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Abstract

Two recent papers, (Harless and Camerer, 1994) and (Hey and Orme, 1994) are

both addressed to the same question: which is the `best' theory of decision making

under risk? As an essential part of their separate approaches to an answer to this
question, both sets of authors had to make an assumption about the underlying

stochastic nature of their data. In this context this implied an assumption about the

`errors' made by the subjects in the experiments generating the data under analysis.

The two di�erent sets of authors adopted di�erent assumptions: the purpose of this

current paper is to compare and contrast these two di�erent error stories - in an

attempt to discover which of the two is `best'.
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Two recent papers concerned with the empirical investigation of theories of decision

making under risk, (Harless and Camerer, 1994) and (Hey and Orme, 1994), were both

addressed to the same question: which is the `best' theory of decision making under risk?

As an essential part of their separate approaches to an answer to this question, both sets

of authors had to make an assumption about the underlying stochastic nature of their

data. In the context of deterministic theories of decision making under risk this involved

an assumption about the `errors' made by the subjects in the experiments generating the

data under analysis. The two di�erent sets of authors adopted di�erent assumptions: the

purpose of this current paper is to compare and contrast these two di�erent error stories

- in an attempt to discover which of the two is `best'. A direct comparison of these two

di�erent error stories from the original two papers is not possible as they di�ered in a

second crucial way - in terms of the way that the data was �tted: Harless and Camerer

�tted the data across all subjects whilst Hey and Orme �tted the data subject by subject.

Since the Harless and Camerer data does not allow us to �t the Hey and Orme error story

(because the number of observations per subject is not su�ciently large) we are obliged to

use the Hey and Orme data and �t both error stories to that. This note reports on the

results of so doing.

1 Error Speci�cations

We begin by de�ning the two error stories proposed in the papers cited above. Both concern

decision making in a pairwise choice task: subjects are asked which of two risky prospects

they prefer. The �rst of these papers (Harless and Camerer, 1994) simply assumes that

there is a constant probability � that the agent will make a mistake1 on any pairwise

choice question - and that this probability does not depend upon the nature of the pairwise

choice question itself. We call this the `Constant Probability' (CP) error story2. The story

1By `make a mistake' we mean that the agent says that he or she prefers the left (right) hand choice
when in fact he or she prefers the right (left) hand choice.

2We also assume, as do Harless and Camerer (Harless and Camerer, 1994), that � is constant across all
questions and also across all subjects, but this, of course, is not necessary. We could, for example, assume
that the probability varies across subjects, or across classes of questions, though of course some constancy
is necessary to justify the spirit of the assumption.
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proposed in (Hey and Orme, 1994) is quite di�erent. It goes back to the primitive of the

preference functional V (:) implied by the theory: according to a theory with preferences

given by V (:), L is preferred to R if and only if V (L) > V (R), that is, if and only if

V (L) � V (R) > 0. However, to accommodate the empirical `fact' that agents make errors

when choosing, Hey and Orme interpret this as measurement error, suggesting that actual

decisions are taken on the basis of whether V (L)� V (R) + � > 0 where � is a measurement

error. Obviously to make this operational one needs to specify the distribution of �: it is

fairly natural to specify its mean as being zero (assuming no left or right bias in the agent's

answers) and possibly reasonably acceptable to assume that it has a normal distribution

(appealing to the Central Limit Theorem). We call this the `White Noise' (WN) error

story. The magnitude of the error variance �2 can be taken as a measure of the magnitude

of the error spread: the larger is � the greater in general will be the measurement error.

2 Describing True Preferences

Although this paper is concerned with the appropriate modelling of the errors implicit

in subjects' responses, this can not be carried out (at least with the data available to

us) independently of the subjects' true preferences. Indeed to truly guarantee that we

had correctly identi�ed the true error structure we would have to know that we had also

correctly identi�ed the subjects' true preferences. But of course we do not know these true

preferences. Therefore, we are forced to jointly �t an error story and a story of preferences.

Unfortunately, there is no concensus as to what might be the best story of preferences - so

we are obliged to �t a number of possible stories - and let the data tell us which might be

best.

