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Abstract:

Via the leading unit root case, the problem of testing on a lagged dependent

variable is characterized by a nuisance parameter which is present only under the

alternative (see Andrews and Ploberger (1994)). This has proven a barrier to the

construction of optimal tests. Moreover, in their absence it is impossible to objectively

assess the absolute power properties of existing tests. Indeed, feasible tests based

upon the optimality criteria used here are found to have numerically superior power

properties to both the original Dickey and Fuller (1981) statistics and the efficient

detrended versions suggested by Elliott, Rothenberg and Stock (1996) and analysed

in Burridge and Taylor (2000).

Keywords: nuisance parameter, invariant test, unit root.

1 Introduction

This paper proposes methods by which optimal tests on a lagged dependent variable

in a linear regression model may be constructed. Both the need for and difficulties

associated with inference on a lagged dependent variable are highlighted via the

leading unit root case, as considered by Dickey and Fuller (1979, 1981). Although we

will ultimately consider all cases, initially suppose that

yt = β1 + β2t+ ρyt−1 + εt, εt ∼ iid(0,σ2), t = 1, 2, ., T. (1)

Naive testing for a unit root in (1) has rightly been criticized, as in Schmidt and

Phillips (1992), as the degree of deterministic trending is different under the unit

root. Instead consider testing

H0 : ρ = 1 ∩ β2 = 0 vs. H1 : |ρ| < 1 ∩ β2 = 0, (2)

so that the degree of trending is linear under either hypothesis. In DeJong, Nankervis,

Savin and Whiteman (1992), imposing the restrictions on the parameters in (1)

β1 = (α1(1− ρ) + β2ρ) , β2 = α2(1− ρ), (3)
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implies a model of the form

yt = α1 + α2t+ ut ; ut = ρut−1 + εt, (4)

which has formed the basis for the majority of recent unit root tests, such as those in

Dufour and King (1991) and Elliott, Rothenberg and Stock (1996). Indeed the latter

provides GLS-type tests which have become benchmark, see Burridge and Taylor

(2000).

Here we do not impose these restrictions. None-the-less under H0 in (2) the two

formulations coincide. Under trend stationary alternatives they differ, in that in (1)

the mean of yt depends on the autoregressive parameter, while in (4) it does not. For

any given data set, in the event of rejection, it will not be possible to say which trend

stationary formulation generated it. Consequently, it is necessary that we have unit

root tests which are powerful against trend stationary processes characterized by (1).

This analysis also highlights the key difficulty with testing on a lagged dependent

variable. Since in (1) the mean of yt depends on ρ, the alternative distribution of any

reasonable test statistic will depend not only on ρ, but also the parameters β1 and

β2. Thus, while we are easily able to construct tests having known size, under the

alternative β1 becomes a nuisance parameter. That is, as in Andrews and Ploberger

(1994), there is a nuisance parameter present only under the alternative. This remains

true for testing that ρ is any value, including zero, and regardless of any additional

restrictions imposed by the null. This difficulty has, so far, prevented the construction

of any optimality theory in this case. Thus objective assessment of the tests we do

have is not possible.

As in Andrews and Ploberger (1994) the solution is to provide tests which are

weighted optimal, with the influence of the nuisance parameter on power integrated

out. Specifically, within the semi-parametric elliptically symmetric family, we achieve

the following. It is shown that integrating out in power is equivalent to applying op-

timality criteria to the integrated density of Berger, Liseo and Wolpert (1999). There

nuisance parameters are directly integrated out of the sample density, before con-

structing estimators and tests for interest parameters. We then provide a method for

finding such integrated densities, in the elliptic family, which avoids all of the tech-
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nical difficulties usually associated with integrating out such parameters. Weighted

optimal tests such as point or locally optimal ones, follow by applying the appropriate

criteria to the integrated density.

The numerical evidence presented in the paper focuses on the unit root case. It is

shown that, appropriate to their context, the original Dickey-Fuller (1979) t-tests have

powers close to a weighted power envelope, and thus we can suggest no improvement.

On the other hand, for joint hypotheses such as in (2) their (1981) F -tests are short

of optimal, with a feasible point optimal test having significantly superior power

properties. Currently, the favoured test seems to be the GLS Dickey-Fuller (DFGLS)

test as described in Elliott, Rothenberg and Stock (1996). For testing a unit root

in (1) via (2) our feasible test slightly outperforms this competitor. In formulation

(4), this is reversed. However, the DFGLS is known to have power which evaporates

as the initial condition grows. Here, our test is shown to significantly out-perform

this test for both moderate and large initial conditions, in both formulations of the

problem.

The plan for the paper is as follows. The next section details the model and

assumptions. Section 3 presents and discusses the main results in the context of the

simple unit root test on ρ, while Section 4 discusses the results and gives the numerical

power comparisons. Technical proofs and some tables are placed in an appendix.

2 Model and Motivation

To formalize our treatment we shall consider models which generalize those in (1)

and (4), with

M1 : yt = ρyt−1 + xtβ + εt and

M2 : yt = xtα+ ut ; ut = ρut−1 + εt,

where now xt is any k vector of regressors and β and α are k vectors of unknowns.

