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Abstract

In voting theory, analyzing how frequent is an eveag( a voting paradox)
is, under some specific but widely used assumptions, eguivéd computing the
exact number of integer solutions in a system of linear cairgs. Recently, some
algorithms for computing this number have been proposeadiakchoice liter-
ature by Huang and Chua [17] and by Gehrlein ([12, 14]). Theagse of this
paper is threefold. Firstly, we want to do justice to EugBhehart, who, more than
forty years ago, discovered the theoretical foundatiorth@fbove mentioned al-
gorithms. Secondly, we present some efficient algorithrastiave been recently
developed by computer scientists, independently fromngdtieorists. Thirdly, we
illustrate the use of these algorithms by providing somgipail results in voting
theory.

Key words: voting rules, manipulability, polytopes, lattice poirddgorithms.
JEL Classification: D70, D71

1 Introduction

Consider an election on three alternatives or candid@tek, c}. Assume that vot-
ers have complete linear preference rankings on thesedatedi Then, there are six
possible preference orders that voters might have:

abe (n1) acb (n2) bac (n3) bea (ng) cab (ns) cba (ng)

Here,n; denotes the number of voters with the associated preferaméeng on
candidates. Fon voters, we then havg.’_, n, = n, and any such combination of
n;'s is referred to as a voting situation, or simply as a situatiln order to compute

*Helpful comments by Philippe Clauss and his team are giigtefoknowledged
te-mail: dominique.lepelley@univ-reunion.fr

fe-mail: alouichi@yahoo.fr
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the probability that some event takes place, it is oftenrasslin the social choice
literature that all voting situations are equally likelydocur. It is the so-calletinpar-
tial Anonymous CulturélAC) condition, first explicitly introduced by Gehrlein dn
Fishburn [16]. Under this assumption, computing the ddgimbability amounts to
evaluating the number of situations corresponding to thimgavent under consider-
ation. Typically, the voting events can be described by #esyf linear constraints
with rational coefficients. For example, the event “cantiidais the Condorcet win-
ner” corresponds tev; +no+ns > ng+ns+ng andn; +ng+ns > n3+ng+ng. As
then,;’s must be integers, the problem is then to compute the nuofateger solu-
tions of a system of linear (in)equalities. Recently, Huand Chua [17] and Gehrlein
[12] have proposed iBocial Choice and Welfarsome new methods for computing
the number of situations exhibiting a particular votingretv& hese methods are based
on the fundamental result (proved in Huang and Chua [17})ttieanumber of integer
solutions of a system of linear constraints can be repreddata polynomial im with
periodic coefficients.

We have very recently realized that this result is more thagehrs old and is due
to Ehrhart [7f. Ehrhart’s theory is very general and provides solid thécatfounda-
tions for the IAC probability calculations. We strongly iesle that the knowledge of
this theory can be useful for all social choice theoristsriested in probability calcu-
lations. To give a brief overview of Ehrhart’s theory is thestfiobjective of the present
paper.

We have also discovered that numerous studies exist ineghplathematics and in
the computer science literature that propose and analffeeatit ways for computing
the number of integer solutions of a set of linear constsaiSbme of them are based
on Ehrhart's theory; others make use of new theoreticalldpweents. The second
purpose of this paper is to present the two main algorithrasthn be implemented.

Finally, we will illustrate the use and the efficiency of teedgorithms by providing
some new and original probability representations

2 Ehrhart polynomials and their computation

How can one calculate the number of points with integer coatds in a sef de-
scribed by a finite system of linear constraints with ratlarcefficients? Frequently,
this problem appears as an important step in a wide varietgp€s in pure and ap-
plied mathematics. The first fundamental contribution ie #rea is due to the work of
the French mathematicidugene Ehrhart(1906 — 2000)*. He considered the special
case when the linear constraints depend on a single popiranetern and showed
that the number of points with integer coordinates$'ican be represented by a polyno-
mial in n with periodic coefficients. Before presenting more dewil€hrhart’s theory

1A Condorcet winner exists as a candidate who could beat ethey candidate on the basis of pairwise
majority rule.

2]t turns out that, in mathematics, a polynomial with periodbefficients is called “Ehrhart polynomial”.

3The reader not interested in technical aspects may direotigult this part of the paper (Section 3).

“4For a short biography, see the tribute written by Philippau8s in honor of E. Ehrhart: http://icps.u-
strasbourg.fr/ clauss/ehrhart.html



and recent advances in this domain, it is convenient to dlotte some notations and
terminology.

Let R be the Euclidean d-space of all d-tuples- (z1, - - - , z4) of real numbers.
The integer lattic&? is the subset oR? consisting of points with integer coordinates
(for short, called lattice points or integer points). A aaial polyhedron of dimensiah
is a setP C R?, that is the solution of a finite system of linear inequaditigth integer
coefficients’:

P={xecR’: Ax<b}

whereA is am x d integer matrixp an integer vector withn components anth
the number of independent linear inequalities. The inétydlx < b is understood
component-wise. Usually, the polyhedron is bounded andaal polytope. The ex-
tremal points of a polytope are called its vertices. A latfiolytope is a polytope with
integer vertices. Itis clear that the problem of countirttida points that satisfy a finite
set of linear constraints with rational coefficients is nayuigalent to counting lattice
points inside a given rational polyhedron.

