
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 

No. 2000/62 
 

Dynamics of Output Growth, Consumption and Physical Capital 
in Two-Sector Models of Endogenous Growth 

 
by 

 
Farhad Nili 

 
 

 
 
 
 
 
 
 

 
 
 
 

 
Department of Economics and Related Studies 

University of York 
Heslington 

York, YO10 5DD 

 
No. 2006/07 

 
Sequential Bargaining in a Stochastic Environment 

 
by 

 
Adriana Breccia 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6721289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Sequential Bargaining in a Stochastic Environment∗

Adriana Breccia

Abstract

This paper investigates the uniqueness of subgame perfect (SP) payoffs in a

sequential bargaining game. Players are completely informed and the surplus to be

allocated follows a geometric Brownian motion. This bargaining problem has not

been analysed exhaustively in a stochastic environment. The aim of this paper is

to provide a technique to identify the subgame perfect equilibria, i.e. the timing

of the agreement and the SP payoff at which agreement occurs. Even though the

main focus is on the uniqueness of the equilibrium, we investigate other features of

the equilibrium, such as the Pareto efficiency of the outcome and the relation with

the Nash axiomatic approach.

∗Comments are welcome. We are very grateful to William Perraudin and Raymond Brummelhuis for

helpful suggestions and discussions. Department of Economics and Related Studies, University of York,

York YO10 5DD, UK; e-mails: ab54@york.ac.uk.
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Introduction

Since the seminal work of Rubinstein (1982) the basic two-player game has been general-

ized, inspiring a vast literature covering theoretical issues as well as economic and finance

applications.

The extension of the Rubinstein model to the stochastic case is a new research area1.

Even though the theoretical and applied works in the field of non cooperative bargaining

have covered a broad variety of issues, the extension of the basic model (with players

completely informed about their preferences) to the stochastic environment seems to have

made some inroads just recently.

There are only few papers on sequential games where a stochastic process drives the

order of the moves and/or the “pie” to be shared. In particular, we will focus on two

papers investigating the Rubinstein alternating-offer model in a stochastic environment.

Merlo and Wilson (1995) derive necessary and sufficient conditions for existence and

uniqueness of subgame perfect and stationary subgame perfect payoffs in a generalised

setting. There are ‘n’ players, proposers alternate randomly and/or the pie moves sto-

chastically with time. In particular, the uncertainty does not take any specific form, the

underlying stochastic process is left unspecified such that their conclusions on existence

and uniqueness of subgame perfect (SP) payoff can apply to a multiplicity of stochastic

processes. However, given the generality of the underlying process, a number of perverse

results are possible and a conclusive result on issues like efficiency of the equilibria does

not seem feasible. This makes quite hard to apply their theoretical result as a technical

tool to solve a bargaining situation in a more specific stochastic framework.

A more specific application is given in Cripps (1997) who analyses a Rubinstein al-

ternating bargaining situation where the pie moves accordingly to a geometric Brownian

motion. The focus is from an applied perspective and the aim is to solve a long and

short-term wage negotiation between a firm and a labour union. The equilibrium found is

unique in the ‘C2’ class of functions, however a general characterisation of the uniqueness

is a technical issue that is beyond the scope of his paper (Cripps, 1997 p. 536).

The main purpose of this essay is to refine and extend the model developed by Cripps.

First, the essential technical refinement is the characterisation of the equilibrium in terms

of uniqueness. In doing this, drawing on the same bargaining situation as in Cripps,

we provide the characterisation of SP equilibrium payoffs and the technical steps yield-

ing the unique SP equilibrium of the model. In particular, the focus is on stationary

1For a discussion on this issue see Muthoo (1999).
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subgame perfect (SSP) payoffs because in a two-player game the SSP payoff is unique

if and only if SP payoff is unique2. Second, the current paper extends Cripps’ analysis

by investigating the Pareto efficiency of the bargaining outcome. Third, we analyse the

equilibrium outcome in the alternative situation where players can bargain cooperatively

in a Nash demand game. Finally we compare the equilibrium outcomes of the two al-

ternative bargaining situations – non-cooperative Rubinstein framework and cooperative

Nash bargaining. This comparison highlights the delay in the investment decision due to

the lack of a cooperative environment.

The paper is structured as follows. In section 1, we briefly describe the bargaining pro-

cedure in the basic deterministic case and in section 1.1, the specific bargaining problem

– negotiation over wage contracts – when the pie is stochastic3. In section 2, we provide a

characterisation of the SSP payoffs by defining an upper and a lower bound respectively

to the supremum and the infimum of the SSP outcomes. The main question concerns

the uniqueness of the subgame perfect equilibrium payoff. In section 3, the existence of

a unique SSP outcome is proved by shrinking the set of SSP payoffs to a single point4.

In this section the solution depends on the time interval elapsing between an offer and

counteroffer, however in the rest of the paper continuous time is assumed. The main result

following from this section is that there exists a unique SSP partition of the pie at which

players agree immediately if the state variable starts sufficiently high (above a constant

threshold level). The level of the stochastic cash flows that triggers such an agreement is

assumed to exist in the sense of being finite.

In section 4, we solve for the unknown threshold level that triggers an agreement.

Then we investigate the timing of the agreement for any initial level of the state variable

in order to detect if any earlier SSP agreement is feasible when the state variable starts

sufficiently low. One may notice how this technique closely resembles a kind of backward

induction even though the time horizon is infinite.