To continue let y = (y1, ..., yT ) , ε = (ε1, ..., εT ) , X = (x1, .., xT ) so these may be

written as:

M1 : ∆ρy = Xβ + ε and (5)
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M2 : ∆ρy = ∆ρXα+ ε, (6)

where ∆ρ = IN − ρL and L is the T × T matrix lag-operator, having one’s on the
first lower off-diagonal and zero’s elsewhere. We shall proceed under the following

assumption on the joint density of the innovations ε;

Assumption 1 Let F (µ,Σ) denote the elliptically symmetric family with mean µ
and variance Σ, then assume that the density of ε, f(ε) ∈ F (0,σ2Ω), |Ω| = 1,
with

F (0,Ω) = f : f(ε) = q ε Ω−1ε) ,

where q(.) is a nonincreasing convex, measurable function on [0,∞).

Given Assumption 1 and since for either model y is a linear transformation of the

innovations then both the data y and also the differenced data ∆1y = {yt − yt−1}Tt=1
is also elliptically symmetric, with

M1 : ∆1y ∼ F ∆1∆
−1
ρ Xβ,σ2Σρ ; M2 : ∆1y ∼ F ∆1Xα,σ2Σρ ,

Σρ = ∆1∆
−1
ρ Ω ∆−1ρ ∆1,

so that the difference between the models is characterized by the dependence of the

mean upon the parameter ρ.

To illustrate this difference, suppose that Ω = IT and first consider the simple

unit root test

H0 : ρ = 1 vs. H0 : |ρ| < 1 (7)

in both M1 and M2. Under H0 we have

M1 : E[∆1y] = Xβ ; M2 : E[∆1y] = ∆1Xα,

while under H1

M1 : E[∆1y] = ∆1∆
−1
ρ Xβ ; M2 : E[∆1y] = ∆1Xα,

that is forM2 the mean of the data does not depend on ρ. Thus, forM2, construction

of either invariant (as in King (1980) or Dufour and King (1991)) or similar (assuming

Gaussian innovations as in Hillier (1987)) tests is straightforward.
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First define a matrix C2 by

C2C2 =MZ = I − (∆1X)(X ∆1∆1X)
−1X ∆1 ; C2C2 = IN−k,

and then

v2 =
w2
|w2| ; w2 = C2∆1y and A2 = C2∆1∆

−1
ρ ∆−1ρ ∆1C2,

so v2 is the maximal invariant, of which all invariant tests are functions. It has

density, with respect to normalized Haar measure on the surface of the N − k unit
sphere SN−k, given by King (1980), as

pdf(v2; ρ) =
a>0
pdf(aw2|H1)da

a>0
pdf(aw2|H0)da = |A2|

−1/2 v A−12 v
−(N−k)/2

.

Optimal tests then follow by applying optimality criteria to the density of the max-

imal invariant. Choices include point optimal tests (of which the Elliott, Rothenberg

and Stock (1996) test is an example), locally best tests which maximize the slope

of power at the null hypothesis (as in Dufour and King (1991)) or weighted average

power tests which maximize power averaged over all ρ under the alternative (Forchini

(2005)). Yet more criteria are examined in Forchini and Marsh (2000).

All of this is possible only because in M2 the mean of the data does not depend

on ρ. For M1 since the mean of the data does depend on ρ the problem itself is not

invariant. However, it is easy to construct tests which have known size. To do so

define the matrix C1 by

C1C1 =MX = I −X(X X)−1X ; C1C1 = IN−k,

and then

v1 =
w1
|w1| ; w1 = C1∆1y,

so that the density of v1 is constant on SN−k under H0. Any test which is a function

of v1 will therefore have known size.

An optimal test is designed to maximize (some function of) power. To fully

illustrate the associated difficulties with attempting this for M1, suppose briefly that

the ε are Gaussian, and so

w1 = C1∆1y ∼ N(X̃ρβ,σ
2A1),
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where

X̃ρ = C1∆1∆
−1
ρ X and A1 = C1∆1∆

−1
ρ ∆−1ρ ∆1C1. (8)

Consequently, we have for v1

pdf(v1; ρ) =
a>0
pdf(aw1|H1)da

a>0
pdf(aw1|H0)da = |A1|

−1/2 v1A
−1
1 v1

−(T−k)/2 × h(v1, X̃ρβ, ρ), (9)

where

h(v1, X̃ρβ, ρ) = e−ξ/2
a>0

e−
a
2a

T−k
2
−1 exp

√
a
v1A

−1
1 X̃ρβ

v1A
−1v1

da,

ξ = β X̃ρA
−1
1 X̃ρβ.

Thus the density of v1 equals a quantity which is equivalent to the density in the

straightforward case M2, multiplied by a term depending on X̃ρβ and the value of

ρ. Since pdf(v1, 1) = 1, then the second term only applies under H1. It is in this

sense that β is a nuisance parameter which is present only under the alternative, as

in Andrews and Ploberger (1994). Moreover, as there, we will construct optimal tests

by integrating out its influence on power. However, before proceeding to do this, we

should note the following differences in the set-up here and in the latter paper.

First, even in the simplest Gaussian case, finding an explicit expression for power

is not feasible, since we don’t even have a resolved expression for the density. Conse-

quently, a direct approach for the elliptic family as a whole will not work. Second, at

least for the unit root case, hypotheses such as (7) make less sense than (2). In this

case β becomes a mixture of parameters of interest and nuisance, thus representing

a subtly different problem.

3 Weighted optimal inference on a lagged depen-

dent variable.

