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Abstract

Rationing by waiting time is commonly used in health care systems
with zero or low money prices. Some systems prioritise particular types
of patient and o¤er them lower waiting times. We investigate whether
prioritisation is welfare improving when the bene�t from treatment is
the sum of two components, one of which is not observed by providers.
We show that positive prioritisation (shorter waits for patients with
higher observable bene�t) is welfare improving if the mean observable
bene�t of the patients who are indi¤erent about receiving the treat-
ment is smaller than the mean observable bene�t of the patients who
receive the treatment. This is true (a) if the distribution of the un-
observable bene�t is uniform for any distribution of the observable
bene�t; or (b) if the distribution of the observable bene�t is uniform
and the distribution of the unobservable bene�t is log-concave. We
also show that prioritisation is never welfare increasing if and only if
the distribution of unobservable bene�t is negative exponential.
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1 Introduction

In many countries with tax or public health insurance �nance elective surgery
is rationed by waiting. In Australia, Canada, Denmark, Finland, the Nether-
lands, Spain, and the United Kingdom, average waiting times for common
procedures, such as hip and knee replacement, cataract surgery or varicose
veins, vary from three to eight months (Siciliani and Hurst, 2004).

Some countries have explicit waiting-time prioritisation for certain types
of treatment. Schemes can have a limited number of priority categories,
as in Spain and Sweden (high-priority and low-priority) and in Australia
and Italy (recommended admission within 30 days, 90 days and 12 months).
More elaborate priority scoring systems, as in New Zealand and Canada,
assign points to patients and patients with higher scores have shorter waits
(Siciliani and Hurst; 2005, section 3.2.1).

In the New Zealand points scheme for cataract, patients with "lens
induced glaucoma" are assigned 71-90 points, whilst those categorised as
"cataract extraction required in order to treat posterior segment disease",
are assigned 51-70 points. All other patients receive up to 50 points accord-
ing to the following criteria: "visual acuity score" (max 5 points), "clinical
modi�ers" (max 5 points), "severity of visual impairment" (max 10 points),
"ability to work, give care, live independently" (max 5 points), "other dis-
ability" (max 5 points). Patients with the maximum number of points wait
four weeks, while patients with only 20 points wait six months. Patients
scoring less than 20 are "deferrable" (i.e. they are not o¤ered treatment
and are sent back to the GP for "active care and review"). Similar crite-
ria have been developed for hip and knee replacement, and other common
elective procedures.1

We examine the welfare e¤ects of two possible prioritisation schemes:
1) linear prioritisation, under which a patient�s waiting time is linearly re-
lated to their observable bene�t; 2) threshold rationing, under which all
patients whose observable bene�t exceeds a threshold are o¤ered immediate
treatment and all those with lower observable bene�t are subject to linear
prioritisation.

1For more detailed information see www.electiveservices.govt.nz/guidelines.html. Sim-
ilarly, the Western Canada Waiting List Project has developed priority criteria for gen-
eral surgery, cataract, hip and knee replacement. For hip and knee replacement, criteria
include: "pain and motion" (0-13 points), "pain at rest" (0-11 points), "ability to walk
without signi�cant pain" (0-7points), "other functional limitations" (0-19 points), "poten-
tial for progression of disease" (0-20 points). For more details see www.wcwl.org. There
are similar schemes in many countries for allocating public sector housing at below market
clearing rents.
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If patient bene�t from a treatment is perfectly observable by providers,
rationing by waiting is ine¢ cient since it imposes costs on patients which
are not o¤set by gains to producers. Longer waiting times reduce the value
of a treatment because of lost expected bene�t, temporary discomfort and
pain, and, for some pathologies, the higher risk of permanent reductions in
health. With perfect information providers can treat high-bene�t patients
with no costly wait and refuse treatment to those with low bene�t.

But patient bene�t from treatment is not fully observable by providers
because of unobservable patient preferences or characteristics. Patients
know their characteristics and, after consultation with their medical ad-
visors, are better informed about their bene�t than providers. They use
their information in deciding whether to join the waiting list. When there is
no prioritisation all patients face the same waiting time and so the patients
who join the list and get treatment have higher bene�ts than those who do
not join the waiting list.

Providers can usually observe some characteristics of the patient, such
as age, which convey information about the bene�t. Suppose that bene�t
is negatively correlated with age. The provider can prioritise patients by
o¤ering lower waiting times for younger patients. Prioritisation increases
the number of young patients treated and reduces the number of old patients
treated. The welfare of the young is increased and the welfare of the old is
reduced. But since some young patients may have low bene�t, and some old
patients may have high bene�t, and prioritisation reallocates treatment to
the young, it is unclear a priori whether prioritisation based on the imperfect
signal increases overall welfare compared to no prioritisation.

We show that linear prioritisation improves welfare if the average age
of patients who are indi¤erent between obtaining the treatment after some
wait or not obtaining the treatment at all, is higher than the average age of
the patients receiving treatment. The reason is that prioritisation changes
the total time waited and leads to the treatment of more young people and
fewer old people. Treating more young and fewer old has no welfare e¤ect
since the marginal old and marginal young patients are indi¤erent about
treatment taking into account their waiting time. Hence prioritisation is
welfare increasing if it reduces the total waiting time of the infra-marginal
patients. Since waiting time increases with age in our example, total waiting
time is reduced if the mean age of the treated is less than the mean age of
the indi¤erent.

The condition that the average age of patients who are indi¤erent be-
tween getting treatment or not, is higher than the average age of the patients
receiving treatment is satis�ed by several distributions of age and unobserv-
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able bene�ts. Examples include (i) a uniform distribution of the unobserv-
able bene�t and (ii) a log concave distribution of unobservable bene�t and
a uniform distribution of the observable bene�t.2

We show that linear prioritisation is not welfare increasing if and only
if the unobservable component of health gain has a negative exponential
distribution. With a negative exponential distribution of the unobservable
component, the mean age of patients who are indi¤erent about joining the
waiting list is the same as the mean age of those who do join.

Under threshold rationing patients whose observable bene�t exceeds a
threshold are o¤ered immediate treatment and all those with lower observ-
able bene�t are subject to waiting-time prioritisation. We show that, if for
a given threshold the minimum wait is zero, an increase in the threshold is
welfare improving.

The main results on the e¤ects of prioritisation hold when there is also a
private sector alternative providing treatment at a money price but with a
zero wait. The rationale is that marginal changes in the prioritisation regime
in the public health sector alter individuals�choices between treatment in
the public sector, treatment in the private sector, and no treatment. But
the welfare loss for these marginal individuals who shift is zero since they
were indi¤erent between their choice before and after the change in the
public sector prioritisation rule. Hence the welfare e¤ect of the change is
the change in the total time waited by patients in the public sector and so the
results for the simpler case where the only alternative to public treatment
is no treatment continue to apply.

Most of the theoretical literature on rationing by waiting assumes that
all patients have the same waiting time (Lindsay and Feigenbaum, 1984; Bu-
covetsky, 1984; Hoel and Saether, 2003; Farnworth, 2003; Gravelle, Dusheiko
and Sutton, 2002; Iversen, 1997; Martin and Smith, 1999; Siciliani, 2005).3

An exception is Barros and Olivella (2005) in which the public sector does
not treat patients with bene�t below a threshold level and patients with ben-
e�t above the threshold will wait for treatment in the public sector. However,
the threshold is treated as exogenous as the focus is on the incentives for
doctors who work in both the private and public sectors to creamskim and
the question of whether prioritisation is welfare enhancing is not considered.

Our focus is on the optimal way to use waiting times to allocate a �xed
supply of a particular treatment amongst potential patients. It is thus com-

2A distribution is log-concave if the hazard rate is monotonically increasing, which
is satis�ed by many common distributions like the Normal, the Chi-square and Gamma
distribution (Bagnoli and Bergstrom, 2005).

3For a review of the literature see Cullis, Jones and Propper (2000).
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plementary to two related literatures on the optimal allocation of a given
health care budget across di¤erent treatments (Garber, 2000; Gravelle and
Siciliani, 2007b; Smith 2005) and on the use of waiting time and money
prices to ration access to treatment (Bucovetsky, 1984; Gravelle and Sicil-
iani, 2007a; Hoel and Saether, 2003; Marchand and Schroyen, 2005; and
Olivella, 2003).

Section 2 presents the main features of the model and establishes the
e¤ects of prioritisation on welfare; section 3 extends the analysis to thresh-
old rationing; section 4 contains an illustration with uniform distributions.
Section 5 shows that the main results hold when there is a private sector al-
ternative to treatment in the public sector, when the social welfare function
weights the utility of individuals by their observable bene�t, and when the
cost of treatment varies with the observable part of patient bene�t. Section
6 concludes.

2 Linear prioritisation

2.1 Model speci�cation

We initially assume that the alternative to treatment in the public sector is
no treatment. Section 5 considers the case where there is also private sector
treatment.

A public sector provider wishes to allocate a �xed supply z of treatment
to a population of potential patients to maximise welfare. The health gain
from treatment is b � a, where a is observable by the provider but b is
not. To �x ideas we interpret a as age: old patients have lower health gain,
given their other characteristics which determine b, than young patients. b
and a are distributed according to the joint density f(a; b) over the support
a 2 [0; a]; b 2

�
0; b
�
.

