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Kurtosis modelling by means of theJ-transformation

Matthias Fischer and Ingo Klein

Department of Statistics and Econometrics,
University of Erlangen-Nuremberg

Abstract: The H—family of distributions orH —distributions, introduced by
Tukey (1960, 1977), are generated by a single transformation of the standard
normal distribution and allow for leptokurtosis represented by the parame-
ter h. Alternatively, Haynes, MacGillivray and Mengersen (1997) generated
leptokurtic distributions by applying th& —transformation to the normal
distribution. In this study we propose a third transformation — the so-called
J—transformation — and derive some properties of this transformation. More-
over, so-called elongation generating functions (EGF’s) are introduced. By
means of EGF’s we are able to visualize the strength of tail elongation and to
construct new transformations. Finally, we compare the three transformations
towards their goodness-of-fit in the context of financial return data.

Keywords: kurtosis; variable transformation; normal transformation; tail
elongation.

1 Introduction

Using the Gaussian distribution as a statistical model for data sets is widespread, espe-
cially in practice. However, departure from normality seems to be more the rule than
the exception. Take, for instance, the distribution of continuous returns (i.e. differences
of consecutive log-prices) of financial data which displays more kurtosis than that per-
mitted under the assumption of normality (cf. Fama, 1965). Roughly the same phe-
nomenon can be observed for the mass-size distribution of aeolian sand deposits (cf.
Barndorff-Nielsen, 1977). In order to construct distributions which are more leptokur-
tic than the normal distribution, several methods have been developed in the statisti-
cal literature. So-called normal-variance mixtures are very popular, where the scale-
parameter of a Gaussian distribution itself is assumed to follow a distribution on the
positive axis. For example, mixing the zero-mean normal distribution with the gener-
alized inverse Gaussian distribution leads to the symmetric hyperbolic distribution. Al-
ternatively, a non-linear transformation can be applied to a standard normal distribu-
tion to obtain a more flexible distribution family. This approach dates back to Tukey
(1960, 1977), who introduced thié—transformation, where a parametecontrols the
amount of kurtosis and elongation, respectively. One property offtheéransformed
normal distribution (H —distribution”) is that moments exist only up to a certain or-
der (see also MacGillivray, 1981, MacGillivray and Belanda, 1988 and Martinez and
Iglewicz, 1984). Haynes et al. (1997) proposed another transformation, the so-called
K —transformation, which exhibits similar properties than ithetransformation, but en-
sures that all moments of th& —transformed normal distribution K —distribution”)

exist. However, empirical studies of leptokurtic data show (cf. Fischer et al., 2003) that
the fit of K'—distributions is worse than that of tlié—distribution, especially in the tails.

The aim of this paper is "to bridge this gap”, i.e. to introduce a transformation — we call



it J—transformation — that induces a distribution with existing moments but with a simi-
lar goodness-of-fit than thE —distribution. By means of so-called elongation generating
functions we show that the strength of tail elongation of.thdransformation is less than
that of the/ —transformation but higher than that of the—transformation.

2 Elongation versus kurtosis

According to Hoaglin (1984, p. 148) and probably also to Tuledgngationis closely
related to the notion of "tail strength”. Investigating the elongation of data or distribu-
tions means comparing the tail strength of empirical or theoretical distributions with the
tail strength of the Gaussian or normal distribution. I.e. while tail strength is an absolute
concept, elongation is (through the comparison with the normal distribution) a relative
concept. The normal distribution has an undefined tail strength, but a neutral elongation
which is assigned to zero by a suitable elongation measure. In general, transformations
which shorten the tails can be considered, too. However, within this work, we focus
on tail-increasing transformations or, equivalently, on elongation measures which are re-
quired to be positive. Note that elongation is one component of the shape of distributions
which is independent of location and scale.