In this section we provide weighted optimal tests which are applicable to either type of

null hypothesis and fully workable in the semi-parametric elliptically symmetric fam-

ily. The first obstacle to providing such tests is that even when we assume Gaussian

innovations, we have no closed form for power.
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We first show that weighted optimal tests follow from applying standard criteria

to the integrated density of Berger, Liseo and Wolpert (1999). Here we will focus on

providing point optimal ωPO and locally best ωLB tests, defined by

ωPO = arg max
ω∈SN−k

Pω =
ω

pdf(v1; ρ) (dv) and (10)

ωLB = arg max
ω∈SN−k

∂Pω
∂ρ ρ=1

, (11)

where µ = µ(X̃ρ,β) represents the nuisance parameter under the alternative. As

in Andrews and Ploberger (1994) we will provide tests which are weighted optimal.

That is, for some weight-function π(µ) : RN−k → R, on the nuisance parameter µ,

satisfying

RN−k
π(µ)dµ = 1, for all β and ρ, (12)

weighted versions of the tests in (10) and (11) are

ωPOπ = arg max
ω∈SN−k µ

Pω π(µ)dµ and

ωLBπ = arg max
ω∈SN−k

∂
µ
Pω π(µ)dµ

∂ρ
ρ=1

.

To proceed, follow Berger, Liseo and Wolpert (1999) and define the integrated

density, first for v1 by

pdf(v1; ρ) =
µ1

pdf(v1; ρ)π(µ)dµ, (13)

and also for w1 = C1∆1y, by

pdf(w1; ρ) =
µ1

pdf(w1; ρ)π(µ)dµ.

Moreover we can define a derived density for v1, as

pdf(v1; ρ) =
a>0
pdf(aw1|H1)da

a>0
pdf(aw1|H0)da

, (14)

that is pdf(v1; ρ) is an integrated density derived from the integrated density of w1.

We are now in a position to state and prove a theorem which clearly demonstrates

the possibility of constructing weighted optimal tests in the semi-parametric case,

even though no resolved expression for power exists.
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Theorem 1 Suppose that the data y is generated such that Assumption 1 is satisfied,

then weighted optimal unit root tests on the lagged dependent variable are found via

ωPOπ = arg max
ω∈SN−k

Pω =
ω

pdf(v1; ρ) (dv) and

ωLBπ = arg max
ω∈SN−k

∂Pω

∂ρ ρ=1

.

The importance of Theorem 1 is twofold. First it establishes that weighted optimal

tests can be found by applying standard optimality criteria to an integrated density.

Thus every strictly optimal test has an immediate weighted analogue. Second, we

need actually only consider finding an appropriate integrated density for w1 = C ∆1y,

rather than for v1. This is crucial in providing a mechanism for constructing weighted

optimal tests which circumvents the rather obvious obstacle of feasibility.

Since we have no resolved expressions for the density of v1 it is far from clear

how to choose a weighting function so as to integrate out the nuisance parameter.

However, as Theorem 1 demonstrates, we need only consider weight functions which

integrate out the nuisance parameter from the density of w1. Moreover, since w1 is

a linear transformation of y it has a distribution in the elliptically symmetric family.

Therefore, we can exploit the relationships between joint, conditional and marginal

densities within that family to provide both the weight function and the resulting

integrated density.

Before proceeding we need to be explicit about the two types of hypotheses to be

considered; those which restrict only ρ under the null and those which also restrict

part or all of β. In order to maintain consistency of notation throughout we will

consider the extended regression model;

yt = ρyt−1 + xtβ + ztγ + εt, t = 1, 2, .., T, (15)

where now zt and γ are l-vectors of covariates and parameters, respectively.

We will consider testing both single and joint unit root hypotheses in the context

of (15), specifically tests of

H0 : ρ = 1 ∩ γ = 0 vs. HS
1 : |ρ| < 1 ∩ γ = 0 and

H0 : ρ = 1 ∩ γ = 0 vs. HJ
1 : |ρ| < 1 ∩ γ = 0, (16)
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so that these tests differ only under the alternative. For example, testing (2) in (1)

as in the introduction, is characterized by testing H0 versus HJ
1 with xt = 1, zt = t.

Given model (15) tests having known size can be characterized by the vector

v1 =
w1
|w1| ; w1 = C1∆1y,

where the matrix C1 is as defined above. Under the null hypothesis the distribution

of v1 is constant on SN−k. Under the alternative hypotheses, however, its distribution

is not known, and will in general be different for each case. Thus, for X̃ρ and A1

defined in (8), under HS
1 ,

w1|HS
1 ∼ F(X̃ρβ,σ

2A1).

Here, because the set of regressors is unchanged from null to alternative we shall treat

the whole of X̃ρβ as the nuisance parameter, that is

µS = E[w1] = X̃ρβ,

is the nuisance parameter present under the alternative HS
1 .

On the other hand, putting W = (X,Z) and λ = (β , γ ) , then under the joint

alternative,

w1|HJ
1 ∼ F(W̃ρλ,σ

2A1),

where now W̃ρ = C1∆1∆
−1
ρ W. In this case the regressor set changes from null to

alternative, and thus not all of W̃ρδ is nuisance. Moreover, any ‘optimal’ test should

depend upon this change. Although there are a number of ways to achieve this, here

we will assume that here the nuisance parameter under HJ
1 , to be integrated out is

µJ = λ,

that is just the parameter set. Notice that this approach is equivalent to providing

a weighted average most powerful test over values of δ under the alternative, similar

to Forchini (2005).