Patient utility with treatment is b � a � w where w is waiting time.4

Patients, possibly after consulting their general practitioner, know both their
b and a and join the waiting list if b� a � w.

Our speci�cation di¤ers from the original formulation of the model of
rationing by waiting by Lindsay and Feigenbaum (1984) in two respects. In
their model (and in others such as Farnworth (2003)) patients have a cost
c > 0 of getting on a waiting list for treatment. For example, a patient may
incur a cost of attending an outpatient clinic to see a specialist who will

4A more general speci�cation b� a� kw, where k can be interpreted as the marginal
disutility of waiting does not alter the results. A lower k implies a higher waiting time in
equilibrium, so that total disutility from waiting is una¤ected.
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agree that they need treatment and place them on the waiting list. Lindsay
and Feigenbaum assume that the bene�t from an operation received after a
wait of w has a present value of be�rw and that the patient decides to join
the list if and only if be�rw � c. With c > 0, increases in the waiting time
reduce the demand because the present value of the bene�t from treatment
is reduced relative to cost of joining the list. If c is zero all patients with
b > 0 join the waiting list and demand is una¤ected by the waiting time.
Assuming that there is a positive cost of joining a list which must be incurred
before the health bene�ts are realised seems plausible for rationing by list for
elective hospital treatment where patients must �rst be seen by a specialist
in order to join the list.

The evidence suggests that many individuals do not use exponential
discounting of health (Cairns and van der Pol, 2000) but instead use a variety
of discounting functions, including hyperbolic discounting (Loewenstein and
Prelec, 1992) where the discounted health bene�t is b(1 + �w)��=�.

We assume utility is linear in the waiting time since exponential or hyper-
bolic discounting do not yield tractable models. Moreover, in the hyperbolic
case, the discounted bene�t from treatment is quite well approximated by
a linear function for positive waiting time as � becomes large. But when
utility from treatment is linear in the waiting time, c has no role in the
model and we drop it to reduce notational clutter. Thus we assume that b
is the unobserved bene�t from treatment net of the cost of joining the list
b � b0 � c. b0 is distributed between c and some upper limit �b0, so that b is
distributed between 0 and �b = �b0 � c.

The linear speci�cation means that the model also applies to the case
of rationing by waiting in line (queuing), as for example in accident and
emergency departments and GP surgeries. Potential patients will baulk at
the queue if it is so long that their bene�t from treatment is less than the
opportunity cost of the time they would have to spend in the queue (which
we assume is proportional to the waiting time). In this case we also do not
need to assume there is a cost to joining the queue and can again set c = 0.

Since a is observable it is possible to make waiting time of a patient de-
pend on a. We consider a linear points rationing scheme in which patients
of age a receive �p2a points when placed on the waiting list and then accu-
mulate points at the rate p1w the longer they wait.5 We assume that p1 > 0;
otherwise waiting time would have no interesting role in the scheme. There

5A more general (nonlinear) prioritisation rule could be in principle be derived by
chosing a general function w(a) to maximise the welfare function. However, the resulting
optimal control problem is ill-behaved.
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is no prioritisation according to age when p2 = 0. If p2 > 0 there is positive
prioritisation, so that those with a higher observed bene�t (lower age) have
a shorter waiting time. It is possible in principle to have negative prioriti-
sation (p2 < 0) so those with a lower observed bene�t (higher age) have a
shorter waiting time. We focus on the more intuitive case of positive prioriti-
sation, mainly using the logical possibility of negative prioritisation to show
that, except in one very special case, some form of prioritisation (positive
or negative) is welfare increasing. We do however provide in section 4 an
example of negative prioritisation being welfare increasing.

In each period patients with the highest number of points are treated.
Patients who get treatment will have accumulated the same number of points
P , so that p1w � p2a = P . Hence the waiting time for a patient of age a is
[P + p2a]=p1 = w0 + pa where w0 = P=p1 is the minimum waiting time and
p = p2=p1. Only patients whose health gain, b � a, is at least w0 + pa will
join the waiting list.

De�ne bb(a;w0; p) = a(1 + p) + w0 as the critical level of private ben-
e�t, which makes a patient of given age indi¤erent between receiving the
treatment or not. De�ne ba = minf b�w01+p ; �ag as the maximum age at which a
patient will want to join the waiting list. The demand for treatment is (see
Gravelle and Siciliani, 2006; Appendix)

D(w0; p) =

baZ
0

bZ
bb(a;w0;p)

f(a; b)dbda (1)

Since bb(a;w0; p) = a(1 + p) + w0 an increase in p or in w0 will increase
the minimum b at which the patient wants to join the waiting list. Hence
increases in p or in w0 will reduce demand:

Dp = �
baZ
0

af(a;bb (a;w0; p))da < 0; Dw0 = �
baZ
0

f(a;bb(a;w0; p)da < 0 (2)

The system is in equilibrium when the number of patients joining the
list in each period equals the supply of treatment:

D(w0; p)� z = 0 (3)

which yields the minimum equilibrium wait (for the youngest patients) as
w0 = w0(p), where we suppress the dependence of w0 on supply z to reduce
notational clutter. Increases in p reduce the minimum wait: @w0=@p =
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�Dp=Dw0 < 0. The wait for a patient of age a is w(a; p) = w0(p) +pa.
When p = 0 there is no prioritisation and all patients who join the list have
the same wait w0(0) irrespective of age.

Figure 1 illustrates. If there was no waiting time all patients with b � a
would join the list and demand would be equal to the mass of patients above
the 45o line. We assume that demand at zero waiting time always exceeds
the supply z. With no prioritisation there is a positive waiting time of w0(0)
= OA for patients of all ages and only those with b � w0(0) � a join the
list. Thus demand would be equal to the mass of patients in ACH. With
positive prioritisation only patients with b � w0(p) � a(1 + p) > a join the
list. The minimum wait (enjoyed by patients with a = 0) is w0(p) = OD,
and demand is the mass of patients in DEH.

The e¤ect of an increase in p on the waiting time of a patient of age a is

dw(a; p)

dp
= a+

@w0
@p

= a�

baZ
0

af(a;w0(p) + a(1 + p))da

baZ
0

f(a;w0(p) + a(1 + p))da

= a�E(a j I) (4)

where E(a j I) is the mean age of the patients who are indi¤erent about
joining the list. An increase in p increases the wait of older patients (a >
E(a j I)) and reduces the wait of younger patients (a < E(a j I)).

The e¤ect of increased prioritisation on the total time waited by patients
on the list is

d

dp

baZ
0

bZ
bb(a)

[w0(p) + pa](a; p)f(a; b)dbda

= �
baZ
0

bZ
bb
E(a j I)f(a; b)dbda+

baZ
0

bZ
bb
af(a; b)dbda�

baZ
0

w(a; p)
db̂

dp
f(a; b̂)da

= �D(w0; p)E(a j I) +
baZ
0

bZ
bb
af(a; b)dbda�

baZ
0

w(a; p)
db̂

dp
f(a; b̂)da

= D(w0; p)[E(a j T )� E(a j I)]�
baZ
0

w(a; p)
db̂

dp
f(a; b̂)da (5)
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where

E(a j T ) =
Z â

0

Z �b

b̂
af(a; b)dbda=D (6)

is the mean age of patients who demand treatment.
The �rst term in the square bracket in the last line of (5) is the e¤ect

of prioritisation on the waiting time of infra marginal patients, and the
second the e¤ect on the waiting times of patients who were indi¤erent. Thus
increased prioritisation (an increase in p) may increase or reduce the total
time waited by patients on the list.

2.2 Welfare and prioritisation

With �xed supply the utilitarian welfare function is

S(w0(p); p) =

baZ
0

bZ
bb
[b� a� w(a; p)]f(a; b)dbda (7)

The policy problem is to choose p to maximise S subject to the constraint
that the minimum wait cannot be negative: w0 � 0. Since @w0=@p < 0, the
constraint w0 � 0 can be rewritten as ep�p � 0 (where w0(ep) = 0). Without
further restrictions on the distribution of private and observable bene�t the
welfare function may not be concave in p so that �rst order conditions are
necessary rather than su¢ cient (see Gravelle and Siciliani, 2006, Appendix).
There are four logically possible solution types:

a) Maximal prioritisation ( p� = ep > 0 and w0(p�) = 0). p is set at the
highest possible level and the minimum wait is equal to zero.

b) Partial prioritisation ( p� > 0 and w0(p�) > 0). Whilst the young
have shorter waits, even the youngest have a positive wait.

c) No prioritisation ( p� = 0 and w0(0) > 0). All patients have the same
wait.

d) Negative prioritisation (p� < 0). Younger patients have longer waits.
Negative prioritisation is counter-intuitive and we concentrate on the

other cases. We do however provide in section 4.3 an example where negative
prioritisation is welfare increasing.

Figure 1 illustrates the e¤ect of positive prioritisation on the demand
for treatment and on total waiting time. We assume in Figure 1 that the
distributions of a and b are independent and uniform. When there is no
prioritisation all potential patients face the same waiting time of OA =
w0(0). The line AC with slope of 1 plots b = w0(p) + a and patients in
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the area ACH where with b � w0(p) + a demand treatment. These are
the patients with the highest health bene�t b� a. If private bene�t b were
observable it would be optimal to provide treatment, with a zero wait, only
to the patients in area ACH and to refuse treatment to all other patients.
Thus rationing by waiting with no prioritisation ensures an optimal selection
of patients for treatment since the same patients would be treated under full
information and with no prioritisation. But with no prioritisation welfare is
lower than under full information because of the waiting time costs imposed
on the patients in ACH.