2.1 Ehrhart’s theory

Let P ¢ R? be a d-dimensional rational polytope. For an integer patame> 1,
define the dilation of? by n as the polyhedronP = {nx : x € P}. Geometrically,
this can be interpreted as dilatidgy while leaving the angles and proportions fixed.
Consider the functiof(P,n) = |[nPNZ<| of the variable:, that describes the number
of lattice points that lie inside the dilationP. Ehrhart [7] inaugurated the systematic
study of general properties of this function by proving irtalar, that it can be
represented by a polynomial inwhenP is a lattice polytope and by a finite family of
a polynomials calledjuasi-polynomialer Ehrhart polynomials, in the general case.

Definition 2.1 A functionf : Z — Q is a (univariate) quasi-polynomial of periad
if there exists a list of polynomialsg; (0 < i < ¢) such thatf(n) = g;(n) if n =1
mod gq.

Instead of representing a quasi-polynomial by a long liglatynomials, Ehrhart [9]
uses the practical concept of periodic numbers.

Definition 2.2 A rational periodic numbet/ () is a functionU : Z — Q, such that
there exists a period such that/ (n) = U(n’) wheneven = n’ mod q.

The possible values d@f (n) are usually made explicit by a list gfrational num-
bers enclosed in square brackets.
1],, is a periodic number with periog= 3, U(n) = 1 if

Example 2.1U (n) = [ :
=1 mod 3andU(n) =1if n =2 mod 3.

_ 3
=[3,3,
n=0 mod 3,U(n ):%I

5P could be not full-dimensional (this is the case when thealirgystem describing the polyhedron
contains equalities). However, without loss of generalitycan be assumed to be full-dimensional [28].



Definition 2.3 A (univariate) quasi-polynomiaf of degreed is a functionf(n) =
ca(n)nd+ -+ c1(n)n + co(n) where ther;(n)’s are rational periodic numbers. The
periodq of a quasi-polynomial is the least common multigler() of the periods of its
coefficients.

Example 2.2f(n) = in® + [, 2,1].n + [0, 1], is a quasi-polynomial of degree
and periodb.

The fundamental result of Ehrhart can be described by thadoig theorem.

Theorem 2.1 (Ehrhart) Let P be a rational polytope. The functiob(P,n) repre-
senting the number of integer points in the dilatief is given by a degred-quasi-
polynomial. The coefficient of the leading term is indepenhdén and is equal to the
Euclidean volume of. The period of the quasi-polynomial is a divisor of fee: of
the denominators of the verticesaP. WhenP is a lattice polytopeL (P, n) is given
by a single polynomial.

Example 2.3Consider the following parametric system: p)
1 + x> < 3n
224 < 5n
o Z 0

(0,0)° T
Fig. 1. Integer points inP
The number of integer solutions 6f, is the number of integer points inside the

dilationn P of the polytope:

P = {(x1,22) € R*|xy > 0,22 > 0,71 + 22 < 3,22, <5}  (Fig. 1)
The vertices ofu P are: (0,0), (2,0), (0,3n) and (22, 2). Hence, by Theorem 2.1,
L(P,n) is a quasi-polynomial of degree 2, it has the general farn® + [31, 32].n +
(71, 72)n-

It should be mentioned that if the above theorem is compaitdthe theoretical
result obtained by Huang and Chuain [17], it turns out theséresults are essentially
identical. However, the seminal work of Ehrhart is more gehand involves more
information about the coefficients and the period of the gpal/nomial representing
the L(P,n) function. In their paper, Huang and Chua also suggestedgitiim
for computing periodic coefficients. This algorithm (fuettrefined and improved by
Gehrlein [12]) is based on the classical technique of irtiaton. Currently, there exist
two general methods for computing Ehrhart polynomials:u€$ss algorithm 1998)
and the parameterized Barvinok’s algoritha®@4). The Huang-Chua algorithm can
be considered as a particular case (with a single paraneét€fjuss’s method that we
present now.



2.2 Interpolation method and Clauss’s generalization

Ehrhart polynomials have many applications concerningmdaer science. Their use
in this area was initiated by Clauss and Loechner [4]. Thesewee first to propose
a method for computing the quasi-polynomials coefficieBesed on the information
provided by Theorem 2.1, the algorithm counts the numbeatti€e points for a set of
fixed values of the parameter and then calculates the goagigmial through inter-
polation.

Example 2.4Consider once again the systés),) from example2.3. To find the un-
known values ofL( P, n) coefficients, five independent linear equationsoors; and

~; (i = 1,2) can be obtained by counting the number of lattice pointsihfor fixed
values ofn in [0,4]. This initial counting C(P,0) = 1, L(P,1) = 9,L(P,2) =

27, L(P,3) = 52, L(P,4) = 88) allows us to construct a system of linear equalities
for which the solutions are the desired coefficients. Résglthis system, we obtain:
L(P,n)=3n?+ [ 4],n+[1, 2]s.

In order to apply the above technique to a larger class oflenabassociated with
counting lattice points, Clauss [5] extended Ehrhart'sltde parameterized polytopes
with any number of integer parameters.

Definition 2.4 A rationald-dimensional parameterized polyhedron is a set of real vec-
tors defined by parametric linear inequalitié; = {x € Z¢ : Ax < Cp + b}, where
A andC are integer matrices) is an integer vector ang a vector ofr integer param-
eters. WheR,, is bounded for each value pf it will be called a parametric polytop.