The following theorem, proved in the appendix, gives both the weight function

and the weighted point optimal and locally best test for testing H0 against each

alternative.
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Theorem 2 Suppose that the data y is generated according to model (15) such that

its distribution satisfies Assumption 1, and let qS(.) and qJ(.) be convex non-negative

functions defining particular elliptically symmetric families, then:

(i) For testing against HS
1 , the appropriate weight function, for |ρ| < 1 is

πS = π(µS) = σ2A1
−1/2

qS µS σ2A1
−1
µS ,

and hence weighted point optimal and locally best tests are given by

ωPOπS : reject H0 if v1A
−1
1 v1 ≤ k1 and

ωLBπS : reject H0 if v1
∂ A−11

∂ρ
ρ=1

v1 ≤ k2, (17)

where k1 and k2 are constants chosen so that the size of each test is fixed at α.

(ii) For testing against HJ
1 , the appropriate weight function, for |ρ| < 1 is

π(µJ) = σ−2 (W W )
1/2
qJ σ−2µJ (W W )µJ ,

and hence weighted point optimal and locally best tests are given by

ωPOπJ : reject H0 if v1 A1 + P̃W
−1
v1 ≤ k3 and

ωLBπJ : reject H0 if v1

∂ A1 + P̃W
−1

∂ρ
ρ=1

v1 ≤ k4, (18)

where P̃W = W̃ρ (W W )−1 W̃ρ and k3 and k4 are constants chosen so that the size of

each test is fixed at α.

Theorem 2 gives weighted optimal tests for each formulation of the unit root hy-

pothesis as applied to a lagged dependent variable. Both the theoretical and numerical

properties of the resulting tests are analyzed in the following section.

4 Analysis

4.1 Discussion

Choosing a particular prior or weight function is always open to the criticism of it

being a mere contrivance. However, it is important to note the following. Together the
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theorems set out a clear procedure for deriving weighted optimal tests. Specifically,

such tests follow immediately by applying standard techniques (such as those in King

(1980) and Dufour and King (1991)) to the integrated density for w1. Exploiting

the marginalisation properties of the elliptically symmetric family provides both the

appropriate weight function and hence the resultant tests. Practitioners are free to

exploit the general results to derive their own weight functions and tests.

The given tests enjoy precisely the properties we would desire. Consider the

density of v1 given in (9), written as

pdf(v1, ρ) = |A1|−1/2 v1A−11 v1 −(T−k)/2 × h(µS),

and notice that since

pdf(v1; ρ) = |A1|−1/2 v A−11 v −(N−k)/2
, (19)

then

µS

h(µS) π(µS)dµS = 1.

That is we have very precisely integrated out of the density that part which was

unresolved. The implication is that every test satisfying some optimality criteria for

M2 has a precise (weighted) analogue for testing HS
0 inM1. In fact the only difference

between them will be that forM2 we project the data orthogonal to the columns of the

differenced regressors, while forM1 we project orthogonal to the columns themselves.

For the tests for the joint hypothesis HJ
0 , notice that

A1 + P̃W = C1∆1∆
−1
ρ IN−k +W (W W )

−1
W (∆−1ρ )∆1C1,

so that any resulting test will be a function of two components. One represents the

simpler case where only ρ is restricted, while the other represents a projection on the

space spanned by the columns ofW = (X,Z). This also would seem to be a desirable

property for such tests to enjoy.

In practice the assumption that the covariance of the innovations is scalar may

not be warranted. However, and with some generality, it is possible to make robust

the procedures described above and deliver operational testing procedures. To do
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so assume now that the (εi)
T
1 are a stationary ergodic process, having covariance

structure,

E[εε ] = σ2Ω, |Ω| = 1.

Consequently, let Ω̂ be any parametric or semi-parametric estimator with

||Ω− Ω̂|| = op(1), (20)

where ||.|| is any matrix norm, (note that all norms are equivalent on the space of
symmetric positive definite matrices). Hence, for

AΩ = C1∆1∆
−1
ρ Ω ∆−1ρ ∆1C1,

and on account of (20),

v A−1Ω v − v A−1Ω̂ v = op(1)

then asymptotically robust tests can be derived via optimality criteria applied to

v A−1
Ω̂
v. The need to estimate Ω̂ consistently restricts the class of models somewhat,

generally defined weak mixing process are ruled out. However, neither the density

nor the precise nature of the correlation structure in Ω need be specified. Since the

(εi) are stationary, then via Wald’s decomposition, we need only construct a consis-

tent estimator for their transfer function, for example via the consistent augmented

autoregression of Ng and Perron (2001).

The extension to the case of testing the hypotheses H0 : ρ = ρ0 is immediate. We

can define

v0 =
w0
|w0| ; w0 = C ∆0y,

C1C1 = MX = I −X(X X)−1X ; C1C1 = IN−k,

which, following precisely the steps taken to arrive at (19), gives

pdf(v0; ρ) = |A0|−1/2 v0A
−1
0 v0

−(N−k)/2
,

where A0 = C1∆0∆
−1
ρ ∆−1ρ ∆0C1.
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Hillier (1987) characterizes the class of similar (and consequently under our as-

sumptions invariant) tests for the significance of a lagged dependent variable, i.e.

tests for H0 : ρ = 0. However, no optimal procedures were developed. Here, we are

able to characterize weighted optimal tests, as in the following corollary to Theorem

1.