With prioritisation all patients whose unobservable bene�t b exceeds
w0(p) + a(1 + p) join the waiting list for treatment. The line DE with
slope (1 + p) plots b̂ = w0(p) + a(1 + p) and OD = w0(p). All patients in
area DEH demand treatment. Prioritisation increases demand from young
patients (with age a < aB) since those in area ABD now join the waiting
list. Conversely old patients (a > aB) in area BCE who used to demand
treatment now do not join the list. The mass of patients in ABD equals that
in BCE since total demand is unchanged. In Figure 1 ABD and BCE have
the same area because b and a are independently and uniformly distributed.

With prioritisation the waiting time (w0 + pa) for a patient aged a is
the vertical distance between the 45o line and the line DE plotting b̂ =
a + w0 + pa. Thus total time waited with prioritisation is the area ODEF.
With no prioritisation total time waited is the area OACG. Area OACG
equals ODECG since ABD equals BCE. Since ODECG exceeds ODEF by
CEFG, total time waited is reduced by prioritisation. However, the new
young patients in ABD have smaller health gains b � a than the displaced
old patients in BCE, so that the welfare e¤ect of prioritisation is a priori
ambiguous.

A more formal analysis is thus required to investigate the e¤ect of priori-
tisation. The marginal welfare e¤ect of introducing prioritisation is, using
(5) and remembering that b̂ = a +w(a; p),

dS(w0(p); p)

dp
=
d

dp

baZ
0

bZ
bb
[b� a]f(a; b)dbda� d

dp

baZ
0

bZ
bb
w(a; p)f(a; b)dbda
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= �
baZ
0

[b̂� a]db̂
dp
f(a; b̂)da�D(w0; p)[E(a j T )� E(a j I)]

+

baZ
0

w(a; p)
db̂

dp
f(a; b̂)da

= D [E(a j I)� E(a j T )] (8)

Hence we have

Proposition 1 Starting from a regime with no prioritisation, positive (neg-
ative) prioritisation is welfare improving if the average age of the patients
who are indi¤erent between receiving treatment or not, E(a j I), is larger
(smaller) than the average age of the patients receiving treatment, E(a j T ).
Similarly, if prioritisation is already positive, intensifying (dampening) it is
welfare improving if E(a j I) > (<)E(a j T ).

Varying p has two e¤ects: it changes the total waiting time and it changes
the age mix of those treated via the changes in the critical bene�t b̂ at which
individuals of given age seek treatment. The change in the age mix of the
treated has no welfare e¤ect since the marginal old and marginal young
patients are indi¤erent about treatment taking into account their waiting
time: the �rst and last terms in the second line of (8) cancel.

Rationing by waiting imposes deadweight losses on patients in order to
allocate scarce capacity. Prioritisation increases welfare because it makes
the marginal indi¤erent patients more sensitive to waiting times than the
inframarginal. Thus a smaller deadweight loss is required to limit demand.
When indi¤erent patients are older than inframarginal treated patients mak-
ing the old wait longer will increase the e¤ect of waiting time on demand
and so reduce deadweight loss from waiting.

In Figure 1, where a and b are independently uniformly distributed, the
average age of treated patients in ACH is less than the average age of the
indi¤erent on AC because the young are more likely to demand treatment.
Hence introducing positive prioritisation (p > 0: shorter waits for the young)
will reduce total waiting time and increase welfare.

It is only under very special assumptions about the distribution of ob-
servable and unobservable components of health gain that (positive or neg-
ative) prioritisation is never welfare improving:

Proposition 2 Prioritisation is welfare increasing at some supply level un-
less f(a; b) = h(a)e�b.
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When there is no prioritisation the market clearing waiting time faced by
all patients of all ages is w0(0; z) (where we temporarily show the dependence
of w0 on supply). Since, from (8),

dS(w0(p; z); p)=dp = D(w0(p; z); p) [E(a j I)� E(a j T )] (9)

welfare can be increased by either a small positive or negative p unless
E(a j I) = E(a j T ). Indi¤erent potential patients lie along the line AC in
Figure 1 where b̂ = a+ w0(p; z). If the mean age of patients along this line
is independent of w0 (and hence of z) then the mean age of the patients
with b > b̂ who demand treatment is also independent of w0 and is equal to
the mean age of the indi¤erent patients. The negative exponential distribu-
tion ensures that this special type of invariance of the distributions of age
conditional on w0 holds:

E(a j I) =
R �a
0 af(a; a+ wo)daR �a
0 f(a; a+ wo)da

=

R �a
0 ah(a)e

�ae�wodaR �a
0 h(a)e

�ae�woda
=

R �a
0 ah(a)e

�adaR �a
0 h(a)e

�ada

and it is the only distribution with this property.
We can �nd assumptions about the distribution of a and b which ensure

that E(a j I) > E(a j T ) holds for all p, so dS=dp > 0 for all p, and therefore
maximal prioritisation is optimal. Hence, in this case the more intuitively
plausible positive form - shorter waits for the young - maximises welfare.

Proposition 3 Suppose that a and b are independently distributed over the
rectangular support a 2 [0; a]; b 2

�
0; b
�
so that f(a; b) = h(a)g(b). Then

maximal prioritisation is optimal (p� = ep and w�0 = 0) if (i) h(a) is uniform
and g(b) is log-concave; or if (ii) g(b) is uniform (for any h(a)).

The requirement of independence of a and b may appear to be restrictive
but note that it relates to the two components of health gain, not to the joint
distribution of health gain and its observable component. The covariance of
a and health gain b � a is Cov(b � a; a) = Cov(b; a) � V ar(a) so that even
if b and a are uncorrelated a is informative about health gain.

If h(a) is uniform, then the average ages of treated patients and indi¤er-
ent patients are

E(a j T ) =
baZ
0

a
G(b)�G

�bb(a)�
D

da; E(a j I) =
baZ
0

a
g(bb(a))

G(b)�G (w0)
da

(10)
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Intuitively, since G(b) � G
�bb� is decreasing in a while g(bb) can take any

shape, it follows that the �rst distribution tends to give a higher weight to
patients with low age and it tends to be less favourable compared to g(bb).
The log-concavity of g(b) ensures that this is always the case. Log-concavity
is satis�ed by many common distributions like the Normal, Chi-squared and
Gamma distribution.

If g(b) is uniform then the average age of the population in a 2 [0; â],
b 2 [0;�b] is equal to the average age of the indi¤erent patients: E(a j a 2
[0; â]) = E(a j I).6 The average age of the patients treated at given b cannot
exceed the average age of the population in a 2 [0; â] at the same b

E(aj a 2 [0;min f(b� w0) =(1 + p); âg]; b) � E(aj a 2 [0; â]; b) = E(a j a 2 [0; â])

where the inequality is strict for b 2 [w0; (1+p)â+w0]. Hence the average age
of the treated over b 2 [w0;�b] is less than the average age of the population
in a 2 [0; â], and so is less than the average age of the indi¤erent: E(a j T )
< E(a j a 2 [0; â]) = E(a j I) (see Gravelle and Siciliani, 2006, Appendix,
for full details).

3 Threshold rationing

We now consider a more general threshold rationing system. Patients whose
age is below a given threshold a0 (i.e. young patients) are given immediate
treatment with zero waiting time. Patients with a � a0 are prioritised (as
in the previous section) and wait according to w(a; p; a0) = w0 +p (a� a0).
The previous analysis had a0 = 0 so that threshold rationing is more general
in that it allows younger patients to receive treatment without delay. It
includes the case in which the threshold is set so high that all the supply
is used to treat young patients with no delay and old patients are denied
treatment (face an in�nite waiting time).

For patients with a � a0, the lowest unobserved bene�t at which they
will demand treatment is bb(a;w0; p; a0) = a + p(a � a0) + w0, and ba =
minf(�b�w0+pa0)(1+p)�1; �ag is the highest age. The demand for treatment

6 If a and b are independently distributed, then: E(a j a 2 [0; â]; b 2 [0;�b]) =baZ
0

bZ
0

ah(a)g(b)dbda=

baZ
0

bZ
0

h(a)g(b)dbda =

baZ
0

ah(a)da=

baZ
0

h(a)da. If g(b) is uniform, E(aj I)

=

baZ
0

ah(a)g(bb(a))da= baZ
0

h(a)g(bb(a))da = baZ
0

ah(a)da=

baZ
0

h(a)da = E(a j a 2 [0; â]; b 2 [0;�b]).
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is the sum of demands from those who do not have to wait (a < a0) and
those who do:

D(w0; p; a0) =

a0Z
0

bZ
a

f(a; b)dbda+

baZ
a0

bZ
bb
f(a; b)dbda (11)

where Da0 > 0, Dp < 0 and Dw0 < 0. The market-clearing condition is
D (a0; p; w0) = z, from which we obtain w0 = w0 (p; a0).

In Figure 2, under maximal prioritisation with a zero threshold (p = p�,
w0 = 0, a0 = 0) only patients in area OAB demand treatment (and wait
w(a; p; a0) = p

�a). If the threshold a0 is set so that the patients with zero
wait get all the supply, then patients in area OCDB are treated.

