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Rattanasuda Poolsombat�, Gianluigi Vernascay
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Abstract

In this paper we explore the possibility of �partial-multihoming�in a two-
sided market where a subset of agents, on one or both side(s), may multihome in
equilibrium. We consider a model in which platforms are spatially di¤erentiated
and on each side of the market there are two type of agents, low type and high
type agents, that di¤er only by their preferences over the network bene�ts. We
derive under which conditions of network preferences, an equilibrium with par-
tial multihoming on both sides exists. We show that for such an equilibrium to
exist, the network bene�ts of high type agents must be su¢ ciently higher than
transportation costs. Furthermore, the proportions of agents who multihome
on both sides must be su¢ ciently small. Finally, we show that independently
of the degree of multihoming on the other side of the market, agents in each
group face higher prices when there is partial multihoming on their side than
when there is singlehoming.
Keywords: two-sided markets; network externalities; heterogeneous agents
JEL: L13

1 Introduction

A signi�cant number of real-life markets involve two groups of agents who interact via
�platforms�, and where one group�s bene�t from joining a platform depends on the
size of the other group which joins the platform, a property referred to as (indirect)
network externalities. Markets with these features are commonly termed two-sided
markets (examples include media markets, entertainment platforms, search engines,
computer operating systems and shopping malls).1 The classic example is provided
by the credit card services. For instance, cardholders value credit or debit cards only

�Department of Economics, University of Warwick. Email: R.Poolsombat@warwick.ac.uk
yDepartment of Economics and Related Studies, University of York. Email: gv503@york.ac.uk
1In general many markets or platforms are multi-sided. However, most of the literature has

focused on two-sided markets for expositional simplicity and also because the insights obtained for
two-sided platforms apply more generally to multi-sided ones.
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to the extent that these are accepted by the merchants they patronize; the a¢ liated
merchants bene�t from a widespread di¤usion of cards among consumers. More gen-
erally, many if not most markets with network externalities are characterized by the
presence of two distinct sides whose ultimate bene�t stems from interacting through
a common platform.2 One special di¢ culty of dealing with platform competition is
given by the fact that agents can often join more than one platform. Platform services
usually are not exclusive, and users may rely on the services of several platforms.
When an agent chooses to use only one platform it has become common to say

the agent is �singlehoming�. When an agent uses several platforms he is said to
�multihoming�.3 In a number of markets, a fraction of end-users on one or both
side(s) may connect to several platforms. As Evans (2002) notes, �Most two-sided
markets we observe in the real world appear to have several competing two-sided �rms
and at least one side appears to multihome�. Analyses of multihoming markets,
however, are complicated by two elements. First some of the costs and bene�ts
are endogenously determined in a market equilibrium. For instance, platforms may
use price instruments to attract customers. In doing so, they do not only a¤ect
market shares, but also the extent of multihoming behavior. For example, when
Visa reduces the (transaction-proportional) charge paid by the merchants, merchants
become more tempted to turn down the more costly Amex as long as a large fraction
of Amex customers also own a Visa card. Second, agents decisions are interdependent.
Consider this trivial example, consumers choosing products of di¤erent brands. If all
brands are o¤ered in two or more shops (multihoming), each consumer needs to visit
only one shop to have the whole range available (singlehoming). It makes a signi�cant
di¤erence to outcomes whether groups singlehome or multihome, since prices on one
side of the market depend on the extent of multihoming on the other side.
Despite the recent growing literature, two-sided markets with multihoming have

been analyzed in a framework that does not allow for partial multihoming on both
sides of the markets. In particular, in the standard framework it is assumed that only
one side completely multihomes while the opposite side completely singlehomes. This
situation is de�ned as �competitive bottlenecks�after the seminal paper of Armstrong
(2005). Examples of papers that analyze multihoming in that standard framework
are Armstrong and Wright (2004) and Rochet and Tirole (2004). Gabszewicz and
Wauthy (2004) obtain the same structure as an equilibrium outcome without impos-
ing it.4 However, there are many examples of markets where on one or both side(s) of
the market there are only a fraction of agents that multihome. This is also con�rmed

2See Rochet and Tirole (2003, 2004) and Evans (2003a, b) for further examples of two-sided
markets.

3For example, many merchants accept both Amex and Visa; furthermore, some consumers have
both Amex and Visa cards in their pockets. Readers may subscribe to multiple newspapers or
magazines.

4Gabszewicz and Wauthy (2004) do not use a "competitive bottleneck" framework in their model.
By allowing for heterogenous types of agents, they found that a "competitive bottleneck" structure
may arise as an equilibrium of the model.
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by a recent empirical paper of Kaiser and Wright (2006) on the magazine industry
in Germany. They show that about 8 percent of readers and around 17 percent of
advertisers multihome. Thus, allowing for partial multihoming in two-sided markets
not only adds a more realistic feature to the analysis but may highlight some more
insights into the equilibrium price structures and their relationship with network ex-
ternalities. An exception in the existing literature on multihoming is the analysis of
Doganoglu and Wright (2006), in which they allow for partial multihoming by assum-
ing that the agents are heterogeneous in terms of preferences over network bene�ts.
Although, their analysis mainly concerns one-sided markets, they also consider the
case of two-sided markets with restriction on the size of network bene�ts on both
sides.
In this paper we explore the possibility of �partial-multihoming�in two-sided mar-

kets where a subset of agents, on one or both side(s), may multihome in equilibrium.
In particular, we consider a model in which there are two di¤erentiated platforms that
compete over two groups of agents, one on each side of the market. We assume two
types of agents in each group: there are low type agents that have a low preference
over the network bene�ts and high type agents that have a high preference over net-
work bene�ts. When the platforms�services are heterogeneous, parameter values are
assumed so that high types will choose to multihome while low types will not.5 The
closest models to our analysis are Doganoglu and Wright (2006) and Armstrong and
Wright (2004). However, our analysis di¤ers from theirs in several important aspects.
While in Doganoglu and Wright (2006) preferences are heterogeneous within the same
group, we assume that there is intra-group heterogeneity as well as inter-group het-
erogeneity. This means that in our model high type and low type agents on each side
of the market can have a di¤erent valuation of the network bene�ts with respect to
the agents on the opposite side. Furthermore, while Doganoglu and Wright�s analysis
mainly focuses on one-sided markets we consider only two-sided markets. This allows
us to derive explicitly the incentive to multihome in a particular side of the market
and thus to analyze di¤erent market structures depending on the degree of partial
multihoming. Armstrong and Wright�s (2004) analysis is also related to our analysis,
since they consider the case in which there is strong product di¤erentiation on each
side of the market. However, they assume only inter-group heterogeneity and they
do not allow for partial multihoming.
Our aim is to analyze the e¤ects on the equilibrium price structures of the presence

