
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 

No. 2000/62 
 

Dynamics of Output Growth, Consumption and Physical Capital 
in Two-Sector Models of Endogenous Growth 

 
by 

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
Department of Economics and Related Studies 

University of York 
Heslington 

York, YO10 5DD 

 
No. 2007/09 

 
Experimental Evidence on English Auctions: 

Oral Outcry vs. Clock 
 

By 
 

Ricardo Gonçalves and John Hey 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6721295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Experimental evidence on English auctions: oral outcry vs. clock�

Ricardo Gonçalvesy

Universidade Católica Portuguesa (Porto)
E-mail: rgoncalves@porto.ucp.pt

John Hey
University of York and LUISS
E-mail: jdh1@york.ac.uk

April 2007

Abstract

This paper tests experimentally, in a common value setting, the equivalence between the
Japanese English auction (or clock auction) and an open outcry auction, where bidders are
allowed to call their own bids. We �nd that (i) bidding behaviour is di¤erent in each type
of auction, but also that (ii) this di¤erence in bidding behaviour does not a¤ect signi�cantly
the auction prices. This lends some support to the equivalence between these two types of
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1 Introduction

One of the most remarkable results in auction theory, the revenue equivalence theorem, �rst stated

by Vickrey (1961), has been the object of substantial research over the recent years, not only

theoretical1 but also experimental2. Its prediction that the average price of the four main types of

auction (English, oral outcry or ascending bid, Dutch or descending bid, �rst-price and second-price

sealed bid) is the same (in the independent private values model) has been one of the targets of

that research. However, the also striking result on the strategic equivalence between the English

and second-price sealed bid auctions has been widely accepted. Milgrom and Weber (1982), in

a more general model which nests the independent private value and common value auctions as

special cases, have analysed the symmetric equilibrium of all the main types of auction, and have

found that the English auction, on average, generates a higher revenue for the auctioneer than the

second-price sealed bid auction when the number of bidders is higher than two. When the number

of bidders is exactly two, they suggest that the two types of auction are strategically equivalent,

and hence yield the same equilibrium price3, and this applies both to private or common value

settings.

However, the English auction model used to obtain this equivalence result is quite di¤erent from

a real world oral outcry auction. Milgrom and Weber (1982) model a Japanese English auction,

in which all bidders depress a button while the price is posted on a screen and is continuously

increasing. Any bidder who wishes to drop out only needs to release the button. The auction

�nishes when only one bidder is left, and he pays the price at which his last opponent dropped out.

This type of English auction, also known as a clock auction, and its theoretical predictions have

been tested experimentally in Levin, Kagel and Richard (1996) and Avery and Kagel (1997). But

real world English auctions, commonly referred to as oral outcry auctions, usually involve bidders

stopping to bid and then restarting again later on, and also discrete bidding, where they have to

shout their own bid (or where the auctioneer calls for discrete bidding increments). The latter is

the key di¤erence we would like to test. Some recent papers (Rothkopf and Harstad (1994), Sinha

and Greenleaf (2000), Isaac et al (2007), Cheng (2004), David et al (2005), Gonçalves (2007a))

have shown that theoretically di¤erences are to be expected between those two auction types. The

�rst experimental test of such discrete bidding auctions is, to the best of our knowledge, Isaac et al

(2005) who focus on testing the di¤erent types of equilibrium which could emerge in independent

private value English auctions.

In a common value auction, we test experimentally the clock auction and an oral outcry auction

1For comprehensive surveys, the reader is referred to McAfee and McMillan (1987) or Klemperer (1999).
2See Kagel (1995) for an overview.
3With more than two bidders, the two types of auction are strategically equivalent in a weaker sense (Milgrom

and Weber (1982)), and if the drop out prices of the quitting bidders are publicly revealed, the English auction will
generate more expected revenue than the second-price sealed bid auction (see Milgrom and Weber (1982)).
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with discrete and endogenous bidding, based on the �Wallet Game� (Klemperer (1998), tested

experimentally by Avery and Kagel (1997)). In such common value settings, a common feature

(see Kagel (1995) or Avery and Kagel (1997)) is the presence of the winner�s curse: overbidding

compared to what is predicted in equilibrium, often leading to negative payo¤s for the auction

winner. The purposes of this paper are twofold: (i) to test experimentally whether allowing for

discrete bidding leads to signi�cantly di¤erent outcomes when compared to the clock auction; and

(ii) to analyse the winner�s curse (if present) and see under which setting its e¤ects are more

pervasive.

Our experiments contain a small departure from the standard assumptions in common value

auctions: we assume that the ordering of the private signals, i.e. the identity of the highest sig-

nal holder, is common knowledge. By contrast, the exact value of each bidder�s signal is private

information, a standard assumption. Recent literature has analysed the impact of such an assump-

tion on the revenue equivalence theorem. Fang and Morris (2006) assume that each bidder in an

independent private values auction observes his private valuation as well as a noisy and private

signal about their opponent�s valuation. Revenue equivalence breaks down, although there is no

general price ranking between the �rst-price and the second-price auction. Kim and Che (2004)

assume that subgroups of bidders perfectly observe their own valuations in an independent private

value auction. Revenue equivalence also breaks down, but in this case the second-price auction

yields a higher expected price than the �rst-price auction. Kim (2007) proposes a further extension

where each bidder�s noisy signals about their opponent�s valuations are common knowledge. Under

a speci�c signal-contingent tie-breaking rule, Kim (2007) shows that the second-price auction also

generates higher revenue than the �rst-price auction. This phenomenon may arise in real world

auctions. Jofre-Bonet and Pesendorfer (2003) suggest that in highway construction procurement

auctions, a bidder�s capacity utilization can be a determinant of their costs; Fang and Morris (2006)

note that rival �rms may thus try to infer a bidder�s costs based on their capacity utilization levels.

Gonçalves (2007a) shows that in a common value oral outcry auction, assuming the ranking of

the private signals and the bid structure (the minimum increments the auctioneer will use after each

bidding round) are common knowledge, a sequential equilibrium exists4 in which the high signal

bidder always prefers to start the auction, and will choose his starting bid in a payo¤ maximising

way: he either starts with the lowest possible bid or the second lowest possible bid, thus choosing

the bidding path which favours him the most. This result is similar to Avery (1998). From then on,

both bidders strictly prefer to increase their bid by the least amount possible, until their bidding

limit is reached. Rothkopf and Harstad�s (1994) private values result holds: increasing the current

bid by the least amount possible is a symmetric equilibrium. The bidding limits of this equilibrium

are those found in the symmetric equilibrium by Milgrom and Weber (1982). By contrast, the

4Assuming there are no ties: a tie occurs when both signal realizations belong to the same interval within the bid
structure.
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knowledge of the signal ranking in a clock auction should not a¤ect each bidder�s equilibrium

strategies: Klemperer (1998) and Gonçalves (2007b) highlight that for the low signal bidder, once

the symmetric equilibrium bidding limit is reached, he realizes he is the low signal bidder and that

the good is certainly worth more than that. However, this knowledge brings him no advantage in

subsequent bidding, because given his rival�s symmetric bidding strategy, winning would yield a

negative payo¤.

