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Abstract

Taking as a starting point the theory of matching applied in the case of a prob-
lem of college admissions, where one is interested only to strict preference profiles
for students and colleges, a part of the literature has been oriented towards profiles
of priorities for colleges. In this paper we will assume that students have also their
own priorities to which is associated some ‘fuzzy’. This vagueness designates the
preference of an individual (resp. college) for a college relative to parameters that
characterize the latter one (resp. individual). Thus, we talk about fuzzy priorities.
Our purpose is to analyze this aspect and to propose a real-life mechanism which
will take into consideration the fuzzy priority profiles of both students and colleges,
in order to achieve the best possible matching that is stable, strategy-proof, Pareto
efficient and fair.

KEYWORDS: Education, Priorities, Preferences, Fuzzy, Algorithm, Matching.
mllJEL Codes: C78, D80, I20, I31.

1 Introduction

Matching theory, beyond its theoretical interest, is in the heart of the economic reality.

‘Matching is one of the important functions of markets. Who gets which job, which
school places, who marries whom, these help shape lives and careers’. (Roth, 2008)

Gale and Shapley (1962) were the first to introduce matching models based on mar-
riage and college admission problems. Their required objective was to assign a type of
agent to another: in their case, the question was to make correspond a man to a woman or
a student at a college. They proposed a class of two-sided matching models for studying
such processes, since in such cases there are always two disjoint sets where each agent of a

∗Tel.:+33 2 31 56 52 14; fax: +33 2 31 56 55 62. E-mail: alexandra.litsa@unicaen.fr, Center of
Research in Economics and Management, University of Caen, 14032, Caen, France.

†Tel.:+33 2 31 56 52 14; fax: +33 2 31 56 55 62. E-mail: jean-francois.maguet@unicaen.fr, Center
of Research in Economics and Management, University of Caen, 14032, Caen, France. mmmmmmmmm
We are grateful to Vincent Merlin and Fabrice Valognes for their helpful comments and suggestions.

1



set is associated to another agent of the other set, via a bijective correspondence. They in-
troduced the Deferred Acceptance Algorithm (DAA) which achieves this idea, considering
that each agent has strict preferences over the members of the opposite side, and proved
that the matching that emerges is stable. This means that any agent must be matched to
another in such a way that they do not form a blocking pair. In other words, no individ-
ual prefers other alternative than the one he is matched to. Roth and Sotomayor (1989,
1990), Knuth (1976), Roth (1982, 1985a,b)1 developed a large literature on the above
dimensions, trying in particular to tackle the problems of assignment between employees
and employers. Our article is directed towards the field of education, towards some ‘col-
lege admission perspectives’: each student makes a proposal at a college that may, or not,
accept it. The problem being that, in such a situation, there is a quota of admission for
each college concerned. Generally, a student carries out only one proposal for only one
college which, in turn, can accept several individuals, until its quota is achieved. We refer
to this kind of mechanisms as ‘many-to-one’. For simplicity, in what follows, we suppose
a quota equal to the unit, what leads us to a mechanism ‘one-to-one’.

Following the work of Gale and Shapley (1962), Balinski and Sönmez (1999) introduced
a student placement problem by considering this time that students have preferences over
colleges and that colleges have priorities determined by local laws, and so on. Technically,
priorities are mathematical arguments similar to preferences. Being subjected to such
kind of constraints of selection, colleges become passive. This assumption allows us to
focus on the welfare loss among students and not over colleges. However, their model is
based on two specific priorities, namely, the individual skills and the individual results
obtained during examinations. Abdulkadiroğlu and Sönmez (2003) had the idea of going
over a student placement problem, applied, this time, in the case of schools (and not of
colleges), considering a wider set of priorities. Their idea gave rise to what is called a
school choice problem. In a school choice problem, students (including their respective
families) have the opportunity to choose the public school they prefer, while the latter
one has strict priorities. These priorities can be the obligation to admit students living in
a specific geographical zone, the obligation to admit students with at least one member
of their family being already to the school concerned etc. The central issue in a school
choice problem is the design of a rigorous and specific student assignment mechanism,
which is a procedure that selects a matching for each school choice problem.

We point up that a mechanism is valid if only certain ethical properties are respected:
the truth (condition of strategy-proofness), the optimality (condition of Pareto efficiency)
and fairness (condition of elimination of justified envy). We will say that a mechanism
Pareto dominates another one if not only is at least as preferable as any other mechanism
for any student, but also strictly better for some of them. A mechanism is Pareto optimal
when it is not Pareto dominated. A mechanism is strategy-proof if any strategy that rep-
resents the true preferences of an individual is a dominant strategy. Finally, a mechanism
eliminates justified envy if it always selects a matching that eliminates justified envy. This
means that no individual prefers the college that another one is assigned to and also he
has not the priority by the college concerned. The elimination of justified envy in a school
choice problem is equivalent to the notion of stability in a college admissions problem.

1The idea of students’ assignment developed by Gale and Shapley (1962) has its origin the article
of Mullin (1950) (see also Mullin and Stalnaker [1951], Stalnaker [1953], Darley [1959], or McJoynt and
Crosby [1957] and so on). Roth (1984) was the first economist to point out this aspect.
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Some mechanisms applied in Boston, New York, etc. have actually significant defects.
They violate the strategy-proofness, the Pareto efficiency and do not eliminate justified
envy. Abdulkadiroğlu and Sönmez (2003) were the first to focus on these deficiencies and
have therefore attempted to approach the student placement problem from a mechanism
design perspective. They proposed the Student Optimal Stable Mechanism (SOSM) that
selects a student optimal stable matching for each school choice problem2. Although
strategy-proof, such a mechanism is not Pareto efficient3. In parallel, Abdulkadiroğlu and
Sönmez (2003) developed the Top Trading Cycles Mechanism (TTCM). The latter, al-
though Pareto efficient and strategy-proof (Ma [1994]), is not fair45. Kesten (2006, 2010),
proposed two alternative mechanisms to the SOSM and the TTCM: the Efficiency Ad-
justed Deferred Acceptance Mechanism (EADAM) and the Equitable Trading Top Cycles
Mechanism (ETTCM). He actually proved that the EADAM is fair and Pareto efficient
but not strategy-proof and that the ETTCM is fair, Pareto efficient and also strategy-
proof. These works have a great importance, particularly the two proposals made by
Kesten.

However, we note that all these algorithms are based on strict preferences. Never-
theless, in real life is far to be always the case! In fact, strict preferences mean that
an individual may choose a college to another one in a strict way, but a college ranked
‘relatively’ better, may be ‘almost’ or ‘nearly’ desirable as another one, without meaning
that the individual is indifferent. In other words, some students can be quite undecided
about their choice of a college. Thus, individual choices may be characterized by some
‘vagueness’ associated to some of their attributes. And what better way than using the
concept of fuzzy preferences to set clear this point of view! Such preferences were origi-
nally introduced in the theory of fuzzy sets by Zadeh (1965), through his early attempts
to formalize. They are based on certain multi-valued logics known as perpetuated via
certain philosophical questionings. Barrett Pattanaik and Salles (1986), in turn, applied
this concept to the social choice under an Arrovian prospect.

Nonetheless, the concept of preferences (and fuzzy preferences) used particularly in
social choice theory, is wide! The problem being that when using preferences one tends
to disregard the notion of priorities (and priorities neglect the notion of preferences). In
this article, preferences can be thought of as the combination of priorities and tastes.

In fact, students may have, by choice, priorities over colleges, which are necessary and
sufficient alternatives to their welfare. If, for example, a student chooses a college for the
teaching program then such an option corresponds to the individual priorities. In the
same time, students have tastes or, in other means, preferences on relative attributes (or
advantages) that characterize a college (PACC), with respect to another one, which may
not be primordial to individuals’ welfare (even if they participate in its improvement).
It is possible that an individual desires more a college than another for its social and
commercial environment, for example. This last point calls for individual tastes (PACC).

2This leads us to say that there is a close link with the standard theory of Gale and Shapley (1962).
3The algorithm introduced by Gale and Shapley (1962) is not strategy-proof (Dubins and Freedman

[1981] and Roth [1982]).
4Note that such a result goes against the theory of Alcalde and Barberà (1994) who tell us that there

is no mechanism that is in the same time Pareto efficient, individually rational and strategy-proof.
5The notion of fairness plays an important role in this article; it is still very present in other con-

tributions to the theory of matching such as Masarani and Gokturk (1989), Özkal-Sanver (2004), Klaus
(2009), etc.
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And because a college relatively no prioritary still has some advantages with respect to
another one, the relatively no prioritary option becomes relatively ‘less’ or ‘largely less’,
and so on, prioritary. The difference between the advantages of a prioritary college and a
‘less’ prioritary one implies the ‘vagueness’ of individual choices!

In parallel, colleges, from their part, may accept students that respect, by obligation,
priorities considered by the law (being subjected to laws and other internal regulations,
colleges are regarded as passive). Nevertheless, they may be undecided about their real
choices. Next to college priorities, they may indeed have preferences on relative attributes
that characterize a student (PACS), with respect to another one; for example, a student
that is serious and works hard (these characteristics are not necessarily taken into ac-
count by the laws!). We underline that, college priorities are seen as a ‘constrain’, while
individual priorities denote above all the essential needs of an individual. As an example,
consider priorities ranked as follows: ‘live in the area geographically close to the college’
and ‘have good test scores’. If an individual less talented lives in the defined area, while
the talented one lives on the border of this zone, only the individual respecting the first
priority will be accepted (assuming a quota equal to the unit). However, the college faced
to such a situation would better appreciate the other person! So, students and colleges
may be quite undecided on their actual choices.

There are certainly many ways of representing an agent’s fuzzy choices in a concrete
way. We are based on the distinction between tastes and priorities on an institutional and
individual level. So, privileging priorities and taking into consideration the associated
tastes, we talk about fuzzy priorities.

In this work, we introduce a college choice problem by considering that both students
and colleges have fuzzy priorities. However, what matters is the design of a mechanism
that will be able to select a matching for each college choice problem. The latter matching
needs to be the best possible for all agents! Before trying to do so, we ask the following
question: does the access to an alternative relatively less acceptable, necessarily mean an
important welfare loss, compared to the level of welfare that the individual would have
had if he had been admitted by the college that he ranks first in his profile (called the
top-ranking of the individual’s profile)? No, if the individual has a high fuzzy between
the alternative with which he is matched and his top-ranked option!

Our aim will be to analyze the latter situation by attempting to, particularly, reduce
the envy among students for which the fuzzy is low, in favor of students who really tend
to ‘hesitate’ between some of the options that are, of course, acceptable (high fuzziness).
We will therefore establish a procedure, based on the SOSM and called Extended -SOSM,
where the intervention of a social planner will seek to improve the fate of envious students
with weak fuzzy on their choices, relatively to the least envious for whom the fuzzy is
high. In other words, we will try to obtain the best possible matching for all students,
taking into account their possible indecision.