We �tted the following. We omit details as these are readily available elsewhere (see,

for example, (Hey, 1997)). The two letter abbreviation is used to identify the functional.

All the functionals, with the exception of Regret theory, are holistic and hence postulate a

preference functional V (:) which is used to rank prospects: hence p is preferred to q if and

only if V (p) > V (q). The theories di�er in their speci�cation of V (:)3 We shall limit the

3We normalise throughout with u(x1) = 0 and u(x4) = 1.
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descriptions to the case relevant for the experiments described in this paper - where there

are just 4 outcomes: x1, x2, x3 and x4, with respective probabilities p1, p2, p3 and p4.

rn : Risk Neutrality - subjects choose on the basis of expected value.

V (p) = p1x1 + p2x2 + p3x3 + p4x4 (1)

eu : Expected Utility - subjects choose on the basis of expected utility.

V (p) = p2u(x2) + p3u(x3) + p4 (2)

da : Disappointment Aversion - subjects choose on the basis of expected (modi�ed) utility

- where utility is modi�ed ex post to take account of any disappointment or delight

experienced (see (Gul, 1991)).

V (p) = min(W1;W2;W3) (3)

where

W1 =
(1 + �)p2u(x2) + (1 + �)p3u(x3) + p4

1 + �p1 + �p2 + �p3
(4)

W2 =
(1 + �)p2u(x2) + p3u(x3) + p4

1 + �p1 + �p2
(5)

and

W3 =
p2u(x2) + p3u(x3) + p4

1 + �p1
(6)

pr : Prospective Reference - subjects choose on the basis of a weighted average of the

expected utility calculated using the correct probabilities and the expected utility
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calculated using equal probabilities for all the non-null outcomes (see (Viscusi, 1989)).

V (p) = �(p2u(x2) + p3u(x3) + p4) + (1� �)(a2u(x2) + a3u(x3) + a4) (7)

where ai = jaij=(ain(p)) and n(p) is the number of non-zero elements in p.

ri : Regret with Independence - subjects choose on the basis of expected (modi�ed) utility

where utility is modi�ed ex post to take account of any regret of rejoicing experienced

and where the two prospects are considered to be independent of each other. Here

the preference functional is not holistic, and we have instead the decision rule; p is

preferred to q if and only if

(p2q1 � p1q2) (x2; x1) + (p3q1 � p1q3) (x3; x1) + (p4q1 � p1q4) (x4; x1) +

(p3q2 � p2q3) (x3; x2) + (p4q2 � p2q4) (x4; x2) + (p4q3 � p3q4) (x4; x3) > 0 (8)

where  (:; :) is the Regret function.

rp : Rank dependent with Power weighting function - subjects choose on the basis of

expected utility where the (cumulative) probabilities are distorted by a weighting

function which takes the power function form.

V (p) = w(p2 + p3 + p4)u(x2) + w(p3 + p4)(u(x3)� u(x2)) + w(p4)(1� u(x3)) (9)

where w(:) is the power function w(p) = p
 .

rq : Rank dependent with Quiggin weighting function - subjects choose on the basis of

expected utility where the (cumulative) probabilities are distorted by a weighting

function which takes the form advocated by Quiggin amongst others (see (Quiggin,

1982)).

V (p) = w(p2 + p3 + p4)u(x2) + w(p3 + p4)(u(x3)� u(x2)) + w(p4)(1� u(x3)) (10)
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where w(:) is the `Quiggin' function4 w(p) = p
=[p
 + (1� p)
 ](1=
).

qu : Quadratic Utility - subjects choose on the basis of a utility function which is quadratic

in the probabilities (rather than linear as in the case of Expected Utility theory).

V (p) = p21 (x1; x1) + 2p2p1 (x2; x1) + 2p3p1 (x3; x1) + 2p4p1 (x4; x1)

+ 2p22 (x2; x2) + 2p3p2 (x3; x2) + 2p4p2 (x4; x2) +

p23 (x3; x3) + p4p3 (x4; x3) + p24 (x4; x4) (11)

wu : Weighted Utility - subjects choose on the basis of expected weighted utility.

