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Abstract

This paper proposes and analyses a measure of distance for the unit root hypothesis

tested against stochastic stationarity. It applies over a family of distributions, for any

sample size, for any specification of deterministic components and under additional

autocorrelation, here parameterised by a finite order moving-average. The measure

is shown to obey a set of inequalities involving the measures of distance of Gibbs and

Su (2002) which are also extended to include power. It is also shown to be a convex

function of both the degree of a time polynomial regressors and the moving average

parameters. Thus it is minimisable with respect to either. Implicitly, therefore, we

find that linear trends and innovations having a moving average negative unit root

will necessarily make power small. In the context of the Nelson and Plosser (1982)

data, the distance is used to measure the impact that specification of the deterministic

trend has on our ability to make unit root inferences. For certain series it highlights

how imposition of a linear trend can lead to estimated models indistinguishable from

unit root processes while freely estimating the degree of the trend yields a model very

different in character.



1 Introduction

Over the past two decades our progress in understanding of unit root processes and

our ability to model nonstationary time series has been tremendous. Despite this,

analytic results in closed form still remain relatively scarce. Some noteworthy excep-

tions are distributional results due to Abadir (1993), Phillips and Ploberger (1994),

as well as related results by these and other some other authors, such as the distri-

bution given in Forchini (2002). With few exceptions asymptotic analysis involves

finding representations for the limiting process, rather than its distribution, which

then has to be approximated via Monte Carlo.

To understand why detailing analytic properties might be important consider the

following model for a time series (yt)
N
t=1 ,

yt = dt + ut ; ut = αut−1 + ζt, t = 1, 2, ...,N, (1)

where dt is a deterministic component and ζt is an innovation process. We wish to

test H0 : α = 1 against H1 : |α| < 1. Numerical evidence suggests that the trending
characteristics of dt and the correlation properties of the ζt can dramatically affect the

performance, specifically power, of all recommended test procedures. See, amongst

many others, Durlauf and Phillips (1988), Phillips and Perron (1988), Perron (1989),

DeJong et al (1991), Zivot and Andrews (1992), Elliott, Rothenberg and Stock (1996),

Leybourne, Mills and Newbold (1998) and Phillips and Xiao (1998, §4).

Generally, authors providing such numerical evidence have tended to consider

only a few parameterisations of dt (a constant, a trend with possibly specified breaks

in each), in practice any dt might be appropriate, such as the slowly varying trends of

Phillips (2001). The asymptotic representation of any given test statistic will differ

for different dt and so relying only on simulation of partial sum processes implies a

practical limit on our capacity to investigate this dependence.

This paper proposes a measure of distance of H0 to H1. Since the distance is

analytic the investigation of the effects of both the deterministics and the autocorre-

lation is made more feasible. This distance, called Statistical Entropic Complexity,

seems new to the econometrics literature, but is well established elsewhere, see Poskitt

(1987) and Bozdogan (1990) and is also related to Shannon Entropy as used in a sim-

ilar context by Phillips and Ploberger (2003). It is a distance on the space of density

functions applied, in this case, to the density of the maximal invariant, of which all
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invariant tests are functions, see Dufour and King (1991). The distance therefore

applies over a family of sample distributions, for any deterministic component and

for any stationary ζt.

For the distance several results are demonstrated. First it is shown that is be-

longs to the family of measures satisfying the inequalities of Gibbs and Su (2002). In

addition, the Power Upper Bound of Würtz (1997) is added to the set of inequalities,

and thus we may have confidence that the proposed distance is measuring the same

phenomenon as the power of a test. To understand the impact of trends in dt and of

the autocorrelation in ζt we suppose that the deterministics are parameterised as a

polynomial in time and the innovations as a moving average. We then find that the

distance is a convex, and therefore minimisable, function of the polynomial degree

and moving average parameters. The special cases of a linear time trend and a mov-

ing average with a negative unit root give distances virtually indistinguishable from

the minimum. Thus, through the inequalities, the presence of these will necessarily

lower the likelihood of our correctly rejecting a false unit root null hypothesis. This

result gives analytic confirmation to the wealth of numerical evidence, on this point,

accumulated in the papers mentioned above.

The practical usefulness of the distance measure is illustrated via application to

the Nelson and Plosser (1982) dataset. For certain series and depending upon the

precise specification of the model authors have reached differing conclusions about

the presence of unit roots. Compare, for instance, Dejong and Whiteman (1991) and

Phillips (1991). Here we will estimate two specifications, which differ only in the

specification of a trend in dt. An unrestricted model has dt = β1 + β2t
p, so that the

degree of trend can be estimated while a restricted version imposes p = 1, i.e. a

linear trend is assumed. Several authors, for example Bhargava (1986) and Campbell

and Perron (1991), amongst others, have suggested testing should take place in the

presence of a maintained linear trend, in any event. This is justified as a modelling

strategy as a conservative reaction to the general uncertainty about whether a trend

is necessary. Alternatively, Phillips (2001) argues that for some series, negative values

for p, implying an evaporating trend, may be more appropriate.

This paper is able to address the question of the affect that imposing a linear

trend has on ability to make inferences about the unit root. For several of the series

p is found to significantly differ from 1. Amongst the series for which the effect is

most striking are Real Wages and Money Velocity. In both cases when the linear
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trend is imposed the estimated model is, according to the distance measure (and

indirectly therefore by power), indistinguishable from a unit root process. On the

contrary, for the unrestricted case p is found to be far from 1 and the model very

much distinguishable from a unit root process. Merely looking at the respective

estimated autoregressive coefficients the scale of this difference might well be missed

and moreover could not be easily inferred from accompanying simulation evidence.

The plan for the rest of the paper is as follows. The next section details the model

specification, proposed the measure of distance and details its relationship with other

measures, in terms of inequalities which are then numerically highlighted. Section

3 demonstrates how the distance depends, analytically, upon the trending behav-

iour of dt and the autocorrelation structure of ζt. Section 4 presents the application

of the distance measure for the Nelson and Plosser data and Section 5 concludes.

Appendices contain all of the proofs and derivations along with tables and graphs

illustrating the numerical results.

