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Hatem Smaoui§

CREM, Université de Caen
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Abstract

In voting theory, analyzing how frequent is an event (e.g. a voting paradox)
is, under some specific but widely used assumptions, equivalent to computing the
exact number of integer solutions in a system of linear constraints. Recently, some
algorithms for computing this number have been proposed in social choice liter-
ature by Huang and Chua [17] and by Gehrlein ([12, 14]). The purpose of this
paper is threefold. Firstly, we want to do justice to EugèneEhrhart, who, more than
forty years ago, discovered the theoretical foundations ofthe above mentioned al-
gorithms. Secondly, we present some efficient algorithms that have been recently
developed by computer scientists, independently from voting theorists. Thirdly, we
illustrate the use of these algorithms by providing some original results in voting
theory.

Key words: voting rules, manipulability, polytopes, lattice points,algorithms.
JEL Classification: D70, D71

1 Introduction

Consider an election on three alternatives or candidates{a, b, c}. Assume that vot-
ers have complete linear preference rankings on these candidates. Then, there are six
possible preference orders that voters might have:

abc (n1) acb (n2) bac (n3) bca (n4) cab (n5) cba (n6)
Here,ni denotes the number of voters with the associated preferenceranking on

candidates. Forn voters, we then have
∑6

i=1 ni = n, and any such combination of
ni’s is referred to as a voting situation, or simply as a situation. In order to compute

∗Helpful comments by Philippe Clauss and his team are gratefully acknowledged
†e-mail: dominique.lepelley@univ-reunion.fr
‡e-mail: alouichi@yahoo.fr
§e-mail: smaouihatem@yahoo.fr
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the probability that some event takes place, it is often assumed in the social choice
literature that all voting situations are equally likely tooccur. It is the so-calledImpar-
tial Anonymous Culture(IAC) condition, first explicitly introduced by Gehrlein and
Fishburn [16]. Under this assumption, computing the desired probability amounts to
evaluating the number of situations corresponding to the voting event under consider-
ation. Typically, the voting events can be described by a system of linear constraints
with rational coefficients. For example, the event “candidate a is the Condorcet win-
ner1” corresponds ton1+n2+n3 > n4+n5+n6 andn1+n2+n5 > n3+n4+n6. As
theni’s must be integers, the problem is then to compute the numberof integer solu-
tions of a system of linear (in)equalities. Recently, Huangand Chua [17] and Gehrlein
[12] have proposed inSocial Choice and Welfaresome new methods for computing
the number of situations exhibiting a particular voting event. These methods are based
on the fundamental result (proved in Huang and Chua [17]) that the number of integer
solutions of a system of linear constraints can be represented by a polynomial inn with
periodic coefficients.

We have very recently realized that this result is more than 40 years old and is due
to Ehrhart [7]2. Ehrhart’s theory is very general and provides solid theoretical founda-
tions for the IAC probability calculations. We strongly believe that the knowledge of
this theory can be useful for all social choice theorists interested in probability calcu-
lations. To give a brief overview of Ehrhart’s theory is the first objective of the present
paper.

We have also discovered that numerous studies exist in applied mathematics and in
the computer science literature that propose and analyze different ways for computing
the number of integer solutions of a set of linear constraints. Some of them are based
on Ehrhart’s theory; others make use of new theoretical developments. The second
purpose of this paper is to present the two main algorithms that can be implemented.

Finally, we will illustrate the use and the efficiency of these algorithms by providing
some new and original probability representations3.

2 Ehrhart polynomials and their computation

How can one calculate the number of points with integer coordinates in a setS de-
scribed by a finite system of linear constraints with rational coefficients? Frequently,
this problem appears as an important step in a wide variety oftopics in pure and ap-
plied mathematics. The first fundamental contribution in this area is due to the work of
the French mathematicianEug̀ene Ehrhart(1906− 2000)4. He considered the special
case when the linear constraints depend on a single positiveparametern and showed
that the number of points with integer coordinates inS can be represented by a polyno-
mial in n with periodic coefficients. Before presenting more detailson Ehrhart’s theory

1A Condorcet winner exists as a candidate who could beat everyother candidate on the basis of pairwise
majority rule.

2It turns out that, in mathematics, a polynomial with periodic coefficients is called “Ehrhart polynomial”.
3The reader not interested in technical aspects may directlyconsult this part of the paper (Section 3).
4For a short biography, see the tribute written by Philippe Clauss in honor of E. Ehrhart: http://icps.u-

strasbourg.fr/ clauss/ehrhart.html
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and recent advances in this domain, it is convenient to introduce some notations and
terminology.

Let Rd be the Euclidean d-space of all d-tuplesx = (x1, · · · , xd) of real numbers.
The integer latticeZd is the subset ofRd consisting of points with integer coordinates
(for short, called lattice points or integer points). A rational polyhedron of dimensiond
is a setP ⊂ Rd, that is the solution of a finite system of linear inequalities with integer
coefficients5:

P = {x ∈ Rd : Ax ≤ b}

whereA is am × d integer matrix,b an integer vector withm components andm
the number of independent linear inequalities. The inequality Ax ≤ b is understood
component-wise. Usually, the polyhedron is bounded and called a polytope. The ex-
tremal points of a polytope are called its vertices. A lattice polytope is a polytope with
integer vertices. It is clear that the problem of counting lattice points that satisfy a finite
set of linear constraints with rational coefficients is now equivalent to counting lattice
points inside a given rational polyhedron.

2.1 Ehrhart’s theory

Let P ⊂ Rd be a d-dimensional rational polytope. For an integer parameter n ≥ 1,
define the dilation ofP by n as the polyhedronnP = {nx : x ∈ P}. Geometrically,
this can be interpreted as dilatingP while leaving the angles and proportions fixed.
Consider the functionL(P, n) = |nP ∩Zd| of the variablen, that describes the number
of lattice points that lie inside the dilationnP . Ehrhart [7] inaugurated the systematic
study of general properties of this function by proving in particular, that it can be
represented by a polynomial inn whenP is a lattice polytope and by a finite family of
a polynomials calledquasi-polynomialsor Ehrhart polynomials, in the general case.