On the other hand, the notion kiirtosisis not uniquely defined in the literature. Origi-

nally, kurtosis was identified with the fourth standardized moment which should serve as
a measure for the "sharpedness” or the "peakedness” of a distribution (see, for example,
Oja (1981), p. 165). Kaplansky (1945) has already exemplified that the fourth standard-
ized moment does not preserve a peakedness order. In the sense of Finuncan (1964), the
fourth standardized moment is a measure for "a prominent peak and a prominent tail”,
whereas Ali (1974) reduces this notion to a measure of tail strength. Darlington (1970)
even speaks of a measure of bi-modality. At the latest in the work of Oja (1981) kurtosis
Is discussed apart from the notion of the fourth standardized moment. Oja discusses a
kurtosis model, introduces a kurtosis ordering and finally shows that the fourth standard-
ized moment preserves that ordering under certain conditions and therefore can be seen
as a specific kurtosis measure. The kurtosis model of Oja (1981) is based on van Zwet
(1964), who introduced a partial ordering of kurtosis on the set of symmetric distri-
bution functions?*. Let F,G € F*® andur denote the location of symmetry &f, then

<5 is defined by

(A) F =5G:<= G YF(r)) is convex forr > up

and means that has higher kurtosis thafi. Balanda and MacGillivray (1990) gener-
alized this partial ordering of van Zwet by using so-called spread functions defined as
symmetric differences of quantiles:

Sp(u) = F'(u) — F7Y(1 —wu), u>0.5.

In the sense of Balanda and MacGillivray (1990), an arbitrary continuous, monotone in-
creasing distribution functiot” has less kurtosis than an equal distribution functibn
if

(B) F =g-G:<= Sg(Sz'(z)) isconvexforr > F~'(0.5).



If Fis symmetric,F"~!(u) = —F~1(1 — u) for u > 0.5, so thatSr(u) = 2F 1 (u) u >

0.5. This means that the spread function essentially coincides with the quantile func-
tion. It can be shown that (A) and (B) coincide in this case. Furthermore, Balanda und
MacGillivray (1992, p. 1234) use kurtosis (in a very broad sense) as tail strength, peaked-
ness or similar concepts.

Groeneveld (1998) states a whole class of quantile-based kurtosis measures which pre-
serves the kurtosis ordering mentioned above. It is generally accepted that kurtosis can-
not be characterized only by the fourth standardized moments. One component of this

concept is the tail strength which is also denoted by elongation, if a comparison is based

on the tail strength of the normal distribution. Therefore, elongation measures are specific

kurtosis measures.

3 Elongation transformations: A review

Let Z be a standard normal variate. Note that most of the results can be also derived for
a random variable which is symmetric around the mediamd which has continuous
distribution function. Define

X=T(2)=2 -W(Z) (1)

whereT is a suitable elongation transformation. Hoaglin (1983) postulated some plau-
sible requirements t@'. Firstly, T should preserve symmetry, i.&(z) = T(—z) for

z € R and we therefore have to discufsonly on the positive axis. Secondly, the ini-
tial distribution T should hardly be transformed in the centre, iBz) = z + O(z?)

for = ~ 0. Finally, in order to increase the tails of the distribution, we have to assure
thatT is accelerated strictly monotone increasing for positive 0, i.e. T’(z) > 0 and
T"(z) > 0 for z > 0. Consequently[ is strictly monotone increasing and convex for

z > 0. Conversely, a shortening of the tails takes place, eith&ri# strictly monotone
increasing with negative second derivation dr'ifs not monotone but concave for> 0.
Differentiability and monotony imply thal’(0) = 0. An example which satisfies the
aforementioned conditions is tlié—transformation of Tukey (1960, 1977) given by

Hy(2) = zexp(hz®/2), z,h €R. (2)

The corresponding distribution of from (1) is termed asamily of H—distributions

or simply asH —distribution H,(Z) introduces elongation through the factarIn the
normal case, the distribution of is leptokurtic forh > 0 and platykurtic forh < 0. The
amount of kurtosis is determined by the paramgtdforh < 0, the support of the random
variableX is a finite interval and the distribution of is U-shaped (cf. Klein and Fischer,
2002). A special case of thé—distribution is the normal distributiork(= 0). Moreover,
moments ofX only exists up to order < 1/h. Haynes et al. (1997) introduced another
elongation transformation g —transformation”) by

Ki(2) = 2z(1+25% 2 keR, (3)

where the elongation is governed by the parametéifferent H — and K —transforma-
tions are plotted in figure 1, below. It can be proved that all momenis-efransformed
normal distributions exist.