Note that the coordinates of the vertices of a parametrigtppé are affine func-
tions of parameters. Each vertex exists onlp ihelongs to a subset of the parameter
domainN". Subsets where the vertices have stable expressions ke \aidity do-
mains(see Examplé.7 and Figure® and3, further).

Before presenting Clauss’s generalization of Ehrharéetbm, we need to extend
the concept of periodic number and quasi-polynomial.

Definition 2.5 Letp = (p1, - - - , p,) be ar-dimensional parameter vector.Adimensional
periodic numberU (P) is a functionU : Z" — Q such that there exist periods
qg= (g1, - ,q) € N suchthal/(p) = U(p’) whenevep; = p, modg;(1 < i <r).
Thelem of all g;'s is called the period ot/ (p).

The multidimensional periodic numbers are usually represkby a look-up table.

Example 2.5[[1, 3]p,, [0, 2],,, [ 1, i]m}pl is a2-periodic number with periog =
(3,2).

U(n,m) = (—=1)"™ is a2-periodic number with periogd = (2,2). It can be repre-
sented bW(nv m) = |:_11 _11:| = [[17 _1]m7 [_13 l]m]n

s

6Note that ifp = (n,--- ,n) andb = (0, -- ,0), thenPp, = nP.



Note that the matrix array notation works well fadimensional periodic numbers,
whereas the notation with square brackets works for all dsiuas.

Definition 2.6 A multivariate quasi-polynomialis a polynomialirvariablespy, - - - , p.
such that each coefficientis a multidimensional periodimbar on a subset dp;, - - - , p, }.
The period of a multivariate quasi-polynomial is then of the periods of its coeffi-
cients.

Example 2.6Consider the quasi-polynomial

-1 , 3 115 5 11 5 51

It is a quasi-polynomial with periofl in variables, andm. f(n, m) can be expressed
as a quasi-polynomial in, with periodic coefficients being periodic linear expressi
inm:

1 3 11 5 3 5

—|—[(—ém2 + [iv %]mm + [15 g]m)a (_émQ + [iv %]mm + [27 %]m)]”

Theorem 2.2 (Clauss) The enumerator functiof'(P,,) that describes the number of
lattice points in ad-dimensional parametric polytop, can be represented by a finite
set of multivariate quasi-polynomials of degréim p, each valid on a different validity

domain. The period of the quasi-polynomial in a given vafidomain divides the=m

of the denominators that appear in the expression definiagéntices on this domain.

Using Theoren®.2, Clauss and Loechner have developed a general method to
count lattice points in a parametric polytdp&heir method is based on the knowledge
of the structure of the solution; the implemented algorittonsists of the following
steps:

1. Compute the validity domains and the parametric cootdmaf the vertice8.

2. Foreach validity domain, since the general form of the@ased quasi-polynomial
is known:
(a) Countthe number of points for some initial values of thegmeters;
(b) Solve a system of linear equations of which the solutiaresthe quasi-
polynomial coefficients.

Example 2.7We modify the system in ExampBeby introducing a second parameter
(m) and adding a supplementary constraint;

71t is worth noticing that Gehrlein [14] has recently propdsemethod, called EUPIA2, to compute
quasi-polynomials for the specific case of two parameteng. algorithm developed by Clauss and Loechner
generalizes in some sense Gehrein's EUPIA2.

8The parametric vertices are computed by the Loechner-Vidilgerithm implemented in PolyLib [20,
21].



i) m,

1 + x2 < 3n é/k
211 < b5n ©
200 < m |
— ‘((\I
T > 0 9 e 4
X9 Z 0
(0,0) e—= T (0,0) 7}
Fig. 2. Parameterlzed golytopeFlg 3. Validity domains
(forn =

Applying Clauss’s algorithm to compute the enumerator fiomg we obtain:

Validity

- Vertices uasi-polynomial
domain Q poly

—6n+m > 5n 35 - 5
6n+m >0 (0,0), (2,0) %)”z N [1?774]n”+ 1.2,

n>0 (0,3n), (32, 2)
—in?
6n—m >0 (0,0 ,(07%),(%70) +[(%m+ [%,%]m),(%m-&- [%71]7”)]”71,
—n+m>0 (3n—%,%),(%",%) —I—[(—%mz—l—[j%]mm—&-[l,%]m),(—émz—l—[fé]mm
+[§7 Z]m)}n
n—m2>0 (0,0),(0,%) 5 5 5
m >0 (%7())(%%) (Z7n+[§7l]7n)n

H(Gm A+ L 3lm) (Gm + (3, lm)ln

The above interpolation method is the very first algorithrareleveloped to com-
pute Ehrhart polynomials. However, it presents some dralda The first limita-
tion concerns the problem afegenerate domaingo interpolate a quasi-polynomial
of degreed in r parameters with period = (q1,---,¢,), the algorithm requires
[T,_,(d + 1)g; initial countings. For certain validity domains, it is ndtvays pos-
sible to find a subregion wittd + 1)g; consecutive values in each dimension and then
it may be impossible to get a complete set of appropriatamtss for interpolation and
the algorithm fails to produce a solutidrThe second problem is related to time com-
plexity*®. The method used for initial countings basically enumeratepoints, so if
any instance contains a large number of points, the conmpntitne rises accordingly.
Moreover, if the periods are large, then the number of ircgtamvill be very large and
interpolation will take an exponential time[27, 28].