In subsection 4.1, we draw the main conclusions on timing and efficiency of the SSP

outcome. Whether the SSP outcome is Pareto efficient is a minor, though relevant,

question. In the basic model the SSP outcome is efficient and an agreement is reached at

the first round of the game. Alternatively, in a stochastic framework, agreement could be

2This follows the fact that in a two player game extremal SP payoffs are also SSP payoffs. See Merlo

and Wilson (1995, p.391).
3The notation here is the same as in Cripps so that a comparison with his result may be straightforward

to the reader.
4We will do this by using the upper and lower bounds from section 2.
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delayed because players perceive that by waiting they receive an improved payoff. In such

a case, as concluded by Merlo and Wilson (1995, p.385), it cannot be that any feasible

state contingent outcome can be agreed upon in the current state and in such a case

one cannot guarantee that a SSP equilibrium is Pareto optimal. However, in the current

paper, it is straightforward to show that if there is a delay (because the state variable

starts sufficiently low) the SSP outcome at agreement is still Pareto efficient.

Before concluding, in section 5 we briefly introduce the Nash bargaining problem in

order to make a comparison with the Rubinstein sequential bargaining. In the Nash

framework, the Pareto optimality condition is defined more explicitly because the effi-

ciency is one of the axioms the Nash solution must satisfy. We show then how the Nash

and the SSP outcomes satisfy the efficiency condition. This relation, through the Pareto

optimality, facilitates a comparison between the two bargaining situations. This compar-

ison is quite useful if one notices that the efficient SSP outcome is the implicit solution

of a polynomial equation of degree λ > 1. In contrast, the Nash bargaining solution is

explicitly defined and easy to calculate. From this comparison one can conclude that, with

respect to the Nash outcome, the efficient SSP agreement occurs at a higher level of the

the state variable and, hence, the lack of cooperation delays agreements and investment

decisions.

1 Alternating-Offer Game: Bargaining Procedure

In this section, we will briefly go through the basic deterministic model of sequential

bargaining. We will do this by summarising the bargaining procedure and the outcome

without dealing with other features of the solution such as subgame perfection, uniqueness

and efficiency. These features will be described extensively in the following section for the

stochastic case.

The main features of this type of bargaining are (i) the bargaining has an infinite

horizon and (ii) it is costly.

Two players, say 1 and 2, have the opportunity to share a pie of size 1. They alternate

between making an offer at discrete points in time. To allow for serious offers, assume the

two agents are impatient with discount factors 0 < Di < 1, i = 1, 2. The impatience then

represents the cost of bargaining. Assume player 1 starts the negotiation. He proposes at

time zero a partition of the pie x = (x1, x2) with x1 + x2 = 1. Player 2 can either accept

this proposal, in which case the game ends with the implementation of the partition x,

or reject it. If he rejects, the game moves on by a time period ∆, with player 2 making
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a proposal y = (y1, y2) with y1 + y2 = 1. If the offer is rejected the game goes on with

a sequence of alternating offers until an proposal is accepted. If the bargaining never

reaches an agreement both players receive a zero payoff as the discounted pie shrinks to

zero.

This game admits a unique equilibrium payoff, namely:

x =

(
1−D2

1−D1D2

,
(1−D1)D2

1−D1D2

)
, y =

(
(1−D2)D1

1−D1D2

,
(1−D1)

1−D1D2

)
and the agreement is reached at the first round5.

1.1 Alternating-Offer Over a Stochastic Pie

The purpose of this section is first to describe the features of the wage negotiation (and

hence the features of the wage-contract), then we will describe the bargaining procedure.

An entrepreneur has the opportunity to invest in a project generating an instantaneous

cash flow, Pt, which follows a geometric Brownian motion

dPt = µPtdt + σPtdzt,

where µ and σ are the drift and the volatility of the process respectively. In order to

invest, the entrepreneur pays an initial fixed cost, K, and hires a labourer who earns

an instantaneous constant wage, w, until the production stops. We assume that there is

monopoly on the demand and supply sides of the labour market, therefore in order to

invest, the manager and the labourer (or a labour union) have to agree on a long-term

fixed wage contract, w.

The union and the manager are risk neutral and have different time preferences over

payoffs described respectively by discount factors e−γt and e−δt. The time preferences are

such that δ and γ are both greater than µ.

Bargaining structure

Agents play an alternating offer game over wage contracts. If the entrepreneur has

the right to start the game, then the bargaining runs as follows.

Step 1

At time zero the manager observes the initial level of the cash flow, Pt. At this level

of the state variable his (own evaluation of the) expected discounted cash flows, minus

5See Binmore (1987) for a refinement of the Rubinstein result in terms of subgame perfection.
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the investment cost K, is ∫ ∞

t

Pse
−γ(s−t)ds−K =

Pt

γ − µ
−K,

which represents the value of the ‘pie’ (the net value of the investment) to the eyes of the

entrepreneur.

Once the value of the pie is known, the manager makes an offer to the union. If the

union accepts this offer the manager obtains a share of the pie, say α∆(Pt) and the union

receives the residual share, say β̃∆(Pt), where

β̃∆(Pt) =

[
Pt

γ − µ
−K − α∆(Pt)

]
δ

γ
. (1)

We will use the tilde to refer to one player’s payoff under the offer of the other player.

Under this agreement the investment starts and the instantaneous constant wage, w,

is determined because the union’s share of the pie is equal to w/δ.

Step 2

If the union rejects the manager’s offer, at time t + ∆ (one period ahead), the union

makes a proposal. The union observes the state variable Pt+∆, calculates the value of the

pie, which is given by [
Pt+∆

γ − µ
−K

]
γ

δ
, (2)

and makes an offer to the manager. If the offer is accepted the game ends and invest-

ment starts with payoffs to the manager and the union respectively equal to

α̃∆(Pt+∆) =
Pt+∆

γ − µ
−K − β∆(Pt+∆)

γ

δ
, β∆(Pt+∆). (3)

If the offer is rejected, the game continues with steps 1 and 2 repeating until an offer

is accepted. If the bargaining never reaches an agreement, both players receive zero6.