Figure 1. Elongation transformations for different parameter values.
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(a) H—transformation (b) K—transformation

4 J-transformation: Definition and properties

Basic elements of thé —transformation are thbyperbolic cosingthe hyperbolic sine
and thehyperbolic tangenfunction which are given by

z —z z __ L,z inh
cosh(z) = %, sinh(z) = ‘ 26 and tanh(z) = %h((z)).

The corresponding graphs can be seen in figure 2(a), below. Not@thét) = sinh(z)

andtanh(z) = 1 — tanh(z)?. Next, theJ—transformation will be defined by means of
the hyperbolic cosine function.

Definition 1 (J—transformation) For z,j € R, the J—transformation is defined by

AN\

J;(2) = zcosh(z)! = 2 (exp(z) —|—2exp( Z)> : 4)
Forj = 0, Jo(z) coincides with the bisecting line. Fgr > 0, lim J;(z) = oo and
lim J;(z) = —oo. On the contrary, foj < 0, lim J;(z) = lim J;(z) = 0. Typical

curves forj = 0.2,0.5, —0.1 can be seen in figure 2(b), below.

Figure 2: Hyperbolic functions and—transformations.

= cosh(x)
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(a) Hyperbolic functions (b) J—transformation



Lemma 1 (Derivatives of theJ—transformation) The first two derivatives of; are
Ji(2) = cosh(z)” + jz cosh(z)’ tanh(z) = cosh(2)’(1 + jz tanh(z)) (5)

and ‘
Ji(z) = jcosh(z)’ (2 + 2 tanh(2) + z tanh(2)*(j — 1)) . (6)

Because: tanh(z) is non-negative for alt € R, J(z) > 1 for positivej. In this case,
lim Ji(2) = lim Ji(2) = oo. Letz; denote the positive root df + jz tanh(z). For

zZ— 00

j < 0, the first derivative is both positive ift| < z; and negative iffz| > ;. Now,
lim J%(2) = lim Ji(2) = 0. Consequently]; isn’t a one-to-one mapping with maxi-

Z—00

mum atz; and minimum at-z;. Some curves of; andJ} are illustrated in figure 3.

Figure 3: Derivatives of thg —transformation.
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Note that the inverse mapping ' (z) of J;(z), namely
Ji Y (z) = {z|f(z|2) = z cosh(z)’ — 2 = 0}
has no closed form and therefore be approximated numerically.

Lemma 2 (J— versusH—, K— transformation) Suppose = h = k£ > 0 andc¢* =~
2.98. The following relations hold between thie-transformation on the one hand and
the H—/K —transformation on the other hand:

|J;(2)] < |Hp(z)| for j =h and z € R. (7)

5,2) { < |Kp(2)| for j =k and z € [—c*, ], (8)

> |Kik(2)| for j =k and |z| > ¢*.

Proof: Suppose > 0 andh = j = ¢ > 0. Then we have to show théat.(z) — J.(z) > 0.
From (2) and (4), this difference is given by
zexp(0.5¢2%) — z cosh(2)¢ = zexp(0.5¢z?) — zexp(cln(cosh(z))).

It is sufficient to show thaD(z) = 0.52% —In(cosh(z)) > 0. This, however, follows from
D(0) =0, lim D(z) > 0andD’(z) = z — tanh(z) > 0 for z > 0.

Similarly, usingK(z) = zexp(kIn(1 + z?)), equation (8) can be verifiedl



5 Generating elongation transformations by means of elon-
gation generating function

First we introduce the class of elongation generating function which can be used to com-
pare the strength of elongation for different transformations and to construct new trans-
formations.

Definition 2 (Elongation generating function) A functionf : R — R is called an elon-
gation generating function (EGF) or of cla3sif the following requirements are satisfied:

E1 Smoothnessf is a C?-function.
E2 Anti-symmetryf(—z) = —f(z).
E3 Positivity onR,: f(z) > 0for z > 0.

E4 Tail elongation condltlonzf((z)) > —2for z > 0.

Note that conditiorE4’ (f'(z) > 0 for z > 0) together withE3 imply conditionE4 which
ensures that the second derivation of the corresponding transformation will be positive

(cp. Theorem 1). Because,@f—
Moreover,E1 andE2 imply thatf( )

E4 can be interpreted as an elasticity condition.

||
|| u ‘*H\

Example 5.1 (EGF’s) Functions which belong t& are

e f1(z) = sinh(z) ("elongation generating function of exponential-type”),
e f>(z) = z ("linear elongation generating function”),
e f3(z) = tanh(z) ("asymptotic constant elongation function”) and

 fi(2) = 7z ("asymptotic zero elongation function”).