The two main experimental results reported in this paper are that (i) bidding behaviour is

di¤erent in each type of auction, but also that (ii) this di¤erence in bidding behaviour does not a¤ect

signi�cantly the auction prices. In the clock auction, all bidders seemed to follow a �statistical�

bidding rule: bidders used the signal distribution to calculate the expected value of their opponent�s

signal and then used it to compute their drop out price. By contrast, in the oral outcry auction, only

low signal bidders seemed to make use of this �statistical�bidding rule; high signal bidders seemed

to follow the symmetric Nash equilibrium prediction. These di¤erent bidding strategies turned out

not to a¤ect signi�cantly the �nal auction price: the di¤erence between the �nal average prices in

the oral outcry and the clock auction was not statistically signi�cant. This, we conclude, provides

some support to the equivalence claim between these two auction types. As in other experiments

of English auctions5, we also found signi�cant overbidding compared to the Nash prediction and a

strong presence of the winner�s curse. Such overbidding led to 19% of bidders in the clock auction

and 23% in the oral outcry auction receiving negative pro�ts.

We will leave the discussion of our �ndings to section 7. Section 2 presents the theoretical

models and discusses their implications; Sections 3 and 4 discuss some alternative bidding theories;

Section 5 describes the experimental details and Section 6 contains an extensive analysis of the

results.

2 Theoretical foundations

The model we make use of is based on Klemperer�s (1998) �Wallet Game�, which was tested ex-

perimentally by Avery and Kagel (1997). Two bidders compete for an object of unknown common

value, V . Each bidder receives a signal Xi, i = 1; 2. The common value, known after the auction

�nishes, is given by the sum of the signals, i.e. V = v (x1; x2) = x1 + x2. Klemperer (1998) calls it

the Wallet Game because it is easily played in a classroom: we could ask two students to privately

check how much money they each had in their wallets, and then make them bid for an object

worth the combined amount of their wallets. Xi follows an independent uniform distribution on an

interval (a; b).

5See Kagel (1995).
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2.1 The clock auction

The symmetric Nash equilibria for the second-price sealed bid and for the clock auction (or Japanese

English auction) are equivalent and yield equilibrium bid functions b�i (xi) = v (xi; xi) = 2xi,

i = 1; 2. This result has been derived by Klemperer (1998) and by Avery and Kagel (1997), so

we refer the interested reader to those papers6. Any of the players has no incentive whatsoever

to deviate from it, given that the other player is playing that strategy. Suppose x1 > x2. In

equilibrium, the low signal bidder should bid 2x2; if he deviates, to win the auction, he will have

to stay active until the price reaches 2x1, the equilibrium bid of his opponent. This, in turn, is

more than the good�s true value, hence yielding a negative pro�t for that bidder if he wins. The

high signal bidder also has no incentive to bid less than 2x1 because this will have no in�uence on

the price (it is a second-price auction). Hence, like Avery and Kagel (1997) call it, there is no ex

post regret with this equilibrium, in the sense that even after learning the other bidder�s signal,

any of the bidders will not regret having bid how they actually did. Another important property

is that pro�ts are always positive for the winner, who in turn is always the high signal bidder. In

the above example, the price to pay will be p = b�2 (x2) = 2x2, and the winning bidder�s pro�ts will

be v (x1; x2)� p = x1 + x2 � 2x2 = x1 � x2 > 0, because x1 > x2 by assumption.
The expected revenue for the auctioneer in the clock auction at the symmetric equilibrium will

be:

E
h
PClock

i
= 2 (2a+ b) =3 (1)

(Avery and Kagel (1997), Theorem 2.5). This is because the expected price will be simply

E [min (b� (x1) ; b� (x2))] = E [min (2x1; 2x2)] = 2:E [min (x1; x2)] = 2 (2a+ b) =3.

2.2 The oral outcry auction

In the oral outcry auction, any of the two bidders could start the auction with an initial bid.

After the initial bid, there exists a minimum bid which his opponent will face in the next bidding

round. We de�ne a = (a0; a1; :::; aL) as the bid structure which contains the minimum bids, where

aL � v (b; b) : For example, if the starting bidder places a bid of y 2 [a0; a1) ; then his opponent will
face a minimum bid of a1 in the next bidding round. This bid structure is common knowledge.

If the signal ranking (i.e. the identity of the bidder holding the highest signal) is also common

knowledge, Gonçalves (2007a) shows that the bid functions b�i (xi) = v (xi; xi) = 2xi, i = 1; 2;

are a sequential equilibrium of this auction, provided there are no ties7. In this equilibrium, the

6Milgrom and Weber (1982) have derived the symmetric equilibrium in a general model; Klemperer (1998) has
applied it to the �Wallet Game�.

7A tie occurs when both signal realizations belong to the same interval within the bid structure a; i.e. when
x1; x2 2 [ak; ak+1) for some k: If there is a tie, the equilibrium fails to hold because both bidders would prefer to start
the auction and choose the auction path which favours them the most. But by revealing the signal ranking, it is not
possible to know whether there is a tie. In the experiment, we relied on the high signal bidder realizing his relative
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highest signal holder always starts the auction with an initial bid of a0 or a1: This choice depends

on his particular signal realization and is made so as to secure a bidding path leading to the lowest

possible expected price (and thus the highest possible expected pro�t). After the initial bid, and

in this equilibrium, both bidders bid the minimum allowed bids until their bidding limit is reached,

i.e. until an auction round where the minimum bid is higher than one of the bidder�s bidding limit.

Note that the knowledge of the signal ranking in a clock auction does not a¤ect the equilibrium

strategies. The ex post no regret property (Avery and Kagel (1997)) tells us that bidders should

not deviate from the symmetric equilibrium given this additional information. For the low signal

bidder, once his bidding limit is reached he realizes he is the low signal bidder and knows the good

is certainly worth more; and yet this knowledge brings him no advantage in subsequent bidding,

because given his rival�s bidding strategy, winning would yield a negative payo¤ (Klemperer (1998)).

In the sequential equilibrium, the expected price for the auctioneer depends on the bid structure

a. Therefore, the bid structure adopted for the experiment yields an expected price which is

approximately the same as in the clock auction:

E
h
POral

���ai � 2 (2a+ b) =3 (2)

To obtain this expected price, we have simulated a sequence of (one million) random draws

from the uniform distribution. Then, for each pair of random signals, we have computed the high

signal bidder�s preferred initial bid (a0 or a1) and simulated the bidding path until the low signal

bidder�s bidding limit was reached, thus obtaining the respective �nal auction price8. The expected

price above is the average of all the �nal auction prices in the simulation9.