2.3 Barvinok’s algorithm

In 1993, Barvinok [1, 2] developed an algorithm that counts intggeints inside ra-
tional polytopes. This algorithm is time-polynomial in imypsize when the dimension
of the polytope is fixed. We will not explain Barvinok’s algiim in details but we
will try to give a brief description of its main steps. GivempalyhedronP, define the
multivariate generating function attachedraas:

9Since the implementation is based on interpolation, itckess for fixed parameter values located in an
hyper rectangle. For more details, see [28].

10Time complexity refers to the function describing the wayvinich the number of steps required by an
algorithm varies with the input size of the problem it is so¢u



(0% {07 « (a3 -
E x® where x% =z 25" with x=(z1,---,2q)
acePNZ?

Note that if P is a polytope, this formal power series is just a ( Laurentypomial
with one monomial per lattice point. Counting the numbemntéger point$P N Z%| is
then equivalent to evaluatinf P; x) atx = (1,---,1). This allows the computation
of the generating function as a reasonably short function.

Example 2.8Consider the one-dimensional polytope= [0, N]. The long polyno-
mial f(P z) = 1+ +---+ 2V can be represented by the short rational function
1—a” . Substitutingr = 1 in this expression yields a denominator equal to zero, so
we must take the limit as approaches (by L'Hospital theorem) and get, as expected,
f(P;1) = N + 1, the number of integer points iR.

In this simple example the basic observation is that the @mtngxpression of the
generating function can be obtained by considering the ays K, = [0, 00) and
Ky = (—o0, N]. Their generating functions are:

N

Ko, Z.’L‘ ——andeN, ZSC 1—:61

a>0 a<N

Adding the two rational function right-hand sides (represgy two infinite series)
collapses into the rational function representfi{@; z):
1 N 11—z
l—-z 1—z!' 11—z
This is a one dimensional instance of a theorem due to M. HB8anIn order to
present this crucial theorem, we need to introduce some oworeepts.

N+1

Definition 2.7 A cone with generators,, - - - ,u; € Z% is the set defined by:
K={_ Nui: X >0,foralli}.

This definition is somewhat restrictive, a cone is definechasset of all positive
combinations of its generators, so it must contain the ori@ivenv € Z<, we will
use the notatiom + pos{u; : i = 1,--- ,¢} to refer to the (shifted) cone defined by:
K ={v+>_ a;,a; > 0}, which is the sum of and the cone generated by, - - - , us,
also called generators &f.

Another important class of cones that have a key role in Bak/s algorithmis the

class of unimodular cones.

Definition 2.8 A (shifted) congs’ ¢ R is unimodular if its generators form a basis
of Z7.

Here, by basis of.¢, we mean a set af linearly independent integer vectors which
generatéZ?. The significance of unimodular codé = v + pos{u; : i = 1,--- ,t}
is that its fundamental half open parallelepigéd= {> o;u; : 0 < a; < 1} con-
tains only one lattice poinE(v, K), equivalently K is unimodular if and only if



det(uy,- -+ ,uq) = =1 (see [6]). It can also be shown ([1]) that the generatingtionc
of an unimodular cone has a simple and short form:

fK;x) = (2.1)
Definition 2.9 Let P be a polyhedron and’(P) be the set vertex aP. The sup-
porting coneK (P,v) of P atv € V(P)is K(P,v) = v+ {u € R? : v + §u €

P for all sufficientlyd > 0}.

Note that using Definition 2.9, the supporting cong(fP, v) is not always a cone
itself, but it is the (possibly translated) cone defined by filicets touching vertex.
In the above example, the polytope= [0, N] has two supporting cone&; (P, 0) =
[0,00) andK (P, N) = (—o0, N].

One fundamental step in Barvinok’s algorithm is its abititydistribute the com-
putation off(P;x) on the vertices of the polytope . This is described by the¥alhg
Theorem.

Theorem 2.3 (Brion) Let P be a rational polyhedron. Then

F(Psx) = Y fK(Pv)ix),

veV (P)

Brion’s theorem allows the computation §fP;x) by computing the generating

functions of the supporting cones Bt
)

Example 2.9

The quadrilateraP from Example 2.3+ = 1), has four

supporting cones(0,0) + pos{(1,0), (0,1)},(3,0) +

pOS{(—l, O)v (07 1)}5 (gv %)—FPOS{(O, _1)5 (_15 1)}* and

(0,3) + pos{(0,—1),(1,—1)}}. Itis easy to see that '

all these cones are unimodular (determinant +1), \

the only lattice points belonging to corresponding fun- (©.0) R o

damental half-open parallelepipeds are respectively :

(0,0),(2,0),(2,1), and(0, 3) (fig. 4). Applying Brion’s

theorem and formula (2.1), we obtain (with= (z, y)):

Fig.4. Generators, supporting cones
and half-open parallelepiped

I2y

. — 1 22 o
1(Pi%) = == + a= o=y + Gt as ey

Making the variable substitutidohz = (1 + ¢)!,y = (1 + ¢)2, we obtainf (P; x)

as a univariate (Laurent) polynomial:
_ 1 (141)2 (1+48)*
g(t) = @197 T~ T-r) a2 T T2 a- (1) (1))
+ (1+t)6 )
1=+ (I-0+n)(I+) ) /"

11The integer vectod = (1,2) used in this substitution is chosen such thas not orthogonal to any
generator. See [6] for more details on how to evalydt®; x) atx = (1,---,1).