V (p) =
w2p2u(x2) + w3p3u(x3) + w4p4
w1p1 + w2p2 + w3p3 + w4p4

(12)

The generalisations of Expected Utility theory (da, pr, ri, rp, rq and wu) involve

extra parameters over and above those speci�ed by eu. In the context of the experiment

from which the data for this note comes: da, pr, rp and rq all have one extra parameter;

da has Gul's � parameter5; pr has Viscusi's � parameter6; rp and rq have the weighting

function's 
 parameter. Further, in the context of the experiment reported in this note,

ri has 5 extra parameters and wu 2 has extra parameters. These obviously in
uence the

numbers of degrees of freedom involved with the �tting of these functionals.

3 The Experimental Data

We use the data7 reported in (Hey and Orme, 1994): this consists of the individual responses

of 80 subjects to 100 pairwise choice questions on two separate occasions, separated by a

period of several days. We call the data from the �rst occasion Data Set 1, that from

the second occasion Data Set 2, and the combined data from both occasions Data Set

4See (Quiggin, 1982).
5See (Gul, 1991).
6See (Viscusi, 1989).
7The data - along with further data reporting the time taken by subjects to answer each question - is

available on request.
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3. The responses of the subjects were either preference for one of the two choices in the

pairwise choice or indi�erence between them. Subjects were motivated on each occasion

by knowing that after expressing preference (or indi�erence) on all 100 questions, one of

the 100 questions would be selected at random and the choice that they had said they

preferred on that question would be played out for real and the subject paid accordingly; if

the subject had expressed indi�erence on the chosen question then the experimenter would

choose one of the two choices at random to be played out. The 100 questions on the second

occasion were the same 100 as on the �rst occasion, though the order was randomised and

left and right interchanged. For further details, see (Hey and Orme, 1994).

4 Fitting the Data

The procedure used for �tting the various preference functionals combined with the White

Noise error story to the data is as described in (Hey and Orme, 1994): essentially the �tted

model is either a linear or a non-linear ordered logit (or probit) model. We wrote our own

software to carry out the maximum likelihood estimation. For �tting the various preference

functionals combined with the Constant Probability error story to the data, a di�erent

procedure was required. Moreover, since, for the purposes of this paper we are �tting the

various functionals subject by subject rather than across all subjects as in (Harless and

Camerer, 1994), a procedure also di�erent from theirs is required. Let us be more speci�c:

following Harless and Camerer we assume a constant probability of making a mistake on any

one pairwise choice question and we assume independence across questions. Now consider

a particular preference functional with parameter vector � and suppose for a particular

subject and a particular data set that the preference functional with parameter vector �

predicts correctly8 n of the subject's actual choices and predicts incorrectly the remaining

(N � n) questions (where N is the total number of questions in that data set). Then the

8We should state what we mean by this: (a) if the functional predicts Left (Right) is preferred then
if the individual reports Right (Left) preferred or the two indi�erent, then this is a mistake; (b) if the
functional predicts strict indi�erence then Left or Right or Indi�erence is a correct response.
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log-likelihood for this subject on this data set is:

LL(�) = nln(�) + (N � n)ln(1� �) (13)

Note that n will, in general, depend upon �. The value of � that maximises this, for given

n, is simply �� = n=N and the implied maximised value of the log-likelihood is then:

LL(�) = nln(n) + (N � n)ln(N � n)�Nln(N) (14)

Clearly, for n < N=2 the smaller is n the higher is LL(�). So, in order to maximise the log-

likelihood with this error model one should choose the paramer vector � so as to minimise

the number of incorrect predictions; on re
ection, this is as one would expect.