2 Some Preliminary Results

In this section we formalise the class of models under consideration and derive the

measure of distance, (Statistical) Entropic Complexity. To do so define the following

N × 1 vectors,

y = (yt)
N
t=1 ; d = (dt)

N
t=1 ; ζ = (ζt)

N
t=1 and ε = (εt)

N
t=1,

let L(i) define a lower triangular matrix with 1
0
s on the ith lower diagonal and 00s

elsewhere, so that ³
IN − αL(1)

´
y = ζ = σKφε, (2)

where V [ε] = IN and V [ζ] = σ2KφK
0
φ, with Kφ a N ×N matrix depending on some

set of parameters φ = (φj)mj=1 and σ2 a scalar variance. Formally, we will consider

models of the form (2) satisfying:

Assumption 1 (i) Let the density of y be f(y; d,σ2,α,φ) = f(y) ∈ F(d,σ2Ωα,φ),

with

F(Ωα,φ) =
n
f : f(y; d,σ2,α) =

¯̄
σ2
¯̄−1/2

detΩ
−1/2
α,φ q

h
σ−2(y − d)0Ω−1α,φ(y − d)

io
,

where q is a nonincreasing convex function on [0,∞) and

V [y] = σ2Ωα,φ = T
−1
α KφK

0
φ(T

−1
α )0 ; Tα =

³
IN − L(1)α

´
.
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(ii) The mean and covariance structure of y are determined by

d = Xβ and Kφ = (IN +
Xm

i=1
φiL

(i)),

where X = (x01, .., x0t)0 is a N×k matrix of regressors with rank k, i.e. dt = x0tβ,
with β a k × 1 vector of parameters and the φj.

Assumption 1 implies consideration of a special case of (1), in which

(1− αl)(yt − dt) =
³
1 +

Xm

i=1
φil

i
´
εt, (3)

where l is the lag-operator. That is (3) specifies an ARIMA(0, 1,m) model in yt−dt,
when α = 1. The restrictions imposed are that (a) the mean is linear in the xt, (b)

the autocorrelation in the error term may be modelled by a finite (invertible) moving

average and (c) the underlying distribution is within the elliptically symmetric family

F(d,σ2Ωα,φ) which contains, for example, contaminated Normal distributions, the
multivariate t-distribution, including as a limit the multivariate Cauchy. We will

write the joint sample density of y as,

y ∼ F(Xβ,σ2T−1α KφK
0
φ(T

−1
α )0).

Let Ξ denote the space θ = (α,β0,σ2,φ0)0 = (α ∈ (−1, 1],β ∈ Rk,σ2 ∈ R+,φ ∈ Rm),
and furthermore Ξ0 = (1,β0,σ2,φ0)0 and Ξ1 = Ξ− Ξ0, then the unit root hypothesis
is, formally

H0 : θ ∈ Ξ0 vs. H1 : θ ∈ Ξ1,

which is a classical nuisance parameter problem, (Cox and Hinkley (1974)), with nui-

sance parameters (β0,σ2,φ0)0. Consequently, noting that detKφ = 1, let z = K
−1
φ T1y

and W = K−1φ T1X, so that

z ∼ F(Wβ,σ2Σα,φ), (4)

where Σα,φ = K−1φ T1T
−1
α KφK

0
φ(T

−1
α )0T 01(K

−1
φ )0. Estimation in equation (4) implies

an (albeit unfeasible) GLS problem, so that if we let MW = IN −W (W 0W )−1W 0,

and decompose MW , with CC0 = MW and C 0C = IN−k, then we may transform z

according to

z →
 β̂ = (W 0W )−1W 0z

w = C0z

 and w→
 s2 = w0w = z0MW z

v = w/||w|| = C0z/s

 . (5)
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Notice that although β̂ is not a feasible estimator of β we have two options. First we

may assume that φ = (φ1, ..,φm)0 is known or second, replace φ, wherever it appears

by some consistent estimator, say φ̃. If we then denote any object depending upon

φ, evaluated at φ̃ by, e.g. x̃ = K−1
φ̃
T1y, then we have similar relations in the ‘tilded’

quantities, but interpret the results asymptotically, since plim φ̃ = φ. In either case,

the interpretation of the results to follow will be the same. Consequently, we shall

not distinguish between the cases notationally.

Whether the interpretation is asymptotic or not, under Assumption 1, the density

of v, defined with respect to Normalised Haar Measure on the unit sphere SN−k =©
v ∈ RN−k : v0v = 1ª , is

fv(ρ) = detA
−1/2 ¡v0A−1v¢−N−k

2 , (6)

see Kariya (1980), where A = C 0Σα,φC is a N−k×N−k positive definite symmetric
matrix. We call v the maximal invariant for testing H0 and has uniform distribution

on SN−k when H0 is true. Thus v characterises the class of invariant tests for H0, see

Dufour and King (1991). In addition, if φ̃ is consistent for an unknown φ, v charac-

terises a class of asymptotically pivotal tests, while if F is Gaussian, v characterises

the class of (asymptotically) similar tests, see Hillier (1987) for more details.

Since all invariant tests are functions of v we will define a measure of distance for

the unit root hypothesis, based upon the density of v given in (6).

2.1 Measures of Distance

There are many measures of distance on the space of density functions. Gibbs and

Su (2002) detail the relationships between, i.e. the inequalities satisfied by, these

distances. These relationships are important since, depending upon the nature of the

model, one may be more readily calculable than another. For example, in order

to demonstrate convergence with respect to relative entropy, or Kullback-Leibler

divergence, it is sufficient to demonstrate it for the Chi-Square distance. Of course

these measures are also fundamental in the sense that each also yields an associated

testing procedure. For example, the former yields the Likelihood Ratio and the latter,

Pearson’s Chi-Square goodness-of-fit.

The measure proposed in this paper, Entropic Complexity is defined by

∆EC =
1

2
ln |A|+ (N − k)

2
ln

Z
v0v=1

¡
v0A−1v

¢
(dv)

5



=
1

2
ln |A|+ (N − k)

2
ln

·
Tr(A−1)
N − k

¸
. (7)

As a statistical measure it has been used by Poskitt (1987) in the context of Bayesian

model selection and Bozdogan (1990) in a wider modelling context. To ensure this

measure is not arbitrary we must examine its relationship with the distances of Gibbs

and Su (2002). Pertinent to the results of this paper are the Total Variation, Kullback-

Leibler and Chi-Square measures of distance, defined respectively by;

∆TV =
1

2

Z
v0v=1

|fv(1)− fv(α)|(dv) = 1

2

Z
v0v=1

|1− |A|−1/2 ¡v0A−1v¢−(N−k)/2 |(dv),
∆KL =

Z
v0v=1

fv(1) ln

µ
fv(1)

fv(α)

¶
(dv) = −1

2
ln |A|+ (N − k)

2

Z
v0v=1

ln
¡
v0A−1v

¢
(dv)

∆χ2 =

Z
v0v=1

(fv(1)− fv(α))2
fv(α)

(dv) = −1 + |A|1/2
Z
v0v=1

¡
v0A−1v

¢(N−k)/2
(dv). (8)

In addition we will consider the power gain, that is the power minus size, of the

most powerful invariant test, characterised by a region ω∗ ∈ SN−k, which is given by

∆ω∗ = sup
ω∈SN−k

Z
ω
fv(1)− fv(α)(dv) = sup

ω∈SN−k
δ − |A|−1/2

Z
ω

¡
v0A−1v

¢−(N−k)/2
(dv).