2 Characterisation of Subgame Perfect Equilibrium

Payoffs

In this section, we briefly characterise the set of stationary subgame perfect (SSP) payoffs

by defining its supremum and infimum. In the following section, this characterisation

6Because the time preferences are greater than the drift of the process, the expected discounted value

of the pie shrinks to zero as in the deterministic case.
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allows us to investigate uniqueness by checking whether the supremum and the infimum

are equal. In such a case the SSP set shrinks to a single point.

Let A(Pt) and a(Pt) (B(Pt) and b(Pt)) denote respectively the supremum and the

infimum of the share for the manager, player M , (the union, player U) in any perfect

equilibrium of the game when he (she) is the proposer. And let Ã(Pt) and ã(Pt) (B̃(Pt)

and b̃(Pt)) be the supremum and the infimum when M (U) is the responder.

Consider the subgame beginning at time t with an offer made by M . In this subgame

any offer made by M which gives U a share greater than EtB(Pt+∆)e−δ∆ will be accepted

by U (being B(Pt+∆) the supremum of the share to U at his turn one period ahead).

Then M can guarantee at least a share

Pt

γ − µ
−K − EtB(Pt+∆)e−δ∆ δ

γ
≤ a(Pt) (4)

and U can obtain at most

EtB(Pt+∆)e−δ∆ ≥ B̃(Pt). (5)

Now consider an offer made by M which gives U a share less than Etb(Pt+∆)e−δ∆.

Any proposal like this will be rejected by U (being b(Pt+∆) the infimum of the share U

earns next stage). Therefore

b̃(Pt) ≥ Etb(Pt+∆)e−δ∆ (6)

and the best M can obtain by making an acceptable proposal is Pt

γ−µ
−K−Etb(Pt+∆)e−δ∆ δ

γ
.

If U rejects this offer then M , as responder next stage, will receive at most EtÃ(Pt+∆)e−γ∆.

This can be written as

A(Pt) ≤ max

{
Pt

γ − µ
−K − Etb(Pt+∆)e−δ∆ δ

γ
, EtÃ(Pt+∆)e−γ∆

}
. (7)

Combining 4 and 7 with the definition of supremum and infimum gives the lower and

upper bounds to the set of SSP payoffs to M , that is:

Pt

γ − µ
−K − EtB(Pt+∆)e−δ∆ δ

γ
≤ a(Pt) ≤ A(Pt)

≤ max

{
Pt

γ − µ
−K − Etb(Pt+∆)e−δ∆ δ

γ
, EtÃ(Pt+∆)e−γ∆

}
.

(8)

Similarly 5 and 6 yield bounds for the set of SSP payoffs to U , as responder, which are

given by

Etb(Pt+∆)e−δ∆ ≤ b̃(Pt) ≤ B̃(Pt) ≤ EtB(Pt+∆)e−δ∆. (9)
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Repeating the same argument for the subgame beginning at time t+∆, with a proposal

made by U (where U offers more than Et+∆A(Pt+2∆)e−γ∆ or less than Et+∆a(Pt+2∆)e−γ∆),

yields bounds to the set of SSP to U and M (as responder) respectively[
Pt+∆

γ − µ
−K − Et+∆A(Pt+2∆)e−γ∆

]
δ

γ
≤ b(Pt+∆) ≤ B(Pt+∆)

≤ max

{[
Pt+∆

γ − µ
−K − Et+∆a(Pt+2∆)e−γ∆

]
δ

γ
, Et+∆B̃(Pt+2∆)e−δ∆

}
,

(10)

and

Et+∆a(Pt+2∆)e−γ∆ ≤ ã(Pt+∆) ≤ Ã(Pt+∆) ≤ Et+∆A(Pt+2∆)e−γ∆. (11)

3 Uniqueness of SSP Payoffs

Definition 1. Optimal stopping time (OST). Corresponding to

i) any SSP payoff

ᾱ(Pt) =

{
A(Pt) for M proposing at t,

Ã(Pt) for U proposing at t.

there is an OST, τᾱ = {min n ≥ 0 : ᾱ(Pn) ≥ supj>n Enᾱ(Pj)e
−γ(j−n)}.

ii) any SSP payoff

β̄(Pt) =

{
B(Pt) for U proposing at t,

B̃(Pt) for M proposing at t.

there is an OST, τβ̄ = {min n ≥ 0 : β̄(Pn) ≥ supj>n Enβ̄(Pj)e
−δ(j−n)}.

It follows that extremal SSP payoffs (ᾱ(Pt), β̄(Pt)) would be proposed or accepted at

any time t ≥ max{τᾱ, τβ̄} because neither player, by the definition of OST, could improve

his best outcome.

Note that the assumption on the existence of OST yielding extremal payoffs just

excludes the trivial solution7 (0,0).

We will proceed as follows. First one can use definition 1 to calculate the max in 8 and

10 when the initial level of the state variable Pt is such that t ≥ max{τᾱ, τβ̄}. Then the

7If an optimal stopping rule does not exist, in the sense that either τᾱ or τβ̄ is infinite, then

max{τᾱ, τβ̄} = ∞. This implies that an agreement (yielding extremal payoffs) never occurs and

(ᾱ(Pt) = 0, β̄(Pt) = 0). Then the supremum to M and U is zero and the set of SSP payoffs would

only contain the disagreement point.
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upper bound to M and U can be solved recursively. If extremal payoffs like ( Pt

γ−µ
−K, 0)

can be ruled out by the convergence of the upper bound, then there is a unique SSP payoff

at which an agreement occurs at the first round of the game.