Corollary 1 Suppose that the data y is generated according to model M1 such that

its distribution satisfies Assumption 1 with Ω = IT , and suppose that we are testing

the hypotheses H0 : ρ = 0. Then weighted point optimal and locally best tests are

given by

ωPOπ : reject H0 if
y C1A

−1C1y
y MXy

≤ k5 and

ωLBπ : reject H0 if

y C1
∂(A−1)

∂ρ
ρ=0

C1y

y MXy
v1 ≤ k6,

where k5 and k6 are chosen so that the size of each test is α, and

A = C1∆
−1
ρ ∆−1ρ C1.

Importantly, both of these tests are identical to the optimal procedures derived

for the same hypothesis in M2, see for example King and Hillier (1985).

4.2 Numerical Results

All of the tests proposed in this paper take the form of quadratic forms on the surface

of the unit sphere. Such forms can always be written as ratios of quadratic forms in y.

As a result, the densities and distributions (under either hypothesis) are, in principle,

available via a variety of numerical methods, see also DeJong, Nankervis, Savin and

Whiteman (1992). Alternatively, convenient asymptotic approximations to these (as

opposed to the limiting forms of the statistics themselves) are available in the form of

saddlepoint approximations, as do Forchini and Marsh (2000). Given this, and also

that the focus of the paper is upon power optimality, the numerical work will focus

on comparing weighted optimal tests with those currently available in the literature.
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We shall do so in the context of the simple model

yt = β1 + β2t+ ρyt−1 + εt ; εt ∼ iid(0,σ2).

In this context the literature has not bettered the original Dickey-Fuller (1979, 1981)

statistics, although refinements to their procedures in more general settings are many.

We will consider testing the following sets of hypotheses

H1
0 : ρ = 1 vs. H1

1 : |ρ| < 1,
H2
0 : ρ = 1 ∩ β2 = 0 vs. H2

1 : |ρ| < 1 ∩ β2 = 0,

H3
0 : ρ = 1 ∩ β1 = β2 = 0 vs. H3

1 : |ρ| < 1 ∩ β2 = 0,

H4
0 : ρ = 1 ∩ β1 = β2 = 0 vs. H4

1 : |ρ| < 1 and

H5
0 : ρ = 1 ∩ β2 = 0 vs. H5

1 : |ρ| < 1.

Each of these hypotheses has associated with it a particular Dickey-Fuller test.

For hypotheses H1
0 and H

2
0 these are the pairs ρ̂τ − 1, τ̂ τ and ρ̂µ− 1, τ̂µ, i.e. the OLS

estimator for ρ−1 and its t-ratio, respectively. For hypotheses H3
0 , H

4
0 and H

5
0 , these

are Φ1, Φ2 and Φ3, i.e. the likelihood ratio (or a monotone function of the F -ratio)

test for each respective hypothesis. In addition we consider the t-tests based upon

efficiently detrended data, as in Elliott, Rothenberg and Stock (1996) and Burridge

and Taylor (2000); DF µGLS for H
3
0 and DF

τ
GLS for H

4
0 and H

5
0 , respectively.

First we compare the power of these statistics with the weighted power envelope,

obtained as the power of the weighted point optimal test, at each appropriate value

of ρ. For hypotheses H1
0 and H

2
0 the point optimal tests are given in (17), while

for H3
0 , H

4
0 and H

5
0 they are given in (18). All of the Monte Carlo experiments were

performed according to the following specifications. Wherever the values of β1 and β2

are not specified, by either hypothesis, they were set equal to 0.1. For a sample size of

T = 100 and for 20000 replications the appropriate critical value was simulated under

each null hypothesis. For a variety of alternative values of ρ the rejection frequencies

of each of the tests were simulated. These outcomes are reported in Tables 1 through

7 in the appendix.

Tables 1 and 2 contain a comparison between the ρ̂τ − 1, τ̂ τ and ρ̂µ − 1, τ̂µ tests
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and the weighted envelopes, PEτ and PEµ, respectively. The powers of the Dickey-

Fuller tests are close to their respective envelopes. Indeed, here we report no further

comparisons for these first two hypotheses. The current tests, by criteria as objective

as can be achieved in this context, have powers which cannot be significantly improved

upon, if at all. Since these tests form the basis of the augmented Dickey-Fuller tests, or

the procedures of Phillips and Perron (1988) and Ng and Perron (2001), this perhaps

gives also some additional confidence in those procedures. Moreover, although not

reported, it is the case that t-tests for each value of ρ between 0 and ±1 inclusive
tend to share this property.

The outcomes of experiments for the further three hypotheses stand in stark

contrast. For these cases and both sample sizes the powers of the Φ1, Φ2 and Φ3

tests are a small fraction of the relevant envelopes, denoted here by PE1, PE2 and

PE3, respectively for hypotheses H3
0 , H

4
0 and H

5
0 and reported in Tables 3,4 and

5. The Dickey-Fuller tests have particularly low powers when a trend is included in

the alternative, as previous studies have reported. However, the literature has not

yet provided feasible tests having significantly greater power in these circumstances.

Moreover, these tests are completely outperformed by the DF τ
GLS, despite this test

not being designed for these alternatives.