Minimizing the number of incorrect predictions is precisely the same as maximising the

score (Manski, 1975). We thus conclude that �tting the Constant Probability error story

is achieved by use of the Maximum Score estimation procedure. Unfortunately, the score

function is not smoothly concave in the parameter vector; on the contrary, the function to

be maximised is a step function in the parameter space. Accordingly, standard maximisa-

tion routines (such as those found in the MAXLIK applications package associated with

GAUSS) will not work - they require smoothly concave log-likelihood functions. There are

a number of routines suggested in the case of non-smoothly concave functions - none of

which are perfect. One that seems better than most is the Simulated Annealing algorithm

implemented in GAUSS by E.G. Tsionas. This is what we used; we are most grateful to

Dr Tsionas for making it available. We should however note that this algorithm is not

guaranteed to �nd the maximum9 - our results should be interpreted in that light.

5 Analysing the Results

We �tted each of the nine preference functionals listed above combined with each of the two

error speci�cations to the data for each of the 80 subjects on each of the three data sets -

9An exact routine that is so guaranteed is being developed by Marie-Edith Bissey - see (Bissey, 1997).
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giving a grand total of 4320 �tted models. We have parameter estimates for the respective

preference functions for these 4320 �tted models. However, we do not report these10 nor

do we report the log-likelihoods for each of the 4320 models. Instead we give some relevant

summary statistics. We start with Table 1 which simply gives, for each preference function

and for each Data Set, the number of subjects (out of 80) for which each error story �ts the

data better than the other - by which we mean has the highest (maximised) log-likelihood.

So, for example, the Risk Neutral preference functional with the White Noise error story

�ts the data better than the same preference functional with the Constant Probability error

story for 28 (of the 80) subjects on Data Set 1 for 40 (of the 80) subjects for Data Set 2 and

for 28 (out of 80) subjects for Data Set 3. It is clear from Table 1 that the question of the

`best' error story can not be answered independently of the question of the `best' preference

functional. However, there is the di�culty that any answer to the second question must

�rst resolve the issue of the appropriate treatment of di�ering degrees of parsimony in the

various models: put simply, the �tting of the di�erent models involves di�ering numbers

of �tted parameters and clearly those models which involve more parameters are bound

to �t better and therefore need to be penalised in some fashion. There is no obviously

correct way of doing this though one way that seems to command reasonable approval is

that suggested by Aikake's Information Criterion. As we have discussed its merits elsewhere

(Carbone and Hey, 1994), we will not rehearse the arguments further here. In essence this

requires the penalisation of the goodness of �t of a model with k parameters simply by

subtracting k from the maximised log-likelihood. Doing this provides us with `corrected'

log-likelihoods which can then be used to rank the various �tted models. Tables 2, 3 and 4

provide a summary of the consequences of carrying out such a ranking exercises. In these

Tables, we list, for each Data Set, the number of subjects for whom each �tted model

comes 1st, 2nd, 3rd, 4th or 5th in this ranking. The Tables also give an average ranking

for each �tted model; clearly the lower the average ranking the better that �tted model

performs - in an across-subjects analysis. It will be seen from these Tables that the Constant

Probability error story (combined with some appropriate functional) generally �ts better

than the White Noise story. Particularly interesting is the very strong performance of the

10Though they are available on request.
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rq11 model combined with the Constant Probability error story.

This aggregate analysis hides some interesting individual subject e�ects, however: it is

clear, if we look at the results subject by subject, that there are many subjects for whom

the Constant Probability error story generally �ts better than the White Noise story and

there are many for whom the reverse is true. In other words, when we rank the models on

the basis of the corrected log-likelihood, there are many subjects for whom a large number

of Constant Probability speci�cations appear in the �rst 9 (out of 18) places, and many for

whom the converse is true. Consider, for example, subjects 1 through 4 on Data Set 1. We

have the following orderings based on the Corrected Log-Likelihood:

Subject 1 qu- rp- rq- da- wu- eu- pr- ri- rq+ pr+ eu+ da+ rp+ wu+ ri+ qu+ rn- rn+

Subject 2 pr+ rq+ wu+ rp+ eu+ da+ ri+ qu+ rq- qu- wu- rp- eu- da- pr- ri- rn+ rn-

Subject 3 rn- wu- rq- da- rp- eu- pr- qu- ri- ri+ qu+ wu+ rq+ pr+ rp+ rn+ eu+ da+