Combining the last inequality in 11 with definition 1 i), where j − n can be set equal

to ∆, yields Ã(Pt+∆) = Et+∆A(Pt+2∆)e−γ∆ for any t > max{τᾱ, τβ̄}. Then 7 becomes

A(Pt) ≤ max

{
Pt

γ − µ
−K − Etb(Pt+∆)e−δ∆ δ

γ
, EtEt+∆A(Pt+2∆)e−γ2∆

}
. (12)

Also, by definition 1 i) (with j−n = 2∆) it must be A(Pt) ≥ EtA(Pt+2∆)e−γ2∆ which

combined with 12 yields

EtA(Pt+2∆)e−γ2∆ ≤ A(Pt) ≤
Pt

γ − µ
−K − Etb(Pt+∆)e−δ∆ δ

γ
. (13)

This can be rearranged (by the first inequality in 10) as

EtA(Pt+2∆)e−γ2∆ ≤ A(Pt)

≤ Pt

γ − µ
(1− e−(δ−µ)∆)−K(1− e−δ∆) + EtA(Pt+2∆)e−(δ+γ)∆,

(14)

where the right hand side can be solved recursively. Using for brevity the notation

c1 = 1−e−(δ−µ)∆

γ−µ
and c2 = 1− e−δ∆ at the nth iteration, 14 expands as follows:

A(Pt) ≤ Ptc1 −Kc2 + EtA(Pt+2∆)e−(δ+γ)∆

≤ Ptc1

n−1∑
i=0

e−i(δ+γ−2µ)∆ −Kc2

n−1∑
i=0

e−i(δ+γ)∆ + EtA(Pt+n2∆)e−n(δ+γ)∆.
(15)

As n →∞, then EtA(Pt+n2∆)e−n(δ+γ)∆ converges to 0. This follows the fact that

A(Pt+n2∆) ≤ Pt+2n∆

γ−µ
−K and then:

lim
n→∞

EtA(Pt+n2∆)e−n(δ+γ)∆ ≤ lim
n→∞

Et
Pt+2n∆

γ − µ
e−n(δ+γ)∆ −Ke−n(δ+γ)∆

≤ lim
n→∞

Pt

γ − µ
e−n(δ+γ−2µ)∆ −Ke−n(δ+γ)∆

= 0.

(16)

Therefore as n →∞, the upper bound to A(Pt), with t ≥ max{τᾱ, τβ̄}, converges to

Ptc1

1− e−(γ+δ−2µ)∆
− Kc2

1− e−(δ+γ)δ
≥ A(Pt). (17)
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Regarding U , a similar straightforward calculation at time t+∆ ≥ max{τᾱ, τβ̄} yields

the upper bound to U , i.e.(
Pt+∆c3

1− e−(γ+δ−2µ)∆
− Kc4

1− e−(δ+γ)δ

)
γ

δ
≥ B(Pt+∆), (18)

where c3 = 1−e−(γ−µ)∆

γ−µ
and c3 = 1− e−γ∆.

It is now straightforward to show that the lower bound and upper bound are the same.

In fact, combining 4 and 18 gives

a(Pt) ≥
Pt

γ − µ
−K − EtB(Pt+∆)e−δ∆ δ

γ

≥ Pt

γ − µ
−K − Et

(
Pt+∆c3

1− e−(γ+δ−2µ)∆
− Kc4

1− e−(δ+γ)δ

)
e−δ∆

=
Ptc1

1− e−(γ+δ−2µ)∆
− Kc2

1− e−(δ+γ)δ
,

(19)

which implies

A(Pt) = a(Pt) =
Ptc1

1− e−(γ+δ−2µ)∆
− Kc2

1− e−(δ+γ)δ
. (20)

Moreover combining 10, 18 and 20 yields

B(Pt+∆) = b(Pt+∆) =

(
Pt+∆c3

1− e−(γ+δ−2µ)∆
− Kc4

1− e−(δ+γ)δ

)
γ

δ
. (21)

Therefore, one concludes that at any level of cash flow, Pt (with t ≥ max{τᾱ, τβ̄}), M

(U) always proposes an allocation yielding α∆(Pt) = A(Pt) = a(Pt) (β∆(Pt) = B(Pt) =

b(Pt)) when he (she) is the proposer at t, and accepts a share α̃∆(Pt) = Etα∆(Pt+∆)e−γ∆

(β̃∆(Pt) = Etβ∆(Pt+∆)e−δ∆) when U (M) is the proposer at t8. Moreover, as the SSP

payoffs proposed (by M/U) and accepted (by U/M) sum to the ‘pie’ (evaluated by M),

i.e.

Etβ∆(Pt+∆)e−δ∆ δ

γ
+ α∆(Pt) =

Pt

γ − µ
−K,

Etα∆(Pt+∆)e−γ∆ + β∆(Pt)
δ

γ
=

Pt

γ − µ
−K,

it follows that an agreement occurs at the first round of the game with (SSP) equilib-

rium payoffs to M and U equal to (α∆(Pt), Etβ∆(Pt+∆)e−δ∆), when M is the proposer at

t, and equal to (Etα∆(Pt+∆)e−γ∆, β∆(Pt)), when U makes a proposal.

8The subscript ∆ is to remind us that we are in discrete time and the outcome depends on ∆.

10



4 Timing of the agreement

The objective of this section is to solve the optimal stopping time problem for both players

in order to find max{τᾱ, τβ̄}.
As this does not change the result about uniqueness but makes the calculation easier,

we will proceed by analysing the continuous-time case. As ∆ → 0

α∆(Pt) =
Ptc1

1− e−(γ+δ−2µ)∆
− Kc2

1− e−(δ+γ)δ

→ Pt

γ − µ

δ − µ

δ + γ − 2µ
−K

δ

δ + γ
= α(Pt)

(22)

and

β∆(Pt) =

(
Pt+∆c3

1− e−(γ+δ−2µ)∆
− Kc4

1− e−(δ+γ)δ

)
γ

δ

→
(

Pt

δ + γ − 2µ
−K

γ

δ + γ

)
γ

δ
= β(Pt).