Our oral outcry auction setup is a hybrid between an auction where the auctioneer calls for bids

and an auction where bidders call for bids themselves. The auctioneer calls for a starting price of

at least a0; bidders may choose to start at this price or to raise it. The key feature is that if bidders

choose to raise any bid (above the minimum bid in that round), they know exactly what the e¤ect

will be on the minimum bid faced by their opponents in the next round.

2.3 Summary of the theoretical predictions

We now summarize the main theoretical predictions we would like to test in this experiment:

advantage (the expected bene�t to him is greater than the expected bene�t to the low signal bidder) of starting the
auction, rather than ruling out ties altogether (as we will shortly see, the probability of a tie in our experiment was
very small: 0.025).

8Under this bid structure, the expected price for the oral outcry auction is not very sensitive to the assumption
that the highest signal bidder always starts the auction: we ran several simulations assuming either bidder would
start the auction with some probability between 0 and 1 and for most starting probabilities the di¤erence between
the average price in the clock auction and the oral outcry auction is smaller than 1.

9As we will see later, the signal distribution is the uniform distribution between 0 and 100. The expected price in
the clock auction is 66.67, whereas the expected price obtained by our simulations is 66.75.
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Prediction 1 In the both types of auction, the winning bidder should always make a positive

pro�t in equilibrium.

Prediction 2 The �nal price of the clock auction is expected to be approximately equal to that

of the oral outcry auction.

Prediction 3 In the oral outcry auction, we expect the high signal bidder to start the auction:

his starting bid should be either a0 or a1.

Prediction 4 In the oral outcry auction, after the starting bid has been submitted, we expect

both bidders to raise the bid by the least amount possible, i.e. to submit the minimum bids

contained in a in each bidding round.

3 Alternative hypotheses

The objective of this experiment was to test the theoretical predictions summarized in section

2.3. However, we need alternative models against which to compare our results. These alternative

models do not produce an equilibrium in any of the two types of auction. In other words, if one

of the bidders knew his opponent�s bidding strategy, his best reply would not be to use that same

strategy. However, the bidding strategies they prescribe are simple to understand and play, and

may well be used as an alternative to the Nash bidding hypothesis.

3.1 Expected value

According to this bidding strategy, bidder i�s strategy would be to stay active in either type of

auction until the price reaches:

bEVi = xi + x (3)

where x is the ex ante expected value of his opponent�s signal. This strategy strikes us as a

natural one, which we thought bidders might use, because it makes use of the (common knowledge)

signal distribution. It results in aggressive bidding (compared to the Nash equilibrium prediction) if

xi < x and more passive bidding if xi > x: The strategy is not an equilibrium. Assume x > x1 > x2:

If bEV2 = x2 + x > 2x2 is the current price, bidder 2 will drop out. Bidder 1 would win because his

bidding limit was bEV1 = x1 + x > b
EV
2 . At this price, bidder 1�s payo¤ is �1 = x1 + x2 � x2 � x =

x1 � x < 0: Hence, bidder 1 would not want to win this auction at this price would deviate from
this bidding strategy if he knew bidder 2 was using it.

3.2 Adjusted expected value

This bidding strategy is based on the previous, but with one di¤erence. At the start of the auction

(in both types of auction), bidders know the signal ranking and can use this information to try
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and make a more accurate guess of their opponent�s signal. Suppose bidders are told that x1 >

x2. Bidder 1 knows that X2 is uniformly distributed. Hence, his �adjusted� expectation of his

opponent�s signal is

bx (x1) = (a+ x1) =2 (4)

Thus, his bidding strategy would be to stay active in the auction until the price reaches

bAEV1 = x1 + bx (x1) (5)

If, on the other hand, x1 < x2; his �adjusted�expectation of his opponent�s signal would be

bx (x1) = (x1 + b) =2 (6)

Note that this bid strategy is equivalent to the expected value strategy given the signal rank-

ing. This strategy results in aggressive bidding by bidder 1 (compared to the Nash equilibrium

prediction) if x1 < x2 and more passive bidding if x1 > x2: Once again, the winning bidder may

lose money if he follows this bidding rule.

4 A closer look at the competing theories

Each of the theories described in sections 2 (Nash), 3.1 (EV) and 3.2 (AEV) implies a di¤erent

bidding strategy, and AEV suggests a di¤erent bidding strategy conditional on whether the bidder

holds the highest or the lowest signal. Given the signal distribution (independent uniform between

0 and 100), each theory predicts the following bid functions:

bNashi = 2xi; 8xi (7)

bEVi = 50 + xi; 8xi (8)

bAEVi =

8<:
3
2xi; if xi > xj

50 + 3
2xi; if xi < xj

(9)

Note that the AEV bid function depends not only on xi (bidder i�s signal) but also on the signal

ranking. When representing the AEV bid function on a graph, we hold bidder j�s signal �xed.

Figure 1 shows the 3 competing bid functions, assuming xj = 50: Note that the EV bidding

function is more aggressive than Nash for low signals (xi < 50) but less aggressive for high signals

(xi > 50): AEV is somewhat similar, but its bidding function depends on the particular realization

of xj we assume. Generally, AEV is more aggressive than Nash for signals xi < xj and less

aggressive for signals xi > xj : Additionally, AEV is a more asymmetric strategy than EV: when
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Figure 1: Bid functions for the 3 competing theories (assuming xj = 50):

bidder i holds the lowest signal, he bids more aggressively under AEV than under EV; if he holds

the highest signal, he bids less aggressively under AEV than under EV.

We anticipated that bidders could play a combination of these three di¤erent strategies through-

out the experiment. Thus, we have simulated a sequence of auctions10, and tested each theory

against itself and against the other theories. Because the AEV bidding function depends on who

holds the highest signal, we have ordered each (random) pair of signals. Then, for each pair of sig-

nals, we have assumed the bidder holding the highest signal would play AEV, EV or Nash against

an opponent (with the lowest signal realization) who could also play AEV, EV or Nash. Table 1

summarizes the results of our simulation.

As theoretically predicted, Nash vs. Nash and EV vs. EV result in all auctions being won by

the high signal bidder; under AEV vs. AEV, the high signal bidder only wins 44% of all auctions.

When the high bidder plays Nash (the most aggressive strategy for him) and the low bidder plays

AEV (also the most aggressive for him), the �nal price is the highest, and the pro�t levels the

lowest. By contrast, when the highest bidder plays AEV (the least aggressive strategy for him) and

the lowest bidder plays Nash (also the least aggressive strategy for him), the corresponding �nal

price is the lowest and the pro�t level the highest.