The corresponding graphs ¢fand f/,i = 1,...,4 can be seen in figure 4, below.

Figure 4: Different elongation generating functions.
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Theorem 1 (Construction of elongation transformations) Assumef € Y. Then

Ty r(z) = 2W(2) = zexp (9/ f(u) du) 9)
0
is an elongation transformation with parametein the sense of Hoaglin (1983).

Proof. From equation (9)7y.;(z) = z + O(u?) for z = 0, Moreover,T; ; is symmetric
around the origin. Finally, for > 0

Ty (2) = W(z)(1+20f(2)) >0 and

Ty 1(z) = W(2)0(2f (2) + zf'(2) + 20 f(2)?) > 0. (10)

This follows from the assumptions gh [J

Example 5.2 ¢—, H—, K— and J—transformation) The elongation generating func-
tions from example 5.1 correspond to the following transformations:

1. E—transformation:E.(z) = z exp(e cosh(z)).

2. H—transformation of Tukey (19601}, (z2) = z exp(hz?%/2).

3. J—transformation:J;(z) = z cosh(z).

4. K —transformation of Haynes et al. (1997} (z) = z(1 + 22)*/2.

By the end of this work we will focus on thé—transformation, becaugé— and K —trans-
formation have been extensively studied in the literature. Further discussionfof-tinans-
formation is factored out to future research.

6 J—transformed symmetrical distributions: Density, quan-
tiles, moments and kurtosis ordering

Let Z denote a standard normal distribution, for simplicity. Most of the following results
can be applied to arbitrary symmetric distributions as well. From the previous section it
follows thatJ; is a kurtosis family in the sense of Hoaglin (1983). Let the random variable
X be defined as

X=p+o-Ji(Z2), pmjeR o>0. (12)

Obviously, the properties of the distribution &f (which we simply call/—distribution)
depend on the sign gf Forj = 0, X reduces to a normal distribution with mearand
varianceo. In particular, forj > 0, J(z) > 1 andJ}(z) > 0 for z > 0. Therefore J; is
strictly monotone increasing and convex for- 0 and makes the tails of the distribution
of X longer. Applying methods of variable transformations, the following theorem is
easily obtained:



Theorem 2 (Density and quantiles ofX) Assumeg > 0.

1. Let Jj‘1 denote the ir_1verse mapping &f. Then the probability density function
fx(x) can be determined by

FA07(25))
70, =)

J

fX(x;M70-7j) =

2. Thep-quantiles ofX can be obtained from thequantiles ofZ by means of

T, = ji+ 0 - z,cosh(z,)’. (12)

Different H—, J—, K —transformed Gaussian densities with identical paranteter; =
k = 0.8 are shown in figure 5. The inequalities of Lemma 2 are especially illustrated in
figure 5(b).

Figure 5: Normal H —, J— and K —distributions.
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(a) Transformed Gaussian densities (b) Zoom of (a)
Note that forj < 0, J; is not a one-to-one mapping. Howevér,(z) = J;(z) for
|z| < z is strictly monotone increasing and»(z) = J;(z) for [z| > z; is strictly

monotone decreasing. Léf; denote the inverse function df;, i = 1,2. Then, the
corresponding density is given by

fX($§/L,O',j)I 1,z = = .

(T (58)  35(J52(558))
for p + 0Jj(z,) < x < p+ oJ;(z,). The ambiguity of]; for negative; makes the
calculation of the quantiles of slightly more complicated. Details are neglected within
this work and we refer to Klein and Fischer (2002) for a similar discussion in the context
of symmetricalH —distributions.

Theorem 3 (Existence of moments) et Z denote a Gaussian random variable and de-
fineX; = J;(Z) for j > 0. Then all moments of; exist.



Proof. By assumptionZ is symmetrically distributed aroun@l Consequently,X, =
Ji(Z) = Z(3¢% + 3e77?)7 is also symmetrically distributed arourtidfor j > 0. In
particular,

B(X}) =2 /0 1j(2)" f2(2)dz < B(X), forj <7,

provided that this integral exists. The last inequality can be derived from
j<j =17Ji(z) <Jy(z) forallz>0.