Definition 2.1 A functionf : Z −→ Q is a (univariate) quasi-polynomial of periodq
if there exists a list ofq polynomialsgi (0 ≤ i < q) such thatf(n) = gi(n) if n ≡ i
mod q.

Instead of representing a quasi-polynomial by a long list ofpolynomials, Ehrhart [9]
uses the practical concept of periodic numbers.

Definition 2.2 A rational periodic numberU(n) is a functionU : Z −→ Q, such that
there exists a periodq such thatU(n) = U(n′) whenevern ≡ n′ mod q.

The possible values ofU(n) are usually made explicit by a list ofq rational num-
bers enclosed in square brackets.

Example 2.1U(n) = [12 , 3
4 , 1]n is a periodic number with periodq = 3, U(n) = 1

2 if
n ≡ 0 mod 3, U(n) = 3

4 if n ≡ 1 mod 3 andU(n) = 1 if n ≡ 2 mod 3.

5P could be not full–dimensional (this is the case when the linear system describing the polyhedron
contains equalities). However, without loss of generality, P can be assumed to be full-dimensional [28].

3



Definition 2.3 A (univariate) quasi-polynomialf of degreed is a functionf(n) =
cd(n)nd + · · ·+ c1(n)n + c0(n) where theci(n)’s are rational periodic numbers. The
periodq of a quasi-polynomial is the least common multiple (lcm) of the periods of its
coefficients.

Example 2.2f(n) = 1
4n2 + [12 , 3

4 , 1]nn + [0, 1
3 ]n is a quasi-polynomial of degree2

and period6.

The fundamental result of Ehrhart can be described by the following theorem.

Theorem 2.1 (Ehrhart) Let P be a rational polytope. The functionL(P, n) repre-
senting the number of integer points in the dilationnP is given by a degree-d quasi-
polynomial. The coefficient of the leading term is independent ofn and is equal to the
Euclidean volume ofP . The period of the quasi-polynomial is a divisor of thelcm of
the denominators of the vertices ofnP . WhenP is a lattice polytope,L(P, n) is given
by a single polynomial.

Example 2.3Consider the following parametric system:

(Sn)















x1 + x2 ≤ 3n

2x1 ≤ 5n

x1 ≥ 0

x2 ≥ 0
b b b b

b

b

b

b

b

b

x1

x2

(0,0)

Fig. 1. Integer points inP
The number of integer solutions ofSn is the number of integer points inside the

dilationnP of the polytope:

P = {(x1, x2) ∈ R2|x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 3, 2x1 ≤ 5} (Fig. 1)

The vertices ofnP are: (0, 0), (5n
2 , 0), (0, 3n) and(5n

2 , n
2 ). Hence, by Theorem 2.1,

L(P, n) is a quasi-polynomial of degree 2, it has the general form:αn2 +[β1, β2]nn+
[γ1, γ2]n.

It should be mentioned that if the above theorem is compared with the theoretical
result obtained by Huang and Chua in [17], it turns out that these results are essentially
identical. However, the seminal work of Ehrhart is more general and involves more
information about the coefficients and the period of the quasi-polynomial representing
the L(P, n) function. In their paper, Huang and Chua also suggested an algorithm
for computing periodic coefficients. This algorithm (further refined and improved by
Gehrlein [12]) is based on the classical technique of interpolation. Currently, there exist
two general methods for computing Ehrhart polynomials: Clauss’s algorithm (1998)
and the parameterized Barvinok’s algorithm (2004). The Huang-Chua algorithm can
be considered as a particular case (with a single parameter)of Clauss’s method that we
present now.
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2.2 Interpolation method and Clauss’s generalization

Ehrhart polynomials have many applications concerning computer science. Their use
in this area was initiated by Clauss and Loechner [4]. They were the first to propose
a method for computing the quasi-polynomials coefficients.Based on the information
provided by Theorem 2.1, the algorithm counts the number of lattice points for a set of
fixed values of the parameter and then calculates the quasi-polynomial through inter-
polation.

Example 2.4Consider once again the system(Sn) from example2.3. To find the un-
known values ofL(P, n) coefficients, five independent linear equations onα, βi and
γi (i = 1, 2) can be obtained by counting the number of lattice points innP for fixed
values ofn in [0, 4]. This initial counting (L(P, 0) = 1, L(P, 1) = 9, L(P, 2) =
27, L(P, 3) = 52, L(P, 4) = 88) allows us to construct a system of linear equalities
for which the solutions are the desired coefficients. Resolving this system, we obtain:
L(P, n) = 35

8 n2 + [174 , 4]nn + [1, 5
8 ]n.

In order to apply the above technique to a larger class of problems associated with
counting lattice points, Clauss [5] extended Ehrhart’s result to parameterized polytopes
with any number of integer parameters.

Definition 2.4 A rationald-dimensional parameterized polyhedron is a set of real vec-
tors defined by parametric linear inequalities:Pp = {x ∈ Zd : Ax ≤ Cp + b}, where
A andC are integer matrices,b is an integer vector andp a vector ofr integer param-
eters. WhenPp is bounded for each value ofp, it will be called a parametric polytope.6

Note that the coordinates of the vertices of a parametric polytope are affine func-
tions of parameters. Each vertex exists only ifp belongs to a subset of the parameter
domainNr. Subsets where the vertices have stable expressions are called validity do-
mains(see Example2.7 and Figures2 and3, further).

Before presenting Clauss’s generalization of Ehrhart’s theorem, we need to extend
the concept of periodic number and quasi-polynomial.