Subject 4 rq- wu- rp- eu- pr- qu- ri- da- rn- da+ qu+ rp+ wu+ ri+ rq+ pr+ eu+ rn+

In this the �rst two letters indicate the preference functional and `-' and `+' indicate which

error story: `-' indicates the Constant Probability error story and `+' the White Noise error

story. So, for example, for Subject 1, speci�cations involving the Constant Probability

error story occupy 8 of the �rst 9 places; whilst for Subject 2, speci�cations involving the

White Noise error story also occupy 8 of the �rst 9 places. With Subjects 3 and 4, the

separation is even more complete: all 9 of the �rst 9 places are occupied by Constant

Probability speci�cations and the last 9 places occupied by White Noise speci�cations. To

give some indication of the average positions of the two error speci�cations, we calculate

the mean position for each speci�cation; this yields, for the four subjects above (where the

�rst number is the average position for the White Noise speci�cation and the second the

mean position for the Constant Probability speci�cation) the following:

� Subject 1: 13.1 5.9

� Subject 2: 5.9 13.1

11The Rank dependent preference functional with Quiggin weighting function.
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� Subject 3: 14.0 5.0

� Subject 4: 14.0 5.0

One can do a formal statistical test of the null hypothesis that the 9 values of the

corrected log-likelihood for each of the two error speci�cations appear in a random order:

obviously, under this null hypothesis the expected mean position for each error speci�cation

is 9.5; signi�cant departures in either direction indicate non-randomness. The results of

such a test are given in Table 5. It is clear that the numbers of subjects for whom the test

is signi�cant is considerably greater than the expected number (namely 4 at 5% and 0.8

at 1%). The message seems to be very clear: for many subjects the Constant Probability

story is `best'; for many others the White Noise story is `best'. Trying to get one error

story as `best' for all subjects would appear to be seriously misleading.

6 Conclusions

We could go further: it could be argued on the basis of the above evidence that each stochas-

tic speci�cation should be matched with the\right" preference functional. That is, that the

well-speci�ed �tted preference representation is a joint speci�cation of the preference func-

tional and the stochastic speci�cation. This suggests that the preference functional and

the stochastic speci�cation are both part of the same decision process. Indeed, it seems

reasonable to argue that the way people make mistakes and their `underlying' deterministic

decision rule both depend on the way that they process the decision problem. Hence, it

could be argued, that if the decision rule chosen by a certain subject could be represented

by the Expected Utility preference functional, he or she should make mistakes in a way that

is not inconsistent with this preference functional. This suggests that for each individual

the best �tting error model depends on the preference functional - and that the best �tting

preference functional depends upon the stochastic speci�cation. For example, consider the

Rank Dependent model. Here there are three components: (1) the utility function; (2) the

weighting function; and (3) the way the two are combined to produce the �nal preference

functional. Randomness could enter into any of these three: there may be noise in the
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utility function, in the weighting function, or in the calculation of the functional. These

would depend on the basic decision process that the individual was using. And these would

determine the `overall' stochastic speci�cation of the complete model. But if all that was

true this would suggest that the person who tried to act as an EU maximizer should have

some stochastic speci�cation whilst someone who processed decision problems in the way

suggested by Rank Dependent EU would have another (and di�erent) stochastic speci�ca-

tion. In other words, and crucially, the error is related to the way one chooses. If this is

true then the way that the preference functional and the stochastic speci�cation are linked,

through the underlying decision process, should be the next object of our investigations.

These considerations seem to take us very close to the way that psychologists view and

model decision making. It may therefore useful to consider whether our approach, as it is

evolving here, could learn from the psychological approach. Or more brutally, whether, in

fact, we have simply ended up where the psychologists ended up some time ago.