It will be shown that the power moments &f; for integer values of exist. If j is not
integer we can use the inequality

E(X}) < B(X[5,y)

to prove the existence of the power momentXofor arbitrary; > 0. Lety;,i = 1,2, ...
denote the power moments 8f Forj € N, using quadratic completion,

jk i k k
B(xh =% (JZ_ >61/2<2i—jk>2 D (p) 11(2i — k)", (13)

=0 p=0
Note that becaus# is standard normal,

;o i | (i—1)! for odd:
“i_E(Z)_{ 0 foreven:

fori = 1,2,.... All power moments ofX; exist because all sums in equation (13) are
finite and all power moments &f exist, by assumptiori]

Some values of the fourth standardized moments fofthe J— and K —distribution are
given in the table 1, below.

Table 1: Fourth standardized moments.
Rk H | J [ K

0 3.0000 | 3.0000 | 3.0000
0.01 | 3.1270 | 3.0593 | 3.0532
0.02 | 3.2694 | 3.1211 | 3.1079
0.05 || 3.8202 | 3.3222 | 3.2812
0.1 5.4417 | 3.7187 | 3.6039
0.2 11.3544| 4.8265 | 4.3988
0.3 | 15.1050| 6.5518 | 5.4438
0.4 | 15.6930| 8.8264 | 6.7851
0.5 | 17.6393| 10.8781| 8.2289

Finally it will be shown that the/—distributions can be ordered in the sense of van Zwet
(1964).

Theorem 4 (Kurtosis ordering) Let0 < j; < j, and X; = J;(Z) for a symmetric
random variableZ. Then,F}, <g F},.
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Proof. According to condition (B) we have to show thg, (5];]_11 (x)) is convex forz >
F;,71(0.5). Assuming thatS,, (ngll (x)) is twice differentiable, it is sufficient to verify
that the second derivative is positive. Applying standard calculus and using’, (z),
the first derivative is given by

Sk, (W) [ucosh(u)2]”  cosh(u)’ (1 + ujy tanh(u))

alu) = S}?Jj (w)  [ucosh(u)n]  cosh(u) (1 + ujy tanh(u)) 0
From equation (14), the second derivative can be derived as
() — Leosh(@ (1 + s tanh ()] cosh(w)? (1 + ujs tanh(u))
B (cosh(u)1 (1 + uj; tanh(u)))”
~cosh(u)? (1 4 ugy tanh(u)) - [cosh(u)”" (1 4 ugjy tanh(u))]’ (15)
(cosh(u)i (1 + uj; tanh(u)))? ‘
With
[cosh(u)ji (14 uy; tanh(u))],
= (js cosh(u)’~*sinh(u)) (1 + uji tanh(u)) + cosh(u)” (j; tanh(u) + uji(1 — tanh(u)?))

= j; cosh(u)7 [tanh(u) (1 + uj; tanh(u)) 4 tanh(u) + u(1 — tanh(u)2)]
— i cosh(u) [2 tanh(u) + u tanh(u)2(j; — 1) + u] i=1,2,
and equation (15)y(u) - (cosh(u)* (1 + uj; tanh(w)))? is given by
js cosh(u)’2 [2 tanh(u) + utanh(u)2(js — 1) + u] - (cosh(u)’ (1 + ujy tanh(u)))
—j1 cosh(u) [2 tanh(u) + utanh(w)2(j — 1) + u] - (cosh(u)? (1 + ujy tanh(u)))
— cosh(u)” %[ (j2 = ju)2 tanh(u) + (22 — 1) = i = 1)) tanh(u)? + (j2 = ju)u
+2j5 tanh(u)uj; tanh(u) — 21 tanh(u)ujs tanh (u)
a2y tanh(u) — j1ujs tanh(u) + (j2 — j1)u?j1j tanh(u):s}
= cosh(u)’' "7 [(]2 — j1)2tanh(u) + (j3 — ji + (j1 — ja2))u® tanh(u)? + (jo — j1)u
+(j2 — J1)u 1 tanh(u)3]
> cosh(u)+ [(j2 — j1)2tanh(u) + (ji — jo)u? tanh(u)Q]

= cosh(u)" 72 (j, — j;) [2 tanh(u) — u? tanh(u)z] >0, for0 <wu <152 > ji.