Definition 2.5 Letp = (p1, · · · , pr) be ar-dimensional parameter vector. Ar-dimensional
periodic numberU(P ) is a functionU : Zr −→ Q such that there exist periods
q = (q1, · · · , qr) ∈ Nr such thatU(p) = U(p′) wheneverpi ≡ p′i modqi(1 ≤ i ≤ r).
Thelcm of all qi’s is called the period ofU(p).

The multidimensional periodic numbers are usually represented by a look-up table.

Example 2.5
[

[1, 1
2 ]p2

, [0, 3
2 ]p2

, [−1, 1
4 ]p2

]

p1
is a2-periodic number with periodq =

(3, 2).
U(n, m) = (−1)n−m is a2-periodic number with periodq = (2, 2). It can be repre-

sented byU(n, m) =

[

1 −1
−1 1

]

n,m

=
[

[1,−1]m, [−1, 1]m
]

n

6Note that ifp = (n, · · · , n) andb = (0, · · · , 0), thenPp = nP .
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Note that the matrix array notation works well for2-dimensional periodic numbers,
whereas the notation with square brackets works for all dimensions.

Definition 2.6 A multivariate quasi-polynomial is a polynomial inr variablesp1, · · · , pr

such that each coefficient is a multidimensional periodic number on a subset of{p1, · · · , pr}.
The period of a multivariate quasi-polynomial is thelcm of the periods of its coeffi-
cients.

Example 2.6Consider the quasi-polynomial

f(n, m) =
−1

8
n2−

−1

8
m2+

3

2
nm+

[

[
11

4
,
5

4
]m, [

5

2
, 1]m]

]

n
n+[

1

4
,
1

2
]mm+

[

[1,
5

8
]m, [

5

8
,
1

4
]m]

]

n
.

It is a quasi-polynomial with period2 in variablesn andm. f(n, m) can be expressed
as a quasi-polynomial inn, with periodic coefficients being periodic linear expressions
in m:

−
1

8
n2 + [(

3

2
m + [

11

4
,
5

4
]m), (

3

2
m + [

5

2
, 1]m)]nn

+[(−
1

8
m2 + [

1

4
,
1

2
]mm + [1,

5

8
]m), (−

1

8
m2 + [

1

4
,
1

2
]mm + [

5

8
,
1

4
]m)]n.

Theorem 2.2 (Clauss)The enumerator functionE(Pp) that describes the number of
lattice points in ad-dimensional parametric polytopePp can be represented by a finite
set of multivariate quasi-polynomials of degreed in p, each valid on a different validity
domain. The period of the quasi-polynomial in a given validity domain divides thelcm
of the denominators that appear in the expression defining the vertices on this domain.

Using Theorem2.2, Clauss and Loechner have developed a general method to
count lattice points in a parametric polytope7. Their method is based on the knowledge
of the structure of the solution; the implemented algorithmconsists of the following
steps:

1. Compute the validity domains and the parametric coordinates of the vertices.8

2. For each validity domain, since the general form of the associated quasi-polynomial
is known:

(a) Count the number of points for some initial values of the parameters;

(b) Solve a system of linear equations of which the solutionsare the quasi-
polynomial coefficients.

Example 2.7We modify the system in Example3 by introducing a second parameter
(m) and adding a supplementary constraint:

7It is worth noticing that Gehrlein [14] has recently proposed a method, called EUPIA2, to compute
quasi-polynomials for the specific case of two parameters. The algorithm developed by Clauss and Loechner
generalizes in some sense Gehrein’s EUPIA2.

8The parametric vertices are computed by the Loechner-Wildealgorithm implemented in PolyLib [20,
21].
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x1 + x2 ≤ 3n
2x1 ≤ 5n

2x2 ≤ m
x1 ≥ 0

x2 ≥ 0
b b b b

b

b

b

b

b

b

x1

x2

(0,0)

Fig. 2. Parameterized polytope
(for n = 1, m = 3)

n

m

n
=
m

6
n
=

m

(0,0)

Fig. 3. Validity domains

Applying Clauss’s algorithm to compute the enumerator function, we obtain:

Validity
domain

Vertices Quasi-polynomial

−6n + m ≥ 0
n ≥ 0

(0, 0), (5n
2 , 0)

(0, 3n), (5n
2 , n

2 )
35
8 n2 + [174 , 4]nn + [1, 5

8 ]n

6n− m ≥ 0
−n + m ≥ 0

(0, 0), (0, m
2 ), (5n

2 , 0)
(3n−m

2 , m
2 ), (5n

2 , n
2 )

− 1
8n2

+[(3
2m + [114 , 5

4 ]m), (3
2m + [52 , 1]m)]nn

+[(− 1
8m2+[14 , 1

2 ]mm+[1, 5
8 ]m), (− 1

8m2+[14 , 1
2 ]mm

+[58 , 1
4 ]m)]n

n − m ≥ 0
m ≥ 0

(0, 0), (0, m
2 )

(5n
2 , 0), (n

2 , m
2 )

(5
4m + [52 , 5

4 ]m)n

+[(1
2m + [1, 1

2 ]m), (1
4m + [12 , 1

4 ]m)]n

The above interpolation method is the very first algorithm ever developed to com-
pute Ehrhart polynomials. However, it presents some drawbacks. The first limita-
tion concerns the problem ofdegenerate domains: to interpolate a quasi-polynomial
of degreed in r parameters with periodq = (q1, · · · , qr), the algorithm requires
∏r

i=1(d + 1)qi initial countings. For certain validity domains, it is not always pos-
sible to find a subregion with(d + 1)qi consecutive values in each dimension and then
it may be impossible to get a complete set of appropriate instances for interpolation and
the algorithm fails to produce a solution9. The second problem is related to time com-
plexity10. The method used for initial countings basically enumerates all points, so if
any instance contains a large number of points, the computation time rises accordingly.
Moreover, if the periods are large, then the number of instances will be very large and
interpolation will take an exponential time[27, 28].