(23)

Moreover, by definition 1, the optimal stopping problems to be solved can be written

as

Etα(Pτα)e−(τα−t)γ = sup
τ

Etα(Pτ )e
−(τ−t)γ (24)

and

Etβ(Pτβ
)e−(τβ−t)δ = sup

τ
Etβ(Pτ )e

−(τ−t)δ (25)

for M and U respectively.

First, we will solve a general stopping problem associated with a geometric Brownian

motion.

Proposition 1. Assuming the time preference, r, is greater than the drift of the

process, µ, if τ is a stopping time, then the problem Etg(Pτ )e
−(τ−t)r has solution g(P ∗)

(
Pt

P ∗

)λ

where λ =
(
−(µ− σ2)±

√
(µ− σ2)2 + 2σ2r)

)
/σ2.

Proof As Etg(Pτ )e
−(τ−t)r = EtEτg(Pτ )e

−(τ−t)r = g(P ∗)Ete
−(τ−t)r then the problem re-

duces to solving the term Ete
−(τ−t)r.

We will use a martingale theorem for stopping times9. If τ is a stopping time, then

we can define a martingale Ete
− ξ2

2
(τ−t)+ξ∆Z(τ−t) = 1 for any ξ ∈ R. This property can be

9See Ross (1996), pp. 381-302.
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combined with the well known result, ln Pτ/Pt = (µ− σ2)(τ − t) + σ∆Z(τ − t), as follows

Ete
− ξ2

2
(τ−t)+ξ∆Z(τ−t) = Ete

− ξ2

2
(τ−t)+[ln P ∗/Pt−(µ−σ2/2)(τ−t)]ξ/σ

= Et

(
P ∗

Pt

)ξ/σ

e−
ξ2

2
(τ−t)− ξ

σ
(µ−σ2/2)(τ−t)

= 1.

From the last equality then Ete
−[ ξ2

2
+ ξ

σ
(µ−σ2/2)](τ−t) =

(
Pt

P ∗

)ξ/σ
. Then this result implies

that Ete
−(τ−t)r =

(
Pt

P ∗

)ξ/σ
where ξ solves Ete

−[ ξ2

2
+ ξ

σ
(µ−σ2/2)](τ−t) = Ete

−(τ−t)r. It fol-

lows that ξ is the solution to [ ξ2

2
+ ξ

σ
(µ − σ2/2)] = r; this gives the two roots ξ =(

−(µ− σ2)±
√

(µ− σ2)2 + 2σ2r)
)

/σ. Notice that ξ1 > 0 and ξ2 < 0 being r > 0.

Observe that Ete
−(τ−t)r ≤ 1 for t ≤ τ so it must be Pt ≤ P ∗ for ξ > 0 and Pt ≥ P ∗

otherwise10. Let ξ/σ = λ then Ete
−(τ−t)r =

(
Pt

P ∗

)λ
. �

With this result the problem supτ Etg(Pτ )e
−(τ−t)r can be rearranged as maxP ∗ g(P ∗)

(
Pt

P ∗

)λ

with first and second order conditions:

foc → [g′(P ∗)P ∗−λ − λg(P ∗)P ∗−λ−1

]P λ
t = 0

soc → [g′′(P ∗)P ∗−λ − λg′(P ∗)P ∗−λ−1 − λg′(P ∗)P ∗−λ−1

+ λ(λ + 1)g(P ∗)P ∗−λ−2

]P λ
t < 0.

Notice that in our case α(Pt) and β(Pt) are straight lines with positive slope and strictly

positive payoffs when an agreement occurs. Therefore, one can focus on the case where

g(P ∗) > 0, g′(P ∗) > 0 and g′′(P ∗) = 0. In particular, given the restriction on g(P ∗) and

g′(P ∗), the foc can be easily rearranged as g′(P ∗)P ∗/g(P ∗) = λ where the left hand side

is positive. Therefore, one concludes that λ must be greater than 0 in order to have a

maximum whereby

λ =
(
−(µ− σ2) +

√
(µ− σ2)2 + 2σ2r)

)
/σ2.

As already argued, this implies that for t ≤ τ , the state variable, Pt, will approach the

trigger P ∗ from below, i.e. Pt ≤ P ∗.

Now, by these results, problems 24-25 become

Etα(Pτα)e−(τα−t)γ = max
P ∗

α(P ∗)

(
Pt

P ∗

)λM

(26)

and

Etβ(Pτβ
)e−(τβ−t)δ = max

P ∗
β(P ∗)

(
Pt

P ∗

)λU

, (27)

10In the remainder of this section, we will discuss whether ξ should be taken positive or negative.
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where

λM =
(
−(µ− σ2) +

√
(µ− σ2)2 + 2σ2γ)

)
/σ2

and

λU =
(
−(µ− σ2) +

√
(µ− σ2)2 + 2σ2δ)

)
/σ2.

Solving the maximisation problems yields

PM = arg max
P ∗

{
α(P ∗)

(
Pt

P ∗

)λM

}
=

λM

λM − 1

(γ − µ)(δ + γ − 2µ)δK

(δ − µ)(δ + γ)
, (28)

PU = arg max
P ∗

{
β(P ∗)

(
Pt

P ∗

)λU

}
=

λU

λU − 1

(δ + γ − 2µ)γK

(δ + γ)
. (29)

Observe that being γ and δ greater than µ, then λM and λU are greater than 1 and,

hence, PM and PU are strictly positive.