Generally, the pro�t levels of Nash vs. Nash are very close to the maximum pro�t levels in

the simulation. This tells us that bidders cannot improve much on the Nash pro�t levels; but

by following other strategies, they can end up with much lower pro�ts. Additionally, Nash is the

only strategy which, when played against itself, never leaves the winner with negative pro�ts. For

instance, AEV vs. Nash implies that in about half of all auctions, the winner receives negative

10We have used Maple to (randomly) generate a pair of signals. For each pair (and for each combination of possible
bidding strategies), we have calculated the �nal price and the pro�t per player. We have repeated this process one
million times.
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High Bidder

AEV EV Nash

% auctions won by high signal bidder 44.45 66.63 74.97

AEV Av. Price 85.17 94.43 95.82

Av. Profit (per player) 7.41 2.78 2.08

% of auctions with negative profits for winner 16.63 37.5 50.02

% auctions won by high signal bidder 66.63 100 87.49

Low Bidder EV Av. Price 77.77 83.33 81.24

Av. Profit (per player) 11.11 8.33 9.37

% of auctions with negative profits for winner 12.49 25.01 25.01

% auctions won by high signal bidder 75.02 87.51 100

Nash Av. Price 62.49 64.57 66.65

Av. Profit (per player) 18.75 17.71 16.67

% of auctions with negative profits for winner 0 0 0

Table 1: Simulation results for the competing theories (one million random draws)

payo¤s, because they are the most aggressive strategies available to each type of bidder.

Negative pro�ts are an extreme consequence of the winner�s curse, whereby a winner overesti-

mates the value of the good and ends up overpaying. The winner�s curse occurs in common value

auctions when a bidder fails to take into account a critical future event (winning the auction) in

his decision of how much to bid (Charness and Levin (2005), Kagel (1995)). In these auctions, the

winner tends to be whoever had a higher estimate of the good�s value; failure to consider this likely

overestimation in the bid function results in overbidding and below normal or even negative payo¤s

- the winner�s curse.

These results relate to simulations using the clock auction. Simulations for the oral outcry

auction yield similar results11.

5 Experimental setup

We have given all the participants an initial balance of $5:00 (their show-up fee)12, to prevent early

losses from a¤ecting their bidding behaviour. The participants were divided into 2 treatments: the

clock auction and the oral outcry auction. Both treatments took place on the same day, but at

di¤erent times, and with di¤erent subjects. In both treatments, the 14 subjects were randomly

paired in such a way that they never faced the same opponent twice (and were told this beforehand).

This implied that the maximum number of auctions each bidder could participate in without

meeting the same opponent twice was 13. In each auction round, the 14 bidders were allocated into

11For the oral outcry auction, we assumed either bidder could start the auction with some probability between 0
and 1 (we ran several simulations for di¤erent probabilities). The results are not signi�cantly di¤erent from those in
Table 1. For most starting probabilities, the di¤erence between the average price in the clock auction (see Table 1)
and the oral outcry auction is smaller than 1.
12 In the oral outcry auction, the show-up fee was initially set at £ 5.00 (equal to the show-up fee in the clock

auction). However, a crash in the computer software after 2 auction rounds left us with no choice but to increase this
to £ 6.00 to compensate for the lost time.
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7 simultaneous auctions. With 13 auction rounds, the total number of auctions (per treatment)

was 91.

At the start of each treatment, participants were told they were about to take part in an auction

for a good of unknown value. They were given their signal estimates, X1 and X2; independently

drawn from a uniform distribution on (0; 100), and told that the good was worth V = X1 + X2.

We have stressed that their signals were part of the value of the good, and were extremely valuable

information. Any pro�ts realized would be added to their initial balance and any loss deducted.

They would be paid, in cash, at the end of the experiment an amount corresponding to their show-

up fee plus their pro�ts, net of losses incurred. Before the auction started, they were also told who

held the highest signal (in the form of �You�or �Your opponent�).

The participants were mostly undergraduate students from the University of York, and the

experiment took place at the Centre for Experimental Economics. Each participant in the room

had a computer in front of him, and verbal communication during the session was forbidden. The

instructions were given before each treatment started, and participants were asked whether they

had any questions. The software used to run the experiment was Z-Tree13 ;14.

In the clock auction, after receiving their signals, bidders were told that the number on their

screen was the current price, that it would start at 0 and then increase in �xed increments of 1.

They were given 40 seconds after receiving the signals and before each auction started to think

about their strategy. To quit the auction all they had to do was to strike a key on their keyboard.

The auction would then stop and the price on the screen at that time would become the �nal price.

They would then be told the signal realizations (of both bidders), the value of the good, the �nal

price and the identity of the winner (in the form of �You�or �Your opponent�), but neither his

real identity nor the current balance of any of the bidders. They were then told that they would

be re-matched and a new auction round would start.

For the oral outcry auction, bidders were also given 40 seconds after receiving their signals to

think about their strategy. Once the auction started, the minimum price was 0 and any of the

two bidders could place an initial bid. Whoever was faster would be the initial bidder and his bid

would then be communicated to their opponent. Some restrictions were in place, though: at least

one bid had to be submitted for the auction to be valid. If neither bidder submitted any bid, the

auction would be void15. The bid structure was given in the instructions, and both bidders knew

the e¤ect of their bid on their opponent�s minimum bid in the following bidding round.

The bid structure adopted was a = (0; 10; 20; :::; 190; 200) ; i.e. minimum bids had a constant

absolute di¤erence between them of 10. Bidding was alternate, so no bidder could increase his own

previous bid without a response from their opponent. Bidders were given 20 seconds every time it

13Zurich Toolbox for Readymade Economic Experiments, programmed by Urs Fischbacher.
14The code used to run the experiment is available upon request.
15This would be equivalent to a real world auction, in which the auctioneer calls for a starting price but no bidder

shows any interest. In those cases, the object goes unsold.
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was their turn to insert a bid. Only a valid bid (above the minimum bid) would be accepted. Before

actually bidding, the active bidder at that round would be asked whether he wanted to continue

in the auction; if he dropped out, the �nal price would be the last submitted bid, and the signal

realizations, value of the good and �nal price would be revealed, as would the winner�s identity

(in a way similar to the clock auction). Neither the real identity of the bidders nor their current

balance was revealed. Bidders were then re-matched and a new auction round would start.

As Cox et al (1982) point out, two factors may play an important role in clock auctions: (i)

the delay time between successive increments and (ii) the magnitude of the increment itself. The

experiment design attempted to make sure that such factors did not in�uence bidding behavior dif-

ferently across auction types. In the clock auction, the price would increase 1 (the �xed increment)

every second. In the oral outcry auction, the price would increase by at least 10 (the minimum

increment) in each auction round (where active bidders had 20 seconds to insert their bid); this

implies a bid increment of 2 per second. Note, however, that if all active bidders inserted their bid

before the 20 seconds elapsed, the price increment per second would be smaller and closer to the

clock auction. Additionally, if an active bidder chose to place a bid which was higher than the next

available minimum bid (i.e. the di¤erence between the submitted bid and the minimum bid in that

auction round was at least 10), the price increment per second would also be smaller and closer to

the clock auction.