of partial multihoming. We consider three basic settings: (I) two-sided singlehoming
where all users join a single platform exclusively as the costs of duplicated purchases
are higher on both sides of the market than the levels of network bene�ts; (II) partial
multihoming on both sides where a subset of agents join a single platform exclusively
(low types), but not for the rest of the group, who join both platforms (high types);6

5In a two-sided market with strong network bene�ts, it is natural to consider an equilibrium in
which all agents buy from at least one platform.

6Very often when mutihoming is considered, it is restricted to one-side of the market. If inter-
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(III) partial multihoming on one side where all agents on one side join a single plat-
form exclusively because the costs of joining both is higher than the network bene�ts.
While in the other group there exists a subset of agents joining both platforms (high
types); the rest of the group would join only a single platform (low types). We derive
under which conditions of network preferences, an equilibrium with partial multi-
homing on both sides exists. We show that for such an equilibrium to exist, the
network bene�ts of high type agents must be su¢ ciently higher than transportation
costs. Furthermore, the proportions of agents that multihome on both sides must be
su¢ ciently small. In general, platforms tend to charge higher prices to the side that
multihomes. By contrast, platforms need to compete for the singlehoming agents, and
the high pro�ts generated from the multihoming side are passed to the singlehoming
side through low prices (see Proposition 6). Contrary to results of competitive bottle-
necks, prices charged to one side may be lower even if that side partially multihome
and has an average network bene�t higher than the other side.
The rest of the paper proceeds as follows. Section 2 introduces our general frame-

work of a two-sided market. Subsection 2:1 presents the benchmark model of a
two-sided market with singlehoming on both sides. Section 3 analyzes partial multi-
homing on both sides, while Section 4 assumes only one side has partial multihoming.
A comparison of multihoming and singlehoming equilibria for this model are presented
in Section 5, while Section 6 brie�y concludes.

2 The Model

We start with a standard Hotelling model of competition with network e¤ects similar
to that of Doganoglu and Wright (2006) and Armstrong and Wright (2004). We allow
agents to be heterogeneous in terms of their marginal valuations of network bene�t so
that multihoming can arise in equilibrium. We assume that there are two platforms
that o¤er a di¤erentiated product (for example: newspapers, TV networks, shopping
centres etc.). The two platforms are denoted by k (k = 1; 2). Platforms deal with two
distinct groups of agents, denoted by i (i = A;B), each of which wishes to interact
on a common platform. Platforms coordinate the possible matches between the two
groups. Group i agent can subscribe to a service from either platform 1, platform 2
(singlehome), or both platforms if this is possible (multihome). The utility of an agent
on one side of the market, among other variables, depends on the number of other
agents on the opposite side that he/she can access through a platform (or through
both platforms, if multihoming). For example, subscribing to a service gives group A
(group B) agents network bene�ts that are linear in the number of other agents (e.g.

acting with the other side is the primary reason for an agent to join a platform, Armstrong (2005)
claims that both groups multihoming might not be expected to be very common � if each member
of group B joins all platforms, there is no need for any member of group A to join more than one
platform � and so this con�guration is not analyzed in his paper. However, this is not the case of
partial multihoming.
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group B (group A)), that the group A (group B) can access through the service.7

Thus, there is a cross-group network externality.
Platforms provide a service to agents of group i (i = A;B) at a constant marginal

cost f that is assumed to be small.8 In order to allow for partial multihoming (a
subset of agents on each side will join only one platform, while the remaining agents
in each side will join both platforms), we need to assume that agents on both sides
of the market are heterogeneous in terms of preferences over the network bene�ts (or
costs in the case of negative externality) denoted by � and � depending on which
group of agents we are referring to. We assume that the total number of agents in
each group is equal to unity. Using the framework of Doganoglu and Wright (2006),
we assume that a fraction �A of agents in group A value the network bene�ts highly
(high types) and � = �H > 0. The remaining consumers, a fraction of 1� �A, do not
value the network bene�ts highly (low types), and have � = �L > 0, with �H > �L
and 0 � �A < 1.
For group B, there is a fraction of agents, �B; that has high value for the network

bene�ts, � = �H > 0, while a fraction 1��B has a low value for the network bene�ts,
� = �L > 0, with �H > �L and 0 � �B < 1.9 The utility of group A agents from
joining platform k (k = 1; 2) is given by:10

UAk = vA � pAk � t(x) + �nBk (1)

where vA is the intrinsic bene�t from the service (or the reservation utility level)
regardless of whether they subscribe to a single platform or both platforms, pAk is the
price that group A must pay to join platform k, and t(x) is the transportation cost
faced by the agent located at x in the unit interval in order to reach platform k. We as-
sume prices must be non-negative.11 Meanwhile nBk is the number of group B agents
that can be reached by group A if he/she joins platform k. We will assume that the
value of v is su¢ ciently high such that all agents of group A will always wish to join at
least one platform.12

The utility for group A agents that multihome is given by:

7A member of one group cares only about the number of the other group who join the same
platform. For simplicity, we ignore the possibility that agents care also about the number of the
same group who join the platform.

8Armstrong (2005) claim that it makes little sense to discuss price discrimination if the costs are
signi�cantly di¤erent for the two groups.