It can be easily shown11 that if γ < δ, then PM > PU . This implies max{τα, τβ} = τα.

If instead γ ≥ δ then PM ≤ PU and max{τα, τβ} = τβ, then one concludes that at any

initial level of the state variable Pt ≥ max{PM , PU} there is immediate agreement yielding

payoffs (α(Pt), β(Pt)).

4.1 Timing and Efficiency of an Agreement

The aim of this subsection is to show that when Pt starts below max{PM , PU} an imme-

diate agreement occurs at any initial level of the state variable satisfying Pt > P where,

as we will show, P ≤ max{PM , PU}. In other words, if Pt starts below P no immediate

agreement is feasible and necessarily there will be a delay until Pt approaches P . The

question is whether or not this delay reflects Pareto inefficiency in the bargaining.

We will proceed as follows. By using the previous result, we will calculate P , the

“lower bound” to the initial level of the cash flow Pt, preventing delay. In doing this,

we will show that Pareto optimality arises implicitly. This result implies that delay in

agreement/investment is due to hysteresis12 rather than any inefficiency in the bargaining

process.

With a slight change of notation, we will first draw a general formulation and, at the

end of this section, the specific results will be provided.

As proved in the previous section, for Pt ≥ max{PM , PU} there is immediate agreement

yielding payoffs (α(Pt), β(Pt)); moreover max{PM , PU} = Pj where j = M for γ < δ and

11See Cripps, 1997, p.544.
12See Dixit (1989).
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j = U for γ ≥ δ. Let player i be 6= j and ri and rj be the time preferences (δ, γ). Also let

g(.) = α(.) and g(.) = β(.)δ/γ when j = M . Otherwise, let g(.) = β(.)δ/γ and g(.) = α(.)

when j = U13. If the initial level of the state variable, Pt, starts below Pj, then player

j has an expected discounted SSP payoff equal to g(Pj)(Pt/Pj)
λj . Therefore, any earlier

offer from player i, which does not guarantee g(Pj)(Pt/Pj)
λj to j, will be rejected. On

the other hand, if player i benefits from an earlier agreement, he will not offer more than

j’s reservation payoff. Then, if there is any advantage for i to make an early offer, this

must yield g(Pj)(Pt/Pj)
λj to j, and the residual payoff Pt/(γ − µ)−K − g(Pj)(Pt/Pj)

λj

to i. Therefore, if there is any gain from an earlier agreement i makes an offer as soon

as Pt ≥ P , where

P = arg max
P

[
P

γ − µ
−K − g(Pj)(P/Pj)

λj

]
(Pt/P )λi . (30)

Notice that, by using the stopping-problem technique introduced before, the threshold

level P is the solution to the stopping problem

sup
τ

Et

[
Pτ

γ − µ
−K − g(Pj)(Pτ/Pj)

λj

]
e−ri(τ−t).

Moreover, there is a gain to i from making this offer iff

max

{[
P

γ − µ
−K − g(Pj)(P/Pj)

λj

]
(Pt/P )λi , g(Pj)(Pt/Pj)

λi

}
=

[
P

γ − µ
−K − g(Pj)(P/Pj)

λj

]
(Pt/P )λi .

(31)

We will first show that 31 holds; this implies that if Pt starts sufficiently low there is

an advantage in reaching an earlier agreement and not delaying until the cash flow crosses

the threshold level Pj. Then we will show that condition 31 implies Pareto optimality.

Let ḡ(P, Pt) =
[

P
γ−µ

−K − g(Pj)(P/Pj)
λj

]
(Pt/P )λi , by 30 it follows that ḡ(P , Pt) ≥

ḡ(P ′, Pt) for any P ′ 6= P and any Pt ≤ P . Take P ′ = Pj, then

ḡ(P , Pt) ≥ ḡ(Pj, Pt) (32)

= Etḡ(Pj, Pτ = Pj)e
−ri(τ−t)

= Et

[
Pj

γ − µ
−K − g(Pj)

]
e−ri(τ−t)

= Etg(Pj)e
−ri(τ−t)

= g(Pj)(Pt/Pj)
λi .

13Notice that these payoffs are defined as evaluated by the manager, this permits us to generalise the

notation.
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It is straightforward to notice that the equality holds, i.e. ḡ(P , Pt) = g(Pj)(Pt/Pj)
λi iff

γ = δ, and in such a case Pj = max{PM , PU} = P and there can be no earlier agreement

for Pt < Pj.

Therefore, for any initial level of cash flows, Pt, satisfying P ≤ Pt ≤ Pj (with P

defined by 30), there is an immediate agreement, which yields SSP outcomes to j and i

(as evaluated by the manager) respectively equal to

g(Pj)(Pt/Pj)
λj , (33)

Pt

γ − µ
−K − g(Pj)(Pt/Pj)

λj . (34)

Implicitly, in this last calculation there arises the condition for the Pareto optimal-

ity of an earlier agreement yielding a SSP partition of the pie. In fact, one can use the

following definition, with g and g′ restricted to be SSP outcomes, and then compare the

following definition to 32.. Pareto optimality14. Let (g, τ) be an outcome, where g is a

share of the pie and τ is the random time at which agreement occurs. An outcome (g, τ)

is Pareto optimal if there is no other outcome (g′, τ ′) such that Etg
′e−rτ ′ ≥ Etge−rτ for

any Pt with the strict inequality for some Pt.