6 Experimental results

6.1 Result 1 - Which theory explains the data?

Result 1 In the clock auction, the estimated bid function of a typical bidder is most likely to

have been as predicted by AEV. By contrast, in the oral outcry auction, the estimated bid

function of high signal bidders is most likely to have been as predicted by the symmetric

Nash equilibrium, whereas the low signal bidder�s bid function is most likely to have been as

predicted by AEV.

Several pieces of evidence indicate that the Nash bidding functions were not used in the exper-

iment (or, at least, not by all bidders): some winning bidders received negative pro�ts (19% of the

winning bidders in the clock auction and 23% in the oral outcry auction); not all auctions were

won by the highest signal holder (low signal bidders won 43% of all clock auctions and 40% of all

oral outcry auctions); the �nal average price in each type of auction was signi�cantly higher than

that predicted by the Nash bidding functions (22% higher in the clock auction and 31% higher in

the oral outcry auction).

Tables 2 and 3 present the results of each auction divided into 3 groups: auctions where x1 > 50

and x2 > 50 (both realizations above the average of the distribution); auctions where x1 � 50 and
x2 � 50; and �nally auctions where x1 > 50 and x2 � 50 or x1 � 50 and x2 > 50: The �nal price
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No. of
auctions

Auctions won by
highest signal
bidder

Auctions won by
highest signal
bidder (% of total)

Average
value

Average
price

Average expected
price (Nash)

Diff. between
price and
expected price
(%)

Average
profit

Average expected
profit (Nash)

Profit as % of
expected profit

x1>50, x2>50 13 4 30.8 151.4 103.8 135.8 -23.6 47.6 15.5 306.4

x1 <=50, x2 <=50 29 8 27.6 53.1 50.9 36.0 41.3 2.2 17.1 13.1

x1>50, x2 <=50

OR 49 40 81.6 97.9 73.9 50.5 46.3 24.0 47.4 50.6
x1 <=50, x2>50

TOTALS 91 52 57.1 91.3 70.8 58.1 21.9 20.4 33.2 61.6

Table 2: Clock auction summary table

No. of
auctions

Auctions won by
highest signal
bidder

Auctions won by
highest signal
bidder (% of total)

Average
value

Average
price

Average expected
price (Nash)

Diff. between
price and
expected price
(%)

Average
profit

Average expected
profit (Nash)

Profit as % of
expected profit

x1>50, x2>50 19 6 31.6 147.6 129.2 130.5 -1.0 18.5 17.1 108.0

x1 <=50, x2 <=50 19 8 42.1 50.6 48.2 33.7 43.1 2.4 16.9 14.3

x1>50, x2 <=50

OR 52 40 76.9 102.6 84.5 53.7 57.5 18.2 49.0 37.1
x1 <=50, x2>50

TOTALS 90 54 60.0 101.2 86.3 65.7 31.4 14.9 35.5 42.0

Table 3: Oral outcry auction summary table

in clock (oral outcry) auctions where x1 > 50 and x2 > 50 was 24% (1%) lower than that predicted

by the Nash hypothesis. This is more consistent with the AEV or EV models than with the Nash

model (see Figure 1). In the case where x1 � 50 and x2 � 50; the �nal price was 41% (43%) higher

in the clock (oral outcry) auction than that expected under Nash bidding. Finally, when x1 > 50

and x2 � 50 or x1 � 50 and x2 > 50; the �nal price in the clock (oral outcry) auction was 46%

(58%) higher than that predicted by Nash bidding. This is also consistent with the AEV or EV

models.

This seems to suggest that Nash bidding is not the best explanatory theory behind the data.

In order to test this conjecture, we have estimated the bid function by maximum likelihood using

switching regressions (see Maddala (1983)). Given a particular auction t; and the two bidders

involved, 1 and 2, we observe B1t if bidder 1 loses the auction. This also means that B2t � B1t

because in that case bidder 2 wins the auction. Hence, we observe min (B1t; B2t) for each auction

t:We have estimated the bid functions of each type of bidder by separating them into high (regime

1) and low signal bidders (regime 2):�
B1t = �0 + �1X1t + "1t
B2t = �0 + �1X2t + "2t

; t = 1; :::; N (10)

where regime 1 represents data for the high signal bidder and regime 2 for the low, and the

observable dependent variable is Bt = min (B1t; B2t) ; 8t. The error terms are assumed to be
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normally distributed ("1 � N (0; �1) and "2 � N (0; �2)); but we allow the two disturbances to be
correlated. This amounts to assume that they follow a bivariate normal with correlation �: The

di¤erent theories imply slightly di¤erent restrictions in this context: AEV implies that �0 = 0;

�1 = 1:5; �0 = 50 and �1 = 1:5; EV implies �0 = 50; �1 = 1; �0 = 50 and �1 = 1; and Nash

implies �0 = 0; �1 = 2; �0 = 0 and �1 = 2: Because high and low signal bidders may be using

di¤erent bidding strategies, we test all the possible combinations using the Likelihood Ratio (LR)

test.

Note that in the oral outcry auction there are measurement errors in the dependent variable.

When we observe Blt in a particular auction t (i.e. bidder l has lost this auction), it is not necessarily

true that Blt: is bidder l�s true reservation price (which we denote by B�lt). Bidder w (who won

the auction) may have bid Blt < B�lt; and the next possible minimum bid could have been a > B�lt;

in which case bidder l would have dropped out and the auction �nished at a price of Blt < B�lt:

Conversely, bidder l could have bid a < B�lt; and bidder w increased the bid to Blt > B
�
lt: In this

case, bidder l would drop out at a price of Blt > B�lt: Hence, in the oral outcry auction, we observe

Blt = B
�
lt + vt (11)

Provided we assume the error term, vt; has a 0 mean and a variance of �2v; and is independent

of B�lt and of all the independent variables, we can carry out our estimations using Blt (the variable

with the errors). In fact, under our assumptions (and in equilibrium), vt should be uniformly

distributed between [�10; 10] and have a 0 mean.

6.1.1 Clock auction

Table 4 contains the estimation results of equation (10) for the clock auction. The estimated bid

functions are quite similar to those predicted by AEV (�0 = 0; �1 = 1:5; �0 = 50 and �1 = 1:5).

Some of the data in the experiment comes close to what our earlier simulations predicted: when

AEV is played by both bidders, the auction is not always won by the highest signal bidder (only

57% of all auctions were - see Table 2- compared to our simulations� prediction of 44.5% - see

Table 1) and some auction winners lost money (18.7% of all auctions yielded negative pro�ts for

the winner, and our simulations predicted 16.6%).