Simplifying this expression in order to obtain only positipowers in the denomi-
nators and factorizing oq{; from each term, we obtain through Taylor expansion:
R e T O D)
+E(5+ T+ 4.

Finally, the number of lattice points in the polytopes given by:
|PNZ?% =lime_ 1) f(P;x) =limog(t) =t + 5 + =2+ 2T =22 =9,

In this easy example, the polytope decomposition is simjpleesall supporting
cones are unimodular. In the general case, one or more diqgpoones are not nec-
essarily unimodular. The fundamental idea of Barvinok veaddcompose each cone
K c R?into a (signed) sum of unimodular con&§ c R [K] = 3, ; &[Ki],
where[.] denotes the indicator function ard € {—1,1} depending whethekK; is
added or subtracted. Via this decomposition, we can wrieettpressionf (K;x) =
> icr €if (Ki;x). Consequently, the generating functif(P; x) can be written as a
signed sum of short rational functions.

Theorem 2.4 (Barvinok) Let P be a rational polytope of dimensiah The multivari-
ate generating functiori( P; x) can be written in polynomial time as:

f(Pix)=) ¢g——F—"
iezl H?:l(l — x"i7)

where] is a (polynomial-size ) indexing set, € {—1,1} andw;, u;; € Z? for all i
andj.

xWi

The polynomial-time algorithm described in the above Tkeowas further general-
ized by Barvinok and Pommersheim [2] to parametric polytope 2004, De Loera
et al [6] developed the programbrattE, a computer package for lattice point enu-
meration, which contains the first implementation of thentéque of Barvinok for
enumerating non-parametric polytopes.

Note that Barvinok’s algorithm could be used to performighitountings needed
for Clauss’s method in order to make these countings moraegffi However, using
the extension proposed by Barvinok and Pommersheim , Bhpbgmomials can be
obtainedanalytically. This extension, implemented by Verdoolaege et al [28]esak
into account the validity domains while keeping the ovestllicture of Barvinok’s al-
gorithm (See appendix). The first step is to compute paréenegdrtices and validity
domains. Then, Barvinok’s algorithm is applied to the fixetdaf parametric vertices
that belongs to each validity domain. Obviously, this pagtarized version of Barvi-
nok’s algorithm needs to handle periodic numbers. To avoédetxponential behavior
of the look-up tables used in the interpolation method,quicity is represented using
fractional parts, with the following notation: For a rataimumberz, the rational part
is denoted by{z} and is defined as followsiz} = « — |z], where|z] is the largest
integer less than or equal 10

1
?] can be written as:

2 61n,m

({3n} — D{3m} + ({—in} + 1). The quasi-polynomial from Exampie7 (for the

last validity domain) can be written as:

Example 2.10The periodic numbel/ (n, m) = F

[SM NI

10



(Gm — 3{dm} + Dn + ({30} + Hm+ ({3m} - D{3n} - {3m} +1)
Notice that this representation is more convenient whempénsd is very large.

To conclude this expository section, we mention that th@fsrof Theorems and
formulas given above can be found in the references alrataty; particularly [1, 2, 3].
For a general background on algorithms computing Ehrhdynpanials, limits and
time complexity of these algorithms, we recommend the ésaend complete report
written by Verdoolaege et alii [29].

3 Applying Clauss and Barvinok algorithms to voting
theory

The purpose of this section is to illustrate the use of thai€aand the Barvinok al-
gorithms for obtaining new probabilistic results in votitigeory. We consider three-
candidate elections with voters (the notation is the same as in the introduction) and
IAC is assumed. In what follows, we will make use of the welbkm relation:

m+1)(n+2)(n+3)(n+4)(n+5)
120

D(n) =

which gives the total number of voting situations as a fuorctifn, i.e. the number of
integer solutions associated with the following system:

ny + ng +ng +ng +ns + ng = nandn; >0 fori=1,2,...,6.

The programs we use to implement Clauss and Barvinok allgosithave been
coded by Ahmed Louicht?. Three issues will be examined with the help of these
programs.

3.1 Problem 1: Disagreement between plurality and pluraliy runoff

The two voting methods that are the most commonly used irig@asal elections are
(simple) plurality voting and plurality runoff. Under pllity voting, each voter votes
for one of the candidates and the candidate with the highesber of votes is elected.
Under plurality runoff, a candidate is elected at the firagstif she obtains more than
50% of the votes; if no candidate obtains this absolute majdtign a second stage is
organized in which the two candidates with the highest filyrscores at the first stage
are confronted in a pairwise majority contest. It is of iet&rto ask the following ques-
tion: What is the probability that these two methods disagvben IAC is assumed in
a three-candidate election?

The two methods disagree when, for instancés the plurality winnerp obtains a
plurality score higher than and a majority of voters preférto a.1* The system of
linear (in)equalities that characterize this event is gias:

12The Clauss program is based on: Polylib library [22] by Ckeva (kernel), Wilde, Loechner and
IRISA team. Parameterized Barvinok program is based orelmtiject [25] and Verdoolaege library [26].
In order to deal with multi-precision integers, GMP [18] addiL [24] libraries have been used. The two
programs are compiled with the GNU tools under GPL licence.

13we ignore in this illustrative investigation the problemtied elections.
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ng > N3 + Ny,
ng > N5 + N,
ny + ns < n/2,
ne + ng + ng + ns + ng = n,
n; >0 fori=1,2,...,6.

