 − j1)2 tanh(u) + (j1 − j2)u

2 tanh(u)2
]

= cosh(u)j1+j2(j2 − j1)
[
2 tanh(u)− u2 tanh(u)2

]
≥ 0, for 0 ≤ u ≤ 1, j2 > j1.

Note thatcosh(u) > 0 andtanh(u) ≥ 0 for 0 ≤ u ≤ 1. Using du
dx

> 0, the result follows
immediately.�
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7 Application to financial return data

In order to compare results concerning the fit of the transformed distributions, we focus
on the series of the US dollar exchange rate for the British pound from January 1995 to
December 2002 (N = 2014 observations) which can be obtained from the PACIFIC (Pol-
icy Analysis Computing & Information Facility in Commerce) Exchange Rate Service of
the University of British Columbia.1 The series of prices and corresponding log-returns
are given in figure 6.

Figure 6: Prices and log-returns of the British pound from 02-01-1995 to 31-12-2002.

(a) Prices (1 US$ in pounds) (b) Log-returns

The (sample) mean of the log-returns is−0.0014 with a (sample) standard deviation of
0.4779. Moreover, there seems to be no remarkable skewness in the data set (the skew-
ness coefficient – measured by the third standardized moments – is given by by0.0929),
whereas the kurtosis coefficient – in terms of the fourth standardized moments – is4.8122,
reflecting the remarkable leptokurtosis of the data. This is the reason why we apply the
elongation transformation to different symmetric distributions (i.e. Gaussian, logistic and
Student distribution with 7 degrees of freedom) only.

Applying the Lagrange multiplier test of Engle (1982) to the data we come across the
presence of ARCH-effects. To overcome this problem, we ”pre-whiten” the log-returns
by fitting a GARCH(1,1) model and considering the GARCH residuals in addition to the
log-returns. The mean of the residuals is−0.0062, the standard deviation is given by
1.0004. Moreover skewness and kurtosis coefficient are0.0891 and4.9661, respectively.

Four criteria have been employed to compare the goodness-of-fit of the different candidate
distributions. The first is thelog-Likelihood value(LL) obtained from the Maximum-
Likelihood estimation. TheLL-value can be considered as an ”overall measure of good-
ness-of-fit and allows us to judge which candidate is more likely to have generated the
data”. As distributions with different numbers of parametersNk are used, this is taken
into account by calculating theAkaike criteriongiven by

AIC = −2 · LL+
2N(Nk + 1)

N −Nk − 2
.

The third criterion is theKolmogorov-Smirnov distanceas a measure of the distance bet-
ween the estimated parametric cumulative distribution function,F̂ , and the empirical

1Download underhttp://www.pacific.commerce.ubc.ca/.
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sample distribution,Femp. It is usually defined by

K = 100 · sup
x∈R

|Femp(x)− F̂ (x)|. (16)

Finally, Anderson-Darling statisticis calculated, which weights|Femp(x)− F̂ (x)| by the

reciprocal of the standard deviation ofFemp, namely
√

F̂ (x)(1− F̂ (x)), that is

AD0 = sup
x∈R

|Femp(x)− F̂ (x)|√
F̂ (x)(1− F̂ (x))

. (17)

Instead of just the maximum discrepancy, the second and third largest value, which is
commonly termed asAD1 andAD2, are also taken into consideration. WhereasK em-
phasizes deviations around the median of the fitted distribution,AD0,AD1 andAD2

allow discrepancies in the tails of the distribution to be appropriately weighted. There-
sults of the Maximum likelihood estimationare summarized in table 2 and 3, below. Note
thatµ andδ denote the location and scale parameter, respectively.

Table 2: Goodness-of-fit and estimated parameters: Log-returns
Type LL AIC K AD0 AD1 AD2 µ̂ δ̂ ĥ/ĵ/k̂

Transformed Gaussian
No -1369.5 2745.0 4.153 4.480 0.838 0.833 -0.0014 0.4778 0.0000
h -1310.8 2629.7 1.134 0.058 0.056 0.056 -0.0007 0.3947 0.1183
k -1308.5 2625.1 1.068 0.089 0.088 0.074 -0.0002 0.3645 0.2090
j -1307.9 2623.7 0.910 0.051 0.051 0.051 -0.0004 0.3806 0.2152