(9)

The following Theorem gives the relationship between these five measures, extending

the set of inequalities in Gibbs and Su (2002).

Theorem 1 The Power Gain, Total Variation, Kullback-Leibler, Entropic Complex-

ity and Chi-Square measures for the distance between the unit root null and fixed

alternative |α| < 1 satisfy the following set of inequalities

i) ∆ω ≤ ∆TV ; ii) ∆TV ≤
r
∆KL
2

iii) ∆KL ≤ ∆EC ; iv) ∆EC ≤ ln(∆χ2 + 1) ≤ ∆χ2 .

Theorem 1 establishes both power and Entropic Complexity within a well defined

class of distance measures. In some respects power could be thought of as fundamen-

tal, in the sense that all other distances bound it above. In fact all measure precisely

the same thing, that is how far the null density is from the alternative, Moreover all

can seen to be expectations of a particular function taken with respect to the null

hypothesis (since fv(1) = 1). For those given in (8) that function is obvious, while

for power we can write

∆ω∗ =

Z
v0v=1

Iv (ω
∗) (fv(1)− fv(α)) (dv),
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where Iv (ω∗) is the indicator function taking a value 1 if v ∈ ω∗ and 0 otherwise.

In addition, notice that the inequalities given in Theorem 1 apply for any situation

in which the density of the maximal invariant is uniform. Consequently, we should

expect ∆EC to be useful in other circumstances as well.

In order to illustrate the bounds given in Theorem 1, consider the following time

series regression;

(1− αl) (yt − β1 − Iτ (τT ) β2t) = εt ; t = 1, .., T, (10)

where I (τT ) is the indicator function taking values 1 if t ≥ τT and 0 otherwise.

Thus τ indexes the timing of a break in the linear trend in the regression. The

values τ = 0, 1 indicate respectively the cases of a full trend and no trend. Zivot and

Andrews (1992) and Leybourne, Mills and Newbold (1998) have also numerically

analysed the impact of the timing of breaks in a possible trend. Generally, the earlier

the trend starts the lower the power against a fixed value of α under the alternative.

Although the measures of distance given in (8) and (9) are not available in closed

form we may numerically evaluate the unresolved integrals via Monte Carlo. For

T = 100 and with 100, 000 Monte Carlo replications each of these measures of dis-

tance was simulated for values of τ = (0, .25, .5, .75, 1) and α = (.9, .92, .94, .96, .98).

Entropic Complexity was also evaluated from (7) for these values. Presented in Table

1 in Appendix II are the functions of all of these measures given in the bounds in The-

orem 1 along with, for later reference, ∆EC itself. Although all of the measures are

nonlinear in α it is clear that they are measuring the same distance, in more-or-less

the same way. Notice, also, how tight the bound ∆KL ≤ ∆EC is.
In addition to it being often very time consuming having to simulate those other

measures of distance, having no closed form makes it impossible to determine any

analytic properties. In the next section we will explore the analytic properties of

∆EC , specifically how it depends upon the trending behaviour of regressors and upon

the structure of serial correlation in the innovations.

3 Properties of Entropic Complexity

We seek to establish analytic links between the deterministic component and/or the

autocorrelation of the errors and ∆EC . Notice that these two influences enter ∆EC
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via the following route; A is defined by

A = C 0Σα,φC ; Σα,φ = K
−1
φ T1T

−1
α KφK

0
φ(T

−1
α )0T 01(K

−1
φ )0,

while C (defined by MW = CC 0 and C0C = IN−k, where W = K−1φ T1X ) is the

singular value decomposition of the symmetric idempotent MW . While the role of φ,

therefore, is relatively transparent, that of dt is less so. Hence we will capture the

trending properties of the deterministics, under the following assumption:

Assumption 2 With d = (d1, .., dN) = Xβ, we assume that the ith column of X is

Xi(p) = (1, 2
p, .., tp, ..,Np)0,

so that the set of regressors includes a polynomial time trend indexed by the

scalar parameter p, satisfying:

(i) For every p > 0, X has full column rank,

(ii) No column of X, Xj with j 6= i, grows faster than Xi(p) in t.

Under Assumption 2, we can focus upon the impact of polynomial time trends

upon the distance. In particular, we will examine the impact of the most strongly

trending regressor (for the sake of interpreting the result rather than any mathemat-

ical imperative), but must exclude p = 0, since we will assume the presence of a

constant, in any case.

Thus we can parameterise ∆EC as a function of both p and φ (as well as the

autocorrelation coefficient α) as ∆EC(α, p,φ). To fix the properties of ∆EC we then

require the slopes and Hessians of ∆EC(α, p,φ) in both the p and φ directions. Before

proceeding, note that A is a function of p and φ, through C, and in general the singular

value decomposition is not a differentiable function. However, in this special case,

we are able to prove a new result, crucial for our analysis here.

Theorem 2 Let C be the singular value decomposition of the symmetric idempotent

CC 0 =MW = I −W (W 0W )−1W 0 and let C0 and W0 define points in RN×(N−k) and

RN×k, then

(i) if W is differentiable in a neighbourhood of W0, C is differentiable in a neighbour-

hood of C0,

(ii) defining the respective derivatives with respect to p and any element of φ, φj say,
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by ∂p(.) and ∂φj (.),we have the expressions

∂pC =W (W
0W )−1(dpW )0C

∂φjC =W (W
0W )−1(dφjW )

0C. (11)

To proceed we now need to establish that ∆EC(α, p,φ) is a differentiable function

of both p and φ and then find those derivatives. By then looking at the second

derivatives we find that ∆EC(α, p,φ) is a (quasi) convex function over p and φ. Thus

it is possible to find values of p and φ which minimise the distance, and therefore

implicitly through the bounds given in Theorem 1, will ensure that power is also

small. The results are presented in the following theorem.

Theorem 3 Let ∆EC be defined as in (7) and assume that Assumption 2 holds, then

(i) ∆EC is differentiable, and therefore continuous, with respect to p, with derivative

given by

∂p∆EC(α, p,φ) =
1

λ

©
tr
£¡−λIN−k + (N − k)A−1¢ ¡C0DC¢A−1¤ª , (12)

where λ = trA−1, D = (∂pW )(W 0W )−1W 0Σα,φ, and

(∂pW ) = T1(∂pX) = T1 (0, .., 0, ∂pXi(p), 0, .., 0) .