Summary of SSP outcomes

We conclude this section summarising the SSP outcomes for any initial level of the

state variable and values of γ and δ. Let SM and SU be the SSP payoffs to M and U

respectively (as evaluated by the manager). Then we have the following results:

if Pt ≥ max{PM,PU}

α(Pt) =
Pt

γ − µ

δ − µ

δ + γ − 2µ
−K

δ

δ + γ
, β(Pt)

δ

γ
=

Pt

δ + γ − 2µ
−K

γ

δ + γ
(35)

if P ≤ Pt < max{PM,PU}

* for PM > PU

SM(Pt) = α(PM)(Pt/PM)λM , SU(Pt) =
Pt

γ − µ
−K − α(PM)(Pt/PM)λM (36)

* for PU > PM

SM(Pt) =
Pt

γ − µ
−K − β(PU)

δ

γ
(Pt/PU)λU , SU(Pt) = β(PU)

δ

γ
(Pt/PU)λU (37)

14We use an ex ante definition of Pareto optimality as in Merlo and Wilson (1995, p.384).
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if Pt < P there is no immediate agreement and the expected discounted payoffs of

an agreement at P are:

* for PM > PU

SM(Pt) = α(PM)(Pt/PM)λM , SU(Pt) =

[
P

γ − µ
−K − α(PM)(P/PM)λM

]
(Pt/P )λU

(38)

* for PU > PM

SM(Pt) =

[
P

γ − µ
−K − β(PU)

δ

γ
(P/PU)λU

]
(Pt/P )λM , SU(Pt) = β(PU)

δ

γ
(Pt/PU)λU .

(39)

In the above results PM and PU are given by

PM =
λM

λM − 1

(γ − µ)(δ + γ − 2µ)δK

(δ − µ)(δ + γ)
, PU =

λU

λU − 1

(δ + γ − 2µ)γK

(δ + γ)
,

with PM > PU iff δ > γ.

Moreover, one may notice that, for δ > γ, P is the solution to

SM(P ) =
P

γ − µ

λU − 1

λU − λM

−K
λU

λU − λM

, (40)

and for δ < γ the solution to

SU(P ) =
P

γ − µ

λM − 1

λM − λU

−K
λM

λM − λU

, (41)

where 40 and 41 can be derived by rearranging the first order conditions of problem 30.

Last, for δ = γ

P = PM = PU . (42)

In Figure 1, we show the equilibrium outcome of the sequential bargaining when

δ > γ and, hence, PM > PU . In this case, it is intuitive that the more patient player,

– the manager –, should guarantee a larger expected payoff. In fact, as expected, the

blue line, representing SM(Pt), is always above the red line, which represents SU(Pt).

Last, notice that according to 3.41, SU(Pt) ‘smooth-pastes’ the grey, continuous curve,

representing the residual payoff Pt

γ−µ
− K − SM(Pt), and the tangency between the two

curves is guaranteed by the fact that P maximises the union’s expected payoff.
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5 Comparison with the Nash Bargaining Solution

We are now ready to give a technical result, but nonetheless useful when one wants to

compare the SSP outcome of sequential bargaining with the Nash bargaining outcome.

A more simple bargaining procedure was introduced by Nash (1950) and the bargain-

ing protocol is described as follows. Each player simultaneously demands a share of the

pie; if the demands are feasible, given the size of the pie, then the players receive their

demands otherwise they receive their disagreement payoffs. The main difference with

respect to the sequential bargaining is that the Nash protocol implies the existence of

a cooperative framework where players can commit to demands and disagreement pay-

offs. Most importantly, one can imagine an umpire who guarantees players will stick to

their commitments. Then the cooperative framework is meant to enforce threats and

commitments15.

As the Nash bargaining outcome is not the central issue of this paper, we will only

introduce the main conditions which permit one to derive the Nash bargaining solution,

and we refer the reader to Nash (1950, 1953).

Nash (1953) stated axioms which the solution to this bargaining situation should

satisfy, and, in turn, these axioms allow one to restrict the set of solutions to a single

point. It can be proved that the Nash bargaining solution is the only solution to the above

bargaining situation, which satisfies these axioms. In particular, the Nash bargaining

solution can be derived by maximising the product of each agent’s surplus16.

We will define the Nash bargaining in a stochastic environment following the charac-

terisation by Perraudin and Psillaki (1999).

In our bargaining situation, each agent’s surplus corresponds to a demand, say, DM ,

DU and the disagreement payoffs is zero when no wage-contract has been agreed upon. In

particular, the expected discounted payoffs of an agreement are DM(Pt) = [P/(γ − µ)−
K−w/γ](Pt/P )λM and DU(Pt) = w/δ(Pt/P/)λU and the Nash problem can be formalised

as

D∗
M(Pt)D

∗
U(Pt) = max

P,w

[
P

γ − µ
−K − w

γ

](
Pt

P

)λM w

δ

(
Pt

P

)λU

. (43)

15See van Damme (1991, p.160) for a discussion on commitment and cooperation regarding the Nash

bargaining solution.
16See Binmore and Dasgupta (1987, pp.32-37)

17



By the first order conditions one obtains

∂DM/∂P

∂DM/∂w
=

∂DU/∂P

∂DU/∂w
, (44)

∂DM/∂w

DM

= −∂DU/∂w

DU

. (45)

Observe that 44 guarantees Pareto optimality of the outcome17 in that each agent has

the same trade off (marginal rate of substitution) between the timing of the agreement and

payoff from the agreement. Then one can refer to 44 as Pareto optimality (or efficiency)

condition.

Condition 45 is related to the bargaining power of players in the negotiation. If

any asymmetry in the negotiation is correctly reflected in the agreement payoffs and the

bargaining protocol is symmetric18, then agents have the same bargaining power19. We

will refer to 45 as Symmetry condition. Perraudin and Psillaki (1999) use the generalised

version of the Nash bargaining with an exogenous parameter capturing any asymmetry

in the bargaining protocol so they refer to this condition as Bargaining condition.