At the risk of excessive simpli�cation, we could summarise the psychology approach as

based on a description of the decision process. This considers that the decision depends

on the context, on the weight of each alternative, on various framing e�ects and so on. A

useful reference is (Payne et al., 1993) in which a detailed discussion of all these elements,

and others, can be found. Additional material can be found in (Slovic, 1995). A good

illustration of this kind of approach is given by Prospect Theory (Kahneman and Tversky,

1979), in which it is postulated that decision-makers �rst edit the various prospects before

evaluating them. More generally, the psychologists' approach to the modeling of decision

making views it as a process, a process which is sensitive to the way that the decision

problem is posed (framed), and in which the decision-maker breaks down the problem into

a series of stages, in each of which some heuristic is invoked. These heuristics can take

various forms, depending on the stage of the decision process. Examples of such heuristics

include editing and evaluation, as in Prospect Theory (Kahneman and Tversky, 1979). The

heuristics used could evolve through time in such a way as to make the decision-maker

adaptive in the sense used by (Payne et al., 1993). At a �rst glance this whole approach

seems far removed from the approach used by economists, though the latter could simply
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be regarded as a special case of the former, in which only an evaluation heuristic is invoked,

and in which no adaption occurs.

The psychological literature makes frequent reference to potential errors in decision

making, though there is little formal modeling of such errors. Given that the decision

problem is solved in a sequence of stages it is clear that error could enter at any stage of

the process. For example, errors could occur as a failure of the adaptivity process; being

adaptive requires knowledge and ability to execute strategies. De�cits in either of these two

categories can lead to the failure of the adaptivity process and therefore to an imprecise

decision (a decision with error). Another example is errors in a measurement stage of the

decision process: the decision-maker, when measuring something relevant to the decision

process (for example a probability or a utility) measures it with error, just as when a

decision-maker is asked to measure some physical entity - like the physical dimensions of

some object. However, vary rarely is consideration given in the psychological literature to

a formal modeling of this error process.

One exception to this general rule can be found in (Shugan, 1980), in which is proposed a

\cost of thinking" theory. Shugan's basic story of decision making, restricted to a theory of

binary choices, is that the decision maker makes a number of comparisons of the two choices.

Further, he argues that the number of such comparisons depends upon three elements:

1) the di�erence in the mean utilities of the two options;

2) the con�dence level at which the decision must be made;

3) the perceptual complexity in comparing the two options.

The basic idea behind this model is that people will continue to sample binary di�erences

until the con�dence that one option is best reaches a desired level; that is, until the prob-

ability of making a mistake falls below some critical value. This model is interesting in

that it seems to provide a story behind the Harless and Camerer constant probability error

assumption. Indeed, if one views the calculation of the the `di�erence in the mean utilities

of the two options' as being essentially the calculation necessary to determine the option

with the highest expected utility, it would seem that we have arrived precisely at Expected
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Utility combined with a Constant Probability error. Does this provide the necessary bridge

between the economists and the psychologists' apparently con
icting approaches?

To an economist, unfortunately not. There is a logical 
aw in the argument: if the

number of comparisons that the decision-maker makes depends upon the `di�erence in the

mean utilities of the two options', then the decision-maker needs to know this di�erence

in order to calculate the number of comparisons that he or she must make. But if the

decision-maker knows this di�erence, then he or she already knows which option yields the

highest expected utility, in which case, if the decision-maker wants to act as an expected

utility maximiser, he or she can immediately, and without error, choose the best option.

The error disappears. Moreover, there is the `in�nite regress' problem with any story that

tries to incorporate a cost of thinking: if indeed there is a cost to thinking in general, and

indeed a cost of thinking about the decision problem, there must also be a cost of thinking

about thinking about the decision problem, and a cost to thinking about thinking about

thinking about the decision problem, and so on. In such a world there can be no such thing

as an optimal decision.

This brings us to the heart of the problem and the key source of con
ict between

economists and psychologists: the economist likes to build theories of decision making on

top of a set of axioms of `rational' behaviour. Almost by de�nition an `error' must be

irrational (and therefore di�cult for an economist to model within their current paradigm)

- unless it is chosen optimally. But for certain categories of error (such as those arising

from a cost of thinking), the in�nite regress argument is su�cient to count out optimally

chosen errors. This perhaps leaves us with exogenous errors - that is, errors that are deter-

mined independently of the behaviour of the decision-maker. These are however singularly

uninteresting, particularly so in the context used in the experiments discussed in this pa-

per. Indeed, it could be argued, by economists and (some) psychologists alike, that if the

magnitudes of the payo�s were to be increased then the frequency of errors would decrease.