However, the average price was lower (71) than predicted by our simulations (85), and pro�ts

were consequently higher. The estimated bid functions suggest that high signal bidders were less

aggressive than predicted by AEV. This asymmetry must account for the di¤erence in the average

price: whenever low signal bidders won the auction, (on average) they must have paid less than

expected under AEV; and whenever high signal bidders won the auction, (on average) they must

have paid approximately what was expected under AEV. The former e¤ect might have introduced

the downward bias on the prices.
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Variable Coefficient Std. Error t-ratio

High signal Constant 16.9614 14.4341 1.175

bidder X0t 1.1696 0.2253 5.19 (**)

Low signal Constant 40.8658 4.3908 9.307 (**)

bidder X1t 1.6556 0.2132 7.764 (**)

Rho=-.1566; Var(e0)=651.15; Var(e1)=188.54; N=91

Table 4: Switching regressions results for the clock auction - High/Low signal bidders

High Bidder

LR~X2
(4) AEV EV Nash

AEV 6.62 16.04 (**) 25.51 (**)

Low Bidder EV 20.92 (**) 27.95 (**) 24.58 (**)

Nash 108.88 (**) 90.98 (**) 101.5 (**)

Table 5: LR test results for the clock auction - High/Low signal bidders

Table 5 summarizes the results of imposing the restrictions of each theory (AEV, EV and Nash)

against all others (AEV, EV and Nash), using a LR test. For each combination of strategies, 4

restrictions are imposed. This implies that the test statistic has a X 2(4) distribution. The only
strategy combination which is not rejected is AEV vs. AEV (for the high and low signal bidder

respectively). This suggests that AEV is the best explanatory theory in the clock auction.

6.1.2 Oral outcry auction

For the oral outcry auction, we have also estimated the bid functions of equation (10) using the

data separated into high and low signal bidders for each auction t.16 Table 6 contains the results of

the estimation. The high signal bidder seems to have bid very close to the Nash prediction( �0 = 0;

�1 = 2), whereas the low signal bidder seems to have followed AEV (�0 = 50 and �1 = 1:5).

The average price (86) and the percentage of auctions won by high signal bidders (60%) seem to

agree with our simulation predictions of of 96 and 74% respectively, once we realize that high signal

bidders were slightly less aggressive than predicted by Nash (see Table 6). In fact, their bid function

is somewhere in between that predicted by Nash and by AEV (see Figure 1). Therefore, high signal

bidders won less often than predicted by our simulations and when they lost, the winning bidder

must have paid a lower price than predicted by our simulations.

16Our experimental software would only consider the auction valid if there was at least one bidding round. Subject
13 in round 7 was considered the starting bidder because he was the fastest to submit the starting bid; however,
on the previous screen, he had clicked �Yes�on the �Do you want to drop out at this stage?�question. Hence, his
bid was considered void, but because of a software limitation, his opponent could no longer bid, and both received
a 0 pro�t in this round (the auction was void). For this reason, only 90 oral outcry auctions were used in these
estimations (compared to 91 in the clock auction).
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Variable Coefficient Std. Error t-ratio

High signal Constant -2.1720 19.5964 -0.111

bidder X0t 1.8862 0.3515 5.366 (**)

Low signal Constant 49.7207 5.5961 8.885 (**)

bidder X1t 1.4450 0.2361 6.119 (**)

Rho=-.7945; Var(e0)=614.39; Var(e1)=557.85; N=90

Table 6: Switching regressions results for the oral outcry auction - High/Low signal bidders

High Bidder

LR~X2
(4) AEV EV Nash

AEV 16.74 (**) 19.97 (**) 4.4

Low Bidder EV 38.39 (**) 48.35 (**) 21.36 (**)

Nash 96.77 (**) 94.61 (**) 85.21 (**)

Table 7: LR test results for the oral outcry auction - High/Low signal bidders

We have tested each theory against the others using the LR test. The results are shown on

Table 7. Nash vs. AEV (for the high and low signal bidder respectively) is in fact the most likely

combination of strategies in the oral outcry auction.

6.2 Result 2 - Was there any evidence of the �winner�s curse�?

Result 2 There was some strong evidence of the winner�s curse in both types of auction. Final

prices were higher than expected (22% in the clock auction and 31% in the oral outcry

auction). In the clock auction, winning bidders received 62% of expected pro�ts under Nash

bidding, whilst in the oral outcry auction winning bidders received only 42%. Not all auctions

generated positive pro�ts, as expected under Nash bidding: only 81% of clock auctions and

77% of oral outcry auctions yielded positive pro�ts for the winner.

The winner�s curse occurs if a bidder fails to incorporate in his bidding function the information

conveyed to him when he wins the auction; a bidder should realize that if he wins, in all likelihood

he had the highest signal estimate, which, although unbiased, may have overestimated the common

value. Failure to incorporate this information in the bidding function leads to overbidding and

possibly to negative pro�ts.

As we have seen earlier, the bid functions apparently used by bidders lead to overbidding

compared to the Nash prediction. In fact, from Tables 2 and 3 we can see that prices in the clock

auction were 22% higher than predicted whilst in the oral outcry auction they were 31% higher.

Tables 8 and 9 contain some detailed statistics for the clock and oral outcry auctions. We can

see that whenever high signal bidders won, the deviation from the expected price under Nash is
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High signal bidder Low signal bidder Total

Average price/expected price 1.43 1.01 1.22

Average profit/expected profit 0.54 0.94 0.62

% of auctions where winning
bidder receives negative profits 8% 33% 19%

In auctions won by:

Table 8: Clock auction - price and pro�t statistics

High signal bidder Low signal bidder Total

Average price/expected price 1.61 1.05 1.31

Average profit/expected profit 0.33 0.76 0.42

% of auctions where winning
bidder receives negative profits 22% 25% 23%

In auctions won by:

Table 9: Oral outcry auction - price and pro�t statistics

more pronounced (43% in the clock auction and 61% in the oral outcry auction). This led to lower

pro�ts (54% of expected pro�ts in the clock auction and 33% in the oral outcry auction). This

indicates that whenever high signal bidders won, low signal bidders were bidding more aggressively

than predicted by the Nash strategies. By contrast, whenever low signal bidders won, the average

price was relatively close to the Nash prediction: 1% higher than predicted in the clock auction and

5% higher in the oral outcry auction. Pro�ts, however, were lower than predicted in those cases

because low signal bidders, under Nash, should never win - the expected pro�ts refer to the pro�t

levels which high signal bidders would receive under Nash bidding.

Overbidding led to a signi�cant number of auctions yielding negative pro�ts for the winner: 19%

of clock auctions and 23% of oral outcry auctions. Low signal bidders were particularly a¤ected by

negative pro�ts: 33% of all clock auctions they won yielded negative pro�ts, as did 25% of all oral

outcry auctions won.