We also simulate the power of the locally best test, ωLBπJ given in (18), and also

a feasible, nearly efficient test, based on a principle similar to that employed by

Elliott, Rothenberg and Stock (1996) for tests in M2. The test is chosen so that it is

asymptotically point optimal for the value at which the (weighted) asymptotic power

envelope is 0.5. As in the latter paper, this point, say c∗ = T (ρ− 1) is approximated
via Monte Carlo simulation, for a sample size of T = 500. On the basis of 5000

replications, the appropriate values of c∗ were, to the nearest integer

H3
0 : c

∗
3 = 7, H4

0 : c
∗
4 = 10, H5

0 : c
∗
5 = 13.

The powers of the resultant feasible tests, ωπJ (c
∗) are presented in Tables 3 to 5.

The locally best tests perform adequately only very close the null hypothesis. On the

other hand the ωπJ (c
∗) tests have powers very close to their respective envelopes over

the range of alternatives and outperform both the F -tests and efficient t-tests.
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A final set of experiments compare the performance of the efficient Dickey-Fuller

test (DF τ
GLS) with our feasible point optimal test (ωπJ (c

∗)) in both the formulation

considered here (M1) and that for which it was designed (M2). Moreover, we will

examine the power performances as the initial condition deviates from its assumed

value of 0.

First we will consider

yt = β1 + β2t+ ρyt−1 + εt; y0 = y
∗ + β1, y∗ = 0. (21)

and test the joint hypothesis given above as H5
0 . Performing the experiments as

outlined above, the powers as we vary ρ and y∗ are given in Tables 6a (for ωπJ (c
∗))

and 6b (for (DF τ
GLS)). For small y

∗ the powers of DF τ
GLS are close to those of ωπJ (c

∗),

though naturally smaller. As is well known the power of the DF τ
GLS test collapses for

large y∗. This is not the case for ωπJ (c
∗). Although it is not unbiased, over a range

of ρ values its power is either stable or increases slightly with y∗.

In order that these comparisons are fair these experiments were repeated in the

model

yt = β1 + β2t+ ut ; ut = ρut−1 + εt; y0 = y
∗ + β1, y∗ = 0, (22)

here testing the simple hypothesis given above as H1
0 . As should be expected for small

deviations in the initial condition theDF τ
GLS test is more powerful than ωπJ (c

∗). Once

again though the power of DF τ
GLS collapses as y

∗ increases while, generally, that of

ωπJ (c
∗) remains stable.

5 Conclusions

This paper has demonstrated that the problem of testing on a lagged dependent vari-

able, including the relevant unit root test, is generally characterized by the existence

of a nuisance parameter, present only under the alternative. As in Andrews and

Ploberger (1994) optimal tests can be defined as optimizing some weighted function

of power. This is equivalent to applying standard optimality criteria to the integrated

density of Berger, Liseo and Wolpert (1999). In the elliptically symmetric family this
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is shown to be straightforward to accomplish, with the obvious technical difficulties

completely circumvented.

For the leading unit root case, where no further restrictions are imposed under

the null, the resulting weighted criteria are directly analogous to those applied with

much success in the alternative framework of Dufour and King (1991). Numerical

evidence here shows that the t-tests of Dickey and Fuller (1979) have objectively good

power properties in this context. Indeed, it turns out that generally it is difficult to

improve on the t-test for any hypothesized parameter value.

On the other hand when additional restrictions are imposed, here we can provide

weighted optimal tests which are much more powerful than the relevant F -type tests

of Dickey and Fuller (1981). Some power superiority is also evident over the currently

favoured efficient-detrended version of the Dickey-Fuller t-test. Moreover, compar-

isons in both the current and the Elliott, Rothenberg and Stock (1996) framework

demonstrates that the power of a feasible weighted point optimal test is stable as

the initial condition deviates from its hypothesized value while that of the efficient

Dickey-Fuller test collapses. That is if there is uncertainty over the initial condition

one might prefer the proposed test, even in M2. For M1 the caveat is not necessary.
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Appendix
I) Proof of Theorem 1: Following Andrews and Ploberger (1994), for a given

measurable, non-negative weight function π(µ), weighted power is given by

Pω =
µ

Pω π(µ) dµ

=
µ ω

pdf(v1; ρ) (dv)π(µ) dµ,

since pdf(v1; ρ) is a density and thus non-negative, Tonelli’s Theorem implies we may

change the order of integration, to obtain

Pω =
ω µ

pdf(v1; ρ)π(µ) dµ (dv)

=
ω

pdf(v1; ρ)(dv), (23)

so that the optimality criteria applied to the integrated density immediately yield

weighted optimal tests.