Welfare is

S (a0; p; w0) =

a0Z
0

bZ
a

(b� a)f(a; b)dbda+
baZ

a0

bZ
bb
(b�bb)f(a; b)dbda (12)

with Sa0 > 0, Sw0 < 0 and Sp < 0 (see Gravelle and Siciliani, 2006,
Appendix). For �xed a0 the optimal p� maximises the second term in
(12) subject to w0 (p; a0) � 0 or equivalently ~p(a0) � p, with @~p=@a0 =
�Da0(w0; p; a0)=Dp(w0; p; a0). The Lagrangean is

L = S(w0(p; a0); p; a0) + �[~p(a0)� p]

All the previous results apply to this �rst stage problem. Once we have
optimised with respect to p, we obtain

S� = S(w0(p
� (a0) ; a0); p

� (a0) ; a0)

Using the envelope theorem,

dS�

da0
=
dL�

da0
=
@S

@w0

@w0
@a0

+
@S

@a0
+ ��

@~p

@a0
(13)

If prioritisation is maximal then the minimum wait is zero (w�0 = 0) and
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the �rst term in (13) is zero, and p� = ~p(a0). Hence,

dS�

da0
=

@S

@a0
+ ��

@~p

@a0
=
@S

@a0
� @S
@p

Da0
Dep

= p

baZ
a0

bZ
bb
f(a; b)dbda�

baZ
a0

bZ
bb
af(a; b)dbda

p

baZ
a0

f(a;bb (a))da
baZ

a0

af(a;bb (a))da
(14)

which can be rearranged as:

dS�

da0
= p

baZ
a0

bZ
bb(a)

af(a; b)dbda
E(a j I; a � a0)� E(a j T; a � a0)
E(a j I; a � a0)� E(a j T; a � a0)

(15)

E(a j I; a � a0) and E(a j T; a � a0) are the average age of patients
who are indi¤erent (I) or treated (T ) and have an age at least as high as
the threshold a0. Suppose that, for a given a0, optimal prioritisation is
maximal (p� = ~p(a0) and w�0 = 0). This implies that E(a j I; a � a0) �
E(a j T; a � a0) so that dS�=da0 � 0 and increasing the threshold will
increase welfare.

If prioritisation is not maximal for a given a0, the constraint is not
binding, p� < ~p, w�0 > 0 and �� = 0. Hence, (see Gravelle and Siciliani,
2006, Appendix)

dS�

da0
=

@S

@a0
+
@S

@w0

@w0
@a0

=
@S

@a0
� Da0
Dw0

@S

@w0

=

a0+w�0Z
a0

(b� a0)f(a0; b)db+ w�0

bZ
a0+w�0

f(a0; b)db

�
baZ

a0

bZ
bb
f(a; b)dbda

a0+w�0Z
a0

f(a0; b)db

baZ
a0

f(a;bb)da
(16)
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which is indeterminate as the �rst two terms are positive while the third
term is negative.

Summarising:

Proposition 4 If at threshold a0 the optimal prioritisation is maximal (p� =
~p(a0) and w�0(p

�) = 0) and E(a j I; a � a0) > E(a j T; a � a0) then welfare
can be increased by increasing the threshold.

The proposition is only local but it has the corollary that a su¢ cient
condition for a positive threshold to be optimal is that when there is no
threshold (a0 = 0), the optimal degree of prioritisation is maximal (p� = ~p(0)
and w�0(p

�) = 0) and the average age of the indi¤erent is greater than the
average age of the treated: E(a j I; a � a0 = 0) > E(a j T; a � a0 = 0).

4 An illustration: uniform distributions

We now use the simple cases with uniform distributions to illustrate the gains
from prioritisation and threshold rationing, and to provide an example of
negative prioritisation.

4.1 Prioritisation

Assume that a; b are independently and uniformly distributed with support
a 2 [0; 1] and b 2 [0; 1]. Refer to Figure 3. Prioritisation bene�ts all the
young patients in area DBFH: those in ABFH were treated before but now
have a shorter wait. The gain from prioritisation for a patient of age a in
ABFH who was previously treated is the vertical distance between AB and
DB at a. Young patients in ABD were not previously treated but now join
the waiting list because they face a shorter waiting time. The average gain
from prioritisation for them is given by the vertical distance between the
lines PB and DB at that age (where the distance AP = DP because of the
uniform distribution of b).

Old patients in BCF lose. Those with a 2 (aB; aE ] in area BFE still join
the list but now face a longer wait. Those with a 2 (aB; aE ] in area BLE
do not join the list. Their average loss at given a is the vertical distance
between BI and BL at that a. Old patients with a 2 (aE ; aC ] previously
joined the list and were treated but now no longer join the list because of
the increased wait they would face. The average loss from prioritisation for
displaced old patients of age a 2 (aE ; aC) is the vertical distance between
IC and LC at that age.
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First, consider the young patients aged a = aB � � in BFGJ and old
patients aged aB + � in BEF, where � 2 (0; aE � aB]. By similar triangles
the loss by an old patient aged aB + � equals the gain of a young patient
at aB � � but there are more young patients at any given � in BFGJ than
old patients in BEF so the total gain to young patients in BFGJ exceeds
the total loss of old patients in BEF. Second, compare the displaced old
patients in BLE aged aB + � and new young patients in BJK aged aB � �
where GF equals FE. The average gain to the young patient at aB�� equals
the average loss by the old patient at aB + �. By similar triangles there are
the same number of new young patients at aB�� and displaced old patients
at aB + �. Hence the gains and losses for these two groups cancel. Third,
consider the displaced old patients in CEL and the new young patients in
DKJA. Since the total demand is unchanged and area BKJ equals area BLE,
we must have the same number of new young patients in DKJA as displaced
old patients in CEL. The maximum average loss at any given age for old
patients in CEL is the distance IL which is equal to the minimum average
gain for new young patients in DKJA. Hence the total gain to new young
patients in DKJA exceeds the total loss to displaced old patients in CEL.
Finally, prioritisation makes old patients in AJGH better o¤ and there are
no old patient losses unaccounted for. Thus, prioritisation increases welfare
in the case of independent uniform distributions of a and b.

More formally, if there is no threshold rationing (a0 = 0), the demand
function is (1) and

D(w0; p) = (1� w0)2 =2 (1 + p) (17)

In equilibrium demand equals supply z, so that

w0 (p) = 1� [2z (1 + p)]1=2 (18)

Welfare is
S(w0; p) = (1� w0(p))3=6(1 + p) (19)

Prioritisation is welfare improving since

dS

dp
=
@S

@w0

dw0
dp

+
@S

@p
=
(1� w0)3

12 (1 + p)2
> 0 (20)

Proposition 5 If a; b are independently and uniformly distributed and there
is no threshold (a0 = 0), optimal prioritisation is maximal with p� = 1

2z � 1,
w�0 = 0, w

�(a; p�; z) =
�
1
2z � 1

�
a.
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Prioritisation reduces the total waiting time of infra-marginal patients
but also reduces the average health gain (b � a) of treated patients. If
the densities of observed and observed bene�t are uniform, the �rst e¤ect
dominates: the higher welfare from a reduction in waiting times outweighs
the reduction in welfare from suboptimal selection of patients.

4.2 Threshold rationing

Suppose now that the threshold is positive (a0 > 0) so that patients with
a < a0 are given immediate treatment with zero waiting time and patients
with a � a0 wait according to w(a) = w0+p (a� a0). The demand function
(11) is

D =
(1� w0 � a0)2

2 (1 + p)
+ a0 �

a20
2

(21)

and the minimum wait is

w0 = 1� a0 �
�
[2(1 + p)][z + a202

�1 � a0]
	1=2

(22)

and welfare (12) is

S =
(1� w0 � a0)3

6(1 + p)
+
1

2
a0 �

1

2
a20 +

1

6
a30 (23)

Substituting (22) in S, the derivative of S with respect to p is positive
and so, for a given a0, prioritisation is again maximal with

p� = ~p(a0) =
1� 2z

2z � 2a0 + a20
> 0 (24)

Note that the pure prioritisation solution is a special case of this with a0 = 0.
Substituting ~p(a0) and w0(a0; ~p(a0)) in the welfare function and di¤erentiat-
ing with respect to the threshold we can show (Gravelle and Siciliani, 2006,
Appendix) that increases in a0 increase welfare. The optimal policy is to
increase a0 until all of the available capacity is allocated to young patients
with a < a�0, and old patients with a � a�0 demand none of the capacity be-
cause they face an in�nite waiting time. Using the market clearing condition
to solve for a�0 we have

Proposition 6 If a; b are independently and uniformly distributed, it is al-
ways optimal to provide the treatment only to patients for whom a is below
the threshold level a�0, where a

�
0 = 1� (1� 2z)1=2.
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Figure 4 compares welfare at various capacity levels for the �rst best,
simple rationing by waiting where all patients have the same wait, waiting
with optimal prioritisation, and threshold rationing. We express the capacity
as a proportion of the maximum potential demand with no waiting time or
prioritisation, which is (see the demand functions) 1=2.

The waiting time and welfare under simple rationing by waiting are found
by setting p = 0 in (18) and (19). In the �rst best providers can observe
both b and a and allocate treatment to those with the highest health gain
(b) until capacity is exhausted. The patients treated would be the same
as those under simple rationing by waiting, who join the list by comparing
their health gain with the waiting time. Hence the �rst best welfare is
the welfare under simple rationing plus the avoided total waiting time of
w0(0)D(w0(0); 0).