2.3 Barvinok’s algorithm

In 1993, Barvinok [1, 2] developed an algorithm that counts integerpoints inside ra-
tional polytopes. This algorithm is time-polynomial in input size when the dimension
of the polytope is fixed. We will not explain Barvinok’s algorithm in details but we
will try to give a brief description of its main steps. Given apolyhedronP , define the
multivariate generating function attached toP as:

9Since the implementation is based on interpolation, it searches for fixed parameter values located in an
hyper rectangle. For more details, see [28].

10Time complexity refers to the function describing the way inwhich the number of steps required by an
algorithm varies with the input size of the problem it is solving.
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f(P ;x) =
∑

α∈P∩Zd

xα where xα = xα1

1 · · ·xαd

d with x = (x1, · · · , xd)

Note that ifP is a polytope, this formal power series is just a ( Laurent ) polynomial
with one monomial per lattice point. Counting the number of integer points|P ∩Zd| is
then equivalent to evaluatingf(P ;x) atx = (1, · · · , 1). This allows the computation
of the generating function as a reasonably short function.

Example 2.8Consider the one-dimensional polytopeP = [0, N ]. The long polyno-
mial f(P ; x) = 1 + x + · · · + xN can be represented by the short rational function
1−xN+1

1−x
. Substitutingx = 1 in this expression yields a denominator equal to zero, so

we must take the limit asx approaches1 (by L’Hospital theorem) and get, as expected,
f(P ; 1) = N + 1, the number of integer points inP .

In this simple example the basic observation is that the compact expression of the
generating function can be obtained by considering the two raysK0 = [0,∞) and
KN = (−∞, N ]. Their generating functions are:

f(K0; x) =
∑

α≥0

xα =
1

1 − x
andf(KN ; x) =

∑

α≤N

xα =
xN

1 − x−1

Adding the two rational function right-hand sides (representing two infinite series)
collapses into the rational function representingf(P ; x):

1

1 − x
+

xN

1 − x−1
=

1 − xN+1

1 − x

This is a one dimensional instance of a theorem due to M. Brion[3]. In order to
present this crucial theorem, we need to introduce some moreconcepts.

Definition 2.7 A cone with generatorsu1, · · · , ut ∈ Zd is the setK defined by:
K = {

∑t

i=1 λiui : λi ≥ 0, for all i}.

This definition is somewhat restrictive, a cone is defined as the set of all positive
combinations of its generators, so it must contain the origin. Givenv ∈ Zd, we will
use the notationv + pos{ui : i = 1, · · · , t} to refer to the (shifted) cone defined by:
K = {v+

∑

αi, αi ≥ 0}, which is the sum ofv and the cone generated byu1, · · · , ut,
also called generators ofK.

Another important class of cones that have a key role in Barvinok’s algorithm is the
class of unimodular cones.

Definition 2.8 A (shifted) coneK ⊂ Rd is unimodular if its generators form a basis
of Zd.

Here, by basis ofZd, we mean a set ofd linearly independent integer vectors which
generateZd. The significance of unimodular coneK = v + pos{ui : i = 1, · · · , t}
is that its fundamental half open parallelepipedΠ = {

∑

αiui : 0 ≤ αi < 1} con-
tains only one lattice pointE(v, K), equivalentlyK is unimodular if and only if

8



det(u1, · · · , ud) = ±1 (see [6]). It can also be shown ([1]) that the generating function
of an unimodular cone has a simple and short form:

f(K;x) =
xE(v,K)

(1 − xu1) · · · (1 − xud)
(2.1)

Definition 2.9 Let P be a polyhedron andV (P ) be the set vertex ofP . The sup-
porting coneK(P, v) of P at v ∈ V (P ) is K(P, v) = v + {u ∈ Rd : v + δu ∈
P for all sufficientlyδ > 0}.

Note that using Definition 2.9, the supporting cone ofK(P, v) is not always a cone
itself, but it is the (possibly translated) cone defined by the facets touching vertexv.
In the above example, the polytopeP = [0, N ] has two supporting cones,K(P, 0) =
[0,∞) andK(P, N) = (−∞, N ].

One fundamental step in Barvinok’s algorithm is its abilityto distribute the com-
putation off(P ;x) on the vertices of the polytope . This is described by the following
Theorem.

Theorem 2.3 (Brion) LetP be a rational polyhedron. Then

f(P ;x) =
∑

v∈V (P )

f(K(P, v);x).

Brion’s theorem allows the computation off(P ;x) by computing the generating
functions of the supporting cones ofP .

Example 2.9
The quadrilateralP from Example 2.3 (n = 1), has four
supporting cones:(0, 0) + pos{(1, 0), (0, 1)}, (5

2 , 0) +
pos{(−1, 0), (0, 1)}, (5

2 , 1
2 )+pos{(0,−1), (−1, 1)}, and

(0, 3) + pos{(0,−1), (1,−1)}}. It is easy to see that
all these cones are unimodular (determinant= ±1),
the only lattice points belonging to corresponding fun-
damental half-open parallelepipeds are respectively :
(0, 0), (2, 0), (2, 1), and(0, 3) (fig. 4). Applying Brion’s
theorem and formula (2.1), we obtain (withx = (x, y)):

b b b b

b

b

b

b

b

x1

x2

(0,0)

Fig.4. Generators, supporting cones
and half-open parallelepiped

f(P ;x) = 1
(1−x)(1−y) + x2

(1−x−1)(1−y) + x2y

(1−y−1)(1−x−1y) + y3

(1−y−1)(1−xy−1) .

Making the variable substitution11 x = (1 + t)1, y = (1 + t)2, we obtainf(P ;x)
as a univariate (Laurent) polynomial:

g(t) = 1
(1−(1+t))(1−(1+t)2) + (1+t)2

(1−(1+t)−1)(1−(1+t)2) + (1+t)4

(1−(1+t)−2)(1−(1+t)−1(1+t)2)

+ (1+t)6

(1−(1+t)−2)(1−(1+t)(1+t)−2) ).

11The integer vectorλ = (1, 2) used in this substitution is chosen such thatλ is not orthogonal to any
generator. See [6] for more details on how to evaluatef(P ;x) atx = (1, · · · , 1).
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Simplifying this expression in order to obtain only positive powers in the denomi-
nators and factorizing out1

t2
from each term, we obtain through Taylor expansion:

g(t) = 1
t2

(1
2 −

1
4 t− 1

8 t2 + · · · )+ 1
t2

(−1
2 − 5

4 t− 7
8 t2 + · · · )+ 1

t2
(− 1

2 −
11
4 t− 49

8 t2 + · · · )
+ 1

t2
(1
2 + 17

4 t + 127
8 t2 + · · · ).

Finally, the number of lattice points in the polytopeP is given by:
|P ∩ Z2| = limx→(1,1) f(P ;x) = limt→0 g(t) = 1

8 + −7
8 + −49

8 + 127
8 = 72

8 = 9.
In this easy example, the polytope decomposition is simple since all supporting

cones are unimodular. In the general case, one or more supporting cones are not nec-
essarily unimodular. The fundamental idea of Barvinok was to decompose each cone
K ⊂ Rd into a (signed) sum of unimodular conesKi ⊂ Rd: [K] =

∑

i∈I ǫi[Ki],
where[.] denotes the indicator function andǫi ∈ {−1, 1} depending whetherKi is
added or subtracted. Via this decomposition, we can write the expression:f(K;x) =
∑

i∈I ǫif(Ki;x). Consequently, the generating functionf(P ;x) can be written as a
signed sum of short rational functions.

Theorem 2.4 (Barvinok) LetP be a rational polytope of dimensiond. The multivari-
ate generating functionf(P ;x) can be written in polynomial time as:

f(P ;x) =
∑

i∈I

ǫi

xwi

∏d
j=1(1 − xuij )

whereI is a (polynomial-size ) indexing set,ǫi ∈ {−1, 1} andwi, uij ∈ Zd for all i
andj.

The polynomial-time algorithm described in the above Theorem was further general-
ized by Barvinok and Pommersheim [2] to parametric polytopes. In 2004, De Loera
et al [6] developed the programmLattE , a computer package for lattice point enu-
meration, which contains the first implementation of the technique of Barvinok for
enumerating non-parametric polytopes.

Note that Barvinok’s algorithm could be used to perform initial countings needed
for Clauss’s method in order to make these countings more efficient. However, using
the extension proposed by Barvinok and Pommersheim , Ehrhart polynomials can be
obtainedanalytically. This extension, implemented by Verdoolaege et al [28], takes
into account the validity domains while keeping the overallstructure of Barvinok’s al-
gorithm (See appendix). The first step is to compute parametric vertices and validity
domains. Then, Barvinok’s algorithm is applied to the fixed set of parametric vertices
that belongs to each validity domain. Obviously, this parameterized version of Barvi-
nok’s algorithm needs to handle periodic numbers. To avoid the exponential behavior
of the look-up tables used in the interpolation method, periodicity is represented using
fractional parts, with the following notation: For a rational numberx, the rational part
is denoted by{x} and is defined as follows:{x} = x − ⌊x⌋, where⌊x⌋ is the largest
integer less than or equal tox.

Example 2.10The periodic numberU(n, m) =

[

1 2
3

1
3

1
2

1
3

1
6

]

n,m

can be written as:

({ 1
2n} − 1){ 1

3m} + ({− 1
2n} + 1). The quasi-polynomial from Example2.7 (for the

last validity domain) can be written as:
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(5
4m − 5

2{
1
2m} + 5

2 )n + ((−1
2 { 1

2n} + 1
2 )m + ({ 1

2m} − 1){ 1
2n} − { 1

2m} + 1)
Notice that this representation is more convenient when theperiod is very large.

To conclude this expository section, we mention that the proofs of Theorems and
formulas given above can be found in the references already cited, particularly [1, 2, 3].
For a general background on algorithms computing Ehrhart polynomials, limits and
time complexity of these algorithms, we recommend the excellent and complete report
written by Verdoolaege et alii [29].

3 Applying Clauss and Barvinok algorithms to voting
theory

The purpose of this section is to illustrate the use of the Clauss and the Barvinok al-
gorithms for obtaining new probabilistic results in votingtheory. We consider three-
candidate elections withn voters (the notation is the same as in the introduction) and
IAC is assumed. In what follows, we will make use of the well known relation:

D(n) =
(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

120

which gives the total number of voting situations as a function ofn, i.e. the number of
integer solutions associated with the following system:

n1 + n2 + n3 + n4 + n5 + n6 = n andni ≥ 0 for i = 1, 2, ..., 6.
The programs we use to implement Clauss and Barvinok algorithms have been

coded by Ahmed Louichi12. Three issues will be examined with the help of these
programs.

3.1 Problem 1: Disagreement between plurality and plurality runoff

The two voting methods that are the most commonly used in presidential elections are
(simple) plurality voting and plurality runoff. Under plurality voting, each voter votes
for one of the candidates and the candidate with the highest number of votes is elected.
Under plurality runoff, a candidate is elected at the first stage if she obtains more than
50% of the votes; if no candidate obtains this absolute majority, then a second stage is
organized in which the two candidates with the highest plurality scores at the first stage
are confronted in a pairwise majority contest. It is of interest to ask the following ques-
tion: What is the probability that these two methods disagree when IAC is assumed in
a three-candidate election?
The two methods disagree when, for instance,a is the plurality winner,b obtains a
plurality score higher thanc and a majority of voters preferb to a.13 The system of
linear (in)equalities that characterize this event is given as:

12The Clauss program is based on: Polylib library [22] by Chenikova (kernel), Wilde, Loechner and
IRISA team. Parameterized Barvinok program is based on Latte project [25] and Verdoolaege library [26].
In order to deal with multi-precision integers, GMP [18] andNTL [24] libraries have been used. The two
programs are compiled with the GNU tools under GPL licence.

13We ignore in this illustrative investigation the problem oftied elections.
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n1 + n2 > n3 + n4,
n3 + n4 > n5 + n6,
n1 + n2 + n5 < n/2,
n1 + n2 + n3 + n4 + n5 + n6 = n,
ni ≥ 0 for i = 1, 2, ..., 6.

Using Clauss’s algorithm, we obtain (after a computation time of 1 minute and 40
seconds) the following quasi-polynomial:

71
414720n5 + [ −1

1728 , 91
82944 ]nn4 + [ −17

5184 , −209
41472 , −49

5184 , 47
41472 , −49

5184 , −209
41472 ]nn3

+[ 1
36 , −1589

41472 , −65
5184 , −7

1536 , −1
324 , −1333

41472 , 7
576 , −2237

41472 , 1
324 , 17

1536 , −97
5184 , −1981

41472 ]nn2

+[ 4
45 , −13661

414720 , 101
2880 , −869

46080 , 29
270 , 4259

414720 , −59
2880 , −59021

414720 , 13
90 , 4171

46080 , −17
8640 , −41101

414720 ]nn
+[0, 6223

82944 , 77
1296 , −65

1024 , 16
81 , 13391

82944 , −3
16 , −11921

82944 , 20
81 , 159

1024 , 13
1296 , −4753

82944 ]n.

The program indicates that this relation is valid forn ≥ 9 and the periodicity can
be seen to be equal to 12.

The use of Barvinok’s algorithm gives (after 2 seconds) the following output, with
the same validity domain:

71/414720 ∗n5 + (139/41472 ∗ {(1/2 ∗n+ 0)}+−1/1728) ∗n4 +(1/36 ∗ {(1/3 ∗n +0)}2 +

−1/36∗{(1/3∗n+0)}+(61/6912∗{(1/2∗n+0)}+−17/5184))∗n3 +(−1/12∗{(1/4∗n+1/2)}3+

(1/8∗{(1/2∗n+0)}+1/16)∗{(1/4∗n+1/2)}2 +(−3/32∗{(1/2∗n+0)}+1/48)∗{(1/4∗n+

1/2)}+(−1/12∗{(1/3∗n+0)}3 +(1/6∗{(1/2∗n+0)}+1/4)∗{(1/3∗n+0)}2 +(−1/6∗{(1/2∗

n+0)}+−1/6)∗{(1/3∗n+0)}+(−77/2304∗{(1/2∗n+0)}+7/576)))∗n2 +(−1/12∗{(1/4∗

n+1/2)}4+(1/6∗{(1/2∗n+0)}+−1/2)∗{(1/4∗n+1/2)}3 +(11/16∗{(1/2∗n+0)}+11/24)∗

{(1/4∗n+1/2)}2+(−61/96∗{(1/2∗n+0)}+1/8)∗{(1/4∗n+1/2)}+(−3/16∗{(1/3∗n+0)}4 +

(−1/6∗{(1/2∗n+0)}+−1/8)∗{(1/3∗n+0)}3 +(3/2∗{(1/2∗n+0)}+17/48)∗{(1/3∗n+0)}2 +

(−4/3∗{(1/2∗n+0)}+−1/24)∗{(1/3∗n+0)}+(5/384∗{(1/2 ∗n+0)}+−59/2880)))∗n+

(4/15∗{(1/4∗n+1/2)}5 +(−1/6∗{(1/2∗n+0)}+−1)∗{(1/4∗n+1/2)}4 +(1∗{(1/2∗n+0)}+

−1/3)∗{(1/4∗n+1/2)}3 +(29/48∗{(1/2∗n+0)}+1)∗{(1/4∗n+1/2)}2 +(−33/32∗{(1/2∗n+

0)}+1/15)∗{(1/4∗n+1/2)}+(3/5∗{(1/3∗n+0)}5 +(−3/8∗{(1/2∗n+0)}+−3/2)∗{(1/3∗

n+0)}4+(−1/4∗{(1/2∗n+0)}+2/3)∗{(1/3∗n+0)}3 +(27/8∗{(1/2∗n+0)}+−1/2)∗{(1/3∗

n+0)}2 +(−11/4∗{(1/2∗n+0)}+11/15)∗{(1/3∗n+0)}+(5/16∗{(1/2∗n+0)}+−3/16))).

It can be checked that this formulation is equivalent to the one we have obtained
with Clauss’s algorithm. If, for example, we consider the coefficient ofn4 in Barvi-
nok’s result, we observe that{(1/2∗n+0)} = 0 if n is even and{(1/2∗n+0)} = 1/2
if n is odd. Consequently, then4 coefficient is−1/1728 if n is even and139/41472 ∗
1/2 − 1/1728 = 91/82944 if n is odd, in accordance with Clauss’s algorithm result.

From this quasi-polynomial, it can be deduced that forn ≡ 9 mod 12, the number
of voting situations for which alternativea is the plurality winner and is not the plurality
runoff winner is14:

71

414720
n5 +

91

82944
n4 +

47

41472
n3 +

17

1536
n2 +

4171

46080
n +

159

1024
.

14Clearly, this step is much easier when starting from Clauss’s formulation rather than from Barvinok’s
result.
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The eleven other polynomials can be obtained in a similar way.
Multiplying by 6 (the plurality winner may bea, b or c and, whena is the plurality

winner,b or c may obtain the second rank position) and dividing by the total number
of voting situationsD(n), we obtain the desired probability. Forn ≡ 9 mod 12, this
probability is given as:

71n5 + 455n4 + 470n3 + 4590n2 + 37539n + 64385

576(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)
.

This relation allows us to conclude that, for large electorates, the likelihood of a
disagreement between plurality voting and plurality runoff is about12%.

3.2 Problem 2: Manipulability of the Borda rule

Although there exists different ways for measuring the manipulability of alternative
voting rules (seee.g.Pritchard and Wilson [23]), the most common approach consists
in computing the proportion of voting situations at which the rule under consideration
is manipulable by a single voter (individual manipulation) or by a coalition of vot-
ers (collective manipulation). Adopting this approach, Lepelley and Mbih [19] have
shown, among other results, that, for large electorates, the plurality rule can be manipu-
lated by a coalition of voters in29% of the voting situations (7/24, to be exact), and the
corresponding proportion for plurality runoff is 1/9 (11%). In a recent paper, Favardin
and Lepelley [10] have used a Clauss-Huang-Chua type algorithm to compute the ma-
nipulability of a large number of voting rules. However, they failed to obtain the exact
limiting coalitional manipulability of the famous Borda rule15 : in this case, Clauss’s
algorithm does not work. We are going to show that the use of Barvinok’s algorithm
can solve the problem.

A bit of notation is needed.V (n) is the proportion of voting situations at which the
Borda rule is manipulable by a coalition of voters. We wish toevaluateV (∞). LetBij

be the difference between the Borda score of candidatei and the Borda score of candi-
datej. Consider a voting situation where the Borda winner is candidatea. Favardinet
alii [11] have shown that the Borda rule is manipulable by a coalition of voters at this
situation if and only if:

(1) Bbc + 2n6 ≥ n3 andBab < n3 + n6 ; or
(2) n3 > Bbc + 2n6 ≥ 0 andBab < Bbc + 3n6 ; or
(3) Bcb + 2n4 > n5 andBac < n4 + n5 ; or
(4) n5 ≥ Bcb + 2n4 ≥ 0 andBac < Bcb + 3n4.

Let #(i) denote the number of situations that are compatible with inequalities(i),
i = 1, 2, 3, 4. Let #(i, j) be the number of situations that are compatible with both(i)
and(j). Clearly,#(1, 2) = 0 and#(3, 4) = 0. Noting that, for largen, all the above
inequalities can be considered as strict for our purpose (the proportion of situations

15Under this rule, the voters are asked to rank the candidates.In three-candidate elections, the Borda rule
consists in giving 2 points to a candidate for each ballot on which she is ranked first, 1 point for each on
which she is ranked second and 0 point for a last rank position. The winner is the candidate with the highest
number of points.
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corresponding to an equality tends towards 0), and using symmetry arguments, we
obtain thatV (n) can be computed as:

V (n) =
3(2#(1) + 2#(2) − #(1, 3) − #(2, 4) − 2#(1, 4))

D(n)
.

It remains to calculate#(1), #(2), #(1, 3), #(2, 4) and#(1, 4).
Given the definition ofBi,j , the system of inequalities associated with(1) can eas-

ily be written as (the third and fourth inequalities mean that a is the Borda winner):

n1 − n2 + n3 + n4 − 2n5 + n6 ≥ 0,
−n1 − 2n2 + 2n3 + 2n4 − n5 + 2n6 ≥ 0,
n1 + 2n2 − n3 − 2n4 + n5 − n6 > 0,
2n1 + n2 + n3 − n4 − n5 − 2n6 > 0,
n1 + n2 + n3 + n4 + n5 + n6 = n,
ni ≥ 0 for i = 1, 2, ..., 6.

Confronted by this set of inequalities, Clauss’s algorithmis inoperative. Barvinok’s
algorithm, on the other hand, provides an output after a calculation time of 3 seconds.
This output is quite huge and more than 10 pages would be necessary to exhibit it.
But all that we need for computing the limiting value ofV (n) is the coefficient ofn5,
which is independent fromn (cf Theorem 2.1). This coefficient is43871/61236000.

We can obtain, in a similar way, the coefficients of the leading term of the quasi-
polynomials corresponding to (respectively)#(2), #(1, 3), #(2, 4) and#(1, 4). Fi-
nally, the desired result is given as:

V (∞) = 3
2 43871

61236000 + 2 473
5832000 − 234989

1714608000 − 2059
122472000 − 2 1237

54432000
1

120

=
132953

264600
.

It is worth noticing that this exact result (50.247%) is very close to the approximation
given in Favardinet alii [11] (50.25%).

3.3 Problem 3: Manipulability, plurality rule and single-p eakedness

An interesting feature of the Clauss and Barvinok algorithms is that they enable the
obtaining of quasi-polynomials as a function of more than one parameter. For example,
it becomes possible to derive probability representationsthat depend not only onn, the
number of voters, but also on another parameter which captures some given attribute of
preference profiles. This is precisely what we wish to illustrate with this third problem.

We follow here an idea developped by Gehrlein [14, 13, 15]. Suppose we want to
study the coalitional manipulability of the plurality rulein three-alternative elections.
Lepelley and Mbih [19] provided a representation for the proportion of situations at
which plurality is manipulable by a coalition of voters. It is possible to go further by
investigating what happens when some degree of consistencyof individual preferences
is introduced. The notion of single peakedness had been proposed by Black in order to
reflect this coherence of preferences in voting situations.In three-alternative elections,
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preferences are single peaked when some candidate is never ranked in the last place in
the preference rankings of the voters. Assuming that preferences are “perfectly” single
peaked is an hypothesis that can be considered as too radicalin many circumstances.
It is probably more interesting and more realistic to consider atendencytowards single
peakedness. For that purpose, we will use the parameterk that measures the minimum
number of times that some candidate is ranked last in the preferences of voters:

k = Min(n4 + n6, n2 + n5, n1 + n3).