Moreover it is very clear from numerous experiments that there are more errors on certain

kinds of questions than on others. The inference is clear: in practice, decision-makers do

appear to adapt their behaviour, as psychologists would argue. In fact, economists would
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agree - justifying their agreement by arguing that on certain types of question the relative

costs and bene�ts of trying to reduce the error are di�erent from those on other questions.

But economists often fail to recognise that this explanation con
icts with their basic un-

derlying theory - as we have argued above. Unless these costs and bene�ts are speci�cally

included in the theory, such arguments are an ad hoc modi�cation of the theory, con
icting

with its very structure, which assumed the satisfaction of certain axioms of rationality, and

hence the absence of error in any genuine sense. We have reached a logical impasse.

So where does this leave us? In limbo, it would appear, half way between the economists'

approach and the psychologists'. To get out of this limbo, we need to return to consid-

erations of precisely what it is that we are trying to do. More importantly we need to

recognise that economists and psychologists have di�erent research agendas and di�erent

objectives. While psychologists may want to provide a detailed description of the process by

which decision-makers arrive at decisions, economists are usually more pre-occupied with

providing theories of decision making that are predictively useful. Moreover economists

are usually much less interested in predicting individual behaviour, and more interested in

predicting aggregate behaviour, at some appropriate level of aggregation. Economists, for

good methododogical reasons, are often content with `as if' explanations12, as long as they

have good predictive power. This latter is the key: if the error in some `as if' theory is

small and apparently genuinely random then there are good reasons for accepting the `as

if' theory if alternative theories are cumbersome to apply and add little to the predictive

content. Nevertheless it is important - from an econometric point of view - to model the

error process in a descriptively adequate way, for otherwise the econometric tests and esti-

mates may be biased and lack power. This was the purpose of this paper. The fact that the

error modeling depends upon the preference function does not detract from its usefulness.

Indeed it provides an important warning that the search for the correct error speci�cation

and the search for the correct functional speci�cation may not be independent.

It is clear that the psychologists' approach can help the economist search for appropriate

error speci�cations - if the economic models can be interpreted using the psychologists'

12That is, explanations of behaviour based on behavioural assumptions which are not directly veri�able
or veri�ed.
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perspective. For example, in the Rank Dependent model discussed above, we as economists

could conceive of this model as the outcome of a process in which the decision-maker �rst

ranks the various outcomes (possibly with error), then assigns utilities to these outcomes

(possibly with error), then assigns cumulative probabilities to the outcomes (possibly with

error) and then uses these various components to evaluate the prospects (possibly with

error). In contrast, in the Expected Utility model we could conceive the choice process as

involving just one stage - an evaluation stage. Thus di�erent models have di�erent numbers

of stages and di�erent kinds of stages - evaluation stages, ranking stages, comparison stages,

and so on. The psychologists have expertise to inform us as to the types of errors that are

typically present in each of these types of stages, and the economist can then incorporate

these into his or her search for the descriptively-best error speci�cation. For example,

evidence from experiments conducted by psychologists tends to suggest that measurement

error is white noise error, with a variance that typically depends upon the prospects (and

which can therefore be estimated). It is clear from this discussion that the �nal error

depends crucially, as we have argued above, on the number of decision stages and their type.

So a di�erent error structure may well be present with an Expected Utility maximiser (who

goes through just one - evaluation - stage) as compared with a Rank Dependent Utility

maximiser (who goes through three or four stages).