Figure 4 shows that the form of rationing makes more di¤erence the
smaller the available capacity relative to the maximum potential demand.
For example, with capacity equal to 25% of potential demand, simple ra-
tioning by waiting produces about one half of the welfare from prioritisation
and about one third of the welfare from threshold rationing. But with capac-
ity of 75%, simple rationing by waiting produces over 4/5th of the welfare
from prioritisation and 2/3rd of the welfare from threshold rationing. No-
tice also that the form of rationing a¤ects the marginal value of additional
capacity (the slope of the welfare functions with respect to capacity). The
marginal value of capacity is increasing under simple rationing by waiting,
constant under prioritisation, and decreasing under pure threshold rationing
and the �rst best.

4.3 Negative prioritisation

We now give a simple example of negative prioritisation. The density f(a; b)
is uniform over the non-rectangular support of the a 2 [0; �a]; b 2 [0;�b0+ da].
The average age of the indi¤erent is

E(aj I) =
aZ
0

afda=

aZ
0

fda =
�a

2
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The average age of the treated is

E(ajT ) =

aZ
0

�b0+daZ
bb(a)

afdbda=

aZ
0

�b0+daZ
bb(a)

fdbda

=

�
�b0 � w0

�
a2=2 + (d� (1 + p)) a3=3�

�b0 � w0
�
a+ (d� (1 + p)) a2=2

so that E(aj I) > E(ajT ) if (1 + p) > d. Hence introducing positive pri-
oritisation is welfare improving if d < 1 (as we assumed in the previous
examples in this section where d = 0). If d > 1 then introducing negative
prioritisation is welfare improving. This is the case illustrated in Figure 5
where the average age of the treated in ABDC exceeds the average age of
the indi¤erent along AB.

This example also provides a tractable case where the observable and
unobservable components of health gain are not independently distributed
since the expected unobserved bene�t conditional on age E(bj a) =

�
�b0 + da

�
=2

is increasing in age. The expected health gain from treatment conditional on
age is E(b� aj a) =

�
�b0 + (d� 2)a

�
=2 which is decreasing in age if d < 2.

Thus when d 2 (1; 2) giving priority to the old is welfare increasing even
though expected health bene�ts conditional on age are decreasing. The
example is useful in emphasising that the crucial question to be answered
in deciding whether to give shorter waits to the young is whether doing so
reduces the total time waited, not whether the expected health gain condi-
tional on age is decreasing or increasing in age.

5 Extensions

5.1 Prioritisation with a private sector

It is possible to show that the main result obtained above still holds when
patients also have the option of private treatment at a money price k and
no wait. Suppose that patient utility if not treated is u(y), where u is
increasing and strictly concave in income y. Utility if treated in the public
sector after a prioritised wait of w0+pa is u(y)+ b�w0� (1+p)a. Utility if
treated in the private sector is u(y�k)+b�a. Prioritisation is based on the
observable component of the health gain from treatment (a), not income.
Age, unobservable bene�t, and income are distributed on the support a 2
[0; a]; b 2

�
0; b
�
; y 2

�
y; y
�
with joint density f(a; b; y).
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To demand public treatment patients must, as before, prefer public treat-
ment to no treatment. Hence public patients must have a minimum unob-
servable bene�t of bb = w0 + (1 + p)a and a maximum age of â. Public
patients must also prefer public to private treatment:

G = u(y)� w0 � pa� u(y � k) � 0 (25)

Since Gy = uy (y) � uy(y � k) < 0, there is a unique income yG(w0 + pa)
such that all individuals with y � yG prefer public to private treatment and
all those with y > yG prefer private to public treatment. The demand for
public treatment is

DG(w0; p; k) =

baZ
0

bZ
bb

yGZ
y

f(a; b; y)dydbda (26)

which is increasing in the charge for private treatment and decreasing in w0
and p.

Welfare is the sum of the utilities of public patients, private patients and
those who are not treated. The contribution from the utility of patients who
choose to be treated in the public sector is

SG(w0(p); p) =

baZ
0

bZ
bb

yGZ
y

[b� a(1 + p)� w0]f(a; b; y)dydbda (27)

An increase in the degree of prioritisation (an increase in p) has no e¤ect on
the utility of private patients and those who decide not to be treated. It has
a direct e¤ect on the utility of public patients and it also alters the number of
private patients and the untreated. Since individuals make privately optimal
decisions about whether to be treated in the public or private sector or not
to be treated, the patients who shift between choices as a result of the change
in p are no worse or better o¤: they are indi¤erent between the public and
private treatment or between public treatment and no treatment. Hence
the welfare e¤ect of a marginal change in p arises only via the change in
(27) holding constant the number indi¤erent between the public sector and
no treatment, and the number indi¤erent between the public and private
sectors. The marginal welfare e¤ect of prioritisation is (see Gravelle and
Siciliani, 2006, Appendix)

dSG

dp
= DG [E (aj I)� E (ajT )]
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Hence we have a generalisation of Proposition 1.

Proposition 7 When public health care is rationed by waiting and private
health care is rationed by price, positive prioritisation in the public sector is
welfare increasing if the average age of those indi¤erent about public treat-
ment is bigger than the average age of those treated in the public sector.

5.2 Non-utilitarian welfare function

The welfare function (7) is utilitarian: the utility of all individuals have the
same welfare weight. It is possible to allow for di¤erent value judgements
by attaching a weight m(a; b) to the utility functions b� a�w. The welfare
function is then

Sm(w0(p); p) =

baZ
0

bZ
bb
[b� a� w(a; p)]m(a; b)f(a; b)dbda

=

baZ
0

bZ
bb
[b� a� w(a; p)]fm(a; b)dbda (28)

where, without loss of generality we scale the weighting function so that fm

integrates to 1. For example, we might want to examine the implications of
the judgement that the health gains of old patients should receive a greater
weight than those of the young. Proceeding as in section 2.2, we get

dSm(w0(p); p)

dp
= Dm [E(aj I)� Em(ajT )] (29)

where Dmand Em(ajT ) are �demand�and �average age�of treated patients
evaluated using the value weighted density function fm rather than the
actual distribution function f . Thus if the weighting function m(a; b) has
ma > 0, mb = 0 so that it gives more weight to older patients with any
given private bene�t b then Em(ajT ) > E(ajT ) and the optimal degree of
prioritisation is reduced (see Gravelle and Siciliani, 2006, Appendix).

5.3 Service time di¤erences

We have followed the waiting time literature by assuming that patients with
di¤erent observed bene�ts and age have the same service time. More realis-
tically, let the service time required for a patient of type (a; b) be n(a; b) so
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that e¤ective demand on the �xed total capacity z is

Dn(w0; p) =

baZ
0

bZ
bb
n(a; b)f(a; b)dbda (30)

and @w0=@p = �Dnp =Dnw. The marginal e¤ect of prioritisation on the welfare
function (7) is now

dS(w0(p); p)

dp
= D [En(aj I)� E(ajT )] (31)

where En(aj I) is the �average age� of indi¤erent patients calculated us-
ing the conditional age density weighted by service time: n(a; b̂)f(a; b̂)

=
R â
0 n(a; b̂)f(a; b̂)da. Thus, if service time increases with age and is un-

a¤ected by private bene�t (i.e. na > 0 and nb = 0), then En(aj I) is greater
than it would be with identical service times and the marginal welfare gain
from prioritisation is increased (see Gravelle and Siciliani, 2006, Appendix).
A greater degree of prioritisation is optimal because old patients have, on
average, lower health gains and impose higher opportunity costs via their
longer service times.

6 Concluding remarks

We have examined whether waiting-time prioritisation is welfare improving
when health bene�ts from treatment vary among patients and are the dif-
ference between an unobservable private bene�t and an observable factor
reducing the health bene�t (for example age).

Starting from a regime with no prioritisation, increasing prioritisation
locally (shorter waits for the young) increases a utilitarian welfare function
if the average age of the patients who are indi¤erent about receiving the
treatment after some wait and not getting the treatment at all is higher
than the average age of the patients who receive the treatment. Moreover,
at any level of prioritisation, if the condition on average ages is satis�ed then
further prioritisation increases welfare.

The average age condition is satis�ed for all prioritisation intensities if
the distribution of the private bene�t is uniform (for any distribution of age)
or if the distribution of age is uniform and the distribution of the private
bene�t is log-concave. In this case, we have proved that the optimal priori-
tisation is maximal prioritisation. The reason is that in these circumstances
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a smaller proportion of patients with low observable bene�t demand treat-
ment for a given wait, since the utility of the patient decreases with the
observable dimension of bene�t (for example age). Prioritisation will then
reduce waiting for a large group of patients with high observable bene�t (low
age) at the cost of an increase in waiting of a small group of patients with
low observable bene�t (high age). Intuitively, rationing by waiting imposes
dead weight costs on patients with no o¤setting gain to producers, so that
it should be imposed most heavily on the patients whose demand is most
responsive to the waiting time. These will usually be those who demand less
because they have a lower observable bene�t (higher age).

We have also shown that a more general rationing rule (threshold ra-
tioning plus prioritisation), where patients whose observable bene�t is be-
low a threshold are not eligible for treatment, can bring further increases
in welfare. Although the observable bene�t is an imperfect signal of total
health gain, welfare can be higher if providers set waiting time to zero and
use only the imperfect (observable) signal to ration patients.