Afterwards, we will develop an algorithm that will take into consideration the above
mentioned procedure and the fuzzy profiles of individuals and institutions. The purpose of
the algorithm, called College Choice Mechanism (CCM), will be to select the best possible
matching for a college choice problem where agents have vagueness in their choices, i.e.
their choices are elaborated in a more or less undecided way. Compared to the mechanisms
previously stated, the CCM respects almost all ethical properties and is easy to apply in
real-life. To simplify the analysis, we suppose a quota of selection equal to the unit.
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This paper is organized as follows: after presenting some basic definitions and mecha-
nisms already existing in the literature (Section 2), we introduce the problem of indecision
in the theory of matching (Section 3). The introduction of this new hypothesis allow us to
develop a procedure which takes into account the fuzzy priorities of individuals and their
ranking to enable the most envious to achieve a better situation and this, considering the
vagueness existing in the selection of students by colleges (Section 4). This leads us to the
presentation of a concrete real-life mechanism, based on the procedure mentioned above,
what will be the subject of the fifth section. The last section concludes.

2 From a School Choice Onwards

The mechanisms proposed in the literature are based on a school choice problem. Such
a problem is defined as a 5-tuple (N,X,Q,ΓN ,∆X) where N = {1, ..., n} is a set of n
individuals, X the set of possible schools x, and Q a vector of quotas Q(x), ∀x ∈ X,
with Q(x) being the maximum number of seats available in a school x. We note ΓN ∶={i ∈ N ∶ P(i)}, where P(i) ∶= {x, y, ...,m(i) ∈ X(i) ∶ xP (i)yP (i)...P (i)m(i)P (i)�},
with �, the situation: ‘I prefer not to go to a school rather than go to a particular one’
(m(i) being the last acceptable alternative for i). It is for this reason that we note,
X(i), the set of acceptable alternatives for the individual i, with X(i) ⊆ X. In the same
way, we define N(x) as the set of acceptable individuals for a school x, with N(x) ⊆ N ,
Q(x) ≤ �N(x)�. The binary preference relation P , here considered, means ‘strictly preferred
to’. In other words, when we have xP (i)y, ∀x, y ∈X(i), we say that a school x is strictly
preferred by i to a school y. Finally, ∆X ∶= {Px}x∈X , where Px ∶= {i, j, ...,m(x) ∈ N(x) ∶
iP(x)jP(x), ...,P(x)m(x)P(x)�} is a ranking of priorities such that iP(x)j means that
i has the priority over j for school x.

Let S = N ∪X, where S (ρ) represents the set of all possible correspondences, defined
by:

S (ρ) = � i if ρ = x
x if ρ = i

for all x ∈X, i ∈ N .

Definition 1. A matching is a function µ ∶S →S , such that ∀ρ ∈S , µ(ρ) ∈S (ρ) and∀i ∈S , ∀ x ∈X(i), µ(i) = {x}⇔ µ(x) = {i}, with �µ−1(x)� ≤ Q(x).
We consider M (S ), the set of all µ for S .

Definition 2. A µ-problem is a triplet π ≡ (S ,ΓN ,∆X), for all i ∈ N and all alternative
x ∈X. We denote Π the set of all problems π.

A very closely related problem to the school choice one, is the well-known college
admissions problem described by Gale and Shapley (1962). The difference between the
two problems is that in the college admissions one, schools are active and have preferences
over students whereas in a school choice problem, schools are passive and viewed as objects
to be consumed. The central concept in college admissions is stability.

Definition 3. A matching µ is stable for a µ-problem π if there is no pair (i, x) that
blocks µ (where i and x may block in the same time, or, i may block and no x, or the
inverse).
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Definition 4. A pair (i, x) blocks µ ∈M (S ) if there exists an x̃ ∈X(i) or ĩ ∈ N(x), such
that x̃P (i)µ(i) or ĩP (x)µ(x), ∀i ∈ N(µ(i)), ∀x ∈X(µ(x)).

The notion of stability, imposed in the entire literature of two-sided matching models,
is relative to the concept of elimination of justified envy (which is more oriented towards
the notion of fairness) in the context of priority-based allocations: there is no form of
justified envy if for µ(j) = {x}, ∀j ∈ N(x), � i ∈ N�{j}, such that xP (i)µ(i), where
iP(x)j, ∀x ∈X (condition (No-EJ)).

A matching µ is individually rational if for all i ∈ N , µ(i)P (i)� (condition (IR)).
A matching µ is non wasteful if, ∃i ∈ N(µ(i)) such that xP (i)µ(i) while Q(x) = �{j ∈

N(x)�{i} ∶ µ(j) = {x}}�, ∀x ∈X(k), k = i, j (condition (NW)).
Let S be the strategic choices of individuals such that S = (s∗i , s∗−i), where s∗i is the

true choice of the individual i and s∗−i, the real choice of any individual except i. The set
S′ = (si, s∗−i) differs from S only concerning the choice of i, which in this case, reflects a
manipulated choice. The strategic choice s∗i of i determines the outcome g(i, s∗i , s∗−i) of all
matching µ, representing the correspondence between an individual and a school. A µ-
problem is strategy-proof if no student can achieve a better outcome when he manipulates
his true preferences. In other words, for all i ∈ N and strategy S = (s∗i , s∗−i), S

′ = (si, s∗−i)
there does not exist g′(i, si, s∗−i)P (i)g(i, s∗i , s∗−i), with g ≠ g′, where g(S) = µ and g′(S′) = η.

Finally, a matching µ Pareto dominates η if µ(i)R(i)η(i) for all i ∈ N , and µ(j)P (j)η(j)
for some j ∈ N�{i}. We say that a matching µ is Pareto efficient if there is no matching
η, µ ≠ η, such that η Pareto dominates µ (condition (PE)).

Given a school choice problem, the aim is to construct a mechanism that selects a
matching for the former one and that respects the above stated ethical properties. We
will present some of the mechanisms that already exist in the literature, namely the
Boston Mechanism, the Gale and Shapley’s Student Optimal Stable Mechanism (SOSM),
the Top Trading Cycles (TTC), the Efficiency-Adjusted Deferred Acceptance Mechanism
(EADAM) and the Efficiency Top Trading Cycles Mechanism (ETTCM).

Mechanism 1 (BOSTON MECHANISM).

1. Students have preferences on schools. Such preferences are ordered in individual
profiles P(i), ∀i ∈ N .

2. Each school x, ∀x ∈X has priorities Px.

3. Each individual proposes to his top-ranked college that will reject or accept him.
Individuals accepted by an alternative, can never be rejected by any other person
making a proposal to the latter, even if they happen to be relatively more preferred:
when individuals rejected propose to their next ‘best’ option, they may obtain only
the alternatives for which places have not yet been assigned (i.e. when the quota
for each alternative is not reached).

4. The process stops when every individual is affected to an option, for quotas achieved.

In the mechanism of Boston even if a student has a high priority at a school x, unless
he lists it as his top choice, he loses his priority to students who have listed x as their top
choices. It is a mechanism neither stable nor strategy-proof. The algorithm introduced
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by Gale and Shapley (1962), allows us to consider the latter aspect. It is relative to the
Student Optimal Stable Mechanism (SOSM) introduced by Abdulkadiroğlu and Sönmez
(2003).

Mechanism 2 (STUDENT OPTIMAL STABLE MECHANISM (SOSM)).

1. Students have preferences on schools. Such preferences are ordered in individual
profiles P(i), ∀i ∈ N .

2. Each school x, ∀x ∈X has priorities Px
6.

3. Each individual propose to his top-ranked college that will reject or accept him.

4. Individuals rejected, will then propose to their next ‘best’ option of their profile.
The schools will once again be able to accept or refuse them. Since the individual
previously rejected, is accepted, any individual initially accepted by that same option,
may be in turn rejected if he is relatively less preferred to the individual making a
new proposal (when the quota for each alternative is neither unitary nor reached).
And so on.

5. The process stops when every individual is affected to an option.

However, the SOSM does not satisfy the Pareto efficiency (Abdulkadiroğlu and Sönmez
[2003]) . The Top Trading Cycles (Shapley and Scarf [1974]) has been introduced to solve
this problem. A mechanism which was rehabilitated by Abdulkadiroğlu and Sönmez
(2003) in the case of a school choice problem. It is well known as the Top Trading Cycles
Mechanism (TTCM).

Mechanism 3 (TOP TRADING CYCLES MECHANISM (TTCM)).

1. Students have preferences on schools. Such preferences are ordered in individual
profiles P(i), ∀i ∈ N .

2. Each school x, ∀x ∈X has priorities Px.

3. A loop is the logical path (designated as an exchange process or in other words
a trade)7 that associates a school with a student who happens to be his highest
priority and the latter to a school that happens to be her best choice, and so on,
until that individual is again associated at that same school: in this case, we say that
the loop is closed. A cycle exists when a loop is closed (i.e. when one has something
like: school x prefers the individual 1, but the individual 1 prefers a school y which
prefers individual 3, [. . . ], school z prefers individual k but the individual k prefers
school x). This step consists to identify p-cycle(s) (with p ≥ 1) from the set of
alternatives considered. Any individual identified in these cycles is then accepted
by the ‘best’ option for which the first proposal was performed.

6In the case of the DAA, preferences of colleges are considered instead of priorities of schools.
7This is indeed an exchange process in the sense that the student who has the highest priority for

the school is assigned a place (for a given quota). Afterwards, he is free to exchange this place with any
individual who considers this school to have the highest priority.
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4. We determine p-cycle(s) considering this time the alternatives for which the quota
is not reached (no individual initially accepted (via its previous proposal) can not
be rejected). And so on.

5. The process stops when every individual is affected to an option, for quotas achieved.

Although this mechanism has the advantage of satisfying the Pareto efficiency, it vio-
lates the condition of elimination of justified envy. Kesten (2006, 2010) provides another
formulation of the TTCM of Abdulkadiroğlu and Sönmez (2003), in order to simplify it:
he assumes that for a given quota, all the seats are given from the start, from the school
to the student who has the highest priority. Thus, this student will be ready to ‘exchange’
his seats with another one who considers this school as his best option. We will therefore
have, once again, a loop that will appear. Once each student associated with the school
that has the priority, the remaining seats are ‘put into play’. And so on, until the quota
of each school is reached. Kesten, based on this variant of the concept, develops another
mechanism which, this time, is more fair:

‘[...] unlike the TTCM of Abdulkadiroğlu and Sönmez (2003), instead of giving
all the trading power to those students with the highest priority for a school,
we distribute the trading rights of seats for each school among those who are
entitled one seat at that school and allow them to trade in such a way so as
situations of justified envy are avoided as much as possible’. (Kesten 2005)8

Mechanism 4 (EFFICIENCY TOP TRADING CYCLES MECHANISM (ETTCM)).

1. Students have preferences on schools. Such preferences are ordered in individual
profiles P(i), ∀i ∈ N .

2. Each school x, ∀x ∈X has priorities Px.

3. For each school, all available seats are assigned to students one by one following
their priority order to form student-seat pairs. Each student-seat pair (i, x) points
to the student-seat pair (i′, x′) such that (a.) school x′ is the best choice of student
i and, (b.) student i′ is the student with the highest priority for school x among the
students who are assigned a seat from school x′. If there is already a student-seat
pair at which student i is already assigned one seat from his best choice school,
then all student-seat pairs containing him point to that student-seat pair. There
is at least one cycle. In each cycle, corresponding trades are performed, i.e. if a
student-seat pair (i, x) is pointing to the pair (i′, x′) in a cycle, then student i is
placed to school x′ and he is removed as well as the seat student i′ is assigned. It
is possible that the student-seat pairs containing the same student, say student i,
appear in the same or in different cycles. In such a case, student i is placed to
his best choice and the extra seats of that school (for which the student-seat pairs
containing him are pointing to in those other cycles) remain to be inherited. If a
student is removed and there are student-seat pairs containing him which do not

8“Student Placement to Public Schools in the US: Two New Solutions,” mimeo, University of
Rochester, 2005.
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participate in a cycle, then the seats assigned to him in those student-seat pairs also
remain to be inherited. The seats that remain to be inherited at the end of the step
are not necessarily inherited at the very next step by the remaining students.

4. At every step k, k ≥ 2, for each school x such that (a.) there are seats of school x
which remained to be inherited from previous steps , and (b.) no student who was
assigned a seat of school x at a previous step is left, its seats which remained to
be inherited from previous steps are assigned to the remaining students one by one
following their priority order to form new student-school pairs. Again, student-seat
pairs point to each other in the way described in the previous step. Correspond-
ing trades are carried out in each cycle and some seats remain, once again, to be
inherited. The procedure continues in a similar way.

5. The algorithm stops when all students are assigned a seat to a school.

For both TTCM and ETTCM, it is necessary to suppose that students have access to
the information concerning the profiles of the other candidates. Such an assumption is
rather difficult to consider in reality. Besides this, Kesten (2006, 2010) proposes a second
mechanism that begins with the DAA of Gale and Shapley.

Mechanism 5 (EFFICIENCY-ADJUSTED DEFERRED ACCEPTANCE MECHANISM (EADAM)).

1. Students have preferences over schools. Such preferences are ordered in individual
profiles P(i), ∀i ∈ N .

2. Each school x, ∀x ∈X has priorities Px.

3. Each individual proposes to his top-ranked school that will reject or accept him. The
rejected individuals propose to another ‘best’ option. Gale and Shapley’s mechanism
stops when all individuals are matched to an alternative of their respective profile.

4. A cycle is designated as a logical path between the top-ranking of an individual
and the option with which he is paired. When there is a cycle from which certain
individuals can not reach the top-ranking of the individual considered through the
cycle, he is designated as an ‘interrupter’. The top-ranking option is therefore
eliminated by his profile (the order of the other preferences remaining unchanged),
since any possibility of achieving this alternative is actually rejected. Thus, we go
back to Step 1.

5. The process stops when no individual is considered as an ‘interrupter’ for the others
and every individual is matched to an option.

This algorithm was recently introduced by Kesten (2010). Note that this algorithm
has a perspective enough ‘immoral’ in the sense that the individual who has ambitions
is denied for the simple reason that he has not had the opportunity to be matched! The
aim of such an approach is to to annihilate ‘artificially’ any form of envy towards the
‘forbidden’ alternative, which is quite criticizable. This algorithm implicitly raises some
constraint on the individual’s freedom, even if it suggests, explicitly, the consent of the
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individual to ‘delete’ an option from his profile. However, an individual, because he is
too ‘good’, and so on, can sometimes be quite ‘naive’ (or ‘myopic’) with regard to such
actions. Eliminate his goal(s) telling that they will lead to nothing leave us perplexed.
Especially, if we ask him directly to abandon such ambitions!

Let us take an example: suppose that individual i knows that his competitors have a
greater chance of success than him, given his social position. Suppose also that a school
decides to refuse i because of his foreign origin, or because he has not studied at a presti-
gious school. In this case, understanding that he has no chance of success, he eliminates
that school from his profile of preferences, which moreover rejected him. Yet, his naivety
is misleading since he was rejected for circumstantial reasons and not to his own respon-
sibility. Speaking of consent is therefore delicate in this kind of problems.

In parallel with the school choice problem, identified through its mechanism, we pro-
pose a new problem called the college choice problem, which will also lead us, thereafter,
to a mechanism. The later one will be constructed first and foremost through a procedure.

3 The College Choice Problem

Going further the student placement problem of Balinski and Sönmez (1999) and the
school choice problem presented by Abdulkadiroğlu and Sönmez (2003), we introduce a
college choice problem.

3.1 Definitions and Basic Properties

In a college choice problem, colleges have fixed priorities imposed by regulations and
laws. Such priorities are called colleges’ priorities. However, colleges may have tastes
(PACS) given the priority list of candidates, already fixed. It is to every student that has
the priority that is associated a degree of intensity, noted d, of the taste concerned.

More precisely, the intensity accorded to a student by a college is representative of
all the advantages of the student relatively to any other one (this may be a great level
of effort, grades on exams, and so on). Say that student i has the priority relatively to
j implies that i is strictly better than j in the eyes of the college. However, j may also
have some advantages (admittedly insufficient as to those of i) and, consequently, such
an individual cannot be strictly considered as detestable with respect to i. We will say
that i has a ‘little more’ or ‘far more’, and so on, the priority over j. That is why we talk
about fuzzy colleges’ priorities.

In what follows, we note d+ the degree of intensity of the option which is relatively
more prioritary and d− the degree of intensity of the one that is relatively no prioritary.

Definition 5. A binary relation of fuzzy colleges’ priorities is a function f ∶H ×H → P ,
such that for all i, j ∈ N(x) and for all d+, d− ∈ [0; 1], (i, d+)P(x)(j, d−), for all x ∈X, with
d+ ≥ d−, H = N × [0; 1] and P the relation ‘strict priority over’.

Thus, the relation (i, d+ = a)P(x)(j, d− = b), ∀i, j ∈ N(x), ∀x ∈ X, stipulates that,
even if a commission decided that only i had the priority over j, college x could easily
find j relatively a little less desirable and i not ‘strictly’ desirable (with a > b). Therefore,
we note that when a = 1 and b = 0, this means that i is strictly desirable and j strictly
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detestable (relatively speaking). This would suggest the consideration of strict and not
fuzzy priorities.

On the other hand, students have non-fixed priorities (they are freely and individually
constructed priorities) that reflect the real needs of every student on his academic success.
These are called individual priorities. Alongside these priorities, the students may have
tastes (PACC) over the colleges, now fixed. At each college, classified by priority, is
assigned a degree of intensity, defined in the same manner as above. In this sense, we say
that college x is a ‘little more’ or ‘much more’ prioritary relatively to y if we consider that
x has more advantages than y, even if y has also its own advantages (certainly, relatively
insufficient). For example, one can think of a low entry cost, a better quality of education
and so on. This time, we talk about fuzzy individual priorities.

Definition 6. A binary relation of fuzzy individual priorities is a function f
′ ∶H ′×H ′ →P , such that for all x, y ∈ X(i) and for all d+, d− ∈ [0; 1], (x, d+)P(i)(y, d−), for all i ∈ N ,

with d+ ≥ d−, H
′ =X × [0; 1].

The relation (x, d+ = c)P(i)(y, d− = f), ∀x, y ∈ X(i), ∀i ∈ N , stipulates that i gives
priority to the option x compared to the option y. This is, the alternative x is not strictly
desirable to y for i (when c = 1 and f = 0 we talk about, once again, strict priorities). Just
like above where a > b, we have c > f . In other words, as students must select options for
what they are worth and not for what they are, they can actually ‘weaken’ their priorities
through some characteristics that may give advantage to the relatively lower priority op-
tion.

Properties to be respected over fuzzy priorities: For all i ∈ N and x, y, z ∈X(i),
let F

′
be the set of all functions f

′ ∶ H ′ ×H
′ → P , such that P respects the following

conditions:

• F-Asymmetry : If [(x, d)P(i)(y, d′)], then we cannot have [(d′ = d+) ∧ (d = d−)],
with d+ ≥ d−; and if the relation [(x, d)P(i)(y, d′)] is considered, then the contrary
is not possible.
If an alternative has a relatively higher priority, then it is relatively more desirable;
and an alternative relatively more desirable cannot be less prioritary.

• F-Irreflexivity : ¬(x, d+)P(i)(x, d−), with d+ ≥ d−.
This condition stipulates that an individual cannot choose an option to itself.

• F-Transitivity :
(a.) If (x, d+)P(i)(y, d−) and (y, d+)P(i)(z, d−), implies (x, d+)P(i)(z, d−), with
d+(i, x) = d+(i, y) or d+(i, x) ≠ d+(i, y) and d−(i, y) = d−(i, z) or d−(i, y) ≠ d−(i, z)
(b.) If d+(i, x) > d−(i, y) and d+(i, y) > d−(i, z), implies d+(i, x) > d−(i, y) > d−(i, z),
where d+(i, x) denotes the degree of intensity associated to the option x, by i.

Respectively, P has to satisfy the above conditions for F , that is the set of all functions
f ∶H ×H → P .

Concurrently to a school choice problem, any college choice problem will be defined
as a 5-tuple (N,X,Q,∆F

N ,∆F
X), where ∆F

N ∶= {Pi}i∈N , with Pi ∶= {x, y ∈X(i) ∶ (x, d+)P(i)
11



(y, d−)} and ∆F
X ∶= {Px}x∈X , with Px ∶= {i, j ∈ N(x) ∶ (i, d+)P(x)(j, d−)}. The outcome

of a college choice problem will be a matching between students and colleges, that will
take into consideration their respective fuzziness. Henceforth, let us define the notion of
a fuzzy matching.

Definition 7. A fuzzy matching is a function ‘one-to-one’ µ ∶ SF → SF , such that∀ρ ∈SF , µ(ρ) ∈SF (ρ) and ∀i ∈ N(x), ∀ x ∈X(i), µ(i) = {x}⇔ µ(x) = {i}, where,

SF (ρ) = � i if ρ = x(x, d) if ρ = i

∀d ∈ [0; 1] and Q(x) = 1.

We consider MF (SF ), the set of all µ for SF and Π, the set of all problems π, for
each of which a µ-problem is indicated by the triple π ≡ (SF ,∆F

N ,∆F
X).

Remark 1. In what follows, a matching µ will be determined via a College Choice Mech-
anism and will be denoted as µCCM.

3.2 Conditions of Robustness

Every college choice problem has to respect certain conditions: elimination of justified
envy, individual rationality, non-wastefulness, strategy-proofness and Pareto optimality.

On a purely formal basis, we have to present the stability condition by introducing
this time the vagueness of priorities previously determined.

Definition 8. A pair (i, x) blocks µ ∈MF (SF ) if there exists an x̃ ∈X(i) or ĩ ∈ N(x), such
that (x̃, d+)P (i)(µ(i), d−), ∀i ∈ N or (̃i, d+)P (x)(µ(x), d−), ∀x ∈ X, and ∀d+, d− ∈ [0; 1],
with d+ � d− in both cases.

The notion of a blocking pair implies the non-satisfaction of the respective decisional
criteria of any x ∈ X and/or any i ∈ N . In other words, either the individual likes
better another alternative that seems more in line with his expectations, or the college is
interested in an individual other than the one designated by the correspondence, under
the pretext that the former has better dotations than the individual being matched.

Definition 9. A fuzzy matching µ is F-stable (Fuzzy Stability) for a µ-problem π if there
is no pair (i, x) that blocks µ9.

In our context, the natural counterpart of the F-stability is the elimination of justified
envy. If for µ(j) = {x}, ∀j ∈ N(x), � i ∈ N�{j}, such that (x, d+)P(i)(µ(i), d−), and(i, d+)P(x)(j, d−), ∀d+, d− ∈ [0; 1], ∀x ∈ X(i), there exists elimination of justified envy
(condition (No-EJ)∗).

A matching µ is individually rational if for all i ∈ N , (µ(i), d+)P(i)(�, d−) (condition
(IR)∗).

9When d+ = 1 and d− = 0, if there is no pair (i, x) that blocks a matching, we go back to the general
notion of stability, defined in Section 2. Mathematically, if there is no x̃ ∈ X(i) and/or an ĩ ∈ N(x) that
implies (x̃,1) P (i)(µ(i),0), and/or (̃i,1)P (x)(µ(x),0), ∀i ∈ N and/or ∀x ∈ X, such that no pair (i, x̃),
(̃i, x) or (̃i, x̃) blocks µ ∈MF (SF ), there is stability.
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A matching µ is non wasteful if, ∃i ∈ N(µ(i)) such that (x, d+)P(i)(µ(i), d−) while
Q(x) = �{j ∈ N(x)�{i} ∶ µ(j) = {x}}�, ∀x ∈X(k), k = i, j (condition (NW)∗).

Furthermore, we add a condition of fairness for the college choice problem. To do so,
we need the following definition.

Definition 10. The loss of intensity, LI(i), ∀i ∈ N , of a binary relation (x, d+)P(i)(y, d−),∀x, y ∈X(i), is proportional to d+(i, x)−d−(i, y), and it is equivalent to the notion of the
vagueness of choices.

Definition 11. A fuzzy matching η is fair (F), for a µ-problem π if, ∀i, j ∈ N , (µ(j), d+)P(i)(µ(i), d−) and (µ(j), d+)P(j)(µ(i), d−), with µ(i) ≠ µ(j), we have η(i) = µ(j) and
η(j) = µ(i) if LI(i) � LI(j) where d+(j, µ(i)) ⇄ d−(j, µ(j)) and if LI(η(i)) > LI(η(j))
where d+(µ(k), η(µ(k))) � d−(µ(k), k), with η(µ(k)) = k′, for k = i, j and, k′ = i if k = j
and k′ = j if k = i.

We get a stricter version of the previous definition by considering that change the
matching allows to reach a more acceptable situation, for every individual concerned
(only the social planner carries out the ‘exchange’). So, we have the following definition:

Definition 12. A fuzzy matching η is strictly fair (SF) for a µ-problem π if, ∀i, j ∈
N , (µ(j), d+) P(i)(µ(i), d−) and (µ(i), d+)P(j)(µ(j), d−), with µ(i) ≠ µ(j), we have
η(i) = µ(j) and η(j) = µ(i) for all LI(i) > LI(j) or LI(i) < LI(j) where LI(k) =
d+(η(k)) − d−(µ(k)), with η(k) ≠ µ(k), for k = i, j and, LI(η(i)) > LI(η(j)) where
d+(µ(k), η(µ(k)))� d−(µ(k), k), with η(µ(k)) = k′, for k′ = i if k = j and k′ = j if k = i.

Moreover, if we have, generally speaking, µ(i) �P η(i), for all i ∈ N , we say that the
matching µ is better for i, in the sens of Pareto, than it was the previous one, where the
notation �P indicates the ‘dominance’ relation. In our setting, we note �P

F , the relation
of ‘fuzzy dominance’ within the sense of Pareto.

A matching µ Pareto dominates another matching µ′ (i.e. µ �P
F µ′) if for,

[µ(i) ∧ µ′(i)] ∨ [(¬µ′(i)) ∧ µ(i)] ∈M SF
F , ∀i ∈ N ,

where M SF
F being the set of all possible fuzzy matching satisfying the condition of

strict fairness, with M SF
F ⊂MF (SF ), we have,

(µ(i),1)P(i)(µ′(i),0), for some i ∈ N , and,

(µ(i), d+)P(i)(µ′(i), d−), ∀i ∈ N , ∀d+, d− ∈ [0; 1].
Consequently, we say that a fuzzy matching µ is �P

F -Pareto-efficient (PE) when there
exists no other matching η such that η �P

F µ.

4 Procedure EXTENDED-SOSM

Before establishing the mechanism which will be able to select a matching for a college
choice problem in a very precise way, we provide a procedure, called Extended -SOSM
(hereafter mentioned ext-SOSM), which will be applied during a phase of the former one.
Using the procedure ext-SOSM, we can obtain the best possible correspondance between
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students and colleges. Our process is an extension of the one given by Abdulkadiroğlu
and Sönmez (2003). More specifically, we begin by applying the following version of the
SOSM of Abdulkadiroğlu and Sönmez, to obtain an initial matching µSOSM: we assume
that both students and colleges have, foremost, priorities. Then, the SOSM is applied.

Initial Step for the Procedure (SOSM) : Each individual k = i, j, ..., n, makes a
proposal to the college that has for him the highest priority (independently of the fuzzy
associated to each priority!). The college accepts him or not with respect to its quota
(here equal to one). If the college accepts the student, the mechanism stops. Otherwise,
the individual rejected, proposes to his second best alternative. And so on, until the
moment where every individual k of N is matched to an option that has the priority for
him. We will denote such a matching, µSOSM.

Afterwards, we try to improve the later one in order to satisfy more people when they
seem to be quite undecided on their actual choices. The above mentioned improvement
gives rise to a fuzzy (extended) matching, denoted µCCM.

We can summarize our aim in the following question: would not be better to give
someone the advantage of access to a college, knowing that the person already assigned
to it may be particularly ‘hesitant’ about the choice of such an alternative?

Procedure ext-SOSM :

• Step 1 :

Condition � (necessity) : A social planner takes into consideration the fuzzy at-
tached to the priorities of the student and the college10: in fact, he realizes that
the individual i having made a proposal at the beginning, designating the col-
lege ranked in (µSOSM(i) + αi − γi)11, with αi,γi ∈ N++, and γi ∈ [0;αi[, desires
the latter much more than the individual j, that, nevertheless, the college ac-
cepted (strong loss of intensity noted LI). In other words, if ∃i ∈ N(µSOSM(i)) and
j ∈ N(µSOSM(j)), ∀i, j ∈ N , for whom LI(i)� LI(j), with LI(i) = d+(i, µSOSM(i)+
αi − γi) − d−(i, µSOSM(i)) and LI(j) = d+(j, µSOSM(j) + αj − γj) − d−(j, µSOSM(j)),
where αk,γk ∈ N++, k = i, j, αj = αi or αj ≠ αi and γj = γi or γj ≠ γi, or
LI(j) = d+(j, µSOSM(j)) − d−(j, µSOSM(j) − βj), with βj, δj ∈ N++, βj ∈ [1; δj], when(µSOSM(i)+αi − γi) ≡ µSOSM(j), then i is ‘admissible’. The individual j matched to
the alternative (µSOSM(i) + αi − γi) must make a proposal to the college µSOSM(i)
that belongs to the profile of his acceptable options and for which he has a low loss
of intensity LI(j) (LI(j)→ �).

If the condition � is verified, we suppose, implicitly, a preliminary matching denoted
µσ, where,

10To promote the impartiality of the social planner and prevent any judgment on behalf of colleges and
students, the way with which he proceeds during the procedure is unknown by the agents.

11The college ranked in (µSOSM(i) + αi) into Pi ∈ ∆F
N , is considered as the ‘top-ranking’ of i. The

college ranked in (µSOSM(i) − δi) into Pi ∈ ∆F
N , is considered as the ‘bottom-ranking’ of i. We

note that, ∀i ∈ N , αi = �{z ∈ X ∶ (z, d+)P(i)(µSOSM(i), d−),∀d+, d− ∈ [0; 1]}� and δi = �{z ∈ X ∶(µSOSM(i), d+)P(i)(z, d−),∀d+, d− ∈ [0; 1]}�.
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� µσ(i) = (µSOSM(i) + αi − γi)
µσ(j) = (µSOSM(j) + αj − γj) ∨ (µSOSM(j) + βj)

In the same way, we will use the notation µσ to represent the preliminary matching
of colleges.

Condition � + 1 (sufficiency) : Although the college µSOSM(j) has accepted j for
the priorities that characterize it, if the social planner considers that the individual
i, desiring to be admitted, is almost as desirable for this college as the individ-
ual j initially accepted, he will be preliminarily ‘admissible’. More specifically,
we must have LI(µσ(k)) → �12, when µσ(k) = (µSOSM(k) + αk − γk), k = i, j, with
LI(µσ(k)) = d+(µσ(k), µSOSM(µSOSM(k)))−d−(µσ(k), µσ(µσ(k))) or LI(µσ(j))→ �,
when µσ(j) = (µSOSM(j) − βj), with LI(µσ(j)) = d+(µσ(j), µSOSM(µSOSM(i))) −
d−(µσ(j), µσ(µσ(j))).
If both conditions are satisfied, we will have a new matching denoted µCCM, such
that µσ = µCCM.

• Step 2 : When one of the two conditions is violated, µCCM = µSOSM. In this
case, the social planner will check if another ‘exchange’ is possible for individual
i. This means that he will look if there exists another individual j′ ∈ N�{i, j} for
whom µSOSM(j′) is a better matching than µSOSM(i) for i (we go back to Step 2)13.
And so on. The process stops when all possibilities of improvement of individuals’
situations towards the top-ranking or towards any ‘less aggravating’ alternative for
the individual (alternatives with low loss of intensity) were considered by the social
planner (i.e. while all matching µCCM are determined). However, when we have
to decide between different possibilities of matching, we should take the one which
maximizes the number of individuals for whom µCCM is better than µSOSM.

The final objective (of the procedure) will be: ∀i, j ∈ N , we will opt more for the
possibility A than B, if

�NA� ≥ �NB �
with,

NA∨B = {i ∶ (µCCM(i), d+)P(i)(µSOSM(i), d−)}.
Remark 2. See Appendix for special cases of the Procedure ext-SOSM.

Remark 3. If 0 < LI(i) ≤ �, ∀i ∈ N , this is close to the notion of the indifference. In this
case, the exchange by the social planner is realized automatically. However, we note that
the indifference relative to the alternatives ranked according to their respective priority
cannot be supposed (Roth and Sotomayor [1990]).

12The characterization of � is variable. Indeed, such a parameter depends on the degree of exigency
of universities while they choose students, but also of the environment (number of available universities,
etc.). This implies that � may be equal to 0,1 either 0,11 or 0,111, and so on. Here, we consider � = 0,1,
in order to simplify our analysis.

13See Appendix for special cases.
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To illustrate the procedure outlined above, two examples will be introduced. Before
doing so, we have to point up that the profiles of fuzzy priorities will be presented as
rows. The alternative with the highest priority will be the one that is in the head of the
ranking. Recall that the tastes formed must not go against the linear ranking of priorities.
In other words, if we consider for example, for three distinct colleges y, z,ω ∈ X(i), the
profile Pi below,

Pi: (y, d+ = a)P(i)(z, d− = b), (y, d+ = c)P(i)(ω, d− = e)Pi ∶ (z, d+ = f)P(i)(ω, d− = p)Pi ∶ (ω, d+ = q)P(i)(�, d− = r)
we must have a < b, c < e, f < p, q < r, and (a − b) ≤ (c − e). Each row of the pro-
file summarizes certain information regarding the relationship of priority/taste with any
other alternative of the profile (other than the succeeding option of the line). In the case
of the preceding explanatory profile, the first line of Pi, shows the link between y and z
but also between y and any other option (here it is ω)!

The interest to have mentioned the relation (ω, d+ = q)P(i)(�, d− = r), with ω ≡m(i),
is that it allows us to see how important the last option may be in a profile. Generally in
the literature, one supports the idea that being paired with the last acceptable alternative
is very serious (especially in terms of loss of welfare). However, this is not verified here
if the loss of intensity LI between the latter option and � is very low. In the case where
the individual still gives a clear emphasis on the last acceptable option to his profile (high
loss of intensity relatively to �), then having such an option would seem less serious than
we usually claim. Note that it is not necessarily useful to mention the link between, for
example, a top-ranking (i.e. y) and � since y would obviously have a degree d+ ≈ 1 while
the degree attached to � would be d− ≈ 0.

Using all the above information, we go through some examples to make the procedure
ext-SOSM better understood.

Example 1. Consider N = {1,2,3}, X = {y, z,ω} (with N = N(x), ∀x ∈X and X =X(k),
k = 1,2,3), and the following respective profiles :P1: (y, d+ = 0,85)P(1)(ω, d− = 0,8), (y, d+ = 0,85)P(1)(z, d− = 0,75)P1 ∶ (ω, d+ = 0,76)P(1)(z, d− = 0,18)P1 ∶ (z, d+ = 0,13)P(1)(�, d− = 0,08)
P2: (z, d+ = 0,8)P(2)(y, d− = 0,5), (z, d+ = 0,7)P(2)(ω, d− = 0,25)P1 ∶ (y, d+ = 0,6)P(2)(ω, d− = 0,34)P1 ∶ (ω, d+ = 0,55)P(2)(�, d− = 0,02)
P3: (y, d+ = 0,9)P(3)(z, d− = 0,45), (y, d+ = 0,92)P(3)(ω, d− = 0,3)P1 ∶ (z, d+ = 0,5)P(3)(ω, d− = 0,44)P1 ∶ (ω, d+ = 0,65)P(3)(�, d− = 0,07)
Py: (1, d+ = 0,8)P(y)(2, d− = 0,77), (1, d+ = 0,7)P(y)(3, d− = 0,61)P1 ∶ (2, d+ = 0,5)P(y)(3, d− = 0,4)P1 ∶ (3, d+ = 0,8)P(y)(�, d− = 0,03)
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Pz: (1, d+ = 0,9)P(z)(3, d− = 0,56), (1, d+ = 0,5)P(z)(2, d− = 0,4)P1 ∶ (3, d+ = 0,65)P(z)(2, d− = 0,58)P1 ∶ (2, d+ = 0,89)P(z)(�, d− = 0,04)
Pω: (2, d+ = 0,81)P(ω)(3, d− = 0,74), (2, d+ = 0,81)P(ω)(1, d− = 0,72)P1 ∶ (3, d+ = 0,6)P(ω)(1, d− = 0,52)P1 ∶ (1, d+ = 0,73)P(ω)(�, d− = 0,03)
Initial Step of the Procedure (SOSM) : Initially, all individuals proposent to their
top-ranked option. This is, individuals 1 and 3 make a proposition to college y, while
individual 2 proposes to the college z. Individual 2 is accepted by z. Only individual 1
is selected by y and 3 is rejected. So, 3 proposes to his second best option i.e. to z, that
accepts him. Thus, 2 is rejected. Individual 2 now proposes to his second best alternative,
which is y. However, college y prefers student 1, so 2 is once again rejected. Student 2
proposes to his last acceptable option, to ω, that accepts him. The SOSM algorithm gives
us µSOSM(1) = {y}, µSOSM(2) = {ω} and µSOSM(3) = {z}, that will be marked in boxes in
what follows.

Procedure ext-SOSM :

First possibility : We remark that the individual 3 has not achieved his top-ranked
option. It is for this reason that it would be possible to enable him to achieve this option,
namely y, which is currently matched to individual 1, via step 1. The question is whether
such an exchange is possible. For this, we have to check if the conditions � and � + 1 of
the procedure Extended -SOSM are respected; we find that, indeed, it is the case: the loss
of intensity of 3 is greater than the one of individual 1 (0,1 < 0,45). The condition � is
verified. Moreover, the loss of intensity of the college y, likely to accept 3 compared to 1,
is rather weak, in an absolute way, since equals to 0,09.

However, with regard to the college z, we observe that it is not really laid out to
‘accept the exchange’ of 3 against 1 since the loss of intensity is rather strong (0,34):
this stipulates simply that z prefers a little more 3 than 1 compared to y which prefers
slightly better 1 compared to 3. The condition � + 1 being violated, the exchange cannot
be carried out. By the procedure ext-SOSM we know that when a condition is violated
we get µCCM = µSOSM, that is, µSOSM(1) = {y}, µSOSM(2) = {ω} and µSOSM(3) = {z}.
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( y , d+ = 0,85)P(1)(ω, d− = 0,8), (y, d+ = 0,85)P(1)(z, d− = 0,75)P1: (ω, d+ = 0,76)P(1)(z, d− = 0,18)( z○, d+ = 0,13)P(1)(�, d− = 0,08)
(z, d+ = 0,8)P(2)(y, d− = 0,5), (z, d+ = 0,7)P(2)(ω, d− = 0,25)P2: (y, d+ = 0,6)P(2)(ω, d− = 0,34)( ω , d+ = 0,55)P(2)(�, d− = 0,02)
( y○, d+ = 0,9)P(3)(z, d− = 0,45), (y, d+ = 0,92)P(3)(ω, d− = 0,3)P3: ( z , d+ = 0,5)P(3)(ω, d− = 0,44)(ω, d+ = 0,65)P(3)(�, d− = 0,07)
(1, d+ = 0,8)P(y)(2, d− = 0,77), (1, d+ = 0,7)P(y)(3, d− = 0,61)Py: (2, d+ = 0,5)P(y)(3, d− = 0,4)(3, d+ = 0,8)P(y)(�, d− = 0,03)
(1, d+ = 0,9)P(z)(3, d− = 0,56), (1, d+ = 0,5)P(z)(2, d− = 0,4)Pz: (3, d+ = 0,65)P(z)(2, d− = 0,58)(2, d+ = 0,89)P(z)(�, d− = 0,04)
(2, d+ = 0,81)P(ω)(3, d− = 0,74), (2, d+ = 0,81)P(ω)(1, d− = 0,72)Pω: (3, d+ = 0,6)P(ω)(1, d− = 0,52)(1, d+ = 0,73)P(ω)(�, d− = 0,03)

Second possibility : In parallel to the first possibility of exchange, this one consists
in wondering whether it would not be better for individual 2 to achieve the college z and
3 to achieve ω. The social planner finds that such an exchange is possible since, the loss
of intensity of individual 3 between the options z and ω is weak (0,06), and the one of
individual 2 is relatively high (0,45). So, 2 may find it very beneficial to ‘go up’ towards
his top-ranking (i.e. z) and as 0,06 < 0,45 the social planner allows the exchange.

Now that 3 is paired to ω and 2 to his top-ranking z, the question is whether it would
be possible for 3 to be matched with the option y while 1 with the alternative ω. Such
an exchange is possible! Indeed, the loss of intensity of 1 between the options y and ω is
more or less low, compared to 3 (0,05 < 0,62). Moreover, the condition �+1 remains valid
since y has a loss of intensity of 0,09 and the one of ω equals to 0,08 (for 1 compared to
3).

Consequently, individual 2 keeps the option z from the first exchange and individuals
1 and 3 get options ω and y, respectively, by the second exchange. Thus, µCCM(1) = {ω},
µCCM(2) = {z} and µCCM(3) = {y}.
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( y , d+ = 0,85)P(1)(ω, d− = 0,8), (y, d+ = 0,85)P(1)(z, d− = 0,75)P1: ( ω○, d+ = 0,76)P(1)(z, d− = 0,18)(z, d+ = 0,13)P(1)(�, d− = 0,08)
( z○, d+ = 0,8)P(2)(y, d− = 0,5), (z, d+ = 0,7)P(2)(ω, d− = 0,25)P2: (y, d+ = 0,6)P(2)(ω, d− = 0,34)( ω , d+ = 0,55)P(2)(�, d− = 0,02)
( y○, d+ = 0,9)P(3)(z, d− = 0,45), (y, d+ = 0,92)P(3)(ω, d− = 0,3)P3: ( z , d+ = 0,5)P(3)(ω, d− = 0,44)( ω○, d+ = 0,65)P(3)(�, d− = 0,07)
(1, d+ = 0,8)P(y)(2, d− = 0,77), (1, d+ = 0,7)P(y)(3, d− = 0,61)Py: (2, d+ = 0,5)P(y)(3, d− = 0,4)(3, d+ = 0,8)P(y)(�, d− = 0,03)
(1, d+ = 0,9)P(z)(3, d− = 0,56), (1, d+ = 0,5)P(z)(2, d− = 0,4)Pz: (3, d+ = 0,65)P(z)(2, d− = 0,58)(2, d+ = 0,89)P(z)(�, d− = 0,04)
(2, d+ = 0,81)P(ω)(3, d− = 0,74), (2, d+ = 0,81)P(ω)(1, d− = 0,72)Pω: (3, d+ = 0,6)P(ω)(1, d− = 0,52)(1, d+ = 0,73)P(ω)(�, d− = 0,03)

Third possibility : Hereafter, we examine if individual 2 can have access to the
college y, what would obviously mean that individual 1 goes down to the option initially
held by 2, namely the option ω. Once again, conditions � and � + 1 are satisfied and the
exchange can be done.

Thus, this leads us to continue this possibility by allowing this time to 2 to reach his
top-ranking (since it is henceforth paired with y) by exchanging his new option with the
one that 3 is paired. This exchange is possible: 2 may find it very beneficial to be paired
to z since such an option is very preferable for him (compared to y) and 3 as well. Let us
note that when two individuals have both interest to ‘go up’ towards a better alternative
(i.e. equity in access), then we do not even have to look at the condition �! The condition
� + 1 is also respected.

Once again, we obtain µCCM(1) = {ω}, µCCM(2) = {z} and µCCM(3) = {y}.
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( y , d+ = 0,85)P(1)(ω, d− = 0,8), (y, d+ = 0,85)P(1)(z, d− = 0,75)P1: ( ω○, d+ = 0,76)P(1)(z, d− = 0,18)(z, d+ = 0,13)P(1)(�, d− = 0,08)
( z○, d+ = 0,8)P(2)(y, d− = 0,5), (z, d+ = 0,7)P(2)(ω, d− = 0,25)P2: ( y○, d+ = 0,6)P(2)(ω, d− = 0,34)( ω , d+ = 0,55)P(2)(�, d− = 0,02)
( y○, d+ = 0,9)P(3)(z, d− = 0,45), (y, d+ = 0,92)P(3)(ω, d− = 0,3)P3: ( z , d+ = 0,5)P(3)(ω, d− = 0,44)(ω, d+ = 0,65)P(3)(�, d− = 0,07)
(1, d+ = 0,8)P(y)(2, d− = 0,77), (1, d+ = 0,7)P(y)(3, d− = 0,61)Py: (2, d+ = 0,5)P(y)(3, d− = 0,4)(3, d+ = 0,8)P(y)(�, d− = 0,03)
(1, d+ = 0,9)P(z)(3, d− = 0,56), (1, d+ = 0,5)P(z)(2, d− = 0,4)Pz: (3, d+ = 0,65)P(z)(2, d− = 0,58)(2, d+ = 0,89)P(z)(�, d− = 0,04)
(2, d+ = 0,81)P(ω)(3, d− = 0,74), (2, d+ = 0,81)P(ω)(1, d− = 0,72)Pω: (3, d+ = 0,6)P(ω)(1, d− = 0,52)(1, d+ = 0,73)P(ω)(�, d− = 0,03)

We just mention that the exchange between 1 and 3 is impossible since, pairing on
the one hand, 1 with z and on the other hand, 3 with ω, would mean that individuals
1 and 3 would have had everything to lose (non access to an option that would be more
acceptable to them).

Conclusion: The second and third possibility gives us the same result, which is better
than the one given by the algorithm of Gale and Shapley. In other words, two individuals
obtain a better option than the one initially given by the deferred acceptance algorithm.
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmml �
Example 2. Consider N = {1,2,3}, X = {y, z,ω} (with N = N(x), ∀x ∈X and X =X(k),
k = 1,2,3), and the following respective profiles :P1: (ω, d+ = 0,7)P(1)(z, d− = 0,5), (ω, d+ = 0,7)P(1)(y, d− = 0,5)P1 ∶ (z, d+ = 0,6)P(1)(y, d− = 0,4)P1 ∶ (y, d+ = 0,3)P(1)(�, d− = 0,11)
P2: (z, d+ = 0,9)P(2)(ω, d− = 0,8), (z, d+ = 0,86)P(2)(y, d− = 0,7)P1 ∶ (ω, d+ = 0,8)P(2)(y, d− = 0,5)P1 ∶ (y, d+ = 0,5)P(2)(�, d− = 0,004)
P3: (z, d+ = 0,8)P(3)(y, d− = 0,75), (z, d+ = 0,8)P(3)(ω, d− = 0,71)P1 ∶ (y, d+ = 0,8)P(3)(ω, d− = 0,43)P1 ∶ (ω, d+ = 0,8)P(3)(�, d− = 0,02)
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Py: (1, d+ = 0,9)P(y)(2, d− = 0,84), (1, d+ = 0,9)P(y)(3, d− = 0,8)P1 ∶ (2, d+ = 0,8)P(y)(3, d− = 0,21)P1 ∶ (3, d+ = 0,3)P(y)(�, d− = 0,15)
Pz: (3, d+ = 0,72)P(z)(2, d− = 0,66), (3, d+ = 0,77)P(z)(1, d− = 0,68)P1 ∶ (2, d+ = 0,6)P(z)(1, d− = 0,3)P1 ∶ (1, d+ = 0,52)P(z)(�, d− = 0,06)
Pω: (2, d+ = 0,63)P(ω)(3, d− = 0,55), (2, d+ = 0,65)P(ω)(1, d− = 0,56)P1 ∶ (3, d+ = 0,79)P(ω)(1, d− = 0,2)P1 ∶ (1, d+ = 0,25)P(ω)(�, d− = 0,12)
Initial Step of the Procedure (SOSM) : Individual 1 proposes to ω, while indi-
viduals 2 and 3 propose to z. Individual 1 will be accepted and only individual 2 will be
rejected by z since individual 3 has the priority. Thus, individual 2 proposes to his second
best option of his profile, namely, the option ω. And since he has the priority compared
to 1, individual 2 is matched with ω while 1 is rejected. Consequently, 1 proposes to the
option z. He is once again rejected as 3, already paired with this option, has the priority.
So, 1 proposes to his last acceptable alternative, that is to y and he is accepted. The
SOSM-matching realized is µSOSM(1) = {y}, µSOSM(2) = {ω} and µSOSM(3) = {z}. Once
again, the above matching will be marked into boxes in what follows.

Procedure ext-SOSM :

First possibility : Let us ask the following question: Is it possible to let individual
1 to achieve ω and individual 2 to get y? We see that the condition � is not verified: the
loss of intensity of 1 is very low compared to 2 (0,2 < 0,4). Such a possibility of exchange
cannot be realized. In such a case µCCM = µSOSM. So, the best matching continues to be
the one given above, µSOSM(1) = {y}, µSOSM(2) = {ω} and µSOSM(3) = {z}.

Second possibility : This time, we will try to give to 1 the option z, by giving to 3
the option y. The conditions � (low loss of intensity for 3 equal to 0,05 and 0,05 < 0,2),
and � + 1 (low loss of intensity for y and z concerning the acceptability of individuals 3
and 1, respectively) are satisfied. The exchange is realizable.

Now that 1 has the option z, is it possible to give him the option ω in order to ascend
1 and 2 simultaneously towards their respective top-ranking? The answer is obvious,
especially since the condition � + 1 is valid in this case: the loss of intensity of ω for 1
relatively to 2 is weak (0,09). In addition, 2 has the priority compared to 1 given its
position in the profile of the college ω. Thus, we obtain µCCM(1) = {ω}, µCCM(2) = {z}
and µCCM(3) = {y}.
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( ω○, d+ = 0,7)P(1)(z, d− = 0,5), (ω, d+ = 0,7)P(1)(y, d− = 0,5)P1: ( z○, d+ = 0,6)P(1)(y, d− = 0,4)( y , d+ = 0,3)P(1)(�, d− = 0,11)
( z○, d+ = 0,9)P(2)(ω, d− = 0,8), (z, d+ = 0,86)P(2)(y, d− = 0,7)P2: ( ω , d+ = 0,8)P(2)(y, d− = 0,5)(y, d+ = 0,5)P(2)(�, d− = 0,004)
( z , d+ = 0,8)P(3)(y, d− = 0,75), (z, d+ = 0,8)P(3)(ω, d− = 0,71)P3: ( y○, d+ = 0,8)P(3)(ω, d− = 0,43)(ω, d+ = 0,8)P(3)(�, d− = 0,02)
(1, d+ = 0,9)P(y)(2, d− = 0,84), (1, d+ = 0,9)P(y)(3, d− = 0,8)Py: (2, d+ = 0,8)P(y)(3, d− = 0,21)(3, d+ = 0,3)P(y)(�, d− = 0,15)
(3, d+ = 0,72)P(z)(2, d− = 0,66), (3, d+ = 0,77)P(z)(1, d− = 0,68)Pz: (2, d+ = 0,6)P(z)(1, d− = 0,3)(1, d+ = 0,52)P(z)(�, d− = 0,06)
(2, d+ = 0,63)P(ω)(3, d− = 0,55), (2, d+ = 0,65)P(ω)(1, d− = 0,56)Pω: (3, d+ = 0,79)P(ω)(1, d− = 0,2)(1, d+ = 0,25)P(ω)(�, d− = 0,12)

Third possibility : The exchange between individuals 2 and 3 is now considered
by the social planner. He verifies if it is possible for 2 to achieve z, and 3 to reach ω
(even if ω is the last acceptable option in the profile of individual 3). Such an exchange is
realizable: indeed, the loss of intensity of 3 between z and ω is rather low in an absolute
way (0,09) and rather weak in a relative one (0,09 < 0,1). Moreover, the condition � + 1
is verified (z having a loss of intensity equal to 0,06 and the one of ω equals to 0,08).

Thereafter, the social planner could have considered the possibility of exchange be-
tween 2 and 1, for the respective options z and y. Nevertheless, even if the condition �
does not seem violated (0.2 > 0.16), the condition � + 1 as for it, it is violated. Indeed,
college z is not ready to accept individual 1 instead of individual 2 (0,3). Consequently,
this exchange considered by the social planner cannot be applied. By the procedure we
know that when a condition is violated we get µCCM = µSOSM, that is, µSOSM(1) = {y},
µSOSM(2) = {ω} and µSOSM(3) = {z}.
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(ω, d+ = 0,7)P(1)(z, d− = 0,5), (ω, d+ = 0,7)P(1)(y, d− = 0,5)P1: (z, d+ = 0,6)P(1)(y, d− = 0,4)( y , d+ = 0,3)P(1)(�, d− = 0,11)
( z○, d+ = 0,9)P(2)(ω, d− = 0,8), (z, d+ = 0,86)P(2)(y, d− = 0,7)P2: ( ω , d+ = 0,8)P(2)(y, d− = 0,5)(y, d+ = 0,5)P(2)(�, d− = 0,004)
( z , d+ = 0,8)P(3)(y, d− = 0,75), (z, d+ = 0,8)P(3)(ω, d− = 0,71)P3: (y, d+ = 0,8)P(3)(ω, d− = 0,43)( ω○, d+ = 0,8)P(3)(�, d− = 0,02)
(1, d+ = 0,9)P(y)(2, d− = 0,84), (1, d+ = 0,9)P(y)(3, d− = 0,8)Py: (2, d+ = 0,8)P(y)(3, d− = 0,21)(3, d+ = 0,3)P(y)(�, d− = 0,15)
(3, d+ = 0,72)P(z)(2, d− = 0,66), (3, d+ = 0,77)P(z)(1, d− = 0,68)Pz: (2, d+ = 0,6)P(z)(1, d− = 0,3)(1, d+ = 0,52)P(z)(�, d− = 0,06)
(2, d+ = 0,63)P(ω)(3, d− = 0,55), (2, d+ = 0,65)P(ω)(1, d− = 0,56)Pω: (3, d+ = 0,79)P(ω)(1, d− = 0,2)(1, d+ = 0,25)P(ω)(�, d− = 0,12)

Conclusion: We keep the second possibility that improves the initial matching of Gale
and Shapley.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmll �

The procedure described in this section allows us to obtain an acceptable matching for
a given population of individuals (that minimizes the collective desire as good as possible).
We just note that there are more possibilities of exchange when the quota Q(x), ∀x ∈X,
or �N � is big. At this point, let us mark the following proposition.

Proposition 1. For a number of exchanges lower than the number of students, there
does not exist a cycle: no individual who obtains a better alternative through a possible
exchange terminates with his initial matching, via the procedure.

Proof of Proposition 1. The proof is trivial. Indeed, if for example �N � = 3, each possibility
must contain at most two exchanges. Otherwise, we will obtain the initial matching! This
fact can be seen in the examples stated above.

Henceforth, it is possible to present a real-life mechanism that will handle student
admissions to colleges when their priorities initially formulated are fuzzy.

5 Towards a New Algorithm

It is now important to establish a rigorous mechanism that will be able to select the
best possible matching for a college choice problem. The mechanism that we present,
aims to highlight the concept of uncertainty (fuzzy) of agents’ choices and therefore, the
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procedure previously presented and illustrated. It will be entitled: ‘The College Choice
Mechanism’.

Mechanism 6 (THE COLLEGE CHOICE MECHANISM (CCM)).

VAGUE I : CONSTRUCTION OF THE FUZZY PROFILES OF AGENTS

mmlTHE FUZZY PRIORITIES OF STUDENTS:

I.1. Students perform a ranking of strict priorities over colleges, according to the
disciplinary programs or other needs (all of them correlated with the objective:
‘succeed academically and be able to succeed’ ) like registration fees, geographi-
cal distance, and so on, that colleges propose. Since base the choices on issues
individually important means to ignore some basic relative advantages associ-
ated directly with the option itself, students are supposed to ignore the identity
of colleges (and most of its attributes) to which they make their proposal.

The above mentioned ranking is directly transmitted to a social planner who
will create and provide them a list of colleges respecting in the best way their
respective strict priorities.

I.2. The social planner sends to each student the list of colleges that correspond to
their respective strict priorities. Henceforth, students have knowledge of the
identity (and attributes) of the colleges being offered to them. Having knowl-
edge of ‘superflux’ attributes (i.e. other than their respective priorities), this
time, they will have tastes (PACC)! They should not go against the priorities
identified individually and freely (since the strict priority profile of each stu-
dent was provided by the social planner). All they can do is to say that a
college that has the priority may be finally a ‘little less’ or ‘slightly less’ pri-
oritary to another. Therefore, it appears a variable degree of intensity of tastes.

Consequently, a student with strict priorities, given his (PACC), will have a
fuzzy choice, variable from one option to another. Any individual priority as-
sociated with any variation of the degree of intensity of taste for this priority
will be called fuzzy priority. Once the latter constructed, students send the
list, i.e. their fuzzy priority profile, back to the social planner.

THE FUZZY PRIORITIES OF COLLEGES:

I.3. The social planner is aware of the fuzzy priority profiles of students, from the
strict priority profiles previously realized. He now sends a signal of the ‘poten-
tially possible candidates’ that colleges can accept (regardless the classification
of colleges in a student’s profile). Thus, if for example, individual’s i strict
priority profile is P(i) ∶ y, z,ω, then the social planner will create a signal to
colleges y, z,ω. So, each college creates a profile of strict priorities on these
‘possible candidates’ according to the above signal and depending on whether
students’ attributes correspond to those required by the law and/or any other
internal institutional regulation imposed. These ‘possible candidates’ will be
designated as ‘possibly acceptable candidates’. The profile of strict priorities
respective to each college is then forwarded to the social planner.
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I.4. Henceforth, the social planner asks colleges to provide their preferences (PACS)
on ‘students-candidates’ based on other attributes apart from, on the one hand,
those required by the law and/or any other internal institutional regulation
and, on the other hand, their identity (in order to avoid any attempt of dis-
crimination); this, by respecting the classified priorities which they previously
formulated. Thus, variable degrees of intensity appear, according to the classi-
fied prioritary students: a student ‘strictly prioritary’ may ultimately be des-
ignated as ‘a little more’ or ‘much more’ prioritary relatively to another one.
These profiles, along with those of students, are called fuzzy priority profiles
for colleges. These profiles will be considered by the social planner in Vague
II.

As for students, colleges have also fuzzy priorities. Therefore, we have a rank-
ing of fuzzy priorities as well for students as for colleges.

VAGUE II : THE RESULTED FUZZY MATCHING

Initially, the SOSM is applied only over strict priority profiles as well for students
as for colleges. Hence, the social planner considers the first priority of a student and
verifies whether he is accepted or rejected, for a given quota, by a college. If the
social planner sees that the student is rejected, he will then try to assign him to his
second priority. And so on. The process stops when the social planner assigns each
student at a college taking into consideration the strict priority profiles of each of
them. At the end, the procedure Extended -SOSM is applied14.

Examples 1 and 2 may represent an illustration of the above algorithm. Indeed, one
can assume that the options matched are known.

6 Vigorousness of the Mechanism

In what follows, we prove that the solution obtained by the College Choice Mechanism is
robust! In other means, will we verify that the conditions previously stated (Section 3)
are respected.

Theorem 1. A matching µCCM satisfies the conditions (No-EJ)∗, (IR)∗ and (NW)∗
for a college choice problem if an only if is stable for its associated college admissions
problem.

Proof of Theorem 1. We demonstrate our theorem going through the following lemmas.

Lemma 1. The college admission problem is associated to a fuzzy college admission prob-
lem.

14The students know neither the (PACS), nor the process of ‘exchange’ carried out by the social planner.
They do not know either the choices carried out by the others.

25



Proof of Lemma 1. In fact, the college admission problem (CAP) can be identified via
strict preferences of the form xP (i)y, for all i ∈ N , and iP (x)j, for all x ∈ X. This
is equivalent to say that (x,1)P (i)(y,0), ∀i ∈ N , and (i,1)P (x)(j,0), ∀x ∈ X, which
implies that LICAP (x) = 1 and LICAP (i) = 1. In a fuzzy college admission problem
(FCAP), we talk about fuzzy preferences of the form (x, d+)P (i)(y, d−) for all i ∈ N , and(i, d+)P (x)(j, d−) for all x ∈X, with d+d− ∈ [0; 1], which leads us to say that LIFCAP (x) <
1 and LIFCAP (i) < 1.

Consequently, LIFCAP (x) < LICAP (x) and LIFCAP (i) < LICAP (i). Thus, FCAP ⊆
CAP . More specifically, regardless of the intensity associated to students (for the colleges)
and to colleges (for students), the ranking of the alternatives in a FCAP remains the same
in a CAP. So, FCAP ⊆ CAP , which also leads us to think that the condition of the F-
stability for a FCAP is a weakening of the condition of stability related to the CAP.

Furthermore, note that,

Lemma 2 (Balinski and Sönmez (1999)). A matching satisfies (IR), fairness and (NW)
for a student placement problem, if and only if, it is stable for its associated college
admissions problem.

As FCAP ⊆ CAP , the conditions concerning a student placement problem and related
to the notion of stability (Lemma 2), are also related to the F-stability.

Lemma 3. The fuzzy college admission problem is associated to the college choice problem.

Proof of Lemma 3. To every college choice problem (CCP) is associated a fuzzy college
admission problem (FCAP) considering, foremost, the priority relation P(i) and P(x),∀i ∈ N , ∀x ∈X, based on the concept of ‘necessity’ to which will be associated the degree of
intensity, based on the variability of tastes; preferences are thought of as the combination
of necessities and tastes. In more concrete terms, the difference from a FCAP is that the
CCP, on the one hand, gives more importance to the priorities and on the other hand, is
directed towards the equivalence of the F-stability, i.e. the condition of (No-EJ)∗.

Using all the above information, it is easy to see that CCP ⊆ CAP . In other means, the
necessary conditions for a CAP (Lemma 2) are valid even for a CCP. In our context, (IR),
fairness and (NW) are the natural counterpart of (IR)∗, (No-EJ)∗, and (NW)∗.
Corollary 1. It always exists an F-stable matching for each CCM.

This point is obvious as the fuzzy priorities are neither more nor less than a weakening
of their ‘strict’ side. Going back to the concept of strategy-proofness, we will say (with
respect to the definition stated in Section 2) that for all i ∈ N and every strategy S =(s∗i , s∗−i), S

′ = (si, s∗−i) there does not exist (g′(i, si, s∗−i), d+)P(i)(g(i, s∗i , s∗−i), d−), with
g ≠ g′, where g(S) = µ and g′(S′) = η. This leads us to the following proposition:

Proposition 2. A CCM is strategy-proof.

Proof of Proposition 2. Students may lie either on their priorities or on their tastes. We
will explain that these two cases, noted (1) and (2) respectively, are not possible through
the CCM considered.
(1) Let si = si ∨ s∗i . Moreover, suppose that (x, d+)P(i)(y, d−), ∀i ∈ N .
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If si = s∗i , we have (x, d+)P(i)(y, d−), ∀x, y ∈ X(i). Suppose that the individual
i decides to play another strategy aiming to lie, si = si. In this case, si = ¬s∗i ⇒¬(x, d+)P(i)(y, d−) ⇒ (y, d+)P(i)(x, d−). The problem in this case is that our mecha-
nism will have as a purpose to assign in the best way i to the option y (µCCM(i) = {y}).
However, y is not the option with the highest priority for i because we supposed that(x, d+)P(i)(y, d−).
(2) Students as well as colleges are unaware of the way that the procedure ext-SOSM
progresses, so it is difficult to lie through a strategy, especially as only the social planner
takes decisions. Moreover, establish a strategy on tastes (PACC) that may characterize an
option, or an environment associated with the option, and so on, is complex as no student
knows the attributes which form the basis of the degree of intensity of other students and
colleges. Thus, in a problem of multidimensionality, unpredictability and heterogeneity
of individual behavior, it is difficult for each student to determine a reliable strategy of
lie.

Lying on the (PACC) and/or the priorities is not a way to guarantee the access to
a souhaitable alternative, which, additionally, is supposed to correspond on the former
ones.

The question of the relationship between optimality and fairness must also be consid-
ered.

Lemma 4. The (PE) is not always satisfied through CCM.

Proof of Lemma 4. By (PE), �η such that (η(i),1)P(i)(µCCM(i),0), for some i ∈ N , and(η(i), d+)P(i)(µCCM(i), d−), for all i ∈ N . Moreover, note that each µCCM �P
F µSOSM. In

fact, the CCM tries to find the best possibility that will give a matching better than
the one of given by the SOSM (Vague II). Thus, there can be no other option that
Pareto dominates the one which comes from the possibility chosen through the procedure.
However, we must distinguish two separate cases (see the Procedure ext-SOSM): for all i ∈
N , (µCCM(i), d+)P(i)(µSOSM(i), d−), d+, d− ∈ [0; 1], and for some i ∈ N , for whom LI(i) =
d+(µCCM(i)) − d−(µSOSM(i)) > 0, whereas for some j ∈ N , we can have either LI(j) =
d+(µCCM(j))−d−(µSOSM(j)) > 0 (Case 1), or LI(j) = d+(µCCM(j))−d−(µSOSM(j))→ −�,
where � a very small real number (Case 2), with µCCM(i) = µSOSM(j) and µCCM(j) =
µSOSM(i).

We underline that, unlike the first case, the second does not verify the (PE) because
this condition suggests that (µCCM(i), d+)P(i)(µSOSM(i), d−), for all i ∈ N . Nethertheless,
this relation is not verified because we have supposed that individual j obtains a matching
µCCM(j) = µSOSM(j) − βj. Consequently, we have a contradiction.

The only way that the (PE) is respected as best as possible in Case 2 is to introduce
a ‘weaker’ version. In this objective, we introduce a new condition which is the condition
of Justified Pareto Non-Dominance.

We say that a matching µCCM Pareto dominates in a justified way another matching
µSOSM (µCCM �JP

F µSOSM) if for,

[µCCM(i) ∧ µSOSM(i)] ∨ [(¬µSOSM(i)) ∧ µCCM(i)] ∈M ∗
F , ∀i ∈ N ,

where M ∗
F = (M F

F ∨M SF
F ), with µSOSM, µCCM ∈MF (SF ), we have,
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(µCCM(i),1)P(i)(µSOSM(i),0), for some i ∈ N , and,

(µCCM(i), d+)P(i)(µSOSM(i), d−), ∀i ∈ N , ∀d+, d− ∈ [0; 1].
The above condition makes it possible to establish the link between the (PE) and the

procedure Extended -SOSM when the latter deals with various cases, like the one of the
non-satisfaction of the (PE). The condition that results is the Justified Pareto Efficiency
condition.

Therefore, we say that a matching is Justified �P
F -Pareto Efficient (JPE) if there ex-

ists no other matching η ≠ µCCM, such that η �JP
F µCCM or η �P

F µCCM.

Thus, it is possible for us to come to the following Lemma.

Lemma 5. A CCM always satisfies the (JPE).

Proof of Lemma 5. Through the developed procedure, we can say that the CCM always
tries to find a possibility of improvement of individual situations (via the matching asso-
ciated with students). Thus, every matching µCCM ≠ µSOSM is now possible (under consid-
eration of optimality) since, considering the condition of fairness (relatively to the cases
stated in the proof of Lemma 4), while there exists LI(j) = d+(µSOSM) − d−(µCCM) → �,
and LI(i) = d+(µCCM) − d−(µSOSM) � 0, for some i, j ∈ N , a loss of welfare for j stays
justified, by (JPE)! Therefore, the CCM always verifies (JPE).

Corollary 2. (JPE) always implies the non-violation of the condition (F) and (SF),
and reciprocally.

Theorem 2. A CCM that eliminates justified envy satisfies the (PE) when LI(i) =
d+(µSOSM(i))−d−(µCCM(i))→ κ is individually justified, ∀i ∈ N , if for µCCM(i) = (µSOSM(i)−
βi) with βi ∈ N++, βi ∈ [1; δi], δi ∈ N++, we have κ = �, or if for µCCM(i) = (µSOSM(i)+αi−γi)
with αi,γi ∈ N++, γi ∈ [0;αi[, we have κ = −∞ .

Proof of Theorem 2. Lemmas 4 and 5 justify the existence of the condition (PE) (or,
(JPE)), depending on the situation.

7 Conclusion

The purpose of this paper was to develop an equitable system of ‘distribution’ of col-
leges’ seats to students through the traditional theory of matching. We have introduced
a realistic challenge which was to confront the individual priorities with the associated
tastes. Doing so was quite difficult since considering this hypothesis, we mean that the
real choice of a college may finally be enough vague! In fact, even if the colleges have to
respect regulations such as quotas of entry (for example a quota assigned to each type of
individuals (with disabilities, etc.)15 or the obtention of minimum scores during exami-
nations and so on, they may also have tastes (PACS) concerning some candidates who,
however, may (or may not) have been rejected by the educational regulations imposed.

15See especially Abdulkadiroğlu (2005a), Hafalir (2011), regarding the policy of affirmative action, or
Ehlers (2010), regarding the issue of a school choice regulated through quotas imposed for specific types
of individuals (disabilities, etc.).
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mmmTABLE 1. SUMMARY

Pareto Efficiency Justified Pareto Efficiency Non-Justified Envy Strategy-Proofness

CCM NO
c

YES YES YES

Boston NO
a - NO NO

SOSM NO - YES YES

TTCM YES - NO YES

ETTCM YES - NO YES

EADAM YES - NO
b

NO

a. When individual preferences are revealed, the Pareto efficiency is not violated.
b. This is not always verified (see Kesten [2006]).
c. No in (Case 2), and yes in (Case 1) (see demonstration of Lemma 4); it is Pareto efficient
only if a justification is considered for the (Case 2) (see Lemma 5), which implies a ‘YES’ for
the Justified Pareto Efficiency condition.

Conversely, students have sometimes a tendency to select colleges in order to maximize
their welfare even if it is possible to consider that sometimes the attributes associated
with their choices (PACC) can move away from their real needs (priorities). For these
reasons it was important to distinguish individual and institutional tastes/priorities! The
problem is that it is difficult to consider all of them. For this reason we included in our
analysis the concept of ‘vagueness’, via the fuzzy priorities.

Relatively to certain algorithms such as the ETTCM, we tried to preserve even the
concept of fairness, but also to introduce a simple mechanism that can be easily applied
in real-life. Consequently, the College Choice Mechanism not only relies on assumptions
visible in reality but also respects conditions considered as ‘essential’ in the literature.

Moreover, our mechanism may very well be generalized to a school choice problem.
To conclude, we underline the fact that the cardinal analysis is not a feasible tool in our
work, mainly because it does not consider the vagueness of students’ choices and colleges’
selections. Indeed, the utility function of von Neumann-Morgenstern simply analyzes the
‘dominance’ of some alternatives over others, via the utility that is assigned to each of
them. They only allow us to say that a difference of utilities is greater than another, but
they do not allow us to say ‘slightly’ or ‘much’. Particularly, fuzzy priorities, contrary
to utilities, enable us to represent numerically a subjective value over the binary relation
between two distinct options. In this direction, if x has largely the priority compared to
y, for a given individual, it is that y is largely less prioritary; and any level of utility does
not enable us to consider this information. The use of an integer which tends towards the
unit (for the option x) and of an integer that tends towards zero (for the option y) makes
it possible to consider the above situation.

8 Appendix

Special cases of the Procedure EXTENDED-SOSM

Here we are interested in the case where two individuals try to obtain their respec-
tive best ranked option, while a third one is already assigned to one of the latter al-
ternatives. From this point onwards, consider an individual j′ ∈ N�{k}, k = i, j, and
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(LI(i)�µSOSM(j′)) ≡ (LI(j)�µSOSM(j′)) (or (LI(i)�µSOSM(j′)) ≈ (LI(j)�µSOSM(j′))), with(LI(k)�µSOSM(j′)) = d+(k,µSOSM(j′)) − d−(k,µSOSM(k)), then:

Case (a) : Consider (µSOSM(i)+αi) = (µSOSM(j)+αj), αi,αj ∈ N++, αi = αj or αi ≠ αj, and(LI(j′)�µSOSM(i)) ≈ (LI(j′)�µSOSM(j)), where, (LI(j′)�µSOSM(k)) = d+(j′, µSOSM(k)) −
d−(j′, µSOSM(j′)), when µCCM(k) = (µSOSM(j′)+αj′−γj′), γj′ ∈ N+, γj′ ∈ [0;αj′[, or, (LI(j′)�
µSOSM(k)) = d+(j′, µSOSM(j′))−d−(j′, µCCM(k)), when µCCM(k) = µSOSM(j′)−βj′ , βj′ ∈ N+,
βj′ ∈ [1; δj′], with αj′ ∈ N++, k = i, j. Moreover, suppose that (µSOSM(i) + αi) = µSOSM(j′).

(a.1) : If d+(i, µSOSM(j′)) > d+(j, µSOSM(j′)), we get µCCM(j) ≠ µCCM(i) where,

� µCCM(i) = (µSOSM(i) + αi)
µCCM(j) ≠ (µSOSM(j) + αj)

for Q(µSOSM(i) + αi) = 1.
(a.2) : While d+(i, µSOSM(j′)) ≡ d+(j, µSOSM(j′)) (or, d+(i, µSOSM(j′)) ≈ d+(j, µSOSM(j′))),

and if d+(µSOSM(j′), i) > d+(µSOSM(j′), j), then,

� µCCM(i) = (µSOSM(i) + αi)
µCCM(j) ≠ (µSOSM(j) + αj)

for Q(µSOSM(i) + αi) = 1.
(a.3) : If d+(i, µSOSM(j′)) ≡ d+(j, µSOSM(j′)) and d+(µSOSM(j′), i) ≡ d+(µSOSM(j′), j),

then the social planner makes his decision by lottery.

Case (b) : Suppose this time that (µSOSM(i)+αi) = (µSOSM(j)+αj), αi,αj ∈ N++, αi = αj

or αi ≠ αj, and (LI(j′)�µSOSM(i)) ≠ (LI(j′)�µSOSM(j)). In this case, if (LI(i)�µSOSM(j′)) ≡(LI(j)�µSOSM(j′)) (or (LI(j′)�µSOSM(i)) ≈ (LI(j′)�µSOSM(j))) and if (LI(j′)�µSOSM(i)) >(LI(j′)�µSOSM(j)), with (LI(j′)�µSOSM(k)) = d+(j′, µSOSM(k))−d−(j′, µSOSM(j′)), k = i, j,
when,

(b.1) : µSOSM(i) = (µSOSM(j′) + αj′ − γi
j′) and µCCM(j) = (µSOSM(j′) + αj′ − γi

j′),
with γi

j′ < γj
j′ or with γi

j′ = γj
j′ , which implies that d+(j′, µSOSM(i)) − d̃−(j′, µSOSM(j′)) >

d+(j′, µSOSM(j)) − d̃−(j′, µSOSM(j′)), with d̃ being a benchmark degree, or,
(b.2) : µSOSM(i) = µSