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Abstract

This paper analyses an indefinitely-repeated Cournot duopoly. Firms select simple dynamic
decision rules which, taken together, comprise afirst-order linear difference equation system. A
boundedly-rational objective function is assumed, by which the firm’s payoff is its profit at the
point of convergence, if any. Stable Nash equilibriaare characterised and located in output space,
stability in this context being equivalent to subgame-perfection. Comparable results are derived
for aconventional discounted-profit objectivefunction, wherethis equival ence does not hold, but
where stability may neverthelessbe of intrinsic interest. In either context, stability isincompatible

with joint profit maximisation.

* Thispaper ispart of the project Evol ution, oligopoly and competitiveness, funded by the ESRC,

grant number RO00 23 6179. Comments are very welcome.



1 I ntroduction and overview

In thispaper we analyse an indefinitely-repeated Cournot duopoly, within aframework motivated
by the idea of bounded rationality. Characteristic of this is the proposition that computational
samplicity is valuable to agents. In our model, simplicity is an issue at two levels. The first, and
morefamiliar, isthat of the firm’ s strategy. Among the simplest types of strategy, in thisdynamic
context, is the Reaction Function, which gives the firm’s current output as a time-independent
function of itsrival’s immediately previous output. Similarly, a Supply Function has asits only
argument the immediately previous market price. Strategies of this kind have received much
attention in the literature', perhaps reflecting awidespread, if tacit, assumption that agents value
smplicity.

But the second level is that of the objective function, in terms of which firms identify their
(mutually) optimal strategies. Evenif both firms' strategies are very simple, theimplied sequence
of outputs can be highly complicated and, therefore, difficult to evaluate. So firms might be
forced, or choose, to smplify thistask. One possibility, which we explorein this paper, isthat a
boundedly-rational firm evaluates an output sequence only at its point of convergence, if any. In
the case of aconvergent sequence, thisiseffectively equivalent to afully-rational firmwith azero
discount rate, using a limit-of-mean-profit criterion. But it is stronger than this criterion, in that

it places a zero value on non-convergent sequences.

Our analysis focuses on the asymptotic stability of outputs, in a Nash equilibrium. Given the
assumed objective function, stability hereisequivalent to subgame-perfection. For afairly smple
class of strategy, to be defined shortly, we show that almost any profitable output point can be
supported asastable, boundedly-rational equilibrium. Notably excluded, however, isthe duopoly

contract curve, comprising points of mutual profit maximisation.

We also analyse stability in the fully-rational, discounted profit case. As aready noted, our
boundedly-rational equilibrium islargely equivalent to the limiting (zero discounting) case. But
inthefully-rational context stability doesnot imply subgame-perfection. Indeed, wefind herethat

! See, for example, Stanford (19864a), Klemperer and Meyer (1989), or Grossman (1981).

1



linear Reaction Functions, for example, can support stable equilibria where subgame-perfection
isknown to require rather more complex strategies. The lower the discount rate, the larger isthe
set of output points thus supportable. This raises the possibility of stability constituting a weak

form of equilibrium refinement for fully-rational firms constrained to the smplest of strategies.

For the purposes of exposition, the paper deals first with the fully-rational case. Here, we are

interested in strategy pairs which satisfy three criteria

Q Equilibrium, i.e., the mutual optimality of each firm’s strategy;

Q Sationarity of the generated output sequence, which meanssimply that outputs (and thus

the price) are constant from one period to the next;

Q Sability, i.e., re-convergence to the stationary point following any deviation fromit.

Taking only the first two criteria, we might ask whether a given output vector can be supported
asastationary equilibrium, i.e., as the stationary output sequence of a Nash equilibrium strategy
pair. It may easily be shown that, given concave profit functions, any profitable output point can

be thus supported (Proposition 1), and that this requires only (linear) Reaction Functions.

Subgame-perfection is, of course, more demanding. Thus, Stanford (1986a) demonstrates that
Reaction Functions (linear or otherwise) can support subgame-perfect equilibria only at the
standard Cournot equilibrium point. Friedman and Samuelson (1994) use the term single-period
recall function (SPRF) to describe a strategy which gives a firm’s output as a function of the
immediately previous outputs of both firms, and of which the Reaction Function (as defined here)
isaspecial case. They identify aclass of continuous, non-linear, SPRFs capable of supporting a
subgame-perfect equilibrium at any profitable output point. This complements Stanford’ sresullt,

and also that of Robson (1986), who shows that linear SPRFs can support such equilibria only

2|tiswell known that subgame-perfect equilibriacan be sustained by discontinuoustrigger
strategies, asin Friedman (1971) and Abreu (1986). However, Friedman and Samuel son (1994)
showed that continuous versions of such strategies could be found.
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at the Cournot point. Such results are important because they tell us something about the degree
of strategic complexity required to support (subgame-perfect) equilibria. And complexity is of
interest, perhaps, because we can more plausibly imagine rea firms using simple rules than
complex ones. Asalready suggested, thisideacould be articulated in termsof bounded rationality,
by supposing that the use of amore complex rule is more demanding on afirm’slimited or costly

computational resources.

The assumption in this paper is that both firms adopt linear SPRFs which, as noted, are
insufficient for asubgame-perfect equilibrium other than at the Cournot point. However, our main
interest is not subgame-perfection as such, but rather the third criterion listed above, i.e., that of
stability. Wefind (Proposition 2) that linear SPRFs can support stable equilibriaat awide range
of output points. Notably excluded, however, are points of mutual profit-maximisation, i.e., the
contract curve. At best, in the limiting case of azero discount rate, equilibriahere may be* semi-
stable” inthat thereisre-convergence, following any deviation, but generally to some other point,
off the contract curve. We also consider two specia cases of linear SPRF. Thefirst isaReaction
Function; herethe stable equilibriacomprise across-shaped set containing thetwo firms' Cournot
(contemporaneous) best-response curves. The second is a Supply Function; here the stable
equilibriaformacurved band running closeto, but strictly above, the contract curve. In each case,
the size of the corresponding set is positively related to the per-period discount factor, i.e.,
negatively related to the discount or interest rate.

We then similarly analyse a boundedly-rationa equilibrium. Just as in the fully-rational case,
stationary equilibriamay befound at any profitable output point (Proposition 3). The significance
of stability, inthiscontext, isthat it ishere equival ent to subgame-perfection (Propositions4aand
4b). Stable equilibria, while more widespread than in the fully-rationa case, are not quite
ubiquitous (Proposition 5). Again notably excluded are points on the contract curve. Equilibria

here are, at best, semi-stable. But they cannot be subgame-perfect.

The paper is structured as follows. In section 2 we define and elaborate our assumed class of
strategies. Section 3 outlinesour assumptionsconcerning thefirm’ sprofit function. Conventional,

fully-rational, stationary equilibria are characterised in section 4. The stability condition is



introduced in section 5, and applied to the fully-rational equilibrium (Proposition 2). Findly,
section 6 contains our analysis (Propositions 3-5) of boundedly-rational equilibria

2 The Decision Rule

The model comprises two firms producing an homogeneous good. In each period (t=0,1,2,..),
each firm (i =1,2) produces an output level x ., giving an output vector X, = (X, ,%,,). We
assume no restriction on the output space other than that it is real, so that the set of feasible
output vectorsis X ={x, | x. eR?}. Let x=(X,,X;,X,,..) denote an entire sequence of such
output vectors. We describe as stationary (at xe X)) any output sequence x such that x,=x for
alt.

Governing each firm's behaviour is a time-independent decision rule which makes x, , alinear
function of the outputs of both firmsin the immediately preceding period. Thisfirst-order linear
decision rule (FOLDR) is defined by ared triple p,=(a,,b;,c;) such that:

X = &%+ bi)ﬁ,t + G (i #])

Thisisa specid (i.e., linear) case of what Friedman and Samuelson (1994) call a single-period

recall function. Two subclasses of FOLDR which will be of interest are;

0] A Reaction Function (RF), defined by a,=0, in which firmi’s output is a function only
of firmj’s (immediate past) outpui.

(i) A Supply Function (SF), defined by a =b. , inwhichfirmi’soutput is, in effect, afunction
only of the (immediate past) market-clearing price.

At the outset (t=0) each firm adopts a strategy o,=(x,,p;) comprising an initia output and a



FOLDR. The strategy pair ¢=(0,,0,) generates a unique output sequence y which we call its
trajectory. The trgjectory of o isstationary at x=(x,,X,) only if, for eachii :®

X = ax +bx+c (1)

Given p,, let S,(p,) denotetheset of all xeX satisfying (1). Wecall thisthe stationary set for p, .

A gtationary solution for p=(p,,p,) isany:

xe S(p) = Sy(py) N S,(p,)

A strategy pair o=(0,,0,) can be equivalently represented as o=(x,,p). From the definition of
S(p)., it follows that the trajectory of o=(x,,p) isstationary if and only if x,c S(p).

We describe asregular any p, for which a =1, in which case (1) may be rewritten as:
X = BXj Y (2)
where:
B = — -
i = H and Y = ——
We similarly describe as regular any p=(p,,p,) of which each p, isregular. For aregular p,
therefore, S(p) comprises solutions to (2) for each i=1,2 simultaneoudly. There will be exactly

one such solution, unless 3,3, = 1. In that case the two stationary sets will either coincide (if

Y;= B;y;), giving infinitely many stationary solutions, or fail to intersect, giving none.