9We focus on the case where the network externality is positive from one side of the market to the
other. However, the case with negative network externality can be easily handled in our framework.
10Our utility speci�cation implies that platform charges are levied as a lump-sum fee, as in Arm-

strong (2005) and Doganoglu and Wright (2006). For the case in which agents pay a per-transaction
fee for each agent on the platform from the other side, see Rochet and Tirole (2003).
11Armstrong and Wright (2004), Gabszewicz and Sonnac (2001), and McCabe and Snyder (2004)

make a similar restriction.
12Following Armstrong and Wright (2004), multihoming arises for network reasons, so we allow

agents to obtain intrinsic bene�ts of the platform only once. Agents will only multihome if doing so
allows them to connect with more agents of the opposite type.
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UA = vA � pA1 � pA2 � t(x)� t(1� x) + �(nA2 + nB2) (2)

Notice that equation (2) can be simpli�ed further by noticing that t(x)+t(1�x) =
t since the total distance of travelling to both �rms is always unity. Thus, the utility
from multihoming does not depend on x. Moreover, given that the total number of
agents on each side of the market is normalized to unity, we have nA2 + nB2 = 1.
The utility of group B agents is de�ned in a similar way. For an agent that decides

to singlehome:

UBk = vB � pBk � t(x) + �nAk (3)

While for an agent that multihomes:

UB = vB � pB1 � pB2 � t(x)� t(1� x) + �(nA1 + nA2) (4)

where vB is the intrinsic bene�t from the service that we assume to be su¢ ciently
high such that all agents in group B will always wish to join at least one platform.
Notice that we assume that the intrinsic utility is symmetric between the types in each
group and that the cost of transportation is the same in each side of the market.13

2.1 Singlehoming on Both Sides of the Market

In this section we consider the benchmark case where two platforms that are di¤er-
entiated based on the Hotelling model compete for each group, but all agents of both
groups join a single platform exclusively.
Let � = �L(1 � �A) + �H�A and � = �L(1 � �B) + �H�B denote the average

values of the network bene�t for groups A and B respectively. We assume that the
costs of transportation are higher than these average bene�t values:
Assumption A1: t > � = �L(1 � �A) + �H�A and t > � = �L(1 � �B) + �H�B,

with �A 2 [0; 1) and �B 2 [0; 1).
Assumption A1 implies that product di¤erentiation is stronger than average net-

work bene�ts. It also implies that t > �L and t > �L. This fact will rule out the
possibility of corner solutions in which low type agents, independently of their lo-
cation, will all choose the same platform. As a result, low type agents will never
multihome for non-negative equilibrium prices. Thus, only high value type agents
can have an incentive to multihome, as in Doganoglu and Wright (2006).
Assumptions A1 does not rule out the possibility that high type agents may have

an incentive to multihome, since the transportation cost can be much lower than their
valuation of network bene�ts. The next proposition states under which condition high
type agents may not have an incentive to multihome:

13The assumption of equal transportation costs does not a¤ect qualitatively the results of our
analysis. The case where transportation costs may di¤er from one side of the market to the other is
considered in Armstrong and Wright (2004).
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Proposition 1 High type agents have no incentive to multihome only if �H < t +
pA1 + pA2 and �H < t+ pB1 + pB2:

Proof. Consider a high type agent from group A. The utility from multihoming
of that agent is UA = vA � pA1 � pA2 � t + �H . The lowest utility level that agent
can obtain from singlehoming is Ui1(x) = Ui2(x). Solving that equality for x gives
us: x = pA2�pA1+�H(nB1�nB2)+t

2t
. Evaluating the utility of a high type agent that is

singlehoming at x; we obtain: UA1 = vA � pA1 � t
h
pA2�pA1+�H(nB1�nB2)+t

2t

i
+ �HnB1.

We consider the case when the di¤erence between UA and UA1 is negative: this will
give us the result for �H . In order to �nd the result for �H we apply the same
procedure to high type agents of group B.
Proposition 1 implies that the network valuation parameters of high type agents

may be greater than the transportation costs. However, the di¤erence between the
network bene�ts and the transportation costs is bounded by the sum of the prices.
If this is the case, complete singlehoming may arise in equilibrium even if agents in
each group are heterogeneous in terms of their network bene�ts valuation. To analyze
singlehoming, we assume that the results in Proposition 1 hold.
We de�ne the proportions of high type and low type agents of group i (i =

A;B) that join platform k as hik and lik respectively. Thus, the total number of
people from group A joining platform k is given by nAk = �AhAk+ (1 � �A)lAk,
while the number of agents B joining platform k is given by nBk = �BhBk+ (1 �
�B)lBk with k = 1; 2. The demand function for agents of group A that single-
home solves the problem of the indi¤erent between the two platforms of low type
agent: UA1(vA; pA1; t(x); nB1; �L) = UA2(vA; pA2; t(1 � x); nB2; �L) for x = lA1. The
demand functions of high type agents can be found in a similar way by solving:
UA1(vA; pA1; t(x); nB1; �H) = UA2(vA; pA2; t(1 � x); nB2; �H) for x = hA1. Similar ex-
pressions are found for low and high type agents in group B.
The solutions for the demand functions, hAk; lAk; hBk and lBk with k = 1; 2 are

derived in Appendix A. The pro�t functions of the two platforms are:

�1 = (pA1 � f)(�AhA1 + (1� �A)lA1) + (pB1 � f)(�BhB1 + (1� �B)lB1) (5)

�2 = (pA2 � f)(�AhB2 + (1� �A)lA2) + (pB2 � f)(�BhB2 + (1� �B)lB2) (6)

The result from the maximization of the pro�t functions (5) and (6) is summarized
in the following proposition:

Proposition 2 Assume A1 and that t2 > ��. Then, there exists a complete (sym-
metric) singlehoming equilibrium in which prices are given by:

pAk = t+ f � [�L(1� �B) + �H�B]
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pBk = t+ f � [�L(1� �A) + �H�A]
with k = 1; 2.