So the economist can learn from the psychologists. At the same time they should not

abandon their basic approach - which is to postulate that decision-makers try to optimise

something (possibly through an adaptive process). Without this, the economists would

abandon one of the greatest strengths of their paradigm. Moreover, it is should not be

forgotten that an `as if' theory, even if not descriptively precisely accurate, may still have

relatively strong predictive power (if the error is relatively small) and that is ultimately

what the economist is interested in.
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Table 1: Summary of Winners for each Preference Functional

Preference White Noise error Constant Proby. error
Functional Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

rn 28 40 28 52 40 52
eu 49 48 46 31 33 34
da 52 61 58 28 19 22
pr 55 57 53 25 24 27
ri 60 72 63 20 8 17
rp 37 42 45 43 39 35
rq 24 24 32 56 57 48
qu 25 37 42 55 43 38
wu 34 41 42 46 40 38

Table 2: Numbers of times each model is in �rst 5 positions; and average position. Data
set 1.

Preference Error Position Mean
Functional Speci�cation 1st 2nd 3rd 4th 5th Position

rn WN 0 0 1 1 1 16.56
eu WN 5 5 2 5 3 9.09
da WN 0 1 1 3 10 9.95
pr WN 5 9 6 6 3 7.44
ri WN 2 5 4 4 3 8.72
rp WN 1 3 6 9 8 8.55
rq WN 5 9 9 4 8 7.06
qu WN 1 3 6 2 2 10.14
wu WN 1 1 6 5 4 8.24
rn CP 6 3 3 2 0 13.25
eu CP 1 1 5 5 6 9.85
da CP 0 1 3 6 2 11.74
pr CP 0 1 0 0 5 11.67
ri CP 0 0 0 0 0 14.29
rp CP 7 6 10 3 10 7.05
rq CP 27 7 7 9 5 4.42
qu CP 10 9 5 8 5 6.90
wu CP 9 16 6 8 5 6.07
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Table 3: Numbers of times each model is in �rst 5 positions; and average position. Data
set 2.

Preference Error Position Mean
Functional Speci�cation 1st 2nd 3rd 4th 5th Position

rn WN 0 1 0 0 0 16.61
eu WN 2 5 4 4 3 8.64
da WN 2 3 7 4 5 8.27
pr WN 3 11 9 7 7 6.71
ri WN 2 5 8 5 7 8.09
rp WN 2 6 4 5 5 8.35
rq WN 4 10 7 4 7 6.60
qu WN 3 6 5 4 4 8.87
wu WN 6 2 3 6 10 7.59
rn CP 3 2 0 0 0 15.11
eu CP 1 4 1 10 6 9.90
da CP 0 3 1 4 4 12.11
pr CP 0 1 2 1 1 11.60
ri CP 0 0 0 0 1 14.99
rp CP 4 4 8 8 3 8.13
rq CP 33 3 6 8 5 4.50
qu CP 8 7 5 6 4 7.55
wu CP 7 7 10 4 8 7.38
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Table 4: Numbers of times each model is in �rst 5 positions; and average position. Data
set 3.

Preference Error Position Mean
Functional Speci�cation 1st 2nd 3rd 4th 5th Position

rn WN 0 0 1 1 0 16.86
eu WN 2 4 4 4 5 9.39
da WN 1 4 2 5 8 8.99
pr WN 8 11 8 4 2 6.94
ri WN 5 5 6 10 2 8.16
rp WN 2 4 2 7 7 8.55
rq WN 6 9 8 4 10 6.84
qu WN 5 6 8 2 4 8.21
wu WN 2 3 4 9 8 7.95
rn CP 7 3 1 0 2 14.02
eu CP 4 0 7 2 7 9.46
da CP 0 2 0 4 1 12.26
pr CP 0 2 2 3 5 10.84
ri CP 0 0 0 0 0 14.32
rp CP 4 5 11 3 5 7.97
rq CP 25 7 7 5 4 5.16
qu CP 4 8 5 8 3 7.55
wu CP 5 10 3 9 7 7.51

Table 5: Numbers of subjects for whom test of random order hypothesis is signi�cant.

Data Sig. In favour of In favour of Total
Set level White Noise Const. Proby. Signi�cant
1 5% 19 23 32

1% 8 18 26
2 5% 25 10 35

1% 9 6 15
3 5% 32 21 53

1% 19 18 37
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