(ii) ∆EC is differentiable, and therefore continuous, with respect to φ = {φj}mj=1 ,
with derivatives given by

∂φj∆EC(α, p,φ) =
1

λ

©
tr
£¡−λIN−k + (N − k)A−1¢ ¡C0HC¢A−1¤ª , (13)

where H = K−1φ L(i)PWΣα,φ, and PW =W (W 0W )−1W 0.

(iii) ∆EC(α, p,φ) is quasi-convex over both p and φ and therefore solutions, p∗, to

∂p∆EC(α, p,φ) = 0 and φ∗ to ∂φ∆EC(α, p,φ) are at a minimum.

Theorem 3 implies that the distance ∆EC is minimisable with respect to the

degree of trending of the regressors and the autocorrelation of the innovations. Thus,

via the bounds given in Theorem 1, we may also conclude that power can be made

small by both these model features. Although this result has genuine theoretical

significance, to illustrate the tangible effects of the different model properties we will

examine each in turn.
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3.1 Numerical Effects of the Polynomial Trend Degree

From Theorem 3 for any set of deterministic components dt, including tp, and given

a particular form of moving average error autocorrelation, it is possible to obtain

a p∗ = p∗ (α,φ,N) which minimises ∆EC . It does not, however, depend upon the

coefficients β, in dt, nor the variance σ2. Since, p∗ is an implicit function, we may

find its slope via,
dp∗

dα
= −∂

2∆EC
∂p∂α

µ
∂2∆EC
∂2p

¶−1 ¯̄̄̄¯
p=p∗

. (14)

However, (14) does not have a constant sign over α ∈ (−1, 1), and so p∗ is not a
monotone function of α. To illustrate, suppose that we consider a simplified version

of (3) with no error autocorrelation, viz.

(1− αl)(yt − β1 − β2t
p) = εt ; εt ∼ N(0,σ2), (15)

for t = 1, ..,N.We may solve ∂p∆EC = 0, and plot the solution p∗ for different sample

sizes (N = 10, 20, and 40), giving Figure 1, in Appendix II. Notice, that for moderate

sample sizes, and for alternatives ‘close’ to the null, ∆EC is not quite minimised by

a linear time trend.

In practice there seems little a-priori rationale for including as a regressor t0.8, for

instance. Consequently, we calculate ∆EC , for models characterised by

(1− αl)(yt − β1 − βd∗t ) = εt ; εt ∼ iid(0,σ2), (16)

and consider the following cases: (i) d∗t = tp
∗
, (where p∗ is found by solving dp∆EC =

0); (ii) d∗t = t (linear trend); (iii) d∗t = ln t (logarithmic trend); (iv) d∗t = t2 (quadratic

trend) and (v) d∗t = 0 (no trend). Table 2 in Appendix II, gives values for ∆EC(α)

as α varies, for each model configuration and for sample sizes of 20 and 40.

Numerically, p = p∗ and p = 1 are barely distinguishable. While having no trend

(p = 0) gives us the greatest ability to discriminate. These two facts simply mirror

previous studies of the power of unit root tests, for example in DeJong et al (1992).

Of some interest is that the ‘ranking’, in terms of the measure, is not uniform over all

values of α. In summary these results compliment, and allow slightly more detailed

analysis than, the related results of Phillips (1998) and Phillips and Ploberger (2003).
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3.2 Numerical Effects of Innovation Autocorrelation

From an applied perspective the deterministics dt are a choice made by the modeler

to attempt to capture the trending behaviour of the data, specifically to ensure invari-

ance with respect to those trends. On the other hand, the correlation structure of the

innovations are a property of the underlying statistical process. That does not mean,

however, that understanding the effect that particular autocorrelation structures have

is not important.

For the purposes of numerical analysis, we again consider a simplified version of

(3), namely

(1− αl)(yt − β1 − β2d
∗∗
t ) = (1 + φ1l)εt ; εt ∼ iid(0,σ2), (17)

so that the de-trended yt follows an ARIMA(0, 1, 1) process. As α varies we can

calculate the minimum argument φ∗1 for sample sizes of N = 10, 20 and 40 for model

(17), with d∗∗t = t. These values are plotted in Figure 2, in Appendix II. As we should

expect it is large negative values of φ1, which make the distance small. Again, the

result is that it is not quite an MA(1) with a negative unit root which minimises the

distance. Although, as in the case with a linear trend, there is some uniformity in

that the value of φ∗1 is not particularly sensitive with respect to α. That is, we are

not merely measuring a common factor effect.

To highlight the effect that different first order innovation autocorrelation has in

the context of (17), we calculate ∆EC for α, and for different values of φ1 (namely,

φ1 = φ∗1,−1,−0.5, 0.5, 1) and for two versions of (17) with d∗∗t = t and d∗∗t = 0.

The results are recorded in Table 3, for both. These tables strongly reinforce the

experimental Monte Carlo evidence cited in the introduction. In addition, it is clear

that an MA(1) with a negative unit root implies distances, and thus indirectly, powers

exceedingly close to their minimum value.

To summarise the theoretical and numerical properties of ∆EC ; it is analytic and

minimisable in the model features as parametrised here. Moreover, the numerical

results are strongly supportive of current numerical studies, in that it is, more-or-less,

linear trends and negative unit root moving averages which minimise our distance,

and thus power. In the following section we’ll use this knowledge to examine how

model specification affects distance in practice.
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4 Illustration (Nelson & Plosser Data)

We have established the validity of ∆EC as a distance measure, in terms of the Gibbs

and Su (2002) family and detailed two key analytic properties. In this section we will

demonstrate the practical usefulness of the measure within the context of testing for

a unit root in the Nelson and Plosser (1982) series of 14 macroeconomic time series.

We will consider two model specifications,

M1 : (1− αl) (yt − β1 − β2t
p) = ut = φ1εt−1 + φ2εt−2 + εt (18)

M2 : (1− αl) (yt − β1 − β2t) = ut = φ1εt−1 + φ2εt−2 + εt, (19)

where εt ∼ iid(0,σ2), l is the lag-operator and t = 1, ...,N. Estimation of these

two models, and evaluation of ∆EC at the estimated parameter values will highlight

the effect that imposition of a linear trend has on our ability to perform unit root

inferences. In order to estimate both M1 and M2 we will also need to additionally

assume that the ut are outcomes of an invertible MA(2).

The Nelson and Plosser data has been much analysed with in the literature with

authors coming to different conclusions about the existence of unit roots within some

of the series, for example the differing perspectives of Phillips (1991) and Dejong and

Whiteman (1991). Heuristically, it seems that altering the trending behaviour of the

regressors, for example the inclusion of a linear trend, the timing of any breaks in

that trend, can alter the outcome of a test.

Here we characterise model M2 as a restriction of M1. That is in M1 we can

estimate freely, via non-linear least squares, the degree of an included time trend,

while in M2 the trend is restricted to be linear. Both models were estimated by

via a combination of least squares and the Hannan-Rissanen procedure to estimate

the moving average coefficients. M2 is really the standard model estimated within

this context, except that we are choosing to estimate the transfer function of the

innovation sequence (ut) with a short moving average rather than autoregression.

Full results of the estimation ofM1 for all 14 series are presented in Table 5 in the

appendix. The figures below the estimated values are the estimated standard errors,

obtained from the Gaussian Hessian. Noteworthy from the results are that the several

of series (5 of 14) have estimated trend degrees more than two standard errors from

1. These are Real GNP, Real Wages, Unemployment, Velocity and Consumer Prices.

Both Unemployment (with p̂ = −.161) and Velocity (with p̂ = −.566) would seem to

12



have negatively powered, or evaporating trends, as detailed in Phillips (2001).

Since M2 is a standard model the results will not be reported in full. However,

it is clear that at least for some of the series imposition of p = 1 is not necessarily

supported by the data, i.e. those mentioned in the previous paragraph. The purpose

here though is to measure the impact that imposing a linear trend on the data has

on our distance measure. In general entropic complexity will be a function of α, p,

and φ = (φ1,φ2)
0 . All of these parameters may be consistently estimated and since

Theorem 3 ensures that ∆EC is differentiable in its arguments we may consistently

estimate ∆EC as well, i.e.

∆EC(α̂, p̂, φ̂)→p ∆EC(α, p,φ).

We call α̂1 and α̂2 the estimated autoregressive coefficients for modelsM1 andM2

respectively, and similarly φ̂1 and φ̂2 for the estimated moving average parameters.

These are given in Table 5, in Appendix II. In terms only of the estimated autore-

gressive parameter, with the exception of Real Wages, the effect of restricting the

model to a linear trend seems negligible. However, the effect on distance, specifically

the estimated distances ∆EC(α̂1, p̂, φ̂1) and ∆EC(α̂2, 1, φ̂2) is generally much greater.

For three series, Real GNP, Real Wages and Velocity the effect of imposing a

linear trend is to significantly reduce the distance of the fitted model from the unit

root. From the bounds in Theorem 1 and highlighted in Table 1 we can be confident

that power behaves similarly we can suggest that for these series a linear trend has

a similarly dramatic negative effect on the power of unit root tests. For some series,

Unemployment, the Standard & Poor 500 and Industrial Production the opposite

is true, although much less dramatically. For Unemployment although imposition

of a linear trend is clearly inappropriate, doing so does not seem to have serious

implications for unit root testing.

The most telling individual result is that for Real Wages. The unrestricted model

estimates, see Table 5, suggest values for the autoregressive coefficient and trend

degree both far from unity. Imposing a linear trend though yields what appears to

be a unit root. That is, far from the deterministic and stochastic trends ‘competing’ to

explain the trending behaviour of series they can in fact combine to give an illusion of

trending behaviour, when none exists. Notice that the value of ∆EC(α̂1, p̂, φ̂) ≈ 3.45
corresponds, via Table 1, to situations in which power minus size (at the 5% level) is

approximately 0.3, whereas imposing the linear trend yields a distance comparable

13



to having no power at all. Qualitatively, the same can be inferred for Velocity, albeit

to a slightly lesser degree.

5 Conclusions

This paper has presented an analytic closed form measure of distance for the unit root

hypothesis applicable in a relatively general class of models. The link between this

measure of distance and others considered by Gibbs and Su (2002) as well as power

is established, so that we can be confident that is measuring exactly the same thing

as, for instance, power. In addition, how the measure depends upon the key features

of our time series regression; deterministic trending and autocorrelation structure, is

completely transparent.

Perhaps more importantly the distance can be used to highlight exactly how sen-

sitive our unit root inferences may be to the precise specification of the deterministic

trend. It is seen that for certain series in the Nelson and Plosser (1982) Data, most

strikingly for Real Wages and Velocity, constraining the trend to be linear implies

an estimated model very close to a unit root process. On the other hand, freely

estimating the degree of the trend implies a model very different in character.

That is, two important features have been highlighted. First, for macroeconomic

series trends other than linear ones seem to have statistical relevance. Being analytic

the proposed measure is more suited to handling the implied complexity than current

Monte Carlo based results. Second, imposition of an inappropriate linear trend can

have serious consequences in terms of our ability to perform unit root inferences.
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Appendix
I. Proofs

Proof of Theorem 1:

The first inequality is established in Würtz (1997) and the second is well known,

see Gibbs and Su (2002). For the third inequality we have

∆KL =

Z
v0v=1

ln
¡
fv(ρ)

−1¢ (dv) = Z
v0v=1

ln
³
|A|1/2(v0A−1v)(N−k)/2

´
(dv)

=
1

2
ln detA+

(N − k)
2

Z
v0v=1

ln
¡
v0A−1v

¢
(dv)

≤ 1

2
ln detA+

(N − k)
2

ln

Z
v0v=1

¡
v0A−1v

¢
(dv)

then by Jensen’s inequality since ln(.) is concave, and sinceZ
v0v=1

¡
v0A−1v

¢
(dv) =

Tr[A−1]
N − k
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the inequality is proved. For the fourth we have

∆χ2 = −1 +
Z
v0v=1

|A|1/2 ¡v0A−1v¢(N−k)/2 (dv).
Considering just the integral then, for N − k > 2Z

v0v=1

¡
v0A−1v

¢(N−k)/2
(dv) ≥

µZ
v0v=1

¡
v0A−1v

¢
(dv)

¶(N−k)/2
,

again by Jensen’s inequality, the fourth inequality follows via

ln(∆χ2 + 1) =
1

2
ln detA+ ln

µZ
v0v=1

¡
v0A−1v

¢(N−k)/2
(dv)

¶
≥ 1

2
ln detA+

(N − k)
2

ln

Z
v0v=1

¡
v0A−1v

¢
(dv),

= ∆EC ,

and ln (r + 1) ≤ r gives the final inequality.

Proof of Theorem 2

Since W = K−1φ T1X, then immediately W is differentiable with respect to φj.

Now under Assumption 1, since p > 0, then the rank of X is constant, and so X is

differentiable with respect to p. Consequently, the rank ofW is constant and therefore

W is also differentiable with respect to p, with differential ∂W = K−1φ T1(∂X). In fact

W is an analytic (matrix) function of both p and φ.

To establish differentiability of C (with respect to either parameter) we note that

C is defined as the singular value decomposition of MW = IN −W (W 0W )−1W 0, and

is therefore the unique solution (up to orthogonal transformation), in RN×(N−k), to

the equations

MW = CC0 and C0C = IN−k. (20)

We first show that (20) implies and is implied by

W 0C = 0 and C 0C = IN−k. (21)

To do this note that

MW = CC 0 ⇐⇒ (IN −MW )C = 0, (22)

and define

PW = I −MW =W (W 0W )−1W 0 =WW+ =
¡
W+

¢0
W 0,
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where W+ denotes the Moore-Penrose inverse of which exists and is unique since the

rank of W is constant under Assumption 2. Rewriting (22) as (W+)
0
W 0C = 0, then

since

W+ = (W 0W )+W 0 and W =W (W 0W )+(W 0W ),

we have ¡
W+

¢0
W 0C = 0⇐⇒ (W 0W )+W 0C = 0,

which leads to

(W 0W )+W 0C = 0⇐⇒ (W 0W )(W 0W )+W 0C = 0⇐⇒W 0C = 0,

as required.

To continue, define the matrix valued function h : RN×k×RN×(N−k) → RN×(N−k)

of C and W by

h(C,W ) =

 W 0C

C 0C − IN−k

 ,
then following a similar argument to Magnus and Neudecker (1988), Theorem 8.7, h

is differentiable on RN×k×RN×(N−k). Letting the point C0,W0 in RN×k×RN×(N−k)
satisfy

h(C0,W0) = 0,

and further

det[J0] = det

"
h(C,W )

dC

¯̄̄̄
C0,W0

#
= det

 W 0
0

2C 00

 6= 0,
since by definition W 0C = 0, then the conditions for the Implicit Function Theorem

are met (see Theorem A.3, Section 7, Magnus & Neudecker (1988)). Consequently,

there exists a neighbourhood in RN×k, V (W0) and a unique (up to orthogonal trans-

formation) matrix valued function C : V (W0) → RN×(N−k) for which the following

statements hold:

(a) C is differentiable on V (W0)

(b) C(W0) = C0, and

(c) W 0C = 0 and C0C = IN−k for all W ∈ V (W0),

which concludes the proof of part (i).

For part (ii) we require an explicit relationship between the differential of C and

that of W. From (21) we have

W 0C = 0,
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so that denoting the differentials ofW and C by ∂W and ∂C respectively (suppressing

for the moment which variable we are differentiating with respect to), we have

(∂W )0C +W 0(∂C) = 0,

giving

(W 0)+W (∂C) = (W 0)+(∂W )0C.

Consider the matrix defined by

P = (W 0)+W +CC0 = PW +MW = IN−k,

and so

∂C = P (∂C) =
¡
(W 0)+W +CC0

¢
(∂C) = (W 0)+W (∂C),

since C 0(∂C) = 0. Consequently, the relevant expression for the differential of C is

∂C = (W 0)+(∂W )0C =W (W 0W )−1(∂W )C,

which then gives the expressions in (11).

Proof of Theorem 3

For part (i) we have

∆EC =
1

2
ln detA+

(N − k)
2

ln
trA−1

(N − k) ,

where A is a function of p. In order to establish differentiability we utilise Cauchy’s

rule of invariance for (possibly) matrix valued functions of matrix arguments. If F is

differentiable at D and G is differentiable at E = F (D), then the composite function,

defined by

H(D,U) = G ◦ F,

is differentiable for all n×m matrices U and

∂H(D,U) = ∂G(E;∂F (D;U)).

From Theorem 2, C is differentiable with respect to p and so differentiability of A

immediately follows, and consequently of ∆EC(α). Since also A = C0Σα,φC, we have

∂pA =
£
(∂pC)

0Σα,φC +C
0Σα,φ(∂pC)

¤
, (23)

so that substitution of (11) into (23), yields

∂pA = −C0[D +D0]C, (24)
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where D = (∂pW )(W
0W )−1W 0Σα,φ. Finally, noting the following standard differen-

tials,

∂p ln detA = tr[A
−1∂pA], ∂p ln(trA

−1) =
tr
¡
∂pA

−1¢
trA−1

& ∂pA
−1 = −A−1(∂pA)A−1

so that

∂p∆EC =
1

2
tr[A−1∂pA]− (N − k)

2

tr
¡
A−1(∂pA)A−1

¢
trA−1

, (25)

and letting λ = trA−1, substituting (24) into (25) and rearranging proves part (i).

For part (ii) differentiability is established in exactly the same way as in part (i).

The required derivative of ∆EC(α) is

∂φj∆EC =
1

2
tr(A−1(∂φjA))−

(N − k)
2λ

tr
¡
A−1(∂φjA)A

−1¢ , (26)

where again λ = trA−1. For this case the derivative of A is

∂φjA = (∂φjC)
0Σα,φC +C

0(∂φjΣα,φ)C +C
0Σα,φ(∂φjC), (27)

however, from the definition of Σα,φ, ∂φjΣα,φ = 0, so that the second term in (27)

vanishes. From (11), we have

∂φjC =W (W
0W )−1(∂φjW )C,

where

∂φjW = ∂φj (K
−1
φ T1X) = −K−1φ L(i)K−1φ T1X

= −K−1φ L(i)W,

so that

∂φjC = −PW (L(i))0(K−1φ )0C,

and hence

∂φjA = C
0(H +H 0)C, (28)

where H = K−1φ L(i)PWΣα,φ, so that substituting (28) into (26) and rearranging gives

the required derivative.

For part (iii), consider first the derivatives with respect to p. Let γi = 1/λi,

so that 0 < γ1 < γ2 < .. < γN−k are the ordered eigenvalues of A−1, and let

cN = −(N − k)/2 ln(N − k), so that we may write

∆EC = −1
2

N−kX
i=1

lnγi +
(N − k)
2

ln
N−kX
i=1

γi + cN (29)
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Further, letting ∆EC = ∆(γ1(p), .., γN−k(p)), so that ∆EC is a function of p only

through the eigenvalues of A−1 and so

∂2∆EC
∂p2

=
N−kX
i=1

Ã
∂2∆[γ]

∂γ2i

µ
∂γi
∂p

¶2
+

∂∆[γ]

∂γi

∂2γi
∂p2

!
. (30)

The relevant partial derivatives in (30) are given by

∂∆[γ]

∂γi
=
−1
2γi

+
(N − k)
2
PN−k
i=1 γi

, (31)

∂2∆[γ]

∂γ2i
=

1

2γ2i
− (N − k)
2(
PN−k
i=1 γi)2

, (32)

and if we define γi and ri, with r0iri = 1, as the N − k solutions to A−1r = γr, then

applying Theorems 8.7 and 8.10 of Magnus and Neudecker (1999), we have

∂γi
∂p

= r0i(∂pA
−1)ri = r0iA

−1(−∂pA)A−1ri = γir
0
i(−∂pA)A−1ri, (33)

∂2γi
∂p2

= 2r0i(∂pA
−1)(γiI −A−1)+(∂pA−1)ri

= 2γ2i r
0
i(−∂pA)A−1(γiI −A−1)+A−1(−∂pA)ri, (34)

where (γiI − A−1)+ is the Moore-Penrose inverse of the rank N − k − 1 matrix
γiI −A−1.

Consequently, substituting (31), (32), (33) and (34) into (30), and noting thatPN−k
i=1 γi = trA−1 = λ, as in the statement of part (i), the second derivative is

∂2∆EC(α)

∂p2
=

N−kX
i=1

·µ
1

2
− γ2i (N − k)

2λ2

¶¡
r0i(−∂pA)A−1ri

¢2
+

µ
−1 + γi(N − k)

λ

¶
γih

0
i(γiI −A−1)+hi

¸
, (35)

where hi = A−1(−∂pA)ri.
We can write (35) as

d2∆EC(α)

dp2
= F +G, (36)

and consider F and G separately. Write F as

F =
1

λ2

"
λ2

N−kX
i=1

¡
r0i(−∂pA)A−1ri

¢2 − (N − k)N−kX
i=1

γ2i
¡
r0i(−∂pA)A−1ri

¢2#
,

so that F ≥ 0 if γi ≤ λ/(N − k)1/2 for every i. From Wolkowicz and Styan (1980)

the maximum eigenvalue of A−1 satisfies

tr(A−1)
N − k ≤ γN−k ≤ tr(A

−1)
N − k +

µ
N − k − 1
N − k

¶1/2µ
tr(A−2)− tr(A

−1)
N − k

¶1/2
,
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which gives,µ
γN−k − tr(A

−1)
N − k

¶2
≤
µ
N − k − 1
N − k

¶µ
tr(A−2)− tr(A

−1)
N − k

¶
. (37)

Using the inequalities

ln(detA−1) ≤ tr(A−1)− (N − k) ; ln(detA−2) ≤ tr(A−2)− (N − k),

and noting detA−1 ≤ 1, we have tr(A−2) ≤ tr(A−1), which upon substitution into
(37) then givesµ

γN−k − tr(A
−1)

N − k
¶2

≤
µ
N − k − 1
N − k

¶
tr(A−1)− (N − k − 1) tr(A

−1)2

(N − k)2

≤
µ
N − k − 1
(N − k)2

¶µ
(N − k)− tr(A−1)

tr(A−1)

¶
(tr(A−1))2. (38)

Consider now the inequalities,

ln(detA−1) ≤ tr(A−1)− (N − k) ; ln(detA) ≤ tr(A)− (N − k),

which together imply

tr(A−1) + tr(A) ≥ 2(N − k),

and moreover

tr(A) = tr(C0Σα,φC) = tr(Σα,φMW )

≤ tr(Σα,φ) ≤ tr(T1T−1α (T−1α )0T1)

= N

µ
2 + α

1 + α2

¶
− 1− α2N

1 + α2

≤ N

µ
2 + α

1 + α2

¶
, (39)

since α ∈ (−1, 1]. As a consequence of (39), we have, for A−1

tr(A−1) ≥ 2(N − k)−N
µ
2 + α

1 + α2

¶
,

which implies that the inequality in (37) can be replaced with

µ
γN−k − tr(A

−1)
N − k

¶2
≤
µ
N − k − 1
(N − k)2

¶ (N − k)−N
³
2+α
1+α2

´
2(N − k)−N

³
2+α
1+α2

´
 (tr(A−1))2,

and again since α ∈ (−1, 1]

(N − k)−N
³
2+α
1+α2

´
2(N − k)−N

³
2+α
1+α2

´ ≤ 1.
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Finally, since µ
N − k − 1
(N − k)2

¶
≤
µ√

N − k − 1
N − k

¶2
,

then µ
γN−k − tr(A

−1)
N − k

¶
≤
µ√

N − k − 1
N − k

¶
tr(A−1),

and rearranging this inequality gives, as is required,

γN−k ≤ tr(A−1)√
N − k ,

so that in (36) F ≥ 0. Equally, we may write G as

G =
1

λ

"
−λ

N−kX
i=1

h0i(γiI −A−1)+hi +
N−kX
i=1

γih
0
i(γiI −A−1)+hi

#
,

and let

R0A−1R = Λ = diag(γi) ; R0R = IN−k,

so that

h0i(γiI −A−1)+hi = (Rhi)
0(γiI − Λ)+Rhi

≥ 0 if γi ≥ λ/(N − k)
< 0 otherwise.

If we let t∗ be such that γi ≤ λ/(N − k) for i ≤ t∗, then

G =
1

λ

"
−λ

t∗X
i=1

h0i(γiI −A−1)+hi +
t∗X
i=1

γih
0
i(γiI −A−1)+hi

#

+
1

λ

"
−λ

N−kX
i=t∗+1

h0i(γiI −A−1)+hi +
N−kX
i=t∗+1

γih
0
i(γiI −A−1)+hi

#
≥ 0.

Hence ∆EC is quasi-convex over p, and so any solution to part (iii) is proved. Since

(35) depends only on the square of the derivative of A, then so do both F and G as

defined above. Consequently, exactly the same result holds for the second derivative

with respect to any φj. That is ∆EC is also quasi-convex over φ. Hence any solutions,

p∗, to ∂p∆EC(α, p,φ) = 0 and φ∗ to ∂φ∆EC(α, p,φ) must be at a minimum.
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II. Tables and Graphs

Table 1: Illustration of the Bounds for the distances given in Theorem 1.

Simulation of ∆ω, ∆TV , ∆KL and ∆χ2 is based on 100000 replications of regression (10).

τ α ∆ω ∆TV

q
∆KL
2

q
∆EC
2

q
ln(∆χ2+1)

2 ∆EC

.90 .271 .553 1.05 1.07 3.66 2.294

.92 .183 .450 .816 .822 2.74 1.351

0.00 .94 .096 .338 .572 .570 2.14 0.649

.96 .046 .207 .331 .325 .866 0.211

.98 .017 .075 .118 .110 .604 0.024

.90 .319 .588 1.22 1.25 4.68 3.135

.92 .206 .500 .989 1.00 3.85 2.011

0.25 .94 .121 .395 .734 .739 3.30 1.092

.96 .060 .271 .476 .466 2.03 0.435

.98 .019 .131 .213 .205 .715 0.084

.90 .402 .650 1.52 1.61 5.73 5.184

.92 .279 .568 1.28 1.34 4.75 3.590

0.50 .94 .168 .477 1.01 1.03 4.08 2.156

.96 .089 .357 .694 .704 3.13 0.993

.98 .031 .204 .347 .350 1.54 0.245

.90 .520 .725 1.62 1.75 6.04 8.236

.92 .373 .659 1.41 1.51 5.67 5.966

0.75 .94 .246 .567 1.17 1.37 5.01 3.801

.96 .127 .450 .947 .972 3.75 1.891

.98 .048 .276 .501 .507 2.29 0.515

.90 .696 .793 1.90 2.02 4.98 12.33

.92 .546 .733 1.62 1.72 4.39 9.199

1.00 .94 .370 .649 1.31 1.23 4.30 6.088

.96 .193 .534 .848 .889 3.19 3.167

.98 .070 .347 .463 .474 1.93 0.901
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Fig.1: p∗ derived for model (15) and

for T = 10 (–), T = 20 (· · ·) and T = 40 (- - -).
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Table 2: Values for ∆EC(α), given model (16)

for N = 20 and 40 and across the different configurations.

N = 20

α d∗t = tp
∗

d∗t = t d∗t = ln t d∗t = t2 d∗t = 0

0.800 0.091 0.096 0.179 0.208 1.203

0.850 0.037 0.040 0.094 0.114 0.815

0.900 0.009 0.011 0.043 0.046 0.439

0.950 0.001 0.001 0.015 0.010 0.131

N = 40

α d∗t = tp
∗

d∗t = t d∗t = ln t d∗t = t2 d∗t = 0

0.800 0.735 0.751 1.214 1.175 4.408

0.850 0.345 0.361 0.644 0.677 3.070

0.900 0.107 0.116 0.277 0.293 1.751

0.950 0.011 0.013 0.088 0.062 0.559
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Fig 2: φ∗1 derived for model (17) with d∗∗ = t and

for T = 10 (–), T = 20 (· · ·) and T = 40 (- - -).
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Table 3: Values for ∆EC(α), given model (17)

for N = 20 and 40, d∗∗t = t, and for different MA(1) parameter values

N = 20

α φ1 = φ∗1 φ1 = −1 φ1 = −0.5 φ1 = 0.5 φ1 = 1

0.800 0.032 0.033 0.081 0.174 0.199

0.850 0.011 0.011 0.034 0.072 0.081

0.900 0.002 0.002 0.010 0.019 0.022

0.950 0.000 0.000 0.001 0.002 0.002

N = 40

α φ1 = φ∗1 φ1 = −1 φ1 = −0.5 φ1 = 0.5 φ1 = 1

0.800 0.322 0.334 0.673 1.130 1.275

0.850 0.123 0.127 0.325 0.538 0.590

0.900 0.029 0.030 0.108 0.170 0.182

0.950 0.002 0.002 0.012 0.019 0.019
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Table 4: Estimated values for the parameters in (18) for

the Nelson & Plosser data set. Figures in parentheses are estimated standard errors.

Series\Estimators α̂1 p̂ β̂1 β̂2 φ̂1 φ̂2

Real GNP

N = 80

1.005

(.048)

-0.011

(.430)

0.572

(1.45)

0.172

(.797)

0.399

(.097)

-0.227

(.073)

Nom. GNP

N = 80

0.982

(.091)

0.825

(.103)

0.532

(1.03)

0.340

(.046)

0.470

(.095)

-0.265

(.076)

GNP per ca.

N = 80

1.003

(.047)

0.518

(.406)

0.560

(1.13)

-0.053

(1.44)

0.411

(.098)

-0.238

(.070)

Bond Yield

N = 89

0.954

(.077)

1.466

(.805)

0.317

(1.637)

0.012

(.737)

0.136

(.095)

-0.106

(.087)

Nom. Wage

N = 89

0.980

(.053)

0.813

(.066)

0.577

(.027)

0.226

(.054)

0.450

(.087)

-0.201

(.064)

Real Wage

N = 89

0.880

(.020)

0.305

(.024)

0.807

(.052)

0.909

(.084)

0.288

(.097)

-0.094

(.079)

Unemploy.

N = 99

0.750

(.017)

-0.161

(.105)

1.157

(.141)

1.118

(.146)

0.177

(.093)

-0.168

(.072)

Employ.

N = 99

1.001

(.043)

0.810

(.175)

0.537

(.702)

0.010

(.234)

0.405

(.085)

-0.229

(.065)

GNP Defl.

N = 100

0.978

(.040)

0.972

(.130)

0.400

(.053)

0.059

(.029)

0.412

(.079)

-0.151

(.066)

Money

N = 100

0.979

(.035)

0.999

(.104)

0.274

(.302)

0.072

(.034)

0.555

(.067)

-0.216

(.065)

S&P500

N = 118

0.946

(.046)

1.168

(.211)

0.335

(.053)

0.019

(.022)

0.200

(.078)

-0.133

(.068)

Velocity

N = 120

0.962

(.036)

-0.566

(.483)

0.556

(.272)

0.084

(.408)

0.123

(.086)

-0.079

(.079)

Ind. Prod.

N = 129

0.884

(.048)

1.104

(.084)

0.344

(.028)

0.024

(.008)

0.080

(.087)

-0.071

(.077)

C.P.I.

N = 129

0.975

(.032)

0.571

(.080)

-3.580

(.020)

0.563

(.101)

0.489

(.068)

-0.188

(.057)
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Table 5: ∆EC
³
α̂1, p̂, φ̂1

´
and ∆EC

³
α̂2, 1, φ̂2

´
derived from estimating (18) and (19)

for each of the series in the Nelson and Plosser data.

R.GNP N.GNP GNP.p.c. I.R. N.Wage R.Wage Unemp.

∆EC
³
α̂1, p̂, φ̂1

´
.0725 .0070 .0011 .3537 .0146 3.4545 23.457

∆EC
³
α̂2, 1, φ̂2

´
.0006 .0009 .0002 .2876 .0020 2.6×10−6 14.397

α̂1 1.005 0.982 1.003 0.954 0.980 0.880 0.750

α̂2 0.991 0.990 0.993 0.950 0.990 0.998 0.751

Employ. GNP Defl. Money S&P500 Velocity Ind. Prod. C.P.I.

∆EC
³
α̂1, p̂, φ̂1

´
2.4×10−6 0.0346 0.0297 0.8733 2.0719 5.9330 0.1196

∆EC
³
α̂2, 1, φ̂2

´
4.1×10−6 0.0322 0.0522 1.5254 0.0035 9.0406 0.0342

α̂1 1.001 0.9778 0.979 0.946 0.962 0.884 0.975

α̂2 0.998 0.9784 0.975 0.930 1.011 0.854 0.983
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