S
++ 4+

Using Clauss’s algorithm, we obtain (after a computatioretof 1 minute and 40
seconds) the following quasi-polynomial:

71 5 —1 91 4 —17 —209 —49 47 —49 —209 3
T+ [, mergn + [Frer g e n
T, L g mopry (g jrem e e, sy might
19 Ty T T, 550 T3, 50 TR T g T ki
n
154170 S0 R0 73 L0 o) G0y JPOS0 gy Tn

+10, 82944 1296° 1024 81> 82944’ 16 > 82944 ’ 81’ 1024’ 1296’ 82944 In-

The program indicates that this relation is valid for> 9 and the periodicity can
be seen to be equal to 12.

The use of Barvinok’s algorithm gives (after 2 seconds) tilewing output, with
the same validity domain:

71/414720 xn® + (139/41472 % {(1/2xn+0)} + —1/1728) x n* + (1/36 x {(1/3 xn +0)}2 +
—1/36+{(1/3%n+0)}+(61/6912x{(1/2xn+0)}+—17/5184))xn> +(—1/12x{(1/4xn+1/2)}3 +
(1/8+{(1/2%n+0)} +1/16) x {(1/4*n+1/2)}2 +(—3/32% {(1/2*n+0)} +1/48) * {(1/4*n+
1/2)} 4+ (=1/12%{(1/3%n+0)}3 4+ (1/6%{(1/2¥n+0)} +1/4) * {(1/3+n+0)}2 +(=1/6{(1/2*
n+0)}+—1/6)*{(1/3*n+0)}+(—=77/2304%{(1/2%n+0)} +7/576))) *n? + (—1/12% {(1/4*
n+1/2) 344+ (1/6%{(1/2%n+0)}+—1/2)x{(1/4xn+1/2)}3 +(11/16 % {(1/2%n+0)} +11/24) *
{(1/4%n+1/2)}2 +(—61/96%{(1/2%n+0)}+1/8)x{(1/4xn+1/2)} +(—3/16%{(1/3*n+0)}* +
(=1/6%{(1/2%n+0)}+—1/8)x{(1/3xn+0)}3 +(3/2%{(1/2%n+0)} +17/48)*{(1/3*n+0)}2 +
(—4/3%{(1/2*n+0)}+—1/24) % {(1/3xn+0)} + (5/384 % {(1/2xn+0)} + —59/2880))) x n +
(4/15%{(1/4%n+1/2)}° 4+ (=1/6%{(1/2%n+0)} +—1)*{(1/4*n+1/2)}* + (1 {(1/2%n+0)} +
—1/3)%{(1/4%n+1/2)}3 +(29/48%{(1/2%n+0)}+1)x{(1/4%n+1/2)}2 +(—33/32x{(1/2xn+
0)}+1/15)x{(1/4xn+1/2)} +(3/5%{(1/3*n+0)}° +(=3/8*{(1/2*n+0)}+—3/2) x{(1/3*
n4+0) 144 (—=1/4%{(1/2xn+0)} +2/3)x{(1/3+n+0)}3 +(27/8% {(1/2+n+0)}+—1/2)x{(1/3*
n+0)}2 4+ (=11/4%{(1/2%n+0)} +11/15)* {(1/3*n+0)} +(5/16 x {(1/2xn+0)} +—3/16))).

It can be checked that this formulation is equivalent to the we have obtained
with Clauss’s algorithm. If, for example, we consider thefficient of n* in Barvi-
nok’s result, we observe th&f1/2+«n+0)} = 0if nisevenand(1/2+«n+0)} = 1/2
if n is odd. Consequently, the! coefficient is—1/1728 if n is even and 39/41472
1/2 —1/1728 = 91/82944 if n is odd, in accordance with Clauss’s algorithm result.

From this quasi-polynomial, it can be deduced thatfet 9 mod 12, the number
of voting situations for which alternativeis the plurality winner and is not the plurality
runoff winner i#:

47 17 4171 159

1 n o1 n4+ n3+ n2+ n —+
414720 82944 41472 1536 46080 1024°

14Clearly, this step is much easier when starting from Claufssmulation rather than from Barvinok’s
result.
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The eleven other polynomials can be obtained in a similar way

Multiplying by 6 (the plurality winner may be, b or ¢ and, wheru is the plurality
winner,b or ¢ may obtain the second rank position) and dividing by thel totanber
of voting situationsD(n), we obtain the desired probability. For= 9 mod 12, this
probability is given as:

71n5 + 455n* + 4700 + 4590n? + 37539n + 64385
576(n 4+ 1)(n+2)(n+ 3)(n +4)(n + 5)

This relation allows us to conclude that, for large eledtsathe likelihood of a
disagreement between plurality voting and plurality rdmabout12%.

3.2 Problem 2: Manipulability of the Borda rule

Although there exists different ways for measuring the rpalaibility of alternative
voting rules (see.g.Pritchard and Wilson [23]), the most common approach ctssis
in computing the proportion of voting situations at whiclk tlule under consideration
is manipulable by a single votemg@ividual manipulation) or by a coalition of vot-
ers Eollective manipulation Adopting this approach, Lepelley and Mbih [19] have
shown, among other results, that, for large electorategltirality rule can be manipu-
lated by a coalition of voters i29% of the voting situations (7/24, to be exact), and the
corresponding proportion for plurality runoff is 1/91%). In a recent paper, Favardin
and Lepelley [10] have used a Clauss-Huang-Chua type #igotdo compute the ma-
nipulability of a large number of voting rules. However,yHailed to obtain the exact
limiting coalitional manipulability of the famous Bordalel® : in this case, Clauss’s
algorithm does not work. We are going to show that the use ofiBak’s algorithm
can solve the problem.