From (14) we define an integrated likelihood for v as

pdf(v1; ρ) = a>0
pdf(aw1|H1)da

a>0
pdf(aw1|H0)da

= a>0
a
N−k
2
−1

RN−k pdf(w1; ρ) π(µ) dµ da

a>0
a
N−k
2
−1

RN−k pdf(w1; 1)π(µ) dµda
, (24)

since, for N − k > 2, Tonelli’s Theorem applies and so, again, we may interchange

the order of integration. Consequently, noticing that

RN−k
pdf(aw1; 1)π(µ)dµ = pdf(aw1; 1) ,

which follows from

RN−k
π(µ)dµ = 1, for all β andρ,

then

pdf(v; ρ) =
RN−k

∞
0
a
N−k
2
−1pdf(aw1; ρ)da

∞
0
a
N−k
2
−1pdf(aw1; 1)da

π(µ1) dµ1

=
RN−k

pdf(v; ρ)π(µ1) dµ1 = pdf(v; ρ),

as required. That is for a given weight function π(µ) any integrated density for w

immediately induces an equivalent integrated density for v. Substituting into (23)

immediately gives the result.
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II) Proof of Theorem 2:

Part (i): The integrated density for w1 is given, for any weight function π(µ), by

pdf(w; ρ) =
µ1∈RN−k

pdf(w; ρ)π(µ)dµ, (25)

and in order that the integrated density for v1 exists always (because limρ→1 µ = 0),

we will suppose that at ρ = 1,

π(µ) = δµ(1), (26)

the delta function taking the value 1 if µ = 0, 0 otherwise.

For ρ = 1, from Kariya (1980, Section 3) and the fact that marginal densities in

the elliptically symmetric family are themselves elliptically symmetric, we have

w1 ∼ F(µ,σ2A1),

which we will interpret as the conditional distribution of w1 given the nuisance para-

meter µ = µS = X̃ρβ.

The method of this paper is to choose the weight function so that under HS
1 ,

(w1, µ) are jointly elliptically symmetric in that w1

µ

 ∼ F
 0

0

 ,σ2
 Σw Σw,µ

Σw,µ Σµ

 . (27)

Immediately then, there exists a weight function given by

π(µ) = |Σµ|−1/2 qS µ Σ−1µ µ ,

so that marginally µ ∼ F (0,Σµ) and the condition (26) ensures that the requirement
(12) is met.

To determine this weight function notice that conditionally, we have

w1|µ ∼ F µ, σ2A1 ,

and so the matrices in (27) must therefore satisfy,

Σw,µΣ
−1
µ µ = µ

Σw − Σw,µΣ
−1
µ Σw,µ = A1. (28)
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Since the choice of what is essentially a prior for the nuisance parameter is, and should

be, somewhat user dependent, (28) has many solutions. Indeed it is not possible to

identify both Σw,µ and Σ−1µ individually, however we must have that

Σw,µΣ
−1
µ X̃ρ = X̃ρ,

since neither matrix can depend on β. For HS
1 we will take the simplest solution (in

particular so as to avoid use of a non-singular elliptical weight function) which has

Σµ = Σw,µ = A1, (29)

which determines the weight function precisely. Moreover, from (28) we have

Σw = 2A1,

and so the integrated density for w is simply

pdf(w1; ρ) = 2σ2A1
−1/2

q̄ w1 2σ
2A1

−1
w1 ,

from which the integrated density for v then immediately follows from King (1980),

as

pdf(v1; ρ) = |A1|−1/2 v A−11 v −(N−k)/2
.

Applying the results of Theorem 1 and using the definitions of ωPO and ωLP the

weighted optimal tests then follow.

Part (ii): Under HJ
1 we interpret the distribution of w1 as being conditional upon

the nuisance parameter λ, which is given by

w1|λ ∼ F W̃ρλ,σ
2A1 .

Notice that λ does not vanish under the null hypothesis, unlike µ above, since it is

a mixture of interest and nuisance parameters, and so no restrictions on the weight

function are needed.

Once again we suppose that the data w1 and nuisance parameter λ are jointly

distributed as  w1

λ

 ∼ F
 0

0

 ,σ2
 Σw Σw,λ

Σw,λ Σλ

 ,
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The weight function is, similar to before, determined by matrices which satisfy

Σw,λΣ
−1
λ W̃ρδ = W̃ρδ

Σw − Σw,λΣ
−1
λ Σw,λ = A1.

The straight-forward solution, again avoiding non-singular solutions, is to set

Σw,λ = W̃ρ(W W )−1 = C1∆1∆
−1
ρ W (W W )−1

Σλ = (W W )−1,

so the weight function is given as

π(λ) = σ−2 (W W )
1/2
qJ σ−2 λ (W W )λ .

For the integrated density of w1 we have that,

Σw = A1 + P̃W , P̃W = W̃ρ(W W )−1W̃ρ ,

and so

pdf(w1; ρ) = σ2(A1 + P̃W )
−1/2

q̄ w1 σ2(A1 + P̃W )
−1
w1 ,

and so from King (1980), we have

pdf (v1, ρ) = |A1 + P̃W |−1/2 v A1 + P̃W
−1
v

−(N−k)/2
,

and once again the results of Theorem 1 and the definitions for ωPO and ωLP yield

the given weighted optimal tests.

III) Tables

The results presented here represent outcomes of 20000 Monte Carlo replications,

both for the critical values and the rejection frequencies given here. All experiments

were performed using Mathematica 4.1 on a 3.0Ghz Pentium IV PC.