From Proposition 2 we can see that pAk = pBk only if �L = �L, �H = �H and �A =
�B.14 In all the other cases the price charged to one side of the market will di¤er from
the one charged on the opposite side. Note that in a Hotelling model without cross-
group externalities, the equilibrium price for group A would be pAk = t + f . In this
two-sided market the price is adjusted downwards by the factor [�L(1� �B) + �H�B],
which represents the average values of the network bene�t of group A to B. It is group
A�s bene�t to the other group that determines group A�s price, not how much group
A bene�ts from the presence of group B. Note that pAk � pBk = � � �; our results
are consistent with the conventional wisdom that if group A values group B less than
group B values group A

�
� < �

�
, group A may be subsidized its prices charged, and

platforms make their pro�t from groupB (pAk < pBk). Of course, groupB contributes
to pro�ts indirectly by raising demand from group A, this is why group B may be
subsidized in equilibrium.15 Given the level of transportation costs and the marginal
cost, the prices charged to group A (B) are decreasing in �B (�A). If �B > �A then
group B will be charged more than group A, re�ecting that there is a greater fraction
of high types in group B who care more about connecting with group A than vice
versa, other thing equal. Given the previous results, we know that prices are higher
where the average value of the network bene�t is higher.
Under the symmetric equilibrium stated in Proposition 1, the demand func-

tions faced by the two platforms are given by: nAk = 1
2
[�A + (1� �A)] and nBk =

1
2
[�B + (1� �B)], with k = 1; 2. The corresponding positive pro�t functions are:

�k =
�
t� �

� �1
2
(�A + (1� �A))

�
+ [t� �]

�
1

2
(�B + (1� �B))

�
(7)

3 Partial Multihoming on Both Sides

In this section we consider the case in which partial multihoming may arise in equi-
librium. For example some people read two newspapers and some �rms put the same
ad in both newspapers. Another example is the credit cards market, in which some
customers own two credit cards and there are some shops that accept both credit
cards as well. To analyze the case of partial multihoming on both sides, we follow
assumption A1, where low type agents will always singlehome. We also assume that:
14This is the case analyzed by Doganoglu and Wright (2006) in section 3 of their paper. They

also consider the case where �L = �L, �H = H but with �A 6= �B in their technical appendix.
15Kaiser and Wright (2006) show that in a magazine industry, for example, advertisers gain more

from interacting with readers than vice versa, and that as a result; magazines subsidize cover prices,
and make their pro�t from advertisers.
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Assumption A2: �H � t+ pA1 + pA2 and �H � t+ pB1 + pB2:
Assumption A2 means that high type agents in each group may have an incentive

to multihome.
Given the fact that only high types will have an incentive to multihome, we have

hAk = hBk = 1. Thus, the total number of group A agents that join platform k is
given by nAk = �A+ (1� �A)lAk, while the total number of group B agents that join
platform k is given by nBk = �B+(1��B)lBk. Thus, in this case �A and �B represent
the proportions of agents that multihome in group A and group B respectively.
In order to �nd the demand functions for agents of group A, we need to solve

the problem of the indi¤erent between the two platforms of low type agent, that
is, UA1(vA; pA1; t(x); nB1; �L) = UA2(vA; pA2; t(1 � x); nB2; �L) for x = lA1. Similar
expressions are found for low and high type agents in group B. The demand functions
lA1; lA2; lB1 and lB2 are derived in Appendix B. Using the results in Appendix
B, the total demand from group A agents faced by platform 1 is given by: nA1 =
�A+(1��A)

h
1
2
+ t(pA2�pA1)

2(t2��L�Lg)
+ �L(pB2�pB1)(1��B)

2(t2��L�Lg)

i
, while the total demand from group

B agents is given by: nB1 = �B + (1 � �B)
h
1
2
+ t(pB2�pB1)

2(t2��L�Lg)
+ �L(pA2�pA1)(1��A)

2(t2��L�Lg)

i
.

Similar expressions are de�ned for platform 2.
The pro�t function of platform 1 is given by:

�1 = (pA1 � f)nA1 + (pB1 � f)nB1 (8)

while for platform 2 we have:

�2 = (pA2 � f)nA2 + (pB2 � f)nB2 (9)

Proposition 3 Assume A1, A2 and t2 > �L�Lg, there exists a symmetric equilib-
rium where pA1 = pA2 and pB1 = pB2 in which prices are given by:

pAk =
t(1 + �A)

1� �A
+ f � �L(1 + �B)

pBk =
t(1 + �B)

1� �B
+ f � �L(1 + �A)

with k = 1; 2.

Equilibrium prices are decreasing in the network bene�t parameters. Prices in
Proposition 3 are positive if the following conditions hold:

t
(1 + �A)

(1� �A)
+ f > �L(1 + �B) (10)

t
(1 + �B)

(1� �B)
+ f > �L(1 + �A) (11)
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In the extreme case of �A = �B = 0, in which there are no high type agents and
multihoming is not possible, the equilibrium prices are given by pAk = t + f � �L
for group A, and pBk = t + f � �L for group B, which is the result obtained by
Armstrong and Wright (2004, Proposition 1). We cannot say a priori which side will
face higher prices. Indeed the di¤erence between prices is given by:

pAk � pBk =
2t(�A � �B)

(1� �A)(1� �B)
+ �L(1 + �A)� �L(1 + �B)

Given the level of t, the sign of (pAk � pBk) is determined by the relative size of
�A to �B and the relative size of �L to �L. Consider the case where �A = �B = �,
then pAk � pBk = (1 + �) (�L � �L); prices will be higher for the side for whom the
network bene�ts are more highly valued by the low types. This was also a property
of the equilibrium price structure without multihoming, implying that the side which
enjoys greater cross-group externalities will be charged more. However, when �A
< �B and �L(1+�A) > �L(1+�B), we have �L > �L, then pAk�pBk T 0; depending
on the level of t. If transportation cost is su¢ ciently high, then the prices charged
to group A may be lower than the prices charged to group B (pAk < pBk) ; even if
low type agents in the former group have higher network bene�ts than agents in the
latter (�L > �L).
Here we report some comparative static properties of the equilibrium prices in

Proposition 3, with k = 1; 2:

@pAk
@�B

= ��L;
@pBk
@�A

= ��L (12)

which is negative under the assumption that the network externality parameters
are positive. The basic intuition is that: everything else constant, an increase in the
proportion of multihoming agents on one side of the market will increase the average
valuation of the network bene�ts on that side relatively to those on the other side.
Thus, platform will decrease prices on the side where the average network valuation
is lower.
For a similar reason we have the following results for the e¤ect of a change in the

proportion of agents that multihome on one side and the prices charged on the same
side:

@pAk
@�A

=
2t

(�A � 1)2
> 0 (13)

@pBk
@�B

=
2(t� �L(1� �A))

(�A � 1)2
> 0; t > �L.