A bit of notation is needed/ (n) is the proportion of voting situations at which the
Borda rule is manipulable by a coalition of voters. We wiskvaluatel’(co). Let B;;
be the difference between the Borda score of candidatel the Borda score of candi-
datej. Consider a voting situation where the Borda winner is cdaiei:. Favardinet
alii [11] have shown that the Borda rule is manipulable by a doalibf voters at this
situation if and only if:

(1) Bpe +2ng > nzandB,, < ng+ ng; Or

(2) n3 > Bpe+2ng > 0andB,, < Bype + 3ng ; or
(3) Bep +2ny4 > nsandB,. < ng +ns; Of

(4)ns > Bep+2n4 > 0andBy. < Bep + 3ng.

Let #(7) denote the number of situations that are compatible witquaéties(i),
i=1,2,3,4. Let#(i, ) be the number of situations that are compatible with oth
and(j). Clearly,#(1,2) = 0 and#(3,4) = 0. Noting that, for large, all the above
inequalities can be considered as strict for our purpose fgtportion of situations

15ynder this rule, the voters are asked to rank the candidatébree-candidate elections, the Borda rule
consists in giving 2 points to a candidate for each ballot dwctv she is ranked first, 1 point for each on
which she is ranked second and O point for a last rank posilibe winner is the candidate with the highest
number of points.
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corresponding to an equality tends towards 0), and usingrstny arguments, we
obtain thatl’(n) can be computed as:

_ 3Q#() +2#(2) — #(1,3) — #(2,4) — 2#(1,4))

V(n) D(n)

It remains to calculaté:(1), #(2), #(1,3), #(2,4) and#(1,4).
Given the definition oB3; ;, the system of inequalities associated with can eas-
ily be written as (the third and fourth inequalities meart thas the Borda winner):

nl—n2+n3+n4—2n5—|—n620,
—n1 — 2ne + 2n3 + 2ng — ns + 2ng > 0,
ny + 2no — ng — 2ng + ns — ng > 0,
2ny + ng + ng — ng — ns — 2ng > 0,
ny + ng + N3 + ng + ns + ng = n,

n; >0 fori=1,2,...,6.

Confronted by this set of inequalities, Clauss’s algoriteimoperative. Barvinok’s
algorithm, on the other hand, provides an output after autation time of 3 seconds.
This output is quite huge and more than 10 pages would be seget exhibit it.
But all that we need for computing the limiting valuedfn) is the coefficient of.®,
which is independent from (cf Theorem 2.1). This coefficient &871/61236000.

We can obtain, in a similar way, the coefficients of the legderm of the quasi-
polynomials corresponding to (respective§}2), #(1,3), #(2,4) and#(1,4). Fi-
nally, the desired result is given as:

43871 473 234989 2059  _ o_ 1237
V(00) = 351236000 + 25832000 — 1714608000 _ 122472000 _ 254432000 _ 132953
L 264600

120

It is worth noticing that this exact resuli{.247%) is very close to the approximation
given in Favardiret alii [11] (50.25%).

3.3 Problem 3: Manipulability, plurality rule and single-p eakedness

An interesting feature of the Clauss and Barvinok algorghmthat they enable the
obtaining of quasi-polynomials as a function of more thae parameter. For example,
it becomes possible to derive probability representatibasdepend not only on, the
number of voters, but also on another parameter which capiame given attribute of
preference profiles. This is precisely what we wish to illatg with this third problem.
We follow here an idea developped by Gehrlein [14, 13, 15pb@®se we want to
study the coalitional manipulability of the plurality ruie three-alternative elections.
Lepelley and Mbih [19] provided a representation for thepmmion of situations at
which plurality is manipulable by a coalition of voters. $tpossible to go further by
investigating what happens when some degree of consistéimayividual preferences
is introduced. The notion of single peakedness had beermpeoby Black in order to
reflect this coherence of preferences in voting situatitmthree-alternative elections,
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preferences are single peaked when some candidate is aekexdrin the last place in
the preference rankings of the voters. Assuming that peafars are “perfectly” single
peaked is an hypothesis that can be considered as too raditany circumstances.
Itis probably more interesting and more realistic to coesatendencyowards single
peakedness. For that purpose, we will use the pararhébat measures the minimum
number of times that some candidate is ranked last in themetes of voters:

k = Min(n4 + ne,n2 + ns,n1 + ng).

The numberk serves as a simple measure of the proximity of a voting $itnab
being perfectly single peaked. Whén= 0, the associated situation has perfectly
single peaked preferences, and takinglose to its maximum valuen(3) reflects a
situation that is far from perfect single peakedness. Wenkinom Gehrlein [14] that,
givenn andk, 0 < k < n/3, the total number of situations is given as:

k+1)(n—3k)((n+1)(n+5) — 3k(2+ k))
2

Instead of directly computing the number of situations atchiplurality is ma-
nipulable, we will compute the number of situation where remipulation can occur;
such situations will be said to lstable Once again, we will ignore tied elections: it
means that the plurality winner is supposed to be unique laadandidate obtaining
the minimum number of last place in the preference rankiagdso unique. Assume
that candidate is the plurality winner. Three cases must be consideredyrdiow to
the identity of the candidate who obtains the minimum nundfdast positions. In
each of these cases, we must have:
ny + no — ng — ng — ng > 0,
ny + no — ng — ng — ng > 0,
ny + ng + N3 + ng + ns + ng = n,

n; >0 fori =1,2,...,6. (3.1)
The two first inequalities come from Lepelley and Mbih andrelcterize the stable
situations for whichu is the plurality winner. In addition t¢3.1), we must also have:

D(n, k) = (

ng +ng < no +ng, Mg +ng <ni +ngandng +ng =k (32)
if a obtains the minimum number of last positions;
ng +ng5 < N4 + ng, No +ns < ny +ng andns +ns =k (33)
if b obtains the minimum number of last positions;
ni +n3 < ng +ns,n1 +n3 <ng+ngandny +n3 =k (3.4)

if ¢ obtains the minimum number of last positions.

It can be checked by symmetry arguments that the numberusitsihs compatible
with ((3.1) and (3.3)) is equal to the number of situationmpatible with ((3.1) and
(3.4)). Consequently, the proportion of stable situatigimenn andk can be computed
as:

3 (#((3.1) and(3.2)) + 2#((3.1) and(3.3)))
D(n, k)

We have calculateg:((3.1) and(3.2)) and#((3.1) and(3.3)) by using Barvinok’s
algorithm. The computation time was about 2 seconds for sechf inequalities. We

P(n, k) =
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give hereafter the results we have derived from the outpuhtoparticular case where
the parameters andk are even multiples of three (similar representations cbeld
obtained for all the other cases). Three validity domainstnive distinguished. For
each of these domains, the representatiorfor, k) is as follows:

Domain1:0 < k < 24
12403 (k+1)—6n?(73k% —40k—104) —12n(35k> 4396k +418k+84) +k(1771k> +7984k> +7500k+1584)
144(k+1)(n—3k)(n2+6n—3k2—6k+5)

Domain 2:22 < k < 22

—n?+12n°3 (4k+3) —4n? 24k —72k—83) —32n(20k> +102k> +1000k+21) +32k(51k> +-204k> +220k+69)
144(k+1) (n—3k)(n®>+6n—3k>—6k+5)

Domain 3:2:2 < k < 222
n*—9n3k+3n? (125> +5k+14) —2n(36k° +36k> +11k+6)+6k(9k5 +12k> +2k+3)
144(k+1)(n—3k)(n?4+6n—3k2—6k+5)

Computer enumeration was used to verify these represensdtr small values of
the parameters. Table 1 lisB300, k) values fork = 0,6,12,-- -, 96.

Table 1
Impact of a tendency towards single peakedness
on the frequency of stable situations under plurality rule:
(3 candidates, 300 voters)

k | P(300,k) || k | P(300,k)
0| 0858 ||54| 0693
6| 0849 || 60| 0.658
12| 0837 | 66| 0.617
18| 0824 | 72| 0574
24| 0808 || 78| 0.538
30| 0791 || 84| 0.511
36| 0771 || 90| 0.491
42| 0749 | 96| 0.459
48| 0.723

The results show that introducing some degree of homogeineitdividual pref-
erences clearly increases stability. However, it can bemes that, even in presence
of perfect single peakedness, the possibility of manijputaby coalition of voters re-
mains significant: fok = 0 and largen, the manipulability measure is still equal to

— 124 _ 5/36 (about14%).

4 Concluding remark

The use of the Clauss and Barvinok algorithms greatly tatéls the derivation of
probability representations for voting outcomes. Barkinmethod appears to be par-
ticularly efficient and should be able to solve most of thebfems of a probabilistic
nature that we could considerer in voting theory for threedi@ate elections. The
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main limit of these algorithms is related to the number ofialales and parameters
that they can take into account. The maximum number that thesS and Barvinok
methods can deal with seems to be about 20. Consequenslyadt ipossible to ana-
lyze four candidate elections, where the total number ablsdes (possible preference
rankings) is 24. We hope that further developments of thiggeithms will enable the
overcoming of this difficulty.
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Appendix

Algorithms (From [28, 29])

Algorithm 1: Barvinok’s algorithm

1. For each vertex; of P

(a) Determine supporting con&,(P, v;)

(b) LetK = K(P,v;) — v;

(c) Decomposé into unimodular cones; such that{K| = 3, ¢;[Kj]
(d) For eachk;, determinef (K;; x)

(e) f(K(Pv);z) = Zj eja:E(”i’KJ’)f(Kj;a:), ¢; € {—1,1} andE(v;, Kj)
is the unique lattice point belonging to the fundamental-bpkn paral-
lelepiped corresponding to the translated céinet v;

2. f(Pia) = 3, ep [ (K (P vi); )
3. evaluatef(P;1)

Algorithm 2: Parameterized Barvinok

1. For each (parametric) vertexp) of P

(a) Determine supporting con&,(P, v;(p))

(b) LetK = K(P,vi(p)) — vi(p)

(c) Decomposé into unimodular conegK] =3,

(d) Foreachk;, determinef(K;x)

() f(K(P,vi(p));x) =3, €;ai®K) (I )
2. For each validity domai® of P

(@) f(P;2) = 3, pep JE (Pvi(p)): )

(b) evaluatef(P;1)

€5 K]
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