The numberk serves as a simple measure of the proximity of a voting situation to
being perfectly single peaked. Whenk = 0, the associated situation has perfectly
single peaked preferences, and takingk close to its maximum value (n/3) reflects a
situation that is far from perfect single peakedness. We know from Gehrlein [14] that,
givenn andk, 0 ≤ k ≤ n/3, the total number of situations is given as:

D(n, k) =
(k + 1)(n − 3k)((n + 1)(n + 5) − 3k(2 + k))

2

Instead of directly computing the number of situations at which plurality is ma-
nipulable, we will compute the number of situation where no manipulation can occur;
such situations will be said to bestable. Once again, we will ignore tied elections: it
means that the plurality winner is supposed to be unique and the candidate obtaining
the minimum number of last place in the preference rankings is also unique. Assume
that candidatea is the plurality winner. Three cases must be considered, according to
the identity of the candidate who obtains the minimum numberof last positions. In
each of these cases, we must have:
n1 + n2 − n3 − n4 − n6 > 0,
n1 + n2 − n4 − n5 − n6 > 0,
n1 + n2 + n3 + n4 + n5 + n6 = n,
ni ≥ 0 for i = 1, 2, ..., 6. (3.1)
The two first inequalities come from Lepelley and Mbih and characterize the stable
situations for whicha is the plurality winner. In addition to(3.1), we must also have:
n4 + n6 < n2 + n5, n4 + n6 < n1 + n3 andn4 + n6 = k (3.2)
if a obtains the minimum number of last positions;
n2 + n5 < n4 + n6, n2 + n5 < n1 + n3 andn2 + n5 = k (3.3)
if b obtains the minimum number of last positions;
n1 + n3 < n2 + n5, n1 + n3 < n4 + n6 andn1 + n3 = k (3.4)
if c obtains the minimum number of last positions.

It can be checked by symmetry arguments that the number of situations compatible
with ((3.1) and (3.3)) is equal to the number of situations compatible with ((3.1) and
(3.4)). Consequently, the proportion of stable situationsgivenn andk can be computed
as:

P (n, k) =
3 (#((3.1) and(3.2)) + 2#((3.1) and(3.3)))

D(n, k)
.

We have calculated#((3.1) and(3.2)) and#((3.1) and(3.3)) by using Barvinok’s
algorithm. The computation time was about 2 seconds for eachset of inequalities. We
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give hereafter the results we have derived from the output for the particular case where
the parametersn andk are even multiples of three (similar representations couldbe
obtained for all the other cases). Three validity domains must be distinguished. For
each of these domains, the representation forP (n, k) is as follows:

Domain 1:0 ≤ k ≤ n−4
5

124n3(k+1)−6n2(73k2−40k−104)−12n(35k3+396k2+418k+84)+k(1771k3+7984k2+7500k+1584)
144(k+1)(n−3k)(n2+6n−3k2−6k+5)

Domain 2: n−2
5 ≤ k ≤ n−4

4
−n4+12n3(4k+3)−4n2(24k2−72k−83)−32n(20k3+102k2+1000k+21)+32k(51k3+204k2+220k+69)

144(k+1)(n−3k)(n2+6n−3k2−6k+5)

Domain 3: n−2
4 ≤ k ≤ n−2

3
n4−9n3k+3n2(12k2+5k+14)−2n(36k3+36k2+11k+6)+6k(9k3+12k2+2k+3)

144(k+1)(n−3k)(n2+6n−3k2−6k+5)

Computer enumeration was used to verify these representations for small values of
the parameters. Table 1 listsP (300, k) values fork = 0, 6, 12, · · · , 96.

Table 1
Impact of a tendency towards single peakedness

on the frequency of stable situations under plurality rule:
(3 candidates, 300 voters)

k P (300, k) k P (300, k)
0 0.858 54 0.693
6 0.849 60 0.658
12 0.837 66 0.617
18 0.824 72 0.574
24 0.808 78 0.538
30 0.791 84 0.511
36 0.771 90 0.491
42 0.749 96 0.459
48 0.723

The results show that introducing some degree of homogeneity in individual pref-
erences clearly increases stability. However, it can be observed that, even in presence
of perfect single peakedness, the possibility of manipulation by coalition of voters re-
mains significant: fork = 0 and largen, the manipulability measure is still equal to
1 − 124

144 = 5/36 (about14%).

4 Concluding remark

The use of the Clauss and Barvinok algorithms greatly facilitates the derivation of
probability representations for voting outcomes. Barvinok’s method appears to be par-
ticularly efficient and should be able to solve most of the problems of a probabilistic
nature that we could considerer in voting theory for three candidate elections. The
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main limit of these algorithms is related to the number of variables and parameters
that they can take into account. The maximum number that the Clauss and Barvinok
methods can deal with seems to be about 20. Consequently, it is not possible to ana-
lyze four candidate elections, where the total number of variables (possible preference
rankings) is 24. We hope that further developments of these algorithms will enable the
overcoming of this difficulty.
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Appendix

Algorithms (From [28, 29])

Algorithm 1: Barvinok’s algorithm

1. For each vertexvi of P

(a) Determine supporting cone,K(P, vi)

(b) LetK = K(P, vi) − vi

(c) DecomposeK into unimodular conesKj such that:[K] =
∑

j ǫj[Kj ]

(d) For eachKj, determinef(Kj; x)

(e) f(K(P, vi); x) =
∑

j ǫjx
E(vi,Kj)f(Kj ; x), ǫj ∈ {−1, 1} andE(vi, Kj)

is the unique lattice point belonging to the fundamental half-open paral-
lelepiped corresponding to the translated coneKj + vi

2. f(P ; x) =
∑

vi∈D f(K(P, vi); x)

3. evaluatef(P ; 1)

Algorithm 2: Parameterized Barvinok

1. For each (parametric) vertexvi(p) of P

(a) Determine supporting cone,K(P, vi(p))

(b) LetK = K(P, vi(p)) − vi(p)

(c) DecomposeK into unimodular cones:[K] =
∑

j ǫj [Kj]

(d) For eachKj, determinef(Kj; x)

(e) f(K(P, vi(p)); x) =
∑

j ǫjx
E(vi(p),Kj)f(Kj ; x)

2. For each validity domainD of P

(a) f(P ; x) =
∑

vi(p)∈D f(K(P, vi(p)); x)

(b) evaluatef(P ; 1)
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