Using the result in Proposition 3, we can express the incentive to multihome of
the high type agents as a function of the parameters of the model:
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Proposition 4 Given the equilibrium prices de�ned in Proposition 3, high type agents
have an incentive to multihome only if:
�H � 2�L(�A�1)(1+�B)+t(3+�A)+2f(1��A)

(�A�1)(�B�1) and �H �
2�L(�B�1)(1+�A)+t(3+�B)+2f(1��B)

(�A�1)(�B�1)

Proof. The proof follows directly from Proposition 1. The high type agents have an
incentive to multihome if �H � t + pA1 + pA2 and �H � t + pB1 + pB2 for groups A
and group B respectively. Substituting the price expressions from Proposition 3 into
the previous two inequalities gives us the result.
The result in Proposition 4 states that the valuation of the network externality

(�H and �H) by a high type agent must be su¢ ciently larger than the cost of trans-
portation (and thus larger than �L and �L) for that agent to multihome. Note that
�H = �H only under perfect symmetry, that is when �L = �L and �B = �A 6= 1.16 In
this case we have perfect symmetry in prices as well, that is pAk = pBk, with k = 1; 2:
Proposition 4 shows the e¤ect of a change in the proportion of agents that mul-

tihome on one side on the incentive to multihome for the agents on the other side
of the market. Following the same process as in the proof of Proposition 1 we can
identify the di¤erence between UA and UA1 and between UB and UB1 in equilibrium.
Using the results in Proposition 3 we have:

UA � UA1 =
(�A � 1) [2�L(�B + 1) + �H(1� �B)] + t(3 + �A) + 2f(1� �A)

2(�A � 1)
(14)

and

UB � UB1 =
(�B � 1) [2�L(�A + 1) + �H(1� �A)] + t(3 + �B) + 2f(1� �B)

2(�B � 1)
(15)

Then, it can be easily checked that:

@(UA � UA1)
@�B

= �L �
1

2
�H < 0 (16)

and

@(UB � UB1)
@�A

= �L �
1

2
�H < 0 (17)

Under the results in Proposition 4, those derivatives are negative. Thus, under a
partial multihoming equilibrium where UA �UA1 > 0 and UB �UB1 > 0, an increase
in the proportion of agents that multihome on one side of the market will decrease
the incentive to multihome for the agents on the other side. If each member of group
B joins both platforms, there is no need for any member of group A to join more
than one platform.

16This is the case analyzed in Doganoglu and Wright (2006), Section 3. See footnote 14.
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Figure 1: Assumptions A1 and A2:

Assumptions A1 and A2, together with the results in Proposition 3 clearly create
a constraint on the level of �A and �B in order for those proportions to be consistent
in equilibrium. Indeed, assumption A2 implies that the network bene�t valuation of
high type agents must be much higher than the transportation cost; however, from
assumption A1 the transportation cost must be higher than the average network
bene�ts. In order for those two assumptions to hold simultaneously the values for �A
and �B must be su¢ ciently small. This situation is depicted in Figure 1 for the case
of group A agents.

The next proposition provides a formalization of the result in Figure 1:

Proposition 5 Assumptions A1 and A2 together with the results in Proposition 3
imply that in equilibrium proportions �A and �B must be su¢ ciently small.

From assumption A2 and Proposition 3 we have �A � �H�3t�2f+2�L(1+�B)
�H+t�2f+2�L(1+�B)

and

�B � �H�3t�2f+2�L(1+�A)
�H+t�2f+2�L(1+�A)

, while from assumption A1 we have �A < t��L
�H��L and �B <

t��L
�H��L

. These four conditions induce a subset in the [0; 1)� [0; 1) space in which �A
and �B must lie in order to be consistent with the equilibrium prices. We can notice
that the conditions derived from assumption A2 are two straight lines with positively
slopes in the (�A; �B)�space. It is analytically di¢ cult to determine the domain for
�A and �B from the four conditions derived above. However, we are able to use a
numerical analysis to obtain such domains. An example of such a domain is depicted
in Figure 2.17

The result in Proposition 5 comes directly from equations (16) and (17). The
higher the proportion of agents that multihome on one side the lower the bene�ts
from multihoming on the opposite side. Thus, in order to have partial multihoming
on both sides, the proportions of multihoming agents must not be too large such that
the bene�ts from multihoming on one side of the market are higher than the negative
e¤ect implied by the presence of multihoming agents on the other side. A direct

17Figure 2 is derived using the following parametrization: �H = 20; �H = 23; �L = 2; �L = 3;
t = 5; f = 0:5:
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Figure 2: Example of a domain of �1 and �2 consistent with assumptions A1 and A2.

implication of Proposition 5 is that equilibrium prices must not be very high. The
level of both �A and �B depends mainly on the di¤erence between the network bene�ts
of high type agents and the transportation cost, that is, the sum of equilibrium prices.
Given the values of t; f and the network bene�ts of low type agents (�L and �L),
prices are higher (lower) if �A and �B are closer to one (closer to zero). Thus, higher
values for �A and �B imply higher prices, but this may violate A1. Note that �A
and �B must be su¢ ciently small in equilibrium, prices must be relatively low as
well. The fact that �A and �B must be small in a partial multihoming equilibrium
is coherent with the empirical analysis of Kaiser and Wright (2006).18 Using data on
the magazine industry in Germany, they found that the proportion of advertisers that
multihome is approximately 0.17 while the proportions of readers that multihome is
approximately 0.08.
Under the symmetric equilibrium prices of Proposition 3, the demand functions

faced by the two platform in each side of the market are given by:

nAk =
1

2
�A +

1

2
(18)

18Their analysis mainly focuses on the singlehoming case. However, in their appendix, they extend
the analysis to the partial multihoming case.
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nBk =
1

2
�B +

1

2
(19)

Note that the demand faced by the platforms is now higher by the factor �=2
with respect to the case of pure singlehoming analyzed previously. In equilibrium the
(positive) pro�t functions of each platform k are given by:

�k =

�
t(1 + �A)

1� �A
� �L(1 + �B)

� �
1

2
�A +

1

2

�
+

�
t(1 + �B)

1� �B
� �L(1 + �A)

� �
1

2
�B +

1

2

�
(20)

with k = 1; 2.