From 44-45, one can derive the Nash bargaining outcome (P ∗ and w∗), which allows

us to make an immediate comparison with the sequential bargaining20.

From the Symmetry condition, players split the pie a half and a half, then

DM(P ∗) = DU(P ∗)δ/γ =

(
P ∗

γ − µ
−K

)
/2 (46)

and the Pareto optimality condition yields a share

DU(P ∗)
δ

γ
=

P ∗

γ − µ

λM − 1

λM − λU

−K
λM

λM − λU

(47)

to U , and a share

DM(P ∗) =
P ∗

γ − µ

λU − 1

λU − λM

−K
λU

λU − λM

(48)

to M .

The comparison with the sequential bargaining is quite immediate. Just notice that

the Rubinstein SSP outcome is Pareto optimal at Pt = P and therefore it must satisfy

17Pareto efficiency is one of axioms which the Nash bargaining solution satisfies.
18In the sense that the bargaining procedure -for instance the sequence of moves- does not give any

advantage to either player.
19See Nash (1953, p.138).
20See also Binmore, Rubinstein and Wolinsky (1986) for a comparison between the Rubinstein and the

Nash bargaining in the deterministic case.
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the efficiency conditions 47-48. In fact, as already found in 40 and 41, at Pt = P , the SSP

equilibrium shares (for any δ 6= γ) are

SM(P ) =
P

γ − µ

λU − 1

λU − λM

−K
λU

λU − λM

, (49)

and

SU(P ) =
P

γ − µ

λM − 1

λM − λU

−K
λM

λM − λU

, (50)

to M and U respectively, and these are nothing but the efficiency conditions of the Nash

bargaining problem (see 47, 48). Geometrically, this implies that there exists a straight

line, characterising a Pareto efficient outcome and represented by the function

Pt

γ − µ

λi − 1

λi − λj

−K
λi

λi − λj

,

which crosses the efficient outcome (Di(P
∗), P ∗) of the Nash bargaining and the efficient

outcome (Si(P ), P ) of the sequential bargaining for player i = M, U and j 6= i. This

comparison is depicted in Figure 2, where, in particular, we show the case where δ > γ,

that is the labour union is more impatient than the manager.

Moreover, as shown in Figure 15, one can notice that the slope of the line Pt

γ−µ
λU−1

λU−λM
−

K λU

λU−λM
is positive when δ > γ which, in turn, implies λU > λM (and λi is always greater

than 1). Combining this with the fact that in a sequential bargaining the more patient

player can always guarantee a bigger share of the pie, implies that the efficient outcome

in the Nash bargaining occurs at a lower level of cash flow than the efficient outcome in

the sequential bargaining. A similar reasoning applies in the reverse case where δ < γ

and the same conclusion holds, that is Nash bargaining accelerates agreement. In other

words, this means that P ∗ < P for γ 6= δ (and P ∗ = P = PM = PU for δ = γ) and, hence,

the lack of a cooperative environment delays agreements and investment decisions.
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Conclusions

The main result provided by this paper refers to the uniqueness of the subgame perfect

equilibrium in a sequential bargaining where the underlying surplus follows a geometric

Brownian motion. The uniqueness of the equilibrium implies that at any initial level of

the state variable, players always play the same SSP strategy. The only requirement in

order to obtain this result is the restriction over the time preferences, bounded to be

greater than the drift of the stochastic process. The SSP equilibrium outcome found does

not differ from that derived by Cripps. However, the central issue to the present paper

consists of proving the uniqueness of such an outcome.

The additional contribution of the current paper is to highlight other features of the

equilibrium. If the initial level of the state variable is sufficiently low players wait until

the cash flows increase up to a trigger level P , where agreement occurs. This agreement

partition is efficient as it satisfies the Pareto optimality condition. Therefore a delay in

the agreement is due to the fact that not any state contingent outcome can be agreed

upon in the current period. This means that for a low level of cash flows, the sum of

the expected agreement payoffs may exceeds the overall value of the agreement surplus

(which can be negative because of an initial fixed cost). In fact, it is intuitive that if the

fixed cost, K, is zero, there is an immediate agreement for any initial level of the cash

flow (just notice that Pj = max{PM , PU} tends to zero as K = 0).

Furthermore, a technical, but nonetheless useful, result is achieved by providing a

comparison between the sequential and the Nash bargaining outcome. This comparison

can contribute to explicitly address timing considerations. In fact, the unique equilibrium

entry trigger derived under the non-cooperative scenario cannot be solved analytically.

However, as the Nash and the Rubinstein outcomes are Pareto efficient, a relation be-

tween the two investment threshold levels can be established. This relation highlights

the investment delay arising in a non-cooperative bargaining compared to the cooperative

one. The lack of an exogenous mechanism aimed at enforcing contracts results into entry

delay rather than into inefficiency.

Last, we stress that in the current paper we have analysed the relation between the

Rubinstein and the Nash symmetric bargaining with the purpose of highlighting timing

considerations of the Rubinstein outcome. However, in the deterministic case, the relation

between the sequential bargaining and the asymmetric Nash bargaining has been the

object of great effort in game theory. The asymmetric (or generalised) Nash bargaining

takes into account any asymmetry by means of an exogenous parameter representing the
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relative bargaining power. As the time interval between offers and counteroffers tends

to zero, a well known result to game theory scholars is that the Rubinstein outcome

approaches the Nash solution with bargaining power equal to the relative time preferences

of the Rubinstein model. Whether uncertainty may affect this result is left for further

research.
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FIGURE 1: Alternating-offer equilibrium values when γδ >  
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FIGURE 2: Alternating-offer equilibrium values and Nash Bargaining 
solution when γδ >  

 
 
 
 
 

 
 
 