6.3 Result 3 - Are the clock and oral outcry auctions equivalent?

Result 3 The bid function in both types of auction does not appear to be the same: we reject the

hypothesis that the estimated bid function of the clock auction is equal to the estimated bid

function of the oral outcry auction. However, the estimated bid function of the auction losers

(who determine the �nal auction price) and of the low signal bidders does appear to be the
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Variable Coefficient Std. Error t-ratio

Constant -4.0367 19.6720 -0.205

High signal X0t 1.9462 0.3639 5.349 (**)

bidder Dt 29.3792 23.7687 1.236

Dt.X0t -0.8923 0.4072 -2.192 (*)

Constant 49.7337 4.4336 11.217 (**)

Low signal X1t 1.4070 0.1749 8.047 (**)

bidder Dt -7.5251 7.7316 -0.973

Dt.X1t 0.4619 0.3004 1.538

Rho=-.7249; Var(e0)=705.2; Var(e1)=444.59; N=181

All bidders (X2
(4)) High bidders (X2

(2)) Low bidders (X2
(2))

LR test on restrictions 17.55 (**) 13.39 (**) 2.74

Table 10: Switching regressions estimation results for the full dataset (High/Low signal bidders)

same for both types of auction. This provides weak support to the equivalence claim between

the two types of auction.

6.3.1 Bid function equivalence

Using switching regressions with the data for each auction t separated into regime 1 for the high

signal bidder and regime 2 for the low signal bidder, we have estimated the following equation:�
B1t = �0 + �1X1t + �2Dt + �3Dt:X1t + "1t
B2t = �0 + �1X2t + �2Dt + �3Dt:X2t + "2t

; t = 1; :::; 181 (12)

where the observed dependent variable is Bt = min (B1t; B2t) : The dummy variable Dt is equal

to 1 if auction t is a clock auction, and 0 otherwise. The error terms follow the same assumptions

as in Section 6.1.

If the oral outcry and clock auctions are in fact equivalent, then the coe¢ cients �2; �3; �2 and

�3 should not be signi�cantly di¤erent from 0. Hence, our �rst hypothesis is H0 : �2 = �3 = �2 =

�3 = 0. Our second hypothesis is that the high signal bidder�s estimated bid function (regime

1) is not signi�cantly di¤erent across auctions: H0 : �2 = �3 = 0: Our third hypothesis is that

the estimated bid function of the low signal bidders is not signi�cantly di¤erent across auctions:

H0 : �2 = �3 = 0: The LR test statistic has a X 2(4) distribution for the �rst hypothesis, and a X
2
(2)

distribution for the two latter.

Table 10 contains the estimation results of equation (12) and the LR tests on the 3 hypotheses.

Note that the t-ratios of �2 and �3 (low bidder) are not signi�cantly di¤erent from 0, providing

an early hint that the low bidders bidding behaviour may have been similar across auctions. The
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t-ratios of �2 and �3 (high bidder) are inconclusive: �3 seems to be signi�cantly di¤erent from 0

at the 5% signi�cance level.

The LR test on the �rst hypothesis (high and low signal bidders bidding in the same way across

auctions) is rejected. It turns out that this di¤erence of behaviour across auctions is explained by

the high signal bidder�s bid function (the LR test rejects equivalence). The LR test on the low

bidder�s bid function did not reject the hypothesis of equivalence.

This leads us to conclude that there are signi�cant di¤erences between the bid functions in

the clock and oral outcry auctions. Our tests indicate that this di¤erence originates in the high

signal bidder�s bid function. This is not totally surprising: the results of Section 6.1 had suggested

that low signal bidders were apparently following the AEV bid function in both types of auction.

The di¤erence between their bid functions in each auction is not statistically signi�cant. On the

other hand, high signal bidders were apparently following the Nash bid function in the oral outcry

auction, and the AEV bid function in the clock auction; this di¤erence turns out to be statistically

signi�cant.

6.3.2 Auction price equivalence

In order to test whether the �nal auction price is di¤erent across auctions, we have used the data

of the losing bidders in each auction. Note that the price at which the latter dropped out should be

equal to their reservation price. Using this information as an (unbalanced) panel17, we can isolate

subject-speci�c disturbances, and obtain more e¢ cient estimates than when using OLS (Ordinary

Least Squares)18. We estimated the following equation with the random e¤ects model (REM)19

(174 observations):

Bit = �1 + �2Xit + �3Hit + �4Dit + �5Dit:Xit + �6Dit:Hit + "it;

i = 1; ::; N; t = 1; ::; Ti (13)

with

Dit =

�
1; if observation comes from the clock auction
0; otherwise

and where N = 28 is the number of subjects, Bit is the drop out price of bidder i at auction

t; Xit is bidder i�s signal observation at auction t; Hit is a dummy variable which takes on the

17A panel is unbalanced if for each subject i there are Ti observations. In our auctions, each subject did not
necessarily lose the same number of auctions.
18Note that ignoring subject-speci�c disturbances may also lead to bias, through the missing individual variables.
19We have excluded 4 observations from our analysis: in the clock auction, we have excluded four observations

of bidders who dropped out at a price below their signals (which may indicate a failure to understand the auction
rules); in the oral outcry auction, we have excluded 3 observations for the same reason and one observation because
the auction was void.
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Variable Coefficient Std. Error t-ratio

Constant 45.3001 3.6221 12.507 (**)

Xit 1.4496 0.0738 19.64 (**)

Hit -35.9005 3.9865 -9.006 (**)

Dit -7.4004 5.1602 -1.434

Dit.Xit -0.0549 0.1110 -0.495

Dit.Hit 2.5694 5.5768 0.461

r2=.7742; Var(u)=85.43; Var(e)=208.86; N=174

F(3,168)

F-Test on restrictions 0.2189

Table 11: REM estimation results for the full dataset

value of 1 if bidder i at auction t held the highest signal, and 0 otherwise, "it = ui + eit is a

combination of subject speci�c and auction period error terms. These errors terms are assumed

to follow the standard assumptions (ui � IN
�
0; �2u

�
and eit � IN

�
0; �2e

�
): The coe¢ cients �4;

�5 and �6 should represent changes in the estimated bid function caused by the di¤erent type of

auction. If these coe¢ cients are signi�cantly di¤erent from 0, we must conclude that the estimated

bid function of the losing bidders in the clock auction is signi�cantly di¤erent from that of the

oral outcry auction, which would indicate that the �nal auction prices were statistically di¤erent.

Hence, our test hypothesis is H0 : �4 = �5 = �6 = 0: We can use a standard F-test to test the

validity of the joint restrictions, as well as the individual t-ratios of the regression. Table 11 shows

the results.

Firstly, each coe¢ cient (�4; �5 and �6) is not statistically di¤erent from 0. Secondly, the F-test

statistic did not reject the hypothesis that the coe¢ cients are simultaneously equal to 0. Hence,

we must conclude that the estimated bid function of the losing bidders in the clock auction, which

e¤ectively sets the auction price, is not statistically di¤erent from the oral outcry auction. This

lends some support to the equivalence between these two types of auction.

6.4 Result 4 - Was the decision to start the oral outcry auction strategic?

Result 4 In the oral outcry auction, the high signal bidder did not always start the auction as

expected.