Table 1: Powers of tests for H1
0 vs. H1

1 , T = 100

ρ .975 .950 .925 .900 .875 .850 .825 .800

PEτ .077 .124 .223 .316 .514 .599 .777 .851

τ̂ τ .073 .108 .188 .279 .432 .519 .695 .787

ρ̂τ − 1 .081 .117 .211 .313 .488 .593 .771 .843
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Table 2: Powers of tests for H2
0 vs. H2

1 , T = 100

ρ .975 .950 .925 .900 .875 .850 .825 .800

PEµ .077 .169 .268 .438 .583 .728 .834 .924

τ̂µ .075 .138 .237 .396 .488 .653 .818 .883

ρ̂µ − 1 .077 .155 .260 .435 .580 .719 .826 .919

Table 3: Powers of tests for H3
0 vs. H3

1 , T = 100

ρ .975 .950 .925 .900 .875 .850 .825 .800

PE1 .098 .248 .458 .693 .845 .928 .973 .994

φ1 .057 .083 .142 .233 .371 .521 .669 .795

DF µGLS .058 .117 .207 .352 .518 .672 .801 .889

ωπJ (c
∗) .094 .234 .451 .673 .829 .915 .971 .989

ωLBπJ .098 .144 .196 .255 .295 .369 .424 .487

Table 4: Powers of tests for H4
0 vs. H4

1 , T = 100

ρ .975 .950 .925 .900 .875 .850 .825 .800

PE2 .055 .088 .248 .491 .706 .869 .941 .985

φ2 .050 .053 .055 .096 .133 .207 .290 .416

DF τ
GLS .055 .079 .234 .375 .552 .710 .833 .919

ωπJ (c
∗) .053 .085 .237 .482 .645 .794 .901 .957

ωLBπJ .055 .069 .100 .136 .167 .204 .253 .309

Table 5: Powers of tests for H5
0 vs. H5

1 , T = 100

ρ .975 .950 .925 .900 .875 .850 .825 .800

PE3 .058 .105 .197 .333 .438 .611 .754 .846

φ3 .056 .070 .105 .147 .206 .321 .472 .571

DF τ
GLS .058 .100 .188 .288 .416 .592 .722 .837

ωπJ (c
∗) .056 .095 .191 .308 .425 .599 .737 .844

ωLBπJ .058 .076 .099 .126 .152 .182 .215 .267

23



Table 6a: Powers of the ωπJ (c
∗) test for H6

0 vs. H6
1 ,

in (21) with different y∗, T = 100

ρ

y∗ .975 .950 .925 .900 .875 .850 .825 .800

1 .056 .104 .183 .314 .451 .610 .745 .875

2 .051 .097 .177 .292 .452 .609 .754 .856

3 .044 .089 .171 .298 .455 .617 .761 .868

4 .040 .084 .167 .297 .459 .629 .778 .883

5 .032 .072 .158 .291 .468 .642 .788 .900

6 .026 .066 .155 .292 .470 .651 .799 .905

7 .020 .060 .147 .288 .478 .664 .815 .911

8 .014 .053 .139 .293 .482 .682 .831 .924

9 .012 .045 .131 .281 .489 .692 .842 .929

10 .008 .037 .125 .283 .501 .708 .857 .941

Table 6b: Powers of the DF τ
GLS test for H

6
0 vs. H6

1 ,

in (21) with different y∗, T = 100

ρ

y∗ .975 .950 .925 .900 .875 .850 .825 .800

1 .046 .089 .176 .304 .446 .615 .744 .856

2 .035 .075 .151 .271 .422 .602 .735 .849

3 .023 .056 .117 .234 .380 .552 .708 .835

4 .014 .039 .091 .182 .323 .496 .664 .800

5 .008 .022 .066 .136 .259 .423 .599 .751

6 .003 .012 .038 .093 .204 .352 .528 .694

7 .001 .006 .021 .062 .143 .274 .447 .624

8 .001 .002 .009 .036 .091 .206 .356 .545

9 .000 .001 .005 .016 .057 .138 .283 .455

10 .000 .000 .001 .008 .032 .090 .202 .361
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Table 7a: Powers of the ωπJ (c
∗) test for H1

0 vs. H1
1 ,

in (22) with different y∗, T = 100

ρ

y∗ .975 .950 .925 .900 .875 .850 .825 .800

1 .098 .159 .278 .444 .608 .754 .851 .908

2 .093 .157 .272 .429 .601 .762 .850 .915

3 .088 .152 .263 .416 .588 .745 .852 .913

4 .085 .156 .245 .408 .570 .717 .834 .916

5 .077 .140 .249 .408 .569 .728 .851 .920

6 .068 .128 .244 .400 .579 .735 .860 .928

7 .063 .125 .242 .412 .601 .758 .868 .946

8 .048 .116 .247 .407 .604 .768 .883 .952

9 .043 .104 .230 .419 .609 .785 .896 .958

10 .036 .099 .232 .414 .627 .800 .915 .961

Table 7b: Powers of the DF τ
GLS test for H

1
0 vs. H1

1 ,

in (22) with different y∗, T = 100

ρ

y∗ .975 .950 .925 .900 .875 .850 .825 .800

1 .090 .168 .313 .505 .685 .823 .911 .960

2 .066 .148 .287 .466 .651 .799 .889 .943

3 .050 .121 .246 .417 .599 .764 .865 .932

4 .033 .085 .194 .353 .540 .716 .822 .901

5 .018 .055 .141 .265 .451 .634 .786 .883

6 .011 .035 .093 .204 .371 .553 .721 .844

7 .004 .017 .053 .141 .278 .454 .639 .787

8 .002 .009 .030 .087 .201 .365 .552 .725

9 .000 .002 .012 .049 .133 .253 .461 .636

10 .000 .000 .006 .023 .078 .175 .348 .537
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