Note thatcosh(u) > 0 andtanh(u) > 0for 0 < u < 1. Using2* > 0, the result follows
immediately.[]
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7 Application to financial return data

In order to compare results concerning the fit of the transformed distributions, we focus
on the series of the US dollar exchange rate for the British pound from January 1995 to
December 2002 = 2014 observations) which can be obtained from the PACIFIC (Pol-
icy Analysis Computing & Information Facility in Commerce) Exchange Rate Service of
the University of British Columbid. The series of prices and corresponding log-returns
are given in figure 6.

Figure 6: Prices and log-returns of the British pound from 02-01-1995 to 31-12-2002.
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The (sample) mean of the log-returns-6.0014 with a (sample) standard deviation of
0.4779. Moreover, there seems to be no remarkable skewness in the data set (the skew-
ness coefficient — measured by the third standardized moments — is giverOpy),
whereas the kurtosis coefficient — in terms of the fourth standardized moments8 1213,
reflecting the remarkable leptokurtosis of the data. This is the reason why we apply the
elongation transformation to different symmetric distributions (i.e. Gaussian, logistic and
Student distribution with 7 degrees of freedom) only.

Applying the Lagrange multiplier test of Engle (1982) to the data we come across the
presence of ARCH-effects. To overcome this problem, we "pre-whiten” the log-returns
by fitting a GARCH(1,1) model and considering the GARCH residuals in addition to the
log-returns. The mean of the residuals-8.0062, the standard deviation is given by
1.0004. Moreover skewness and kurtosis coefficient@f891 and4.9661, respectively.

Four criteria have been employed to compare the goodness-of-fit of the different candidate
distributions. The first is théog-Likelihood valug(£L) obtained from the Maximum-
Likelihood estimation. The& L-value can be considered as an "overall measure of good-
ness-of-fit and allows us to judge which candidate is more likely to have generated the
data”. As distributions with different numbers of parametdjsare used, this is taken

into account by calculating th&kaike criteriongiven by

2N(Ni +1)
AIC = -2 _—
C LL+ N_ N, 2

The third criterion is th&olmogorov-Smirnov distanaes a measure of the distance bet-
ween the estimated parametric cumulative distribution function,and the empirical

'Download undehttp: //www.pacific.commerce.ubc.ca/.
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sample distributionf-,,,,. It is usually defined by

K =100 - sup | Fopp () — F(z)].

zeR

(16)

Finally, Anderson-Darling statistits calculated, which weights7.,.,(z) — F(z)| by the

~

reciprocal of the standard deviation Bf,,,,, namely\/ﬁ(x)(l — F(x)), thatis

ADy = sup |F6Amp<$) — ]:j(m)‘
ER \/F(a:)(l — F(z))

Instead of just the maximum discrepancy, the second and third largest value, which is
commonly termed aslD; and AD,, are also taken into consideration. Wherg&asm-
phasizes deviations around the median of the fitted distributiti,, AD; and AD,

allow discrepancies in the tails of the distribution to be appropriately weightedreFhe
sults of the Maximum likelihood estimatiare summarized in table 2 and 3, below. Note
that,, andd denote the location and scale parameter, respectively.

. (17)

Table 2: Goodness-of-fit and estimated parameters: Log-returns

Type| £L]| AZC| K| ADy| AD, | AD, | & o | h/j/k
Transformed Gaussian
No | -1369.5| 2745.0| 4.153| 4.480| 0.838| 0.833 || -0.0014| 0.4778| 0.0000
h |-1310.8| 2629.7| 1.134| 0.058| 0.056| 0.056| -0.0007| 0.3947| 0.1183
k |-1308.5| 2625.1| 1.068| 0.089| 0.088| 0.074 | -0.0002| 0.3645| 0.2090
j -1307.9| 2623.7| 0.910| 0.051| 0.051| 0.051 || -0.0004| 0.3806| 0.2152
Transformed logistic
No | -1314.1| 2634.2| 1.800| 0.098| 0.083| 0.081 || -0.0009| 0.2579| 0.0000
h |-1310.9| 2629.9| 1.244| 0.063| 0.062| 0.061| -0.0008| 0.4528| 0.0252
k |-1308.2| 2624.4| 0.873| 0.053| 0.051| 0.049 | -0.0004| 0.4345| 0.0702
j -1309.3| 2626.7| 1.029| 0.055| 0.054| 0.053 || -0.0006| 0.4440| 0.0627
Transformed Student-t with 7 degrees of freedom
No | -1314.5| 2636.9| 1.802| 0.081| 0.080| 0.077 || -0.0010| 0.3977| 0.0000
h |-1313.2| 2634.4| 1.418]| 0.067| 0.066| 0.065| -0.0008| 0.3292| 0.0096
k |-1309.4| 2626.8| 0.910| 0.056| 0.052| 0.050| -0.0004| 0.3112| 0.0550
j -1311.0| 2630.1| 1.084| 0.056| 0.056| 0.055| -0.0007| 0.3204| 0.0390

