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Abstract. In this note we study the existence of Nash equilibria in nonsymmetric
finite congestion games, complementing the results obtained by Milchtaich on
monotone-decreasing congestion games. More specifically, we examine the case of
two resources and we propose a simple method describing all Nash equilibria in this
kind of congestion games. Additionally, we give a new and short proof establishing
the existence of a Nash equilibrium in this type of games without invoking the
potential function or the finite improvement property.
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1 Introduction

In recent years, many economists have been interested in the general class of
congestion games introduced by Rosenthal [8]. In these games, a set of players
compete for a set of resources, and the payoff of each resource depends only on
the number of players using it. The utility a player derives from a combination of
resources is the sum of the payoffs associated with each resource included in his
choice. A key game-theoretic property of these games is that they always have at
least one pure strategy Nash equilibrium. This result follows from the existence of a
potential function (Rosenthal). However, Konishi, Le Breton and Weber [4], Quint
and Shubik [7], and Milchtaich [5] consider that congestion games do not admit (in
general) a potential function, but are likely to admit a Nash equilibrium in pure
strategies. A slightly different formulation of congestion games was introduced
by Milchtaich [5] under the name of congestion games with player-specific payoff

∗Corresponding author. Tel.:+33 2 31 56 66 29; fax: +33 2 31 56 55 62. E-mail
addresses: samir.sbabou@gmail.com (S.Sbabou), University of Caen 14032 Caen, France,
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functions. Each player has individual nonincreasing payoff functions and is allowed
to choose any resource but must choose exactly one. Milchtaich showed that such a
game possesses at least one Nash equilibrium without invoking a potential function
but by using the finite improvement property. His proof implicitly contains an
efficient algorithm for computing an equilibrium. Additionally, he shows that
players iteratively playing best responses in such games do not necessarily reach
a Nash equilibrium, that is, the best response dynamics may cycle. However, he
shows that from every state of such a game there exists a polynomially long sequence
of best responses to a Nash equilibrium. Ieong et al. [3] generalized this result to
the largest class of singleton congestion games (where the payoff functions are not
required to be monotone). They also showed that even optimal equilibria (Nash
equilibria that maximize the sum of players’ utilities) can be found in a polynomial
time. Holzman and Law-Yone [2] and Voorneveld et al. [10] investigated the set of
strong Nash equilibria 1 in monotone singleton congestion games. It turns out that
this set coincides with the set of Nash equilibria and with the set of profiles which
maximize the potential. Variants of (monotone) singleton congestion games have
been studied in terms of time convergence of the best-reply dynamics to a Nash
equilibrium (Even-Dar et al. [1]) and in terms of the existence of an alternative
concept of solution (Rozenfeld and Tennenholtz, [9]).

A substantial literature has been devoted to particular subclasses and extensions
of congestion games. Most of the studies focus on the problem of finding and
computing efficiently only one Nash equilibrium, leaving open the question of
identifying all Nash equilibria. However, the characterization of the set of all
equilibria, beyond its theoretical interest, can be very useful when we have to
choose between these equilibria on the basis of performance criteria such as social
optimality, or to explore intrinsic proprieties of the game such as the price of
anarchy2. In this paper, we address this question for a simple subclass of congestion
games which lie in the intersection between Rosenthal’s and Milchtaich’s model. We
refer to games in this class as monotone singleton congestion games. Our approach
yields a new and short proof establishing the existence of a Nash equilibrium in this
kind of congestion games and shows how to compute all equilibria using a simple
and direct formula. The rest of this paper is organized as follows: section 3 provides
congestion games: definitions and notations, section 3 destabilizes the result and
section 4 concludes the paper.

2 Congestion games: definitions and notations

Formally, a game (in strategic form) is defined by a tuple Γ = (N, (Si)i∈N , (ui)i∈N ),
where N = {1, 2, . . . , n} is a set of n players, Si a finite set of strategies available to
player i and ui : S = S1× . . .×Sn → R is the utility function of player i. The set S
is the strategy space of the game, and its elements are the (strategy) profiles. For a
profile σ = (σi)i∈N on S, we will use the notation σ−i to stand for the same profile
with i’s strategy excluded, so that (σ−i, σi) forms a complete profile of strategies.

1 A strong Nash equilibrium is a profile for which no subset of players has a joint
deviation that strictly benefits all of them, while all other players are expected to maintain
their equilibrium strategies.

2When utilities are replaced by costs, the price of anarchy of a game is the ratio of the
social cost in the worst Nash equilibrium to the minimum social cost possible.
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A (pure) Nash equilibrium of the game Γ is a profile σ∗ such that each σ∗i is a
best-reply strategy: For each player i ∈ N , ui(σ∗) ≥ ui(σi, σ∗−i), for all σi ∈ Si.
Thus, no player can benefit from unilaterally deviating from his strategy.

In a standard congestion game [8] we are given a finite set R = {1, . . . ,m} of
m resources. A player’s strategy is to choose a subset of resources among a family
of allowed subsets: Si ⊆ 2R, for all i ∈ N . A payoff function dr : {1, . . . ,m} → R
is associated with each resource r ∈ R, depending only on the number of players
using this resource. For a profile σ and a resource r, the congestion on resource r
(i.e. the number of players using r) is defined by nr(σ) = |{i ∈ N : r ∈ σi}|. The
vector (n1(σ), . . . , nm(σ)) is the congestion vector corresponding to σ. The utility
of player i from playing strategy σi in profile σ is given by ui(σ) =

∑
r∈σi

dr(nr(σ)).
There is a well known extension of congestion games, namely the monotone

nonsymmetric singleton congestion games (singleton congestion games for short)
which can be seen as the intersection between Rosenthal’s and Milchtaich’s model.
A game in this class is defined by a tuple Γ(N,R, (dr)r∈R), where N is a set of n
players, R is a set of m resources/strategies (a player’s strategy consists of any single
resource in R) and dr is a nonincreasing payoff function associated with resource
r. The utility of player i for a profile σ is simply given by ui(σ) = dσi(nσi(σ)).
We note that these games are nonsymmetric : Players are restricted to choose only
one strategy, but they each have their own utility function. Since the utility of
an anonymous player derived from selecting a single resource depends only on the
number of the players doing the same choice, the common utility function is simply
a mapping: u : R× {1, . . . , n} → R, (r, k) 7→ u(r, k), where u decreases with k.

In the remainder of this section we develop a technique which attempts to
simplify the analysis of such games by moving to the ordinal representation of
preferences. Indeed, in the case of singleton congestion games, we can, without
affecting the set of Nash equilibria, replace the values of the payment functions by
their ranks in a preference ordering representing the common utility function. More
formally, a singleton congestion game will be represented by a tuple Γ(N,R,-)
where N is a set of n players, R a set of m resources and - a weak ordering on
R× {1, . . . , n}. In this ordinal context, a strategy profile σ∗ is a Nash equilibrium
of the game Γ if σ∗ % (σi, σ∗−i) for all σi in R. We also note that, since players are
anonymous, all strategy profiles that differ only by a permutation of players can be
identified by the corresponding congestion vector. We refer to a congestion vector
σ∗ = (n1, . . . , nm) as a Nash equilibrium if, for all r, r′ in R with r 6= r′, we have
(r, nr) % (r′, nr′ + 1). Thus, no player can benefit from joining a group of players
sharing a different resource.

In this paper, we are interested to introduce variants of the above notion in the
simple case of two resources in singleton congestion games which are suitable for
establishing at least one Nash equilibrium.

Let G(N,R, (-i)i∈N ) be a singleton congestion game and R = {a, b} a set of
two alternatives. To develop our approach, we need the following notation: For a
player i ∈ N , we note (a, 0) %i (b, n + 1) (or 0 · a %i (n + 1) · b by adopting the
simplified notation) when (a, 1) -i (b, n). Similarly, we note (b, 0) %i (a, n+ 1) (or
0 · b %i (n + 1) · a) when (b, 1) -i (a, n). For all i ∈ N , we define the following
integers:

pi = max {p ∈ {0, 1, . . . , n} : (a, p) %i (b, n+ 1− p)}
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qi = max {q ∈ {0, 1, . . . , n} : (b, q) %i (a, n+ 1− q)}

The entire pi denotes the maximum size of a group choosing the alternative a in a
given strategy profile, in which the player i can belong. Beyond this size, the player
i will choose the resource b. Indeed, by definition we have pi · a %i (n+ 1− pi) · b
and (pi + 1) · a -i (n − pi) · b. The entire qi is interpreted in the same way; we
replace a by b. We note that when ex-aequo cases are used, we have: pi + qi ≥ n,
for all i ∈ N . It is therefore possible, for some players i, to have pi + qi > n. This
point is important because in this case there exists the possibility to have more
than one congestion vector corresponding to a Nash equilibrium. However, when
the preferences orders are strict we have pi + qi = n, for all i ∈ N .

Using the list of integers pi and qi (i ∈ N), we define two other integers that will
serve to identify the congestion vector that may correspond to a Nash equilibrium
of the game:

n(a) = max {p ∈ {0, 1, . . . , n} :| {i ∈ N : pi ≥ p} |≥ p}

n(b) = max {q ∈ {0, 1, . . . , n} :| {i ∈ N : qi ≥ q} |≥ q}

We point out that n(a) (resp. n(b)) represents the maximum size of a group of
players that can choose the resource a (resp. b) without any member of this group
having interest in deviating from his strategy. When the preference orders include
ex-aequo possibilities, we have the inequality n(a)+n(b) ≥ n and the corresponding
congestion vector is v = (α, β), where α ≤ n(a), β ≤ n(b) and α + β = n. In the
case of strict orders, we necessarily have n(a) + n(b) = n, with the corresponding
congestion vector being v = (n(a), n(b)).

In order to describe all Nash equilibria, we introduce the three following sets
that allow us to identify the alternatives that correspond to each player:

• When the preference orders present ex-aequo cases:

A(G, v) = {i ∈ N : pi ≥ α and qi < β}, B(G, v) = {i ∈ N : pi < α and qi ≥ β}

C(G, v) = {i ∈ N : pi ≥ α and qi ≥ β}

N is the disjoint union of these three sets and that each of these sets may be
empty. We do not examine the case in which pi < α and qi < β, as pi+qi ≥ n
and α+ β = n.

• If the preference orders are strict:

A(G) = {i ∈ N : pi > n(a)}, B(G) = {i ∈ N : pi < n(a)}

C(G) = {i ∈ N : pi = n(a)}

Here, N is the disjoint union of these three sets, each of which may be empty
and |C(G)| � na− |A(G)|.

The following section allows to establish the existence of at least one Nash
equilibrium and to determine a complete list of all equilibria of a given singleton
congestion game.
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3 The result

Many of the methods proposed in the literature until now attempt to find an
equilibrium for a corresponding class of games. The main drawback is that most
of these approaches, such as Rosenthal’s and Milchtaich’s ones, give only one
equilibrium, ignoring the general structure of the set of all Nash equilibria. Our aim
in this paper is to improve the study of singleton congestion games by providing a
general method to describe all Nash equilibria and to establish a comprehensive list
of all of them. We investigate the special case of two resources and our approach
is such that we are not making use of the potential function or the FIP invoked by
Rosenthal and Milchtaich respectively.

Theorem 1 . Let R = {a, b} and G(N,R, (≺)i∈N ) be a singleton congestion game
where all preference orderings are strict.

1. G admits at least one Nash equilibrium. All equilibria correspond to the same
congestion vector : v = (n(a), n(b)).

2. Each Nash equilibrium of G, σ∗ = (σ∗1 , . . . , σ
∗
n), is characterized by a unique

subset D (possibly empty) of C(G), of cardinal n(a)− |A(G)|, such that: For
all i ∈ N , σ∗i = a if i ∈ A(G) ∪D and σ∗i = b if i ∈ B(G) ∪ (C \D).

3. The game admits exactly C
n(a)−|A(G)|
|C(G)| Nash equilibria. In particular, if

n(a) = |A(G)| the game admits a single Nash equilibrium.

Theorem 2 . Let R = {a, b} and G(N,R, (-)i∈N ) be a singleton congestion game
where the preference orders present ex-aequo possibilities.

1. Each congestion vector v = (α, β) such that α ≤ n(a), β ≤ n(b) and α+ β =
n, corresponds to (at least) one Nash equilibrium of G.

2. Each of the Nash equilibrium of G corresponding to the vector v, σ∗ =
(σ∗1 , . . . , σ

∗
n), is characterized by a unique subset D (possibly empty) C(G, v),

of cardinal α − |A(G, v)|, to ensure that: For all i ∈ N , σ∗i = a if
i ∈ A(G, v) ∪D and σ∗i = b if i ∈ B(G, v) ∪ (C(G, v) \D).

Let illustrate our main results by the following two examples.

Example 1 . Let N = {1, 2, 3, 4, 5, 6, 7, 8} and R = {a, b}. Suppose that the
players’ preferences are given by the following weak ordering:

J1 : 8b ≺ 7b ≺ 8a ≺ 6b ≺ 5b ≺ 4b ≺ 7a ≺ 6a ≺ 5a ≺ 3b ≺ 4a ≺ 3a ≺ 2b ≺ 2a ≺ b ≺ a

J2 : 8a ≺ 7a ≺ 6a ≺ 8b ≺ 7b ≺ 6b ≺ 5b ≺ 5b ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ a ≺ 3b ≺ 2b ≺ b

J3 : 8b ≺ 7b ≺ 6b ≺ 5b ≺ 4b ≺ 3b ≺ 8a ≺ 7a ≺ 6a ≺ 2b ≺ 5a ≺ 4a ≺ 3a ≺ b ≺ 2a ≺ a

J4 : 8b ≺ 7b ≺ 6b ≺ 5b ≺ 4b ≺ 3b ≺ 2b ≺ b ≺ 8a ≺ 7a ≺ 6a ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ a

J5 : 8a ≺ 7a ≺ 8b ≺ 7b ≺ 6a ≺ 6b ≺ 5b ≺ 4b ≺ 3b ≺ 5a ≺ 4a ≺ 3a ≺ 2a ≺ a ≺ 2b ≺ b

J6 : 8b ≺ 7b ≺ 6b ≺ 5b ≺ 4b ≺ 3b ≺ 2b ≺ 8a ≺ 7a ≺ 6a ≺ 5a ≺ 4a ≺ b ≺ 3a ≺ 2a ≺ a

J7 : 8a ≺ 7a ≺ 6a ≺ 8b ≺ 5a ≺ 7b ≺ 4a ≺ 3a ≺ 6b ≺ 5b ≺ 4b ≺ 3b ≺ 2a ≺ a ≺ 2b ≺ b

J8 : 8b ≺ 8a ≺ 7a ≺ 7b ≺ 6b ≺ 5b ≺ 4b ≺ 6a ≺ 3b ≺ 5a ≺ 2b ≺ 4a ≺ 3a ≺ b ≺ 2a ≺ a

We have omitted the indices of players in the order of preferences. For each player
i, we search the integer pi which is the greatest p such that na �i (n+ 1− p)b. We
obtain (n− pi)b �i (p+ 1)a.
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p1 = 5 : 5a �1 4b and 3b �1 6a
p2 = 5 : 5a �2 4b and 3b �2 6a
p3 = 6 : 6a �3 3b and 2b �3 7a
p4 = 8 : 8a �4 b and 0b �4 9a
p5 = 5 : 5a �5 4b and 3b �5 6a
p6 = 7 : 7a �5 2b and b �5 8a
p7 = 2 : 2a �5 7b and 6b �5 3a
p8 = 5 : 5a �5 4b and 3b �5 6a

So, we can verify that n(a) = 5 and n(b) = 3. The only congestion vector
corresponding to a Nash equilibrium is the vector (5a, 3b). Furthermore, we have:
A(G) = {3, 4, 6}, B(G) = {7} and C(G) = {1, 2, 5, 8}. By theorem 1, we know that
there are exactly C2

4= 6 different Nash equilibria. All these equilibria are common:
σ∗ = (a) if i ∈ A(G) and σ∗ = (b) if i ∈ B(G). Each of these equilibria is
characterized by a subset D of C(G) with |D| = 2 and σ∗i = a if i ∈ D. The list of
the Nash equilibria of this game is:

(a, a, a, a, b, a, b, b), (a, b, a, a, a, a, b, b), (a, b, a, a, b, a, b, a),
(b, a, a, a, a, a, b, b), (b, a, a, a, b, a, b, a), (b, b, a, a, a, a, b, a).

Example 2 . Let N = {1, 2, 3, 4, 5} and R = {a, b}. Suppose that the players’
preferences are given by the following weak ordering:

J1 : 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3b ∼ 3a ∼ 2a ≺ 2b ∼ a ≺ b
J2 : 5b ∼ 4b ∼ 5a ∼ 4a ∼ 3b ∼ 3a ∼ 2a ∼ 2b ∼ a ∼ b
J3 : 5a ≺ 5b ≺ 4b ≺ 4a ∼ 3b ∼ 3a ∼ 2b ≺ 2a ≺ a ≺ b
J4 : 5b ≺ 5a ≺ 4b ≺ 4a ∼ 3b ∼ 3a ∼ 2a ≺ 2b ≺ a ≺ b
J5 : 5b ∼ 4b ∼ 5a ∼ 4a ∼ 3b ∼ 3a ∼ 2a ∼ 2b ∼ a ∼ b

It is easy to see that:
p1 = 3, q1 = 3, p2 = 5, q2 = 5, p3 = 4, q3 = 3, p4 = 4, q4 = 3, p5 = 5, q5 = 5.
We have n(a) = 4 and n(b) = 3. By theorem 2, the possible congestion vectors are:
v1 = (4a, b), v2 = (3a, 2b), v3 = (2a, 3b).
Since v1 = (4a, b), we have: A(G, v1) = ∅, B(G, v1) = {1} and C(G, v1) =
{2, 3, 4, 5}. Thus, there exists a unique equilibrium corresponding to v1, which is
the profile (b, a, a, a, a).
Similarly, v2 = (3a, 2b). We have: A(G, v2) = ∅, B(G, v2) = ∅ and C(G, v3) =
{1, 2, 3, 4, 5}. The Nash equilibria corresponding to v2 are:

(b, b, a, a, a), (b, a, b, a, a), (b, a, a, b, a), (b, a, a, a, b), (a, b, a, a, b),
(a, a, b, a, b), (a, a, a, b, b), (a, b, a, b, a), (a, b, b, a, a), (a, a, b, b, a).

Finally for v3 = (2a, 3b) we have: A(G, v3) = ∅, B(G, v3) = ∅ and C(G, v3) =
{1, 2, 3, 4, 5}. The Nash equilibria corresponding to v3 are:

(b, b, b, a, a), (b, b, a, b, a), (b, b, a, a, b), (b, a, a, b, b), (a, b, b, b, a),
(a, a, b, b, b), (b, a, b, b, a), (b, a, b, a, b), (a, b, b, a, b), (a, b, a, b, b).

Proof 1 . 1) By definition of n(a), there are at least n(a) players i ∈ N such that
pi ≥ n(a). Therefore, we choose n(a) players satisfying this condition including
all players for whom pi > n(a). Note A the set of these players. For all players
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who are in B = N\A, we must have pi ≤ n(a) and therefore qi ≥ n(b). It is easy,
returning to the definition of pi and qi, to verify that the profile σ∗ = (σ∗1 , . . . , σ

∗
n)

defined by σ∗i = a if i ∈ A and σ∗i = b if i ∈ B is a Nash equilibrium. Let σ∗ be
a Nash equilibrium of G and let (α, β) be the congestion vector associated with σ∗.
Suppose that α > n(a). As σ∗ is a Nash equilibrium, there exist α players such
that pi ≥ α, which contradicts the maximality of n(a). We must therefore have
α ≤ n(a). Similarly, we show that β ≤ n(b). As α + β = n and n(a) + n(b) = n,
we necessarily have α = n(a) and β = n(b).
2) Let D be a subset (possibly empty) of C(G), of cardinal n(a) − |A(G)|. Let
σ∗ = (σ∗1 , . . . , σ

∗
n) be the strategy profile defined by: For all i ∈ N , σ∗i = a if i ∈

A(G)∪D and σ∗i = b if i ∈ B(G)∪(C(G)\D). The profile σ∗ is a Nash equilibrium.
Indeed, let i ∈ A(G) ∪ D. By definition of A(G) and D, we have pi ≥ n(a). By
definition of pi and the assumption of monotonicity, we get: n(a) ·a %i (n(b)+1) ·b.
Similarly, we show that for all i in B(G) ∪ (C(G) \ D, n(b) · b %i (n(a) + 1) · a.
Reciprocally, let σ∗ = (σ∗1 , . . . , σ

∗
n) be a Nash equilibrium of G. It is known from (1)

that the congestion vector associated with σ∗ is (n(a), n(b)). We must have σ∗i = a
if i ∈ A(G) and σ∗i = b if i ∈ B(G). We just have to consider D = {i ∈ N : σ∗i =
a and i /∈ A(G)}.
3) The result is obtained by a simple calculation from (2). �

Proof 2 . It suffices to prove (2), because (1) is obtained as a consequence of
(2). Let v = (α, β) be a congestion vector such that α ≤ n(a), β ≤ n(b) and
α+β = n. Let D be a subset (possibly empty) of C(G, v), of cardinal α−|A(G, v)|.
Let σ∗ = (σ∗1 , . . . , σ

∗
n) be a strategy profile such that: For all i ∈ N , σ∗i = a

if i ∈ A(G, v) ∪ D and σ∗i = b if i ∈ B(G, v) ∪ (C(G, v) \ D). σ∗ is a Nash
equilibrium. Indeed, let i ∈ A(G, v) ∪ D. By definition of A(G, v) and of D, we
have pi ≥ α. By definition of pi and by the assumption of monotonicity, we obtain:
α · a %i (β + 1) · b. Similarly, we show that for all i in B(G, v) ∪ (C(G, v) \ D,
β · b %i (α + 1) · a. Reciprocally, let σ∗ = (σ∗1 , . . . , σ

∗
n) be a Nash equilibrium of

G and let v = (α, β) be the congestion vector associated with this equilibrium. We
have α ≤ n(a), otherwise there exist α players i with pi ≥ α > n(a). This is
impossible by definition of n(a). Similarly, we show that β ≤ n(b). By definition
of a congestion vector, we also have α + β = n. As σ∗ is a Nash equilibrium, for
any i ∈ N , we must have: σ∗i = a if i ∈ A(G, v) and σ∗i = b if i ∈ B(G, v). We just
need to consider D = {i ∈ N : σ∗i = a et i /∈ A(G, v)} and to note that the case
pi < α and qi < β is not possible. �

4 Concluding remarks

Contrary to the studies done in the past, which provide only one Nash equilibrium
in a specific class of games, in this paper, we have presented a method for
describing the general structure of all Nash equilibria and identifying all of them
in nonsymmetric singleton congestion games. Our approach is valid for the case
of two resources and we consider that is complete. The ordinal representation
of preferences allowed us to simplify the analysis of such games and to easily
find a method for describing all Nash equilibria without using either the potential
function or the finite improvement path invoked by Rosenthal and Milchtaich. It is
also important to underline that our analysis can be used to obtain optimal Nash
equilibria. As a future research, it remains an interesting open question to extend
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our approach to the general case (R � 3) of nonsymmetric congestion games with
player-specific payoff functions.
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