The analysis supports explicit priority schemes, like those in Canada
and New Zealand, that give shorter waits to prioritised patients and the
setting of treatment thresholds so that treatment is provided with no wait
to those meeting the criteria and treatment is denied to all others. When
there is imperfect information on the health bene�ts of individual patients,
prioritisation leads to a welfare loss because some patients with low bene�ts
get treatment whilst some with higher bene�t are not treated. But this
welfare loss due to a worse allocation of treatment may be more than o¤set
by the welfare gain from reducing the deadweight loss imposed by waiting
times on all patients receiving treatment.

Some of our results on the direction of prioritisation rely on the assump-
tion that age and unobservable bene�t are independent. Suppose that age
and unobservable bene�t are negatively correlated. This implies that age
becomes a better signal of private bene�t. Therefore, we conjecture that
prioritisation would be even more desirable as by favouring patients with
low age, prioritisation favours patients with high private bene�t. Similarly,
a positive correlation between age and unobservable bene�t would make
prioritisation less desirable.
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Figure 1. Effect of prioritisation on patients. If there is no prioritisation (all patients
have the same wait) patients in ACH join the waiting list. With positive prioritisation
(shorter waits for younger patients) patients in DEH join the waiting list. Introducing
positive prioritisation  is welfare increasing because  the average age of the treated in
ACH is less than the average age of indifferent on AC.
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Figure 2. Pure threshold rationing, maximal prioritisation and no prioritisation.
Under maximal prioritisation the wait for the youngest patients is zero and all patients
in OAB  join  the  list  and  are  treated. Under  threshold  rationing patients  with a ≤  a0
have  a  zero  wait  and  all  other  potential  patients are  refused  treatment;  patients  in
OCDB are treated. With no prioritisation patients in FGB are treated.
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Figure 3. Effect of prioritisation on patients
Prioritisation displaces old patients in BCE and increases the wait for old patients in
BEF.    The  displaced  old  patients  are  replaced  by  young  patients  in  ABD  and  the
waiting  time  of  young  patients  in  ABFH  is  reduced. The  gain  to  young  patients
outweighs the loss to old patients.
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Figure 3. Effect of prioritisation on patients
Prioritisation displaces old patients in BCE and increases the wait for old patients in
BEF.    The  displaced  old  patients  are  replaced  by  young  patients  in  ABD  and  the
waiting  time  of  young  patients  in  ABFH  is  reduced. The  gain  to  young  patients
outweighs the loss to old patients.
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Figure 5. Negative  prioritisation. Patients  in  area  ABDC  demand  treatment.
Negative  prioritisation  (shorter waits  for  the  old) is  welfare  increasing  because  the
average age of the treated in ABDC exceeds the average age of the indifferent on AB.
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Appendices
Notation
b unobserved component of health gain
a observed component of health gain
w waiting time
z supply of care
f(a; b) joint density of age and bene�t
D demand
S welfare
w0 + pa waiting time for patient of age a
k money price for treatment in the private sector
y income

Demand and welfare function
From (1), noting that bb (ba) = b,
Dw0 =

bZ
bb(ba)

f(a; b)db @ba@w0 �
baZ
0

f(a;bb (a))da = � baZ
0

f(a;bb (a))da < 0
Dp =

bZ
bb(ba)

f(a; b)db@ba@p �
baZ
0

af(a;bb (a))da = � baZ
0

af(a;bb (a))da < 0.
and from (7)

@S
@w0

= �
baZ
0

bZ
bb(a)

f(a; b)dbda+

bZ
bb(ba)

(b� a(1 + p)� w0(p)) f(a; b)db @ba@w0

�
baZ
0

�bb (a)� a(1 + p)� w0(p)� f(a;bb (a))@bb(a)@w0
da

= �
baZ
0

bZ
bb(a)

f(a; b)dbda = �D < 0

@S
@p = �

baZ
0

bZ
bb(a)

af(a; b)dbda+

bZ
bb(ba)

(b� a(1 + p)� w0(p)) f(a; b)db@ba@p

�
baZ
0

�bb (a)� a(1 + p)� w0(p)� f(a;bb (a))@bb(a)@p da
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= �
baZ
0

bZ
bb(a)

af(a; b)dbda < 0.

Second derivative of welfare function
It is possible to show that (extended proof available from the authors)

d2S
dp2

= V (a j I) + E(a j I)2
0@1� baZ

0

f(a;bb(a))da
1A

� D
1+p

f(ba;b)[ba�E(ajI)]2baZ
0

f(a;bb(a))da
+D

baZ
0

(a�E(ajI))2fbda

baZ
0

f(a;bb(a))da

where V (a j I) =
baZ
0

(a � E(a j I))2f(a;bb (a))da is the variance of the age
of the patients who are indi¤erent. The �rst two terms are positive while
the third term is negative. The fourth term is unsigned and depends on the
sign of fb(a;bb (a)). Overall the second derivative is unsigned.

Proof of proposition 2
We prove that dS(p; z)=dp = 0 for all p and all z if and only if f(a; b) =

h(a)e�b by showing (i) dS(0; z)=dp = 0 for all z if f(a; b) = h(a)e�b(ii)
(a; b) = h(a)e�b implies dS(p; z)=dp = 0 all p; z.

(i) The marginal value of introducing linear prioritisation is zero if

dS

dp

����
p=0

=

Z ba
0

Z �b

bb f(a; b)dbda
R ba
0 af(a; b̂)dbdaR ba
0 f(a;

bb)da �
Z ba
0
a

Z �b

bb f(a; b)dbda = 0
(32)

where bb = a(1+ p)+w0(p; z), ba = minf b�w01+p , �ag, and w0(p; z) is the waiting
time for patients with a = 0. We seek conditions on the joint distribution
for which (32) holds whatever the equilibrium waiting time is in the absence
of prioritisation (wo(z) = w0(0; z)). Setting p = 0, we have bb = a + wo

and ba = minfb� wo; �ag. Equation (32) must hold for all z and since wo(z)
decreases monotonically with supply z, this implies

d2S

dpdz

����
p=0

=
d2S

dpdwo

����
p=0

dwo

dz
= 0
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and so if (32) is true for all z, then

d2S

dpdwo

����
p=0

=

Z ba
0
af(a; a+ wo)da

�
R ba
0 af(a; a+ w

o)daR ba
0 f(a; a+ w

o)da

Z ba
0
f(a; a+ wo)da

+

Z ba
0

Z �b

bb(a) f(a; b)dbda
d

dwo

 R ba
0 af(a; a+ w

o)daR ba
0 f(a; a+ w

o)da

!
= 0

at all positive w0. The �rst two terms cancel so that

d2S

dpdwo

����
p=0

=

Z ba
0

Z �b

bb(a) f(a; b)dbda
d

dwo

 R ba
0 af(a; a+ w

o)daR ba
0 f(a; a+ w

o)da

!

= D
dE(aj I)
dwo

= 0 (33)

and since D > 0 we require that

E(aj I) =
R ba
0 af(a; a+ w

o)daR ba
0 f(a; a+ w

o)da
(34)

does not vary with w0.
If �b < 1 then E(aj I) is decreasing with wo in some neighbourhood of

�b. Thus â = �a and we require

E(aj I) =
R �a
0 af(a; a+ w

o)daR �a
0 f(a; a+ w

o)da
=

R �a
0 am(a;w

o)daR �a
0 m(a;w

o)da
(35)

does not vary with wo. Since �b must be unbounded from above, f cannot
be constant for all b and so mw = fb(a; a + w

o) 6= 0 for some a. The only
functional form compatible with (35) for all wo is m(a;wo) = m1(a)m2(w

o).
But since wo and a are additive in the second argument in f(a; a+wo) and
m(a;wo) is multiplicatively separable, we must have m1(a) = m3(a)m2(a)
and f(a; a+wo) = m(a;wo) = m3(a)m2(a)m2(w

o) = m3(a)m2(a+w
o). But

m2(a)m2(w
o) = m2(a+ w

o) implies lnm2(a) + lnm2(w
o) = lnm2(a+ w

o),
which implies that lnm2(z) = �z, or m2(z) = exp(�z) and m(a;wo) =
m3(a) exp(�(a + w

o) = f(a; a + wo) = h(a)g(a + wo). Since h and g are
probability densities, g(a+ wo) =  exp(�(a+ wo))
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(ii) We want to prove that if f(a; b) = h(a)g(b) = h(a)e�b, with  > 0,
then dS

dp = 0. Since b̂ = w0(p; z) + (1 + p)a

dS

dp
= D

266666664

baZ
0

ah(a)g(bb(a))da
baZ
0

h(a)g(bb(a))da
�

baZ
0

ah(a)
h
G(b)�G

�bb(a)�i da
baZ
0

h(a)
h
G(b)�G

�bb(a)�i da

377777775
(36)

= D

266666664

baZ
0

ah(a)e�
bb(a)da

baZ
0

h(a)e�bb(a)da
�

baZ
0

ah(a)e�
bb(a)da

baZ
0

h(a)e�bb(a)da

377777775
= 0

is true for all p and z.

Proof of proposition 3
(a). We want to prove that if h(a) is uniform and g(b) is strictly log-

concave, then

dS

dp
= D

24 baZ
0

a
g(a (1 + p) + w0)

G(b)�G (w0)
da�

baZ
0

a

�
G(b)�G (a (1 + p) + w0)

�
D

da

35 > 0
(37)

First-order stochastic dominance of the distribution of a conditional on
indi¤erence over the distribution conditional on joining the list requires:

baZ
a

g(w0 + ea(1 + p))
G(b)�G(w0)

dea � G(b)�G(w0 + a(1 + p))
G(b)�G(w0)

�
baZ
a

G(b)�G(w0 + ea(1 + p))
D

dea (38)

for all a 2 [0;ba] with strict inequality for some a 2 [0;ba]. We can rewrite
(38) as baZ

a

�
G(b)�G(w0 + ea(1 + p))� dea
G(b)�G(w0 + a(1 + p))

� D

G(b)�G(w0)
(39)
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The left-hand side of (39) is the "mean residual lifetime function", which is
strictly monotone decreasing if g(b) is strictly log-concave (see Bagnoli and
Bergstrom, 2005, Theorem 6, p.451). At a = 0,

baZ
0

�
G(b)�G(w0 + ea(1 + p))� dea

G(b)�G(w0)
=

D

G(b)�G(w0)
and so (39) holds strictly for a 2 (0;ba].

(b). If g(b) is uniform, then for any h(a):

dS

dp
=

24 baZ
0

h(a) [1� w0 � (1 + p) a] da

35 baZ
0

ah(a)da

baZ
0

h(a)da

�
baZ
0

ah(a) [1� w0 � (1 + p) a] da

=

24(1� w0) baZ
0

h(a)da� (1 + p)
baZ
0

ah(a)da

35 baZ
0

ah(a)da

baZ
0

h(a)da

� (1� w0)
baZ
0

ah(a)da+ (1 + p)

baZ
0

a2h(a)da

= (1 + p)

baZ
0

a2h(a)da� (1 + p)

0@ baZ
0

ah(a)da

1A2 = baZ
0

h(a)da

= (1 + p)

24 baZ
0

a2h(a)da� [E(a jI )]2
baZ
0

h(a)da

35
= (1 + p)

h
V (a) + [E(a jI )]2 [1�H(ba)]i > 0 (40)
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Threshold rationing: demand and welfare function
Recall bb (a) = a+ pa� pa0 + w0; ba = min h b�w0+pa01+p ; �a

i
and bb (ba) = b

The derivatives of (11) are

Da0 =

bZ
a0

f(a0; b)db�
bZ

a0+w0

f(a; b)db+

bZ
bb(ba)

f(ba; b)db @ba@a0�
baZ

a0

f(a;bb (a))@bb(a)@a0
da

=

a0+w0Z
a0

f(a0; b)db+ p

baZ
a0

f(a;bb (a))da > 0
Dw0 = �

baZ
a0

f(a;bb (a))da, Dp = � baZ
a0

af(a;bb (a))da.
and of (12) are

Sa0 =

bZ
a0

(b� a0)f(a0; b)db�
bZ

a0+w0

(b� a0 � w0) f(a0; b)db

+p

baZ
a0

bZ
bb(a)

f(a; b)dbda+

bZ
bb(ba)

�
b�bb (ba)� f(ba; b)db

=

a0+w0Z
a0

(b� a0)f(a0; b)db+ w0
bZ

a0+w0

f(a0; b)db

+p

baZ
a0

bZ
bb(a)

f(a; b)dbda > 0,

Sw0 = �
baZ

a0

bZ
bb(a)

f(a; b)dbda < 0 , Sp = �
baZ

a0

bZ
bb(a)

af(a; b)dbda < 0.

If prioritisation is not maximal,
dS�

da0
= @S

@a0
� Da0

Dw0

@S
@w0

=

a0+w0Z
a0

(b� a0)f(a0; b)db+ w0
bZ

a0+w0

f(a0; b)db
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+p

baZ
a0

bZ
bb(a)

f(a; b)dbda�

a0+w0Z
a0

f(a0;b)db+p

baZ
a0

f(a;bb(a))da
baZ

a0

f(a;bb(a))da

baZ
a0

bZ
bb(a)

f(a; b)dbda

=

a0+w0Z
a0

(b� a0)f(a0; b)db+ w0
bZ

a0+w0

f(a0; b)db

�
baZ

a0

bZ
bb(a)

f(a; b)dbda

a0+w0Z
a0

f(a0;b)db

baZ
a0

f(a;bb(a))da
Prioritisation: uniform distributions
Patients demand treatment if b � a � w � 0, where w = w0 + pa. The

patient is indi¤erent if b = a+ w0 + pa. The demand function is

D(w0; p) =

1�w0
1+pZ
0

1Z
a+w0+pa

dbda

=

1�w0
1+pZ
0

(1� w0 � a� pa) da =
(1� w0)2

2 (1 + p)
(41)

and welfare is

S(w0; p) =

1�w0
1+pZ
0

1Z
a+w0+pa

(b� a� w0 � pa) dbda =
(1� w0)3
6(1 + p)

(42)

The equilibrium condition D(w0; p) = z implies that w0 = 1�[2z (1 + p)]1=2.
Hence

S =
[2z (1 + p)]3=2

6(1 + p)
(43)

and dS
dp > 0, then w

�
0 = 0: At the optimum, substituting w

�
0 = 0, we obtain

p� = 1
2z � 1:
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Threshold rationing: uniform distributions
The demand function is

D(w0; p; a0) =

a0Z
0

1Z
a

1dbda+

1�w0+pa0
1+pZ
a0

1Z
a+pa�pa0+w0

1dbda

=

a0Z
0

(1� a) da+

1�w0+pa0
1+pZ
a0

(1� a� pa+ pa0 � w0) da

=
(1� w0 � a0)2

2 (1 + p)
+ a0 �

a20
2

(44)

with Dw0 = �1�a0�w0
1+p < 0, Dp = � (1�a0�w0)2

2(1+p)2
< 0 and Da0 =

w0+p(1�a0)
1+p >

0, where (1� a0 � w0) > 0 (notice that if b = 1 and a = a0, then u =
1�w0 � a0 � pa0 + pa0 = 1�w0 � a0 > 0). In equilibrium, demand equals
supply D(w0; p; a0) = z and

w0 = 1� a0 �
�
[2(1 + p)][z + a202

�1 � a0]
	1=2

(45)

The welfare function is

S(a0; w0; p) =

a0Z
0

1Z
a

(b� a)dbda

+

1�w0+pa0
1+pZ
a0

1Z
a+pa�pa0+w0

(b� a� w0 � pa+ pa0) dbda

=
(1� w0 � a0)3

6(1 + p)
+
1

2
a0 �

1

2
a20 +

1

6
a30 (46)

where dS
da0

= (1�a0)2
2 � (1�w0�a0)2

2(1+p) > 0, dS
dw0

= � (1�w0�a0)2
2(1+p) < 0, dS

dp =

� (1�w0�a0)3
6(1+p)2

< 0. Substituting (22)

S(a0; w0(a0; p); p) =

�
[2(1 + p)z][z + a202

�1 � a0]
	3=2

6(1 + p)

+
1

2
a0 �

1

2
a20 +

1

6
a30
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which is increasing in p for given a0. Hence at given a0, p should be increased
until w0 = 0 and so w0(a0; p�(a0)) = 0 and p�(a0) = 1�2z

2z�2a0+a20
> 0.

With w0(a0; p�(a0)) = 0, the market-clearing condition reduces to
(1�a0)2
2(1+p)

+a0 �a20
2 = z, so that

dp�

da0
= 2(1+p�)

1�a0 > 0, and the welfare function is

S(a0; w0(a0; p
�(a0)); p

�) =
(1� a0)3

6(1 + p�)
+
1

2
a0 �

1

2
a20 +

1

6
a30 (47)

where @S
@a0

= (1�a0)2
2(1+p�) > 0 and

@S
@p� = �

(1�a0)3
6(1+p�)2 < 0. The e¤ect of an increase

in a0 on welfare is

dS

da0
=
@S

@a0
+

+
@S

@p
�

@p

@a0
+

=
(1� a0)2

6 (1 + p)
> 0 (48)

Hence a0 should be increased until the entire supply is given to individuals
with a � a�(z) = 1� (1� 2z)1=2.

Prioritisation with a private sector
a, b and y are distributed according to the joint density f(a; b; y) over the

support a 2 [0; a]; b 2
�
0; b
�
; y 2

�
y; y
�
where y denotes income. 1) Patients

prefer public to no treatment if b > w0 + (1 + p)a. De�ne bb(a) as the level
of b such that bb(a) = w0 + (1 + p)a. 2) Patients prefer public to private if:
u(y) � u(y � k) > w0 + pa. De�ne yG(a) as the level of income such that
the patient is indi¤erent between public and private: u(yG) � u(yG � k) =
w0 + pa with

@yG

@a = p
uy(yG)�uy(yG�k) < 0, @y

G

@w0
= 1

uy(yG)�uy(yG�k) < 0 and
@yG

@p =
a

uy(yG)�uy(yG�k) < 0.

3) Patients prefer private to no treatment if: b > a+u(y)�u(y�k). De�neeb(a; y) as the level of private bene�t such that eb(a; y) = a+ u(y)� u(y� k).
There are three groups of patients:

a) Public treatment : b � bb(a) (better public than no treatment) and y �
yG(a) (better public than private treatment). b) Private treatment : b >eb(a; y) (better private than no treatment) and y > yG(a) (better private
than public treatment).
c) No treatment : b < bb(a) (better no treatment than public) and b < eb(a; y)
(better no treatment than private).
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Notice that bb(a) < eb(a) if w0+ pa < u(y)� u(y� k), so that again yG is
such that w0+pa = u(yG)�u(yG�k). As before, ba = b�w0

1+p (so that
bb(ba) = b).

Also, de�ne y�(a) such that eb(a; y�) = b so that u(y�) � u(y� � k) = b � a.ba can also be computed such that y�(ba) = yG(ba) or w0 + pba = b � ba so
that ba = b�w0

1+p . De�ne
bba = b� (u(y)� u(y � k)) as the level of a such that

y�(bba) = y.
The demand for public treatment is:

DG(w0; p) =

baZ
0

bZ
bb(a)

yG(a)Z
y

f(a; b; y)dydbda (49)

where

DGw0 =

bZ
bb(ba;w0)

yG(ba;w0)Z
y

f(ba; b; y)dydb @ba
@w0

�
ba(w0)Z
0

yG(a;w0)Z
y

f(a;bb (a;w0) ; y)dyda

+

ba(w0)Z
0

bZ
bb(a;w0)

f(a; b; yG(a;w0))
@yG

@w0
dbda

= �
ba(w0)Z
0

yG(a;w0)Z
y

f(a;bb (a;w0) ; y)dyda+ ba(w0)Z
0

bZ
bb(a;w0)

f(a; b; yG(a;w0))
@yG

@w0
dbda

DGp =

bZ
bb(ba(p);p)

yG(ba(p);p)Z
y

f(ba (p) ; b; y)dydb@ba
@p
�

ba(p)Z
0

a

yG(a;p)Z
y

f(a;bb (a; p) ; y)dyda

+

ba(p)Z
0

bZ
bb(a;p)

f(a; b; yG(a; p))
@yG

@p
dbda

= �
ba(p)Z
0

a

yG(a;p)Z
y

f(a;bb (a; p) ; y)dyda+ ba(p)Z
0

bZ
bb(a;p)

f(a; b; yG(a; p))
@yG

@p
dbda
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The demand for private treatment is:

Dprivate =

baZ
0

yZ
yG(a)

bZ
eb(a;y)

f(a; b; y)dbdyda+

bbaZ
ba

yZ
y�(a)

bZ
eb(a;y)

f(a; b; y)dbdyda (50)

The welfare function is:

S(w0(p); p) (51)

=

baZ
0

bZ
bb(a)

yG(a)Z
y

[b� a(1 + p)� w0 + u(y)]f(a; b; y)dydbda

public patients

+

baZ
0

yZ
yG(a)

bZ
eb(a;y)

[b� a+ u(y � k)]f(a; b; y)dbdyda

private patients

+

bbaZ
ba

yZ
y�(a)

bZ
eb(a;y)

[b� a+ u(y � k)]f(a; b; y)dbdyda

private patients

+

baZ
0

bb(a)Z
a

yG(a)Z
y

u(y)f(a; b; y)dydbda+

aZ
ba

bZ
a

yG(a)Z
y

u(y)f(a; b; y)dydbda

no treatment and poor

+

baZ
0

yZ
yG(a)

eb(a;y)Z
a

u(y)f(a; b; y)dbdyda+

bbaZ
ba

yZ
y�(a)

eb(a;y)Z
a

u(y)f(a; b; y)dbdyda

no treatment and rich

+

bbaZ
ba

y�(a)Z
yG(a)

bZ
a

u(y)f(a; b; y)dbdyda+

aZ
bba

yZ
yG(a)

bZ
a

u(y)f(a; b; y)dbdyda

no treatment and rich
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Di¤erentiating with respect to w0, we obtain:

Sw0 = �
baZ
0

bZ
bb(a)

yG(a)Z
y

f(a; b; y)dydbda [E1]

�
baZ
0

yG(a)Z
y

u(y)f(a;bb; y)dyda [E2]

+

baZ
0

bZ
bb(a)
[b� a(1 + p)� w0 + u(yG(a))]f(a; b; yG(a))

@yG(a)

@w0
dbda [E3]

�
baZ
0

bZ
eb(a;yG)

[b� a+ u(yG(a)� k)]f(a; b; yG(a))@y
G(a)

@w0
dbda [E4]

+

bZ
ba

yG(ba)Z
y

u(y)f(ba; b; y)dydb [E5]
�

bZ
ba

yG(ba)Z
y

u(y)f(a; b; y)dydbda [E6]

+

baZ
0

yG(a)Z
y

u(y)f(a;bb (a) ; y)dyda [E7]

+

baZ
0

bb(a)Z
a

u(yG)f(a; b; yG)
@yG(a)

@w0
dbda [E8]

+

aZ
ba

bZ
a

u(yG)f(a; b; yG)
@yG(a)

@w0
dbda [E9]
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�
baZ
0

eb(a;yG)Z
a

u(yG)f(a; b; yG)
@yG(a)

@w0
dbda [E10]

�

bbaZ
ba

bZ
a

u(yG)f(a; b; yG)
@yG(a)

@w0
dbda [E11]

�
yZ

y�(ba)
eb(ba;y)Z
ba
u(y)f(ba; b; y)dbdy @ba

@w0
[E12]

�
y�(ba)Z

yG(ba)

bZ
ba
u(y)f(a; b; y)dbdy [E13]

�
aZ
bba

bZ
a

u(yG)f(a; b; yG)db
@yG(a)

@w0
da [E14]

+

yZ
yG(ba)

eb(ba;y)Z
ba
u(y)f(ba; b; y)dbdy @ba

@w0
[E15]

Recall that yG(a) : u(yG)� u(yG � k) = w0 + pa so that bb (a) = eb(a; yG)
and [E3] and [E4] cancel out; similarly [E8] and [E10] cancel out; [E5] and
[E6] cancel out; [E2] and [E7] cancel out; [E9], [E11] and [E14] cancel out.
Notice that y�(ba) = yG(ba) as y�(ba): u(y�) � u(y� � k) = b � ba and yG(ba):
u(yG)� u(yG � k) = w0 + pba, where b� ba = pb+w0

1+p and w0 + pba = w0+pb
1+p so

that [E13] is zero. For the same reason [E12] and [E15] cancel out. Therefore

Sw0 = �
baZ
0

bZ
bb(a)

yG(a)Z
y

f(a; b; y)dydbda < 0

Similarly, we can obtain:

Sp = �
baZ
0

bZ
bb(a)

yG(a)Z
y

af(a; b; y)dydbda < 0
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Substituting into: dS
dp = Sw0

@w0
@p + Sp = D

�
Dp
Dw0

+
Sp
D

�
, the main result

is obtained.

Non-utilitarian welfare function

Recall that E�(ajT ) =

baZ
0

bZ
bb(a)

am(a)f(a;b)dbda

baZ
0

bZ
bb(a)

m(a)f(a;b)dbda

and E(ajT ) =

baZ
0

bZ
bb(a)

af(a;b)dbda

baZ
0

bZ
bb(a)

f(a;b)dbda

.

De�ne q(a) =

bZ
bb(a)

f(a; b)db, so that E�(ajT ) =
baZ
0

am(a)q(a)da=

baZ
0

m(a)q(a)da

and E(ajT ) =
baZ
0

aq(a)da=

baZ
0

q(a)da.

The density functionm(a)q(a) is more favourable than q(a) if q(a)m(a)R a
0 m(a)q(a)da

�
q(a)R a

0 q(a)da
(hazard rate dominance, see La¤ont and Tirole, 1993, A theory of

incentives in procurement and regulation, p.77). Integrating by parts, we
obtain: q(a)m(a)

Q(a)m(a)�
R a
0 ma(a)Q(a)da

� q(a)
Q(a) or q(a)m(a)Q(a) � q(a)m(a)Q(a) �

q(a)
R a
0 ma(a)Q(a)da, which is always satis�ed when ma > 0. Hazard rate

dominance implies �rst-order stochastic dominance (Une M., T. Sajo, 1995,
Economics Letters, 47(1), p.109-110), which implies that the average age is
higher when q(a)m(a)R a

0 m(a)q(a)da
� q(a)R a

0 q(a)da
, so that Em(ajT ) > E(ajT ).

Service time di¤erences

Recall that En(aj I) =
baZ
0

an(a)f(a;bb (a))da= baZ
0

n(a)f(a;bb (a))da and E(aj I)
=

baZ
0

af(a;bb (a))da= baZ
0

f(a;bb (a))da. Following the same line of proof as in
the previous section, the density function f(a;bb (a)) is more favourable than
n(a)f(a;bb (a)) if n(a)f(a;bb(a))R a

0 n(a)f(a;
bb(a))da � f(a;bb(a))R a

0 f(a;
bb(a))da .

Integrating by parts, this is equivalent to n(a)f(a;bb(a))
n(a)F (a;bb(a))�R a0 na(a)F (a;bb(a))da �
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f(a;bb(a))
F (a;bb(a)) or 0 � �f(a;bb (a)) R a0 na(a)F (a;bb (a))da, which is always satis�ed.
Therefore, En(aj I) > E(aj I).
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