Table 12 contains a summary of the data, both between groups of bidders and over time. It

can be seen that the bidder holding the high signal started the auction 51% of the time. At a �rst

glance, this seems to be consistent with some sort of randomization, and not strategic behaviour.

This �gure does not change much between groups of bidders, or even over time (one would expect
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Number of High bidder In % Starting bidder In %

Auctions starts the auction wins the auction

x1>50, x2>50 21 12 57 9 43
Data x1<50, x2<50 19 8 42 9 47

between x1>50, x2<50

Groups OR 50 26 52 24 48
x1<50, x2>50

Data Sessions 1-4 28 14 50 11 39
over Sessions 5-8 27 14 52 15 56
time Sessions 9-13 35 18 51 16 46

TOTAL 90 46 51 42 47

Table 12: Oral outcry auction summary table

more experienced bidders to realize the advantage of starting the auction). What this seems to

suggest is one of the following: (i) high signal bidders did not realize the advantage of starting

the auction, given the information on the bid structure, and hence randomized in order to decide;

or (ii) high signal bidders were following some other strategy in which the choice of starting/not

starting the auction was not relevant.

In order to understand which is more likely to be true, bear in mind that the decision of starting

the auction is particularly advantageous to the high signal bidder if and only if he does win the

auction. In the equilibrium we are testing, the high signal bidder is always expected to win. But

given that high signal bidders seemed to be following Nash whereas low signal bidders seemed to be

following AEV (see section 6.1), the high signal bidder is only expected to win 75% of the auctions

(see our simulation results in Table 1). Under the alternative assumption that high signal bidders

were playing AEV some times, they should win around 44% of the auctions.

In the oral outcry auction, 60% of the auctions were won by the high signal bidder (see Table

3). Note, also, that this value is exactly half way through the probability of winning when he is

playing Nash (75%) and when he is playing AEV (44%). With the exception of the �rst group of

bidders (with signals x1 > 50 and x2 > 50; in which case the high signal bidder started the auction

57% of the time), the decision to start the auction seems to have been the result of randomization

rather than strategic thinking. In no other group or in fact over time did the percentage of auctions

started by the high signal bidder come close to 60%.

6.5 Result 5 - Was there evidence of jump bidding in the oral outcry auction?

Result 5 In the oral outcry auction, the bidding increments from one round to the next were

substantially higher than expected, particularly in the earlier rounds.

In the equilibrium we are testing, we expected the high signal bidder to manipulate his starting

bid in a way which maximised his expected utility, i.e. a choice of the bidding path which led to
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Figure 2: Oral outcry auction bidding increments (between groups)

the lowest expected price. Hence, in that equilibrium, he should either start with a bid of 0 or with

a bid of 10, and after this initial bid, both bidders should raise the bid by the minimum amount

possible until the current bid exceeded their reservation prices. Consequently, if that equilibrium

was being played, we would expect an average �rst bid of at least 0 and at most 10; subsequent

increments were expected to be at the minimum (10).

The data seems to contradict this: Figure 2 shows the average increment from one bidding

round to the next. The �rst bidding increment is the di¤erence between the �rst submitted bid and

the minimum bid allowed (0); the second bidding increment is the di¤erence between the second

bid submitted and the �rst; and so on. It can be seen from Figure 2 that the �rst two bidding

increments are signi�cantly higher than expected for all bidder groups. It can also be seen that

there is a signi�cant correlation between the signals and the bidding increments (pairs of bidders

with signals xi < 50 jump bid less than pairs of bidders with at least one signal xi > 50; who in

turn jump bid less than pairs of bidders with signals xi > 50): The average bidding increments

tend to approach our expectation in later bidding rounds (for all bidder groups).

Figure 3 shows the bidding increments over time. Again, one would expect that over time

bidders approached our theoretical prediction. The data seems to contradict this: there seem to

be no signs of learning or equilibrium bidding in later auctions. What we do see are jump bids, in

particular in the �rst two rounds, then followed by slightly higher than expected increments. Such

bidding behaviour is inconsistent with all the bidding theories we have come across.
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Figure 3: Oral outcry auction bidding increments (over time)

7 Discussion

The starting point of this paper was the claim that the clock auction is a good representation of an

oral outcry auction. In this experimental test of equivalence between these auction types, we have

reached the main conclusion that they are not strategically equivalent. The theory predicts that

all bidders in both auctions should follow the (same) Nash bidding function; in reality, not only

did most players not play Nash, but they also diverged from the theory in di¤erent ways20. In the

context of this comparison, we must conclude that the clock auction is not a good representation

of an oral outcry auction.

If both auctions were indeed strategically equivalent, the expected price in each of them should

be the same. In the experiment, the �nal price in each type of auction was higher than predicted by

Nash bidding (22% in the clock and 31% in the oral outcry auctions) but we have shown that losing

bidders in each type of auction departed from Nash bidding in the same direction: the di¤erence

between the losing bidders�bid function in the clock and oral outcry auctions is not statistically

signi�cant. Hence, we must conclude that the �nal prices in both auctions are not signi�cantly

di¤erent from one another.

We must conclude that Nash bidding is simply not observed in real auctions (or, at least, not in

experimental auctions, or by all bidders). Avery and Kagel (1997) reached the same conclusion, as

20 In the clock auction, AEV was the most likely bidding strategy played by all bidders (high and low signal bidders);
in the oral outcry auction, AEV was the most likely strategy used by low signal bidders, whereas Nash was the most
likely strategy used by high signal bidders.
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did Kagel and Levin (1986) 21 and Levin, Kagel and Richard (1996) 22 in di¤erent experiments. Is

this an indication that symmetric Nash bidding is nonsensical in real auctions? Or is it an indication

that other factors may play an important role in these auctions (e.g. asymmetric bidding strategies,

irrational bidding, etc.)? Maybe both.

Our experiment is probably the �rst so far where Nash bidding is clearly not rejected for a subset

of bidders23. However, note that this bidding behaviour appeared in the oral outcry auction, not

in the clock auction. From the results of our experiment, we conjecture that Nash bidding is more

likely to be played in �real�English auctions. And because the only di¤erence between the clock

and oral outcry auctions was the bid structure and endogenous bidding, we conjecture that this is

the missing feature in most experimental tests of English auctions. And because most real world

English auctions have those two features, it does not come as a surprise that this type of auction

is so popular when compared to clock auctions.

Further (experimental) research will eventually prove our conjecture right or wrong. In particu-

lar, one extension of our work is worth pursuing. It would be extremely interesting to test our model

(clock and oral outcry auctions) without revealing the ranking of signals. Such an experiment, and

especially the clock auction results, would be directly comparable to the other experiments we

have mentioned (Levin et al (1996) and Avery and Kagel (1997)). And we could compare the oral

outcry auction results to those experiments, which have repeatedly reported the �winner�s curse�

and non-Nash bidding. If, under that model, Nash bidding does emerge, we can unambiguously

conclude that the oral outcry auction gives rise to �rational�bidding.
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