4 Partial Multihoming on One Side Only

This section encompasses the two previous cases. In particular, we assume that only
high type agents on one side of the market have an incentive to multihome. We
assume that partial multihoming may arise only on group B�s side of the market.
This is summarized in the following assumption:
Assumption A3: �H < t+ pA1 + pA2 and �H � t+ pB1 + pB2.
Using the analysis developed in the previous two sections, we know that the

demand function of a low type agents in group A is given by the solution of the
following equation for x = lA1:

vA�pA1�tx+�L(�B+(1��B)lB1) = vA�pA2�t(1�x)+�L(�B+(1��B)(1�lB1) (21)

Note that lB2 = 1� lB1. While for a high type agent we have:

vA�pA1�tx+�H(�B+(1��B)lB1) = vA�pA2�t(1�x)+�H(�B+(1��B)(1�lB1) (22)

with x = hA1. On the other side of the market, given the fact that high type
agents may have an incentive to multihome, we have hB1 = hB2 = 1. Thus, the
demand function for a low type agent is given by the solution of equation (a3) in
Appendix A.
The total demand of group A faced by platform 1 is given by: nA1 = �AhA1+

(1� �A)lA1, while the total demand of group B is given by: nB1 = �B+ (1� �B)lB1.
For platform 2 we have nA2 = �AhA2+ (1� �A)lA2 and nB2 = �B+ (1� �B)lB2 from
groups A and B respectively.
Solving simultaneously equations (21), (22) and (a3) we obtain:
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lA1 =
1

2
+
(pA2 � pA1) [t+ �L�A(1� �B)(�L � �H)] + (1� �B)�L(pB2 � pB1)

2t(t2 � ��L(1� �B))
(23)

hA1 =
1

2
+
(pA2 � pA1) [t+ �L(1� �A)(1� �B)(�H � �L)] + (1� �B)�H(pB2 � pB1)

2t(t2 � ��L(1� �B))
(24)

lB1 =
1

2
+
t(pB2 � pB1) + �L(pA2 � pA1)

2(t2 � ��L(1� �B))
(25)

where we assume that t2 > ��L(1 � �B). The demand functions for platform 2
are simply lA2 = 1� lA1; hA2 = 1� hA1 and lB2 = 1� lB1.
The pro�t functions for the two platforms are given by:

�1 = (pA1 � f)(�AhA1 + (1� �A)lA1) + (pB1 � f)(�B + (1� �B)lB1) (26)

�2 = (pA2 � f)(�AhB2 + (1� �A)lA2) + (pB2 � f)(�B + (1� �B)lB2) (27)

The maximization of the pro�t functions above leads to the following result:

Proposition 6 Assume A1, A3 and t2 > ��L(1��B); then there exists a symmetric
equilibrium in which prices are given by:

pAk = t+ f � �L(1 + �B)

pBk =
t(1 + �B)

1� �B
+ f � �

with k = 1; 2:

From Proposition 6 we can notice that the di¤erence between pBk and pAk is
given by

pBk � pAk = 2t

�
�B

1� �B

�
+ �L(1 + �B)� � (28)

The sign of (pBk � pAk) may be positive or negative depending on the speci�c
values of the parameters.
As in the previous section the imposition of assumptions A1 and A3 induces

a natural constraint on �B in the interval [0; 1), while �A is constrained only by
A1. Thus, also in the case of partial multihoming on one side, the proportion of
multihoming agents must be su¢ ciently small. In particular, from assumption A1
we know �B <

t��L
�H��L

while from A2 we have that �B � �H�3t�2f+2�L(1��A)+2�A�H
�H+t�2f+2�L(1��A)+2�A�H

.
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Which of those two conditions will be binding for �B will depend on the particular
values of the (other) parameters of the model. For example, consider the following
parametrization: t = 5; �L = 1; �H = 3; �L = 1; �H = 20; f = 1 and �A = 0:5. From
assumption A1 note that �B < 0:21, while, from assumption A2 we have �B � 0:26.
Thus, in this particular case, the �rst condition is the binding one.
Given the contraints on the value of �B now we can see when (pBk � pAk) may

be positive or negative. It is de�nitely positive if �B is not very close to zero, for
given values of t; �L and �. For example, consider the same parametrization: t = 5;
�L = 1; �H = 3; �L = 1; �H = 20; f = 1 and �A = 0:5, we know that �B < 0:21
for equilibrium to exist: Let assume �B = 0:2; substituting the values of the relevant
parameters into (28) we obtain that pBk > pAk for � > �: Intuitively, the higher
the proportion of agents that multihome and also the higher the average network
bene�ts, the higher will be the price these agents will face. However, if �B = 0:06; it
may be possible that pBk < pAk even if � > �:When the the proportion of agents that
multihome is relatively small, the network bene�t of low type agents will dominate
their average network bene�t e¤ect and then pBk < pAk for �L < �. Thus, di¤erently
from the standard results of �competitive bottlenecks�, if the proportion of agents
that multihome is small the side with partial multihoming may face lower prices than
the one with singlehoming even if agents on that side have an average network bene�t
higher than the other side. Howeve, in order to obtain such result, the value of the
proportion �B must be close to zero.

Under the equilibrium de�ned in Proposition 6, the demand functions faced by
the �rms are:

nAk =
1

2
(29)

nBk =
1

2
�B +

1

2
(30)

while the pro�t functions are:

�k =
1

2

�
t(1 + �A)

1� �A
� �L(1 + �B)

�
+

�
t(1 + �B)

1� �B
� �L

� �
1

2
�B +

1

2

�
(31)

with k = 1; 2.

5 Comparing Partial Multihoming and Singlehom-

ing Equilibria

In this section we compare the cases analyzed so far. However, the three cases consid-
ered in the paper are not directly comparable given the fact that each con�guration
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is based on di¤erent assumptions about the level of the network bene�ts of the high
type agents. For example, we cannot compare the price structure in the pure sin-
glehoming equilibrium with the one in the partial multihoming one, simply because
those two equilibria are derived under di¤erent and incompatible values of �H and
�H . However, we can compare the prices faced by agents in group A under partial
multihoming on both sides and under partial multihoming on one side. The prices
faced by group B under partial multihoming on one side can also be compared with
the ones they faced under pure singlehoming.19

Another possible comparison is the utility levels in equilibrium of low type agents
in each market con�guration when those utility levels do not depend on network
parameters of high type agents, because in this case the parameters involved satisfy
the same assumptions. For example, under the assumption that the location is the
same in each con�guration, we can compare the utility level of a low type agent in
group B under pure singlehoming and the one of the same type of agent under partial
multihoming on one side. The utility of a low type agent in group A under partial
multihoming on both sides can be compared with the one of the same type of agent
under partial multihoming on one side. The problem of comparability is not present
in Doganoglu and Wright (2006), since they do not derive explicitly the incentives
to multihome for high type agents. They assume that independently of the level
of the network bene�ts of high type agents, those agents exogenously singlehome or
multihome.
The subscript SH de�ned the complete singlehoming case, while PM denoted the

partial multihoming on both sides and PS denoted the case with partial multihoming
on one side and singlehoming on the other side. We assume the following assumptions
for comparisons. The �rst one is that the network bene�t parameters of low type
agents are equal in all con�gurations; that is, we assume that: �PSL = �SHL = �PML = �
and �PML = �SHL = �PSL = �: Thus, we have �PS = �SH = �. The second assumption
concerns the proportions �A and �B; since in each con�guration they are constrained
by di¤erent assumptions. For example, in the case of SH, �A and �B need to satisfy
only assumptionA1, while in the case of PM , they need to satisfy also assumptionA2.
However, if �A and �B are su¢ ciently small, they will satisfy assumptions A1, A2 and
A3 at the same time. This means that if the proportions �A and �B are su¢ ciently
small, we can assume that they are equal among the di¤erent con�gurations.
The next proposition gives us the result relating to the comparison of pPMA with

pPSA and the one of pPSB and pSHB :20

Proposition 7 Independently of the degree of multihoming (singlehoming or partial
multihoming) on the other side of the market, agents in each group face higher prices
when there is partial multihoming on their side than when there is singlehoming.

19As assumed in Section 4, partial multihoming on one side arises only on group B�s side of the
market, while group A�s side of the market is singlehoming.
20We suppressed the subscript relative to the platform since prices are intra-groups symmetric.
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From Propositions 2 and 6 we have pPSB � pSHB = t(1+�B)
1��B � t; which is always

positive, thus equilibrium prices faced by group B are higher with multihoming.
Similarly, from Propositions 3 and 6 we have pPMA � pPSA = t(1+�A)

1��A � t, which is always
positive. The prices charged on group A are lower in the absence of multihoming.
Multihoming agents�bene�ts are assumed so high that agents make a decision to join
one platform independently from its decision to join the other. In this sense, there
is no competition between platforms to attract multihoming agents, while platforms
tend to price more aggressively on the singlehoming side.21

Looking at the utility levels of low type agents, we have the following possible
comparisons: UPSB with USHB and UPMA with UPSA : The next proposition states the
result of these comparisons:

Proposition 8 Independently of the degree of multihoming (singlehoming or partial
multihoming) on the other side of the market, the utility level of a low type agent in
each group is higher under singlehoming than under partial multihoming.

From equation (3), nSHA = 1
2
[�A + (1� �A)] ; nPSA = 1

2
and the results in Propo-

sitions 2 and 6, we have USHB � UPSB = pPSB � pSHB > 0. From equation (1),
nPMB = 1

2
�B +

1
2
, nPSB = 1

2
�B +

1
2
and the results in Propositions 3 and 6, we have

UPMA � UPSA = pPSA � pPMA < 0. Proposition 8 says that the utility of a low type is
always higher if on his side of the market there is singlehoming. This is because, by
assumption, the price e¤ect for a low type agent is higher than the network e¤ect. If
there is partial multihoming on his side of the market, the low type agent will face
higher prices than in the case in which on his side there is singlehoming.

6 Conclusion

This paper analyzes imperfect competition between platforms with indirect network
externalities, with a particular emphasis on partial-multihoming. We derive su¢ cient
conditions for the existence of the partial-multihoming equilibrium. We assume there
is a strong product di¤erentiation and agents are heterogeneous in terms of their
preferences over the network bene�ts. We considered a framework in which there are
two distinct groups of agents, one on each side of the market. In each group there are
two types of agents, according to their marginal valuation of the network size, low
types and high types. The model presented here extends the model of Armstrong and
Wright (2004) and Doganoglu and Wright (2006). To a certain extent the present
paper complements theirs.

21Armstrong (2005) identi�es an equilibrium with similar features, with the multihoming side
being exploited and the singlehoming side being targeted aggressively. A key di¤erence with us is
that he assumes the competitive bottleneck structure (singlehoming on one side and multihoming
on the other).
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We characterized three particular equilibria as a function of the degree of partial
multihoming on each side of the market. The paper focused on symmetric equilibria,
in which the prices charged by platforms to the same group are equal. After the
derivation of the equilibrium in the case in which no multihoming is possible, we
derived under which conditions of network preferences, an equilibrium with partial
multihoming on both sides exists. We showed that for such an equilibrium to exist, the
network bene�ts of high type agents must be su¢ ciently higher than transportation
costs. The main constraint for the existence of the equilibrium is that the proportions
of agents that multihome on both sides must be su¢ ciently small, which is consistent
with the empirical �ndings of Kaiser and Wright (2006). The reason is that the
higher the proportion of agents that multihome on one side the lowers the bene�ts to
those who multihome on the other side. Thus, in order to have partial multihoming
on both sides, the proportions of multihoming agents must be signi�cantly low such
that the bene�ts from multihoming on one side of the market are greater than the
negative e¤ect implied by the presence of multihoming agents on the other side. We
considered also the case in which there is partial multihoming only on one side of the
market. We showed that the proportion of agents that multihome must be su¢ ciently
small in equilibrium. With partial-multihoming on one side, the prices faced by the
side with partial multihoming may be lower than the side with singlehoming if the
proportion of agents multihoming is particularly low.