As expected, application of elongation transformations to different symmetric distribu-
tions leads to a significant improvement of all goodness-of-fit measures: The less the
kurtosis of the original distribution the better the improvement. Transforming the Student-
t(7) distribution only slightly improves the goodness-of-fit. Moreover, transformed Gaus-
sian distributions provide a better fit than transformed logistic or transformed Stydgnt-t
distributions do. Consequently, for our data set we recommend applying the transforms to
the Gaussian distribution (or distributions with similar kurtosis) only, at least for leptokur-
tic data. Within that class thé—transformation outperforms both tiié—transformation

and theH —transformation (concerning both the global fit and the fit of the tails).
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The fit of theJ—transformed Gaussian distribution is illustrated in figure 7, below.

Figure 7: Kernel density estimation versus parametric fit.
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(a) J—transformed normal (b) Zoom of figure(a): Centre

(c) Zoom of figure(a): Left tail (d) Zoom of figure(a): Right tail

Note that the results are very similar for the GARCH(1,1)-residuals (see table 3, below).
Again, combining the/—transformation with the normal distribution seems to be very
promising. For a more detailed discussion concerning the goodness-of-fit in the context
of financial return data we refer to Fischer et al. (2003).

Table 3: Goodness-of-fit and estimated parameters: GARCH(1,1)-residuals
Type| L£L]| AZC| K[ ADy| AD, | AD, | & | & | Rh/j/k
Transformed Gaussian

No |-2855.7| 5717.4| 3.778| 30.61| 2.175| 0.245| -0.0062| 1.0004| 0.0000
h |-2800.1| 5608.1| 0.891| 0.033| 0.032| 0.031| -0.0034| 0.8383| 0.1083
k |-2801.2| 5610.4| 1.092| 0.226| 0.113| 0.034 | -0.0008| 0.7793| 0.1932
j -2798.8| 5605.7| 0.884| 0.079| 0.057| 0.027 || -0.0024| 0.8106| 0.1989

Transformed logistic

No | -2802.4| 5610.9| 1.576| 0.045| 0.045| 0.045| -0.0041| 0.5415| 0.0000
h | -2799.9| 5607.9| 0.954| 0.036| 0.033| 0.032| -0.0036| 0.9564| 0.0206
k |-2798.9| 5605.8| 0.836| 0.070| 0.050| 0.029 | -0.0026| 0.9287| 0.0537
j -2799.2| 5606.4| 0.770| 0.050| 0.039| 0.030|| -0.0031| 0.9427| 0.0494
Transformed Student-t with 7 degrees of freedom
No | -2802.1| 5612.3| 1.560| 0.047| 0.047| 0.045| -0.0045| 0.6974| 0.0000
-2801.4| 5610.8| 1.126| 0.038| 0.037| 0.037|| -0.0041| 0.6957| 0.0067
-2799.5| 5607.1| 0.827| 0.033| 0.031| 0.030|| -0.0029| 0.6683| 0.0392

-2800.3| 5608.6| 0.876| 0.034| 0.033| 0.032| -0.0035| 0.6823| 0.0277

— =
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8 Summary

Within this work we have proposed an alternative elongation transformation — the so-
calledJ—transformation — and derived some basic properties of this transformation. By
means of elongation generating functions we have shown that-thansformation gen-
erates less elongation than tHe-transformation but more elongation than tkie-trans-
formation. In particular, we have proved that all moments/eftransformed Gaussian
distributions exist and that the paramejer- 0 of the J—transformation is a kurtosis
parameter in the sense of van Zwet (1964). Finally, by means of forex data, we empir-
ically investigated the influence of the elongation transformation on different symmetric
distributions and demonstrated the excellent fif eftransformed Gaussian distributions.

References

[1] Ali, M. M.: Stochastic Ordering and Kurtosis Measudournal of the American
Statistical Associatior§9:543-545, 1974.

[2] Balanda, K. P. and H. L. MacGillivrayKurtosis and Spreadrhe Canadian Journal
of Statistics,18(1):17-30, 1990.

[3] Barndorff-Nielsen, O. E.Exponentially Decreasing Distributions for the Logarithm
of Particle Size Proceedings of the Royal Statistical Society Serie823401-419,
1977.

[4] Darlington, R. B.:Is Kurtosis really Peakednesgdnerican Statisticiarg4(2):19-20,
1970.

[5] Engle, R. FAutoregressive Conditional Heteroskedasticity with Estimates of the Vari-
ance of the United Kingdom InflatioBconometrica50(4):987-1007, 1982.

[6] Fama, E.:The Behaviour of Stock Price3ournal of Busines88:34-105, 1965.

[7] Fischer, M., Horn, A. and I. KleinTukey-type Distributions in the Context of Finan-
cial Return Data Diskussion paper 53, University of ErlangerinNberg, 2003.

[8] Groeneveld, R. A.A Class of Quantile Measures for Kurtosfsmerican Statistician,
52:325-329, 1998.

[9] Haynes, M. A. and H. L. MacGillivray and K. L. MengerseRobustness of Rank-
ing and Selection Rules using Generalized g-and-k Distributidmsrnal of Statistical
Planning and Interferenc65:45-66, 1997.

[10] Hoaglin, D. C.: Summarizing shape numerically: The— and — A distributions
in: Hoaglin, D. C. and F. Mosteller and J. W. Tukey (eds.): Data analysis for tables,
trends, and shapes, Wiley, New York, 1983.

[11] Kaplanski, I.:A Common Error concerning Kurtosigournal of the American Sta-
tistical Association40:259, 1945.

[12] Klein, I. and M. Fischer:Families of gh-Transformed Distributions: S. Mittnik
and |. Klein (ed.): Contribution to Modern Econometrics, Kluwer, 2002.



15

[13] MacGillivray, H. L.: The Mean, Median, Mode inequality and Skewness for a Class
of Densities Australian Journal of Statistic23(2):247-250, 1981.

[14] MacGillivray, H. L. and K. P. BelandaThe Relationship between Skewness and
Kurtosis Australian Journal of Statistic8((3):319-337, 1988.

[15] Martinez, J. and B. IglewiczSome Properties of the Tukgyand i~ Family of Dis-
tributions Communication in Statistics (Theory and Methods3353-369, 1984.

[16] Oja, H.: On Location, Scale, Skewness and Kurtosis of Univariate Distributions
Scandinavian Journal of Statisti&154-168, 1981.

[17] Tukey, J. W.: The Practical Relationship between the Common Transformations
of Counts of Amountdrinceton University Statistical Techniques Research Group,
Technical Report No. 36, 1960.

[18] Tukey, J. W..Exploratory Data AnalysisAddison-Wesley, Reading, M.A., 1977.

[19] Van Zwet, W. R.:.Convex Transformations of Random VariabMsthematical Cen-
tre Tracts No. 7. Mathematical Centre, Amsterdam, 1964.

Adresse der Autoren:

Dr. Matthias Fischer

Lehrstuhl fir Statistik undDkonometrie
Universitt Erlangen-Nrnberg

Lange Gasse 20

D-90403 Nirnberg

Tel. +60 911 5320271

Fax +60 911 5320277

Elec. Mail: Matthias.Fischer@wiso.uni-erlangen.de
http://www.statistik.wiso.uni-erlangen.de

Prof. Dr. Ingo Klein

Lehrstuhl fir Statistik undDkonometrie
Universitt Erlangen-Nrnberg

Lange Gasse 20

D-90403 Nirnberg

Tel. +60 911 5320290

Fax +60 911 5320277

Elec. Mail: Ingo.Klein@wiso.uni-erlangen.de
http://www.statistik.wiso.uni-erlangen.de