Transformed logistic
No -1314.1 2634.2 1.800 0.098 0.083 0.081 -0.0009 0.2579 0.0000
h -1310.9 2629.9 1.244 0.063 0.062 0.061 -0.0008 0.4528 0.0252
k -1308.2 2624.4 0.873 0.053 0.051 0.049 -0.0004 0.4345 0.0702
j -1309.3 2626.7 1.029 0.055 0.054 0.053 -0.0006 0.4440 0.0627

Transformed Student-t with 7 degrees of freedom
No -1314.5 2636.9 1.802 0.081 0.080 0.077 -0.0010 0.3977 0.0000
h -1313.2 2634.4 1.418 0.067 0.066 0.065 -0.0008 0.3292 0.0096
k -1309.4 2626.8 0.910 0.056 0.052 0.050 -0.0004 0.3112 0.0550
j -1311.0 2630.1 1.084 0.056 0.056 0.055 -0.0007 0.3204 0.0390

As expected, application of elongation transformations to different symmetric distribu-
tions leads to a significant improvement of all goodness-of-fit measures: The less the
kurtosis of the original distribution the better the improvement. Transforming the Student-
t(7) distribution only slightly improves the goodness-of-fit. Moreover, transformed Gaus-
sian distributions provide a better fit than transformed logistic or transformed Student-t(7)
distributions do. Consequently, for our data set we recommend applying the transforms to
the Gaussian distribution (or distributions with similar kurtosis) only, at least for leptokur-
tic data. Within that class theJ−transformation outperforms both theK−transformation
and theH−transformation (concerning both the global fit and the fit of the tails).
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The fit of theJ−transformed Gaussian distribution is illustrated in figure 7, below.

Figure 7: Kernel density estimation versus parametric fit.

(a)J−transformed normal (b) Zoom of figure(a): Centre

(c) Zoom of figure(a): Left tail (d) Zoom of figure(a): Right tail

Note that the results are very similar for the GARCH(1,1)-residuals (see table 3, below).
Again, combining theJ−transformation with the normal distribution seems to be very
promising. For a more detailed discussion concerning the goodness-of-fit in the context
of financial return data we refer to Fischer et al. (2003).

Table 3: Goodness-of-fit and estimated parameters: GARCH(1,1)-residuals
Type LL AIC K AD0 AD1 AD2 µ̂ δ̂ ĥ/ĵ/k̂

Transformed Gaussian
No -2855.7 5717.4 3.778 30.61 2.175 0.245 -0.0062 1.0004 0.0000
h -2800.1 5608.1 0.891 0.033 0.032 0.031 -0.0034 0.8383 0.1083
k -2801.2 5610.4 1.092 0.226 0.113 0.034 -0.0008 0.7793 0.1932
j -2798.8 5605.7 0.884 0.079 0.057 0.027 -0.0024 0.8106 0.1989

Transformed logistic
No -2802.4 5610.9 1.576 0.045 0.045 0.045 -0.0041 0.5415 0.0000
h -2799.9 5607.9 0.954 0.036 0.033 0.032 -0.0036 0.9564 0.0206
k -2798.9 5605.8 0.836 0.070 0.050 0.029 -0.0026 0.9287 0.0537
j -2799.2 5606.4 0.770 0.050 0.039 0.030 -0.0031 0.9427 0.0494

Transformed Student-t with 7 degrees of freedom
No -2802.1 5612.3 1.560 0.047 0.047 0.045 -0.0045 0.6974 0.0000
h -2801.4 5610.8 1.126 0.038 0.037 0.037 -0.0041 0.6957 0.0067
k -2799.5 5607.1 0.827 0.033 0.031 0.030 -0.0029 0.6683 0.0392
j -2800.3 5608.6 0.876 0.034 0.033 0.032 -0.0035 0.6823 0.0277
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8 Summary

Within this work we have proposed an alternative elongation transformation — the so-
calledJ−transformation — and derived some basic properties of this transformation. By
means of elongation generating functions we have shown that theJ−transformation gen-
erates less elongation than theH−transformation but more elongation than theK−trans-
formation. In particular, we have proved that all moments ofJ−transformed Gaussian
distributions exist and that the parameterj > 0 of the J−transformation is a kurtosis
parameter in the sense of van Zwet (1964). Finally, by means of forex data, we empir-
ically investigated the influence of the elongation transformation on different symmetric
distributions and demonstrated the excellent fit ofJ−transformed Gaussian distributions.
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