Finally, the paper compared some elements of the three di¤erent con�gurations.
We showed that, compared to the case of complete singlehoming, if there is partial
multihoming on one side of the market, agents on that particular side will face high
prices. Comparing the case of complete singlehoming on both sides to the partial
multihoming on one side of the market, singlehoming agents with partial multihoming
on the other side will face higher price. The utility level of low type agents is always
higher under complete singlehoming than under partial multihoming (on one side and
two sides). This is due to the fact that the price e¤ect always dominate the network
e¤ect for a low type agent, and that prices are higher under partial multihoming.
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Appendix
Appendix A
In order to �nd the demand functions lAk; hAk; hBk and lBk, we need to solve

the following equations (a1) and (a2) that arise from the problem of the indi¤erent
consumer.
For a low type agent in group A, we have:

vA�pA1�tx+�L(�BhB1+(1��B)lB1) = vA�pA2�t(1�x)+�L(�B(1�hB1)+(1��B)(1�lB1)
(a1)

where we used the facts that lB2 = 1� lB1 and hB2 = 1�hB1. The above equation
must be solved for x = lA1.
For a high type agent in group A we have:

vA�pA1�tx+�H(�BhB1+(1��B)lB1) = vA�pA2�t(1�x)+�H(�B(1�hB1)+(1��B)(1�lB1)
(a2)

with x = hA1.
Looking at agents in group B we have:

vB�pB1�tx+�L(�AhA1+(1��A)lA1) = vB�pB2�t(1�x)+�L(�A(1�hA1)+(1��A)(1�lA1)
(a3)

vB�pB1�tx+�H(�AhA1+(1��A)lA1) = vB�pB2�t(1�x)+�H(�A(1�hA1)+(1��A)(1�lA1)
(a4)

for the low type and the high type respectively. Equations (a3) and (a4) must be
solved for x = lB1 and x = hB1 respectively. The solutions of the system of equations
(a3) and (a4) are the following:

lA1 =
1

2
+
t(pA2 � pA1) + �L(pB2 � pB1)

2(t2 � ��)
+
�A�(�H � �L)(pA2 � pA1)

2t(t2 � ��)
(a5)

lB1 =
1

2
+
t(pB2 � pB1) + �L(pA2 � pA1)

2(t2 � ��)
+
�B�(�H � �L)(pB2 � pB1)

2t(t2 � ��)
(a6)

hA1 =
1

2
+
t(pA2 � pA1) + �H(pB2 � pB1)

2(t2 � ��)
+
(1� �A)�(�L � �H)(pA2 � pA1)

2t(t2 � ��)
(a7)

hB1 =
1

2
+
t(pB2 � pB1) + �H(pB2 � pB1)

2(t2 � ��)
+
(1� �B)�(�L � �H)(pB2 � pB1)

2t(t2 � ��)
(a8)
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Using the de�nitions: lB2 = 1�lB1; hB2 = 1�hB1; lA2 = 1�lA1 and hB2 = 1�hB1
we obtain:

lA2 =
1

2
+
t(pA1 � pA2) + �L(pB1 � pB2)

2(t2 � ��)
+
�A�(�H � �L)(pA1 � pA2)

2t(t2 � ��)
(a9)

lB2 =
1

2
+
t(pB1 � pB2) + �L(pA1 � pA2)

2(t2 � ��)
+
�B�(�H � �L)(pB1 � pB2)

2t(t2 � ��)
(a10)

hA2 =
1

2
+
t(pA1 � pA2) + �H(pB1 � pB2)

2(t2 � ��)
+
(1� �A)�(�L � �H)(pA1 � pA2)

2t(t2 � ��)
(a11)

hB2 =
1

2
+
t(pB1 � pB2) + �H(pB1 � pB2)

2(t2 � ��)
+
(1� �B)�(�L � �H)(pB1 � pB2)

2t(t2 � ��)
(a12)

where under assumptionA1, we have t2 > ��; implying that the demand functions
are well de�ned.
Appendix B
Since high type agents will multihome, we need to solve for the demand functions

of the low type agents only. From the problem of the indi¤erent consumer we obtain
the following equations:
For a low type agent in group A, we have:

vA�pA1� tx+�L(�B+(1��B)lB1) = vA�pA2� t(1�x)+�L(�B+(1��B)(1� lB1)
(a13)

that has to be solved for x = lA1. For a low type agent in group B; we have:

vB�pB1� tx+�L(�A+(1��A)lA1) = vB�pB2� t(1�x)+�L(�A+(1��A)(1� lA1)
(a14)

The solution of that problem gives us:

lA1 =
1

2
+

t(pA2 � pA1)
2(t2 � �L�Lg)

+
�L(pB2 � pB1)(1� �B)

2(t2 � �L�Lg)
(a15)

lB1 =
1

2
+
t(pB2 � pB1)
2(t2 � �L�Lg)

+
�L(pA2 � pA1)(1� �A)

2(t2 � �L�Lg)
(a16)

Where g = (�A� 1)(�B � 1) and g 2 (0; 1]. Furthermore, since lA2 = 1� lA1 and
lB2 = 1� lB1, we have:
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lA2 =
1

2
+

t(pA1 � pA2)
2(t2 � �L�Lg)

+
�L(pB1 � pB2)(1� �B)

2(t2 � �L�Lg)
(a17)

lB2 =
1

2
+
t(pB1 � pB2)
2(t2 � �L�Lg)

+
�L(pA1 � pA2)(1� �A)

2(t2 � �L�Lg)
(a18)

In order for the demand functions to be well-de�ned we need to assume that
t2 > �L�Lg.
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