% Notice that we use x with a single subscript to denote either the (timeless) output of a
given firm (i or j), or the output vector in a given time period (t). While convenient, this is
potentially ambiguousiif the subscript is a numeral. Hereafter, single subscripts 1 or 2 refer only
to the firms, while O refers to the initia time period.



3 Profit in asingle period
We consider equilibriawithin QcX <X, where:
X "={xeX | x,,%,>0} and Q= {xeX"| ny(X),m,(x) >0}
For any x.cX", the profit for firmi in period t is given by:
(%) = X F(X %) — 6i(%,)
where f(x,,+x,,) isthe market-clearing priceand g;(X; ,) isfirmi’stotal cost. We assume that

each of these functionsis differentiable, and that f <O for al xeQ. We aso assume that, within

X*, m(.) isquasiconcave.

Figure 1: A typical iso-profit contour



Figure 1 shows atypical profit contour for firmi. Its gradient is:

Two particular points on the contour may be noted. One iswhere s =0 and thus:

g = f+xf’

so that firmi‘'smarginal cost isequal to its marginal revenue, given X Theotheriswhere s=-1
and thus marginal cost is equal to price. Figure 1 shows each respective locus, ¢, and w,. The
former corresponds to the standard Cournot (contemporaneous) best-response function. The

latter, which we term the Walrasian locus, corresponds to price-taking profit maximisation.

These assumptions, and therepresentationin Figure 1, are quite conventional . However, sinceour
decision rules do not constrain output trgjectoriesto X *, and since we need firmsto be ableto
evauate any (non-equilibrium) trgjectory, then we have to make some further, unconventional
assumptions. We shall therefore assumethat f(.) and g,(.) aredefinedfor al xeX, insuchaway
asto maintain quasiconcavity of each m,(x) everywhere. Consistent with this are, for example,

the extensions defined by:
f() = f(max{0,x;} + max{0,x,} ) g9,(x) = g,(max{0,x})

An aternative approach would be to restrict the output trajectories by truncating the firms

decision rules as, for example:

Xt = max.{ 0, aixi,t+bi)ﬁ,t+ci}

Such an approach is adopted by Stanford (1986b). For our purposes, however, the former

approach is simpler and more tractable.



4 Stationary, fully-rational equilibria

In afully-rational equilibrium, each firm’s strategy maximises the discounted sequence of that

firm’s profits, given the strategy of itsrival. For firmj thisis:
m(x) = Y 8'm(x)
t=0

The discount factor 6¢(0,1) we assume to be common to the two firms; this smplifies the
analysis, but isnot crucial toit. Consider some strategy pair 6=(6,,6,) suchthat y, isstationary
at X. Thusfor each firmi:

Xo = X and X

- >
>

1
o
x>

+

+
(@)

(3)

Given g;, under what conditionsis 6, optimal for firm j?

Supposefirstly that b =0. Since ¥, isstationary, it follows that X o=% and p; = (&,0, (1-8)x),
i.e., that firmi’s output is independently stationary at X.. But then aj isoptimal if and only if X
maximises each m,(x) subject to x ,=X;. A necessary condition for thisis s(X) =0, i.e., that the
slope of firm ' siso-profit contour be zero. Thisis also sufficient, given quasiconcavity of 7,(.).
We can thus verify the existence of arepeated Cournot equilibrium, where each firm’s output is

independently stationary at xcQ defined by s;(X)=s,(x)=0.

Now suppose instead that b.#0. Given that 6, satisfies (3), &

; is optimd if and only if x;

maximises 11, (x) subject to, for all t:

~

Xo = %o  and Xea = 8%+ DX+ G
Given these constraints, and given that y, is stationary at X, then for any T:

aHJ. . T anj(i)
841 0X;

s(R) - 562 (38)"" (4)



For aj to be optimal it is necessary that (4) iszero for every T. Thatis:

5b.
-1<84,<1 and  s(®) - - 5Ia (5)

Note that (5) also characterises the optimal &, given-1<64, <1 and b,=0, and therefore some

of the Cournot equilibrium strategies.

For an illustrative interpretation of (5), supposethat p, isan RF, so that §,=0 and the first part
of the condition is satisfied. Then any single-period output perturbation by firm j induces an
output responseby firmi in, and only in, the following period. Theratio of thelatter to the former
is Bi , here the gradient of S,(p,). The second part of (5) then requires that the net (discounted)
effect on firmj’sprofit iszero. In the limiting case with zero discounting (6 =1), thisimpliesthat

firm j’siso-profit contour istangent to S,(p.).

For FOLDRsin generd, (5) ismost easily interpreted in thislimiting case, where the first part of
thecondition isthat 4.¢(-1,1). Thisimpliesthat following any single-period perturbationin firm
j’s output, firm i’s output will re-converge to X.. If this were not the case, then firm j could
thereby induce, for example, an indefinite (unlimited) reduction in firm i’s output. Given that
ac(-1,1), the cumulative total of all subsequent output responses by firmi convergesto Bi , 8
a proportion of firm j’sinitial perturbation. For marginal perturbations, the second part of (5)
requires that the net (in this case, undiscounted) effect on firm j’s profit is zero. Again, in this

limiting case thisimplies that firm j’ s iso-profit contour is tangent to S.(p,).

In addition to being necessary, (5) is also sufficient for optimality if IL(x) is concave, which
would follow from concavity of nj(.) . It would al so be sufficient were Hj(x) only quasiconcave,
but this does not follow from quasiconcavity of m,(.). Givenasufficiently strong assumption of

this kind, stationary equilibria are ubiquitousin Q, as stated in the following Proposition.*

* Note the formal similarity between this proposition and the ubiquity of consistent-
conjectures equilibria, as demonstrated by Klemperer and Meyer (1988), and similarly central to
which is the tangency of the (conjectured) reaction function of one firm to an iso-profit contour
of the other.



Proposition 1 Given concavity of m.(.), then for any xeQ and any 8¢(0,1) there exists

an equilibrium o=(x,,p) such that y_ isstationary at x.

Proof: Givenxand 3, put x,=x, and construct p to satisfy (1) and (5), i.e,:

5 (%)
dac(-1,1) b= (1—<?>a1.)T ¢ = (1-a)x -bx
QED
Note that among the p satisfying (1) and (5) there is aways an RF-pair, for which:
s(x)
b_ = J— 6
| 6 ( )

Thus, stationary RF equilibria are ubiquitous. Thisis not true, however, of SF equilibria. From

the second condition in (5), an equilibrium in SFs requires that, for each firm i:

a-b §(X)

YA 7
T B s ) 0

But then the first condition in (5) can then be satisfied only if s(x)>-%2 for each firm. This
restriction will beillustrated in the next section, where we derive the conditions under which such

equilibria are also asymptotically stable.

To concludethissection, however, we should comment on one aspect of our equilibrium analysis.
In deriving (5), we considered the effect on firm ' s (discounted) profits of a perturbation in X1
for any single T. Thus, (5) is necessary for abroad equilibrium in which GJ. isoptimal, for firmj,
among all possible tragjectories consistent with 6,. However, if firmj isrestricted to strategies of
the form o,=(x,,p;) then it cannot independently vary any single x . We might therefore wish
to consider a correspondingly narrow equilibrium, in which aj isoptimal only among al o,. But
it is easily seen that (5) is necessary also for (6,,6,) to be a narrow equilibrium. Consider
alternativestrategies o, comprising X, ,=X and p; = (&,0,(1-a)X;) eachof which, ineffect, fixes
firmj’s output at x =X . Among these strategies:
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dIL, oIl

dxj T am

(8)

Given 6, the selection of such astrategy with X = >2j givesthe same stationary trajectory, and the
same payoff to firmj, as does the sel ection of aj . Sofor aj to be optimal among o, itisnecessary

for (8) to be zero, when evaluated at X. Given (4), this requires (5) as before.

5  Stability

As shown by Robson (1986), and as noted section 1, FOL DRs cannot support subgame-perfect,
fully-rational equilibriaother than at the Cournot point. But in this section we show that FOLDRS
can support stable equilibria over a wide range of output points, this size of this set being
negatively related to the discount rate. We al so characterise and locate the sets of such equilibria
supported, respectively, by RFs and SFs. Stability may have some intrinsic interest in the fully-
rational context, for example as a weak form of equilibrium refinement. But, in any case, our
results here provide a useful background to our discussion of boundedly-rational equilibria, in

section 6, where stability and subgame-perfection are equivalent.

The FOLDR pair p is (asymptotically) stable if and only if the trajectory of every o=(x,,p)
converges to a common xe X, which must therefore be its unique stationary solution S(p).
Necessary and sufficient for thisisthat each of itstwo eigenvaluesiswithin the unit circle. These

are given by:

Mp) = axl|a-aag,+bb,|* (9)

4 +a
2

where; a

Thusfor p to bestablerequiresat least that ac(-1,1). Notethat, since a?>a a,, theeigenvalues
will be real if b,b, isnon-negative. One instance of thisis where b, =0 for either firm, in which

casethe eigenvalues are just {a,,a,} .
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In section 2 we noted the possibility of aregular p withinfinitely many stationary solutions, where

the two firms' (linear) stationary sets coincide, so that 3,,=1. Here, from (9):
AMp) = 1and 2a-1

The first eigenvalue A(p)=1 applies to each of the stationary solutions. The other eigenvalue
A(p)=2a-1 applies to any other trgjectory, al of which are linear and mutually parald. If
ac(0,1) thenthey all converge, but not to the same stationary solution. We will describe such a

p as semi-stable. It will be of significance in what follows.

We now characterise and locate sets of stable, stationary equilibria. Consider firstly apair of RFs
which, from (9), is stable if and only if:

-1<bb, <1
From (6), a stationary equilibrium in RFsis therefore stable if and only if:

-2 < g(X) < 8%  where  s(X)=5(X)S,(X). (10)

Figure 2 sketches thisin the special case of alinear demand function p=1-x,-X, and identical
quadratic costs g(x,) :xiz. It showsthe set Q, bounded above by the (linear) zero-profit contours
which intersect at the output vector (1/3,1/3), here denoted z. The output vector corresponding
to the Walrasian (price-taking) equilibrium is (1/4,1/4), denoted w. The Cournot equilibrium is
at (1/5,1/5), denoted c, and joint profit maximisation is achieved at (1/6,1/6), denoted m. The
curve passing through mis the contract curve, comprising points of mutual profit maximisation.
It is characterised by the mutual tangency of the two firms' iso-profit contours, and thus by
S(X)=1. Thisistrue also of the curve passing through w, but which comprises points of mutual
(local) profit minimisation. We call this the anti-contract curve. The figure also shows, for each
firm, theloci identified in section 3, which in this special case are linear. The Walrasian loci, .,

are the lines intersecting at w. The Cournot loci, ¢,, are the lines intersecting at c. These

12



subdivide Q into four main areas: two off-diagonal areas in which s(x)<0, and two on-diagonal

areasin which s(x)>0. (This refers to the positive diagonal, connecting z to the origin.)

Figure 2: Stationary equilibriawith stable RFs

The set of stationary equilibriain stable RFs, i.e., output points satisfying (10), is a strict subset
of Q. At itslargest, as 6-1, it approaches the shaded region in Figure 2. It always lies strictly
above the contract curve and below the anti-contract curve, along each of which s(x)=1. Off the
diagonal, it isbounded by curvesalong which s(x)=-1. Atitssmallest, as -0, it reducesto the
crossformedby ¢,U¢, , whichincludesthe Cournot point c. Each ¢, ischaracterised by s (x) =0,
and so satisfies (10) for any positive d.

Figure 3 sketchesthe corresponding region for Supply Functions. Recall from the previoussection

that SFs, unlike RFs, can support stationary equilibria only where s(x) >-%z for each firm. The

relevant (linear) boundaries, below which thisis satisfied, are shown intersecting above c.
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0 27

Xl
Figure 3: Stationary equilibriawith stable SFs
From (9), apair of SFsis stable if and only if:
-1<b,;+b, <1

From (7), astationary equilibrium in SFsistherefore stable if and only if:

S0 s
L0 1809

-0 <r(x) <o where r(X) =

Atitslargest, as 6-1, the set of stable, stationary SF equilibria approaches the shaded region in
Figure 3. It dways lies strictly above the contract curve, along which r(x)=1, and below curve
shown passing above c, dong which r(x)=-1. At its smallest, as 6-0, it reduces to the curve

shown passing through c, aong which r(x)=0.
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Having looked in particular at RFs and SFs, we now consider FOLDRs in genera. For any

p=(p,,p,) satisfying the equilibrium condition (5), the eigenvalues may be written as:

Y2

M) = axat- ag Sa-sa)a-oa (1)

where da,e(-1,1). We have found that output points on the contract curve cannot be supported
as stationary equilibria either in stable RF pairs or in stable SF pairs. It isreadily established that
such points cannot be supported by stable FOLDRsat all. Supposethat s(x) =1, ason the contract
curve. From (11) it follows that:

1 1
A = =— and 2a-=
(P) 5 5

whereby at least one eigenvalue (1/6) is not within the unit circle. Although at any point on the
contract curve there exist stationary equilibriain FOLDRS, none of theseis stable. In the limiting
case (0=1) there exist stationary equilibria, with ac(0,1), which are semi-stable. Here, any
deviation from the stationary output trgjectory will befollowed by re-convergence, but in genera

to some other stationary solution, off the contract curve.

So s(x)#1 isarequirement for stability of stationary equilibria, notably excluding the contract

curve. The following is more specific.

Proposition 2 For there to exist an equilibrium o=(x,,p) suchthat p isstableand y is
stationary at xeQ, it isnecessary and (if each nj(.) is concave) sufficient

that s(x) < 62.

Proof: We first demonstrate necessity. Assume an equilibrium o=(x,,p) such that x_ is
stationary at x. Suppose that s(x)>0. Then from (11) the eigenvalues are real, in which

case p isstable only if:

Ya

la| +|a?- aa,+ %(1—6@)(1—6%) <1
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which can be re-arranged to:

s _  1raa,-2[a)
8 (1-%a)(1-6a)

Stability implies that ac(-1,1), and therefore that the right-hand side cannot exceed
unity.® So stability here requires that s(x) <82.
We now demonstrate sufficiency. Given 6¢(0,1) and xeQ such that s(X) <82, put x,=x

and construct a stable p satisfying (1) and (5). Asin the proof of Proposition 1, put:

s(x)
b, = (1—6a1.)‘T ¢ = (L-a)x-bx

Put also a=0 so that, from (11), p is stableif:

32 < 8%+ (1-8%))s(x) < 82
This may be viewed as is a generalisation of (10), and interpreted as requiring the
(6%a°) -weighted average of 1 and s(X) to lie within the open interval (-6262). It is
straightforward to verify (e.qg., graphicaly) that, given any 8¢(0,1) and S(x) <82, there
aways exist da.c(-1,1) to satisfy this.

QED

So s(x) < &2 isanecessary and (given concavity) sufficient condition for the existence of astable,

> This can be confirmed by considering the arithmetic difference between the (positive)
denominator and the numerator, and verifying that this must be non-negative. For any given a,
this difference is minimised by setting a, =a,=a, given which it is:

2(|a| -8a) - (1-8%a?
Thisexpression isaquadratic in each of itsrestrictions to, respectively, non-negative and non-

positive values of a. As such, it is straightforward to verify that it is non-negative for any
ac(-1,1).
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stationary equilibrium at x. The set of output points satisfying this can be visualised in Figure 2.
It comprises the set of stable RF equilibria, plus the two off-diagonal areasin which s(x)<0. At
itssmallest, as 6-0, it reducesto just these two areas (which together include the Cournot loci).
Elsewherein Q, i.e., where S(X)>0, it has the same boundaries as the set of stable equilibriain

RFs. At itslargest, as 6-1, these are the contract curve and the anti-contract curve.

6 Subgame-perfection and a boundedly-rational equilibrium

In this section we anayse a boundedly-rationa equilibrium, where stability and subgame-
perfection are equivalent. An equilibrium is subgame-perfect if the mutually—optimal strategies
would remain so, following any deviation in either firm’s output in any period. Stability also
concernsthe consequences of output deviation, but not in any directly normative senseand, inthe
fully-rational context, we have seen that thetwo criteriaare not generally co-extensive. However,
they may be more closely related in the limiting case of zero discounting (6=1). Consider an
equilibrium trgjectory where the criterion of optimality, for each firm, isits ‘long-run’ profit. If
p is stable, then following any deviation output re-converges to the same long-run, mutually-
optimal point. A formal proposition of thiskind isdemonstrated by Stanford (1986b): with zero-
discounting, a stable equilibrium in RFs must be subgame perfect. We now define a FOLDR
equilibrium in which stability is not only sufficient, but also necessary, for subgame-perfection.

Assume that each firm j seeks to maximise:

nj(x) if x convergesto some xeX

U = |

0 otherwise

The first part of this definition is equivalent to a limit-of-mean-profit objective function. This
criterion is commonly used, for example by Stanford, to represent zero discounting. Any output
sequence with bounded profitsis evaluated as the limit of its mean per-period profit. In the case

of a convergent sequence, thisisjust the value to which each period’ s profit converges.
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Although our approach has been to allow unbounded output sequences, it is consistent with this
for profit to be bounded, whichisall that the limit-of-mean-profit criterion requires. So we could
follow Stanford inapplying thiscriterion. However, even when suitably bounded, the computation
and evaluation of a non-convergent trgjectory can be very difficult. A firm might therefore
economiseon computational timeand expense by simply attaching azero val ueto non-convergent
output trajectories, asin the second part of the above definition.® The first part of the definition
could similarly reflect computational constraints, rather than zero-discounting as such, for
convergent, but non-stationary, trajectories. So our objective function asawhole could be taken

to represent aform of bounded-rationality on the part of the firm.

Given this objective function, the characterisation of a stationary equilibrium at x isidentical to
that of a convergent equilibrium, i.e., an equilibrium with a trgjectory converging to x. In this
context, the former isjust a special case of the latter. So we can more generally locate output
points at which there are convergent equilibria, among which there will always be a stationary
equilibrium. Furthermore, for an equilibrium with a stable p the initial output vector X, is
irrelevant. A stable equilibrium can be unambiguously located in output space by the unique
stationary solution S(p), in the knowledge that this locates a convergent equilibrium for any x;,.
Indeed, thisiswhy such an equilibrium is subgame-perfect. These observationswill be elaborated
more formally below. Firstly, though, we characterise a boundedly-rational equilibrium, by
considering some 6=(6,,5,) suchthat y, convergesto X. Given g;, under what conditionsis g,

optima for firm j?

Supposefirstly that Bi =0, sothat firmi’ soutput convergesto X, irrespective of firmj’sstrategy.
Thusany output trgjectory which firmj can induce through its own strategy choicewill converge,
if at all, only to some xe X such that x.=X.. But firmj can induce atrajectory converging to any

such x, smply by choosing an appropriate convergent trajectory for its own output, i.e.:

ac(-11)  b=0 ¢ = (1-a)x

® Thisissimilar in spirit to an assumption made by Klemperer and Meyer (1989, p.1247),
i.e., that firms payoffs are zero when no unique equilibrium exists for given supply functions.
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It followsthat &, isoptimal, interms of the boundedly-rational objectivefunction, if and only if X
maximises nj(x) subject to x. =X . Necessary and (given quasiconcavity) sufficient for thisisthat
sj(i) =0. Thereasoning here closely parallelsthat in section 4, and it is straightforward to verify
the existence of astationary Cournot equilibrium, strategically identical tothat inthefully-rational
case. In this boundedly-rational case we may also verify the existence of equilibrium trgjectories

converging to, but not necessarily stationary at, the Cournot point.

Now suppose instead that Bi #0. Any trgectory which firmj can induce through its own strategy
choice will converge, if at all, only to some xeS,(p,). But firm j can induce a trgjectory

converging to any such x, as confirmed in the following Lemma:

Lemmal For any p, suchthat b,#0, and for any xeS;(p;), there exists some p; such that
p=(py,p,) isstableand S(p)={x} .

Proof: Given p, and X, construct a stable p satisfying (1), e.q.:

a=-4, bj = —a]-2/bi C = (1—a].) X - bj X
QED

Note that b.#0 is crucial to this proposition. If instead b,=0, as in a Cournot equilibrium, then
the eigenvalues are {a,,a,} , so that firm j cannot independently ensure stability.

So, given that b, =0, firm j can induce a trgjectory converging to, and only to, any xeS,(p,). It
followsthat G; isoptimal, in terms of the boundedly-rational objective function, if and only if X
solves:

max. m(X) ~ subjectto: x = ax + bx + ¢

(12)



which may be compared with (5), the corresponding condition for fully-rational equilibrium. The
second part of (12) confirms the equivalence to the limiting case of zero discounting (6=1).
However the first part, that p, be regular, is considerably weaker than the limiting case of the
corresponding part of (5), whichisthat a.e(-1,1). Thisreflects our strong assumption that the

boundedly-rational firm places a zero value on any non-convergent trajectory.

Notethat (12) also characterisesany (convergent) Cournot equilibriuminwhich p, isregular, and
therefore where 6, isoptimal if and only if X maximises m,(X) subject to xeS(p;). A Cournot

equilibrium inwhich p.=(1,0,0) cannot be thus characterised, since here S.(p,)=X.
From (12) we can confirm that stationary, boundedly-rational equilibria are ubiquitous.

Proposition 3 For any xeQ there existsaboundedly-rationa equilibrium o=(x,,p) such
that x isstationary at x.

Proof: Givenx, put x,=X, and construct p to satisfy (1) and (12), i.e.:

a=#l b, = (1-a)s(x) ¢ = (1-a)x -bx
QED

Among the equilibria characterised by (12) are those which are (perhaps) non-stationary, but in
which p is stable, with a unique stationary solution at X. Such cases are redly equilibria in
decision rules (p,,p,) rather than in strategies (6,,6,,) as such. Furthermore, they are subgame-
perfect. An equilibrium 6=(6,,6,) is subgame-perfect if and only if at any future time t, the
adopted strategies remain mutually optimal from any feasible position, whether or not on the
equilibrium trgjectory. In the present context, thisrequiresthat at any timet, ﬁj isoptimal given
p;,» and given any feasible x. But all features of the market are time-independent, including the
objective functions. So thisis equivalent smply to requiring that (p,,p,) are mutually optimal,
regardless of x,.
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Proposition 4a If 6=(X,,p) isaboundedly-rational equilibrium, and if p is stable, then
any o=(X,,p) isasubgame-perfect boundedly-rational equilibrium.

Proof: If p isstable then the trgjectory of any o=(x,,p) convergesto X which by assumption,
for each firmj, maximises 7,(x) subject to xe S;(p;). (Note that this applies also to the
Cournot equilibrium, where stability entailsthat p isregular.) Given p., therefore, firm
j can induce no better trajectory than this. So o=(x,p) is a boundedly-rational
equilibrium. Since the same argument applies at any subsequent time't, for any given x,,
the equilibrium is also subgame-perfect.

QED

This is similar to the proposition demonstrated for RFs under zero-discounting by Stanford
(1986b). Given our boundedly-rational objective function, however, the following converse

proposition is also true.

Proposition 4b A boundedly-rational equilibrium 6=(%,,) , with atrgjectory converging
to X , issubgame-perfect only if p isstable.

Proof: Assumethat p=(p,,p,) iSnot stable. We requireto show that the equilibriumistherefore

not subgame-perfect.

Suppose firstly that Biio for some firmi. If p=(p,,p,) is not stable then there is some
X,#%, such that the trgjectory of o=(x,,p) does not convergeto X. But from Lemma 1
there exists some p, with p,=p,, such that the trajectory of o=(x,,p) does converge to
X. So, given x, ﬁj is not the best response to p,. Thus, the equilibrium is not subgame-
perfect.

Supposeinstead that Bi =0 for eachfirmi, and thereforethat theeigenvaluesare {4,,4,} .
If p isnot stable, then é].ef(—l,l) for at least one firm j. Lemma 1 does not apply here,
sincetheother eigenvalueis &, . However, irrespective of thevaueof &, thereissome x,

such that the trgjectory of o=(x,,p) does not converge to X, but would do so were
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a].e(—l,l). Any x,#X such that x ,=X; is of this type, these being the eigenvectors

corresponding to the eigenvalue a. So for at least one firm j there exists some x,, given

which ﬁj is not the best response to p.. Thus, the equilibrium is not subgame-perfect.
QED

So a boundedly-rational equilibrium 6=(X,,p) is subgame-perfect, and thus essentialy an
equilibrium in decision rules, if and only if p is stable. It now remains to locate the set of such
equilibria. We know, from Proposition 3, that a stationary equilibrium can be found at any
profitable output point. But this is not so for stable equilibria. There are boundedly-rational
equilibriawith stationary (and otherwise convergent) tragjectories for which p cannot be stable.
Significantly, these occur on the contract curve. Consider an equilibrium 6=(X,,p), with a
trgjectory converging to some X on the contract curve, i.e., such that s(X)=1. From (12) it
followsthat Blﬁzzl, i.e., that thetwo firms' stationary setscoincide. So there areinfinitely many
stationary solutions other than X, and p isnot stable. At best, i.e, if 4¢(0,1),p issemi-stable.
But this does not suffice for subgame-perfection. There exists some x,, (arbitrarily closeto X;)
such that the trgjectory of (x,,p) converges to some stationary solution other than X, and less
profitable for at least onefirm j. But from Lemma 1 we know that, given p,, thereis some p,#p,

which does ensure convergence to X. So, given such an x,, (p,,p,) are not mutually optimal.

Just as in the fully-rational case, therefore, S(X)#1 is necessary for a stable, boundedly-rational

equilibrium to be located at x. In this case, we may show that it is aso sufficient.

Proposition 5 For there to exist a boundedly-rational equilibrium o=(x,,p) such that p

is stable and x, converges to xcQ, it is necessary and sufficient that

s(x) = 1.

Proof: Necessity has already been demonstrated. To demonstrate sufficiency, construct a stable

p which, given x , satisfies (1) and (12). Asfor Proposition 3, put:

b, = (1-a)s(x) ¢ = (1-a)x -bx
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Put also a=0, so that from (11) p is stable if:
1< a’+(1-a)s) < 1

Giventhat s(x)=1, itis aways possible to find some a1 which satisfiesthis.
QED

So thereisastable boundedly-rational equilibrium located (i.e., with itsstationary solution) at any
profitableoutput point except on the contract curve and the anti-contact curve. Thisnear-ubiquity
reflectsour strong assumption that non-convergent trajectorieshavezerovalue, and thereforethat
each firm'sFOLDR need only beregular. By contrast, inthelimiting case (6=1) of the stationary
fully-rational equilibrium the corresponding existence condition is S(X)<1, which additionally

excludes output points below the contract curve and above the anti-contract curve.

The sets of stable RF and SF boundedly-rationa equilibria can similarly be deduced from the
limiting cases of their respective stationary, fully-rational counterparts. For RFs this is
straightforward; in Figure 2 therelevant set isrepresented by the shaded region. For SFsnote that

the second condition in (12) requires that, for each firmi:

()
159

Given which the first condition in (12) is automatically satisfied. So, in the boundedly-rational
case, the (linear) boundaries shown in Figure 3 do not apply. The set of stable SF equilibriaisjust
the curved region bounded below by the contract curve.

To summarise: we have established that stable, boundedly-rational equilibriain FOLDRs can be
found almost anywherein (positive-profit) output space. Excluded, however, are pointsof mutual
profit-maximisation on the contract curve. There are boundedly-rational equilibriawith outputs

stationary at such points, but these are not stable and, therefore, not subgame-perfect.
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