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A NEW CLASS OF COPULAS WITH TAIL DEPENDENCE
AND A GENERALIZED TAIL DEPENDENCE ESTIMATOR

Matthias Fischer & Gerd Hinzmann
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University of Erlangen-Nürnberg, Germany

Email: Matthias.Fischer@wiso.uni-erlangen.de

summary

We present a new family of copulas (”generalized mean copulas”) which is positive
comprehensive and allows for upper tail dependence. It includes the Spearman
copula and a specific Fréchet copula as special cases. Some properties and a
generalized tail dependence estimator are derived. Finally, a small simulation
study is conducted.

Keywords and phrases: Geometric mean; arithmetic mean; copula; tail depen-
dence

1 Introduction

Since the pioneering work of Embrechts et al. (1999) and the research group of Credit
Lyonais (e.g. Bouyé et al., 2000), the popularity of the copula concept in finance steadily
increases. As it was demonstrated by Sklar (1959), each multivariate probability distribu-
tion can be decomposed into its margins and its dependence structure, e.g. by its copula. In
contrast to the modelling of the marginal distribution, capturing the adequate dependence
structure between the assets under consideration is still a challenging task. Above that,
risk managers are especially faced with the problem that assets tend to collapse together,
a phenomenon titled as ”tail dependence” in the literature. This gives rise to two issues.
Firstly, the construction of copulas which are able to assign sufficient probability to these
extreme events of common rises or falls. Secondly, the development of simple and accurate
tail dependence estimators (TDE) in order to check whether tail dependence is present in
a data set, at all. Based on a specific copula which is introduced within this work, we are
able to give some contribution to each of these aspects.

In detail, the proceeding is as follows. Section 2 briefly reviews the copula concept and
the notion of tail dependence. In section 3, the generalized mean copulas are introduced and
some properties are derived. The main focus of section 4 is on a special case, the so-called
harmonic mean copulas. Finally, section 5 is dedicated to the development of a family of
non-parametric tail dependence estimator and a small simulation study.



2 Copulas: A review

Let [a, b] ⊆ R. A function K : [a, b]× [a, b] → R is said to be 2-increasing if its K-volume

VK(u1, u2, v1, v2) ≡ K(u2, v2)−K(u2, v1)−K(u1, v2) + K(u1, v1) ≥ 0 (2.1)

for all a ≤ u1 ≤ u2 ≤ b and a ≤ v1 ≤ v2 ≤ b. If, additionally, [a, b] = [0, 1] and K satisfies
the boundary conditions

K(u, 0) = K(0, v) = 0, K(u, 1) = u and K(1, v) = v (2.2)

for arbitrary u, v ∈ [0, 1], K is commonly termed as copula and we write C, instead.

Putting a different way, let X and Y denote two random variables with joint distribution
FX,Y (x, y) and continuous marginal distribution functions FX(x) and FY (y). According to
Sklar’s (1959) fundamental theorem, there exists a unique decomposition

FX,Y (x, y) = C(FX(x), FY (y))

of the joint distribution into its marginal distribution functions and the so-called copula

C(u, v) = P (U ≤ u, V ≤ v), U ≡ FX(X), V ≡ FY (Y )

on [0, 1]2 which comprises the information about the underlying dependence structure (For
details on copulas we refer to Nelsen, 2006 and Joe, 1999).

Prominent examples are the independence copula

CI(u, v) = uv (2.3)

which corresponds to bivariate distributions with independent marginals and the maximum
copula

CU (u, v) = min{u, v}, (2.4)

associated to random variables which are co-monotone and, thus, constituting an upper
bound for all copulas. Copulas which include both independent copula (i.e. no dependence)
and maximum copula (i.e. perfect dependence) will be termed as positive comprehensive,
henceforth. Examples are given in the next section.

3 A generalized mean copula

In general, every convex-combination of two (or more) copulas is again a copula. For
instance, convex-combining (2.3) and (2.4), family B11 in Joe (1999) is obtained, i.e.

CA(u, v; α) = α min{u, v}+ (1− α)uv, α ∈ [0, 1] (3.1)
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which is also a special case of the Fréchet family (Fréchet, 1958). In other words, CA is a
(weighted) arithmetic mean of CI and CU and termed as arithmetic mean copula, henceforth.
Similarly, family B12 in Joe (1999) – also Spearman or Cuadras-Augé copula – is given by

CG(u, v; α) = min{u, v}α(uv)1−α, α ∈ [0, 1] (3.2)

which can be seen as a weighted geometric mean of CI and CU . In both cases, α = 0 results
in the independence, whereas α = 1 results in the maximum copula. Hence, both copula
families are positive comprehensive. A natural generalization of (3.1) and (3.2) is given by
a weighted Hölder (or power) mean of CI and CU . This generalized mean, also known as
Hölder mean, is an abstraction of the (weighted) arithmetic and (weighted) geometric means
(see, e.g. Borwein & Borwein, 1987 or Bullen, 2003). For m ∈ R and α ∈ [0, 1], consider

K(u, v;α, m) ≡ (α min{u, v}m + (1− α)(uv)m)1/m
. (3.3)

Note that K(u, v; α, 1) = CA(u, v) and – after taking the limit – K(u, v; α, 0) = CG(u, v).
We next show that K is a copula for m ∈ R\{0, 1}, too. The boundary conditions are easily
verified: K(u, 0; α, m) = K(0, v; α, m) = 0, K(u, 1;α,m) = u and K(1, u;α,m) = v for all
u, v ∈ [0, 1]. Moreover, K is an exchangeable function, i.e. K(u, v; α, m) = K(v, u; α, m).
In order to proof that K is actually a copula it remains to verify that K satisfies the
two-increasing condition from (2.1) with

VK = (α min{u2, v2}m + (1− α)(u2v2)m)
1
m − (α min{u2, v1}m + (1− α)(u2v1)m)

1
m

− (α min{u1, v2}m + (1− α)(u1v2)m)
1
m + (α min{u1, v1}m + (1− α)(u1v1)m)

1
m .

Lemma 3.1. K(u, v; α,m) from (3.3) is a copula for α ∈ [0, 1] and m ∈ R.

Proof: In order to proof that VK ≥ 0, consider the following cases

• Case 1: u1 ≤ v1 ≤ u2 ≤ v2,

• Case 2: u1 ≤ v1 ≤ v2 ≤ u2,

• Case 3: u1 ≤ u2 ≤ v1 ≤ v2,

• Case 4: v1 ≤ u1 ≤ v2 ≤ u2,

• Case 5: v1 ≤ u1 ≤ u2 ≤ v2,

• Case 6: v1 ≤ v2 ≤ u1 ≤ u2.

Introducing the auxiliary function

f(u;α,m) ≡ (α + (1− α)um)1/m

we have to check the validity of the following inequalities:

3



• Case 1: u2f(v2)− v1f(u2)− u1f(v2) + u1f(v1) ≥ 0,

• Case 2: v2f(u2)−v1f(u2)−u1f(v2)+u1f(v1) = (v2−v1)f(u2)−u1(f(v2)−f(v1)) ≥ 0,

• Case 3: u2f(v2)− u2f(v1)− u1f(v2) + u1f(v1) = (u2 − u1)(f(v2)− f(v1)) ≥ 0,

• Case 4: v2f(u2)− v1f(u2)− u1f(v2) + v1f(u1) ≥ 0,

• Case 5: u2f(v2)−v1f(u2)−u1f(v2)+v1f(u1) = (u2−u1)f(v2)−v1(f(u2)−f(u1)) ≥ 0,

• Case 6: v2f(u2)− v1f(u2)− v2f(u1) + v1f(u1) = (v2 − v1)(f(u2)− f(u1)) ≥ 0.

Actually, using the exchangeability of K, it suffices to prove case 1, case 2 and case 3.

Case 1: Assume that u1 ≤ v1 ≤ u2 ≤ v2. Due to lemma 3.2(5.), v1f(u2) ≤ u2f(v1) and it
follows that

u2f(v2)− v1f(u2)− u1f(v2) + u1f(v1) ≥ u2f(v2)− u2f(v1)− u1f(v2) + u1f(v1)

and u2f(v2)− u2f(v1)− u1f(v2) + u1f(v1) = (u2 − u1)(f(v2)− f(v1)) ≥ 0.

Case 2: Assuming that u1 ≤ v1 ≤ v2 ≤ u2 we have to show that

(v2 − v1)f(u2)− u1(f(v2)− f(v1)) ≥ 0.

We restrict ourselves to 0 < v1 < v2 because v1 = v2 and u1 = v1 = 0 is trivial. Now
f(u2) ≥ f(v2) (cf. lemma 3.2(1.)) and u1 ≤ v1 and therefore

(v2 − v1)f(u2)− u1(f(v2)− f(v1)) ≥ (v2 − v1)f(v2)− v1(f(v2)− f(v1))

and it suffices to show that

(v2 − v1)f(v2)− v1(f(v2)− f(v1)) ≥ 0 ⇐⇒ f(v2)
v1

≥ f(v2)− f(v1)
v2 − v1

.

Denoting v2 = v1 +4, we can rewrite the last inequality to

f(v1 +4)
v1

≥ f(v1 +4)− f(v1)
4 .

Now letting 4→ 0, we have to show that

f(v1)
v1

= lim
4→0

f(v1 +4)
v1

≥ lim
4→0

f(v1 +4)− f(v1)
4 = f ′(v1).

This, however follows from lemma 3.1(4).

Case 3: Under the above assumption and with lemma 3.2(1) – where it is established that
f is monotone increasing – the assertion follows immediately. ¤
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Lemma 3.2. Let α ∈ [0, 1] and m ∈ R. Then

1. f is strictly monotone increasing for u ∈ [0, 1].

2. f(0) = α1/m for m > 0 and, after taking limits, f(0) = 0 for m < 0. Furthermore,
f(1) = 1.

3. It is for u ∈ [0, 1]
u ≤ (α + (1− α)um)1/m ≤ 1.

4. For u ∈ [0, 1] we have f(u) ≥ uf ′(u).

5. For 4 ≥ 0 we have uf(u +4) ≤ (u +4)f(u).

6. f is concave for m > 1, convex for m < 1 and linear for m = 1.

Proof:

1. Follows from f ′(u) = (1− α) (α + (1− α)um)1/m−1
um−1 ≥ 0.

2. Obvious.

3. The upper bound follows from 1. and 2. For m > 0, the lower bound holds if α(1 −
um) ≥ 0 which is valid for α ≥ 0 and 0 ≤ u ≤ 1. For m < 0, the lower bound holds if
α(1− um) ≤ 0 which is valid for α ≥ 0 and 0 ≤ u ≤ 1.

4. From the equivalence

(α + (1− α)um)1/m ≥ u(1− α) (α + (1− α)um)1/m−1
um−1 ⇐⇒

(α + (1− α)um)1/m ≥ (1− α) (α + (1− α)um)1/m−1
um ⇐⇒

α + (1− α)um ≥ (1− α)um ⇐⇒ α ≥ 0.

5. For m > 0, notice the equivalence uf(u +4) ≤ (u +4)f(u) ⇐⇒

u (α + (1− α)(u +4)m)1/m ≤ (u +4) (α + (1− α)um)1/m ⇐⇒
um (α + (1− α)(u +4)m) ≤ (u +4)m (α + (1− α)um) ⇐⇒ um ≤ (u +4)m.

The derivation for m < 0 is similar, but now um ≥ (u +4)m.

6. Follows from

f ′′(u) =
a (a− 1) (a + um − uma)1/m−1

um−2 (m− 1)
(−a + um(a− 1))

≶ 0 for m ≷ 1. ¤

Contour lines of generalized mean copulas are given in figure 1, below.
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Figure 1: α = 0.5

4 A special case: The harmonic mean copula

We now restrict ourselves to a specific member of the generalized mean copula family, namely
the so-called harmonic mean copulas (HMC) which emerge for m = −1, i.e.

CH(u, v;α) ≡ 1
α

min{uv} + 1−α
uv

=
min{u, v} · uv

αuv + (1− α)min{u, v} =
CG(u, v; 0.5)2

CA(u, v; α)
. (4.1)

For the HMC-copulas global dependence measures like Kendall’s τ , Spearman’s ρ, Gini’s γ

and Blomqist’s β can be derived explicitly (For a detailed treatment of dependence measure
we refer to Drouet-Mari & Kotz, 2002).

Lemma 4.1. For the harmonic mean copula CH(u, v; α) we obtain

τ = τ(α) =
18α2 − 12α− 4α3 − α4 + (24α− 12α2 − 12) ln(1− α)

α4

ρS = ρS(α) =
12α− 30α2 + 22α3 − 3α4 + (12− 36α + 36α2 − 12α3) ln(1− α)

α4
,

γ = γ(α) =
3α2 − 2α3 + ln(1− α/2)(8− 8α)− ln(1− α)(4− 8α + 4α2)

α3
,

β = β(α) =
α

2− α
.
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Proof: The main obstacle is to get rid off the minimum expression in the definition of CH

in (4.1). Following Cherubini, Luciano & Vecchiato (2004, Chapter 3.1), Kendall’s τ for
copulas which are singular or have both an absolutely continuous and a singular component
can be computed by

τ = 1− 4
∫ 1

0

∫ 1

0

∂C(u, v)
∂u

∂C(u, v)
∂v

du dv

= 1− 4
∫ 1

0




∫ v

0

∂
(

uv
αv+1−α

)

∂u

∂
(

uv
αv+1−α

)

∂v
du +

∫ 1

v

∂
(

uv
αu+1−α

)

∂u

∂
(

uv
αu+1−α

)

∂v
du


 dv

= 1− 4
∫ 1

0

[∫ v

0

− vu (−1 + α)
(α v + 1− α)3

du−
∫ 1

v

vu (−1 + α)
(α u + 1− α)3

du

]
dv

= 1− 4
∫ 1

0

v (−1 + α)
(
v3α− 3 α v − 1 + 2 α + α2v3 − 3 α2v2 + 3 vα2 − α2

)

(α v + 1− α)3
dv

=
18α2 − 12α− 4α3 − α4 + (24α− 12α2 − 12) ln(1− α)

α4
.

The result on Spearman’s ρ follows with

ρS = 12
∫ 1

0

∫ 1

0

CH(u, v; α)dudv − 3

= 12
∫ 1

0

(∫ v

0

uv

αv + 1− α
du +

∫ 1

v

uv

αu + (1− α)
du

)
dv − 3

and some tedious but straightforward calculations. Similarly, Gini’s γ follows from

γ = 4
∫ 1

0

C(u, 1− u) + C(u, u)du− 2

= 4
(∫ 0.5

0

u(1− u)
1− αu

du +
∫ 1

0.5

u(1− u)
αu + (1− α)

du +
∫ 1

0

u2

αu + (1− α)

)
du− 2.

Finally, Blomquist’s β is simply β = 4CH(0.5, 0.5; α)− 1. ¤

Figure 2, below illustrates the dependence of τ, ρ and γ from the parameter α. All curves
are strictly monotone increasing and convex. The results from last lemma may be useful to
estimate the parameters of the harmonic mean copulas.
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Figure 2: Influence of α on different dependence measures.

5 Derivation of the (upper) tail dependence coefficient
and a generalized TDC estimator

The concept of tail dependence provides, roughly speaking, a measure for extreme co-
movements in the lower and upper tail of FX,Y (x, y), respectively and is very useful in
financial risk management. Regarding the generalized mean copulas, we focus on the upper
tail dependence coefficient (TDC) which is usually defined by

λU ≡ lim
u→1−

P (Y > F−1
Y (u)|X > F−1

X (u)) = lim
u→1−

1− 2u + C(u, u)
1− u

∈ [0, 1] (5.1)

noting that λU is solely depending on the copula and not on the marginal distributions.
Coles et al. (1999) provide an asymptotically equivalent version of (5.1),

λU = 2− lim
u→1−

log C(u, u)
log(u)

. (5.2)

Fischer & Dörflinger (2006) showed that CG(u, v) from (3.2) is upper tail dependent with
TDC λU = α ∈ [0, 1]. This result also holds for the generalized mean copula, as the next
lemma shows.

Lemma 5.1. The (upper) TDC of the generalized mean copula is given by λ = α.

Proof: Plugging (3.3) into (5.2) and applying l’Hospital’s rule, we obtain

λU = 2− 1
m

lim
u→1−

log
(
αum + (1− α)u2m

)

log(u)

= 2− 1
m

lim
u→1−

u(mαum−1 + 2m(1− α)u2m−1)
αum + (1− α)u2m

= 2− (2− α) = α. ¤

Hence, the upper TDC λU is solely determined by the parameter α and not by m. This
allows to construct a generalized TDC-estimator which includes the Dobric-Schmid (2005)
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estimator for m = 1 and the Fischer-Dörflinger (2006) estimator for m = 0 as special case.
The main idea is simply as follows: At first, approximate the unknown ”data-generating”
copula C(u, v) by the generalized mean copula C(u, v; α, m). Secondly, choose α and m

such that the squared difference between the empirical copula Cn and the generalized mean
copula is minimized. For practical purposes, M is assumed to be a discrete subset of R.
Noting that λU of the latter is given by α, choose λ̂U as solution of

λ̂U = α̂ = min
m∈M

α̂(m) with α̂(m) = argminαf(α),

f(α) ≡
k∑

i=1

(
Cn

(
1− i

n
, 1− i

n

)
− C

(
1− i

n
, 1− i

n
; α, m

))2

.

As usually, the empirical (Deheuvel) copula is defined by

Cn(i/n, j/n) =
1
n

n∑

l=1

1(Xl ≤ X(i), Yl ≤ Y(j)), (5.3)

where n denotes the number of data pairs (X1, Y1), . . . , (Xn, Yn) and X(i), Y(i) the corre-
sponding order statistics.

Finally, we conducted a small simulation study. In order to compare the quality of the new
tail dependence estimators, we simulated from a bivariate Student-t copula with 3 degrees
of freedom und ρ = 0.2 (Scenario A). In this case, the theoretical upper tail dependence
coefficient is approximately 0.178 (for the exact formula we refer to Dobric & Schmid, 2005).
In scenario B, random pairs from a rotated Clayton copula with dependence parameter
θ = 0.5 are considered. In this case, the theoretical upper TDC is 2−1/θ = 0.25. In each
case, n = 2000 random pairs were repeatedly drawn (with N = 1000 repetitions). The
corresponding box plots are subject to figure 3.
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Figure 3: Estimation results for the tail dependence estimators (Box plots).
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Note that the column numbers 1 to 8 belong to the estimators with m = −5 to m = 2. The
drawn through line equals the theoretical (true) TDC. From scenario A it becomes obvious
that all TDC-estimator underestimate the true tail dependence parameter. However, the
bias becomes smaller as m declines. Regarding scenario B, the smaller m the less the bias
of the corresponding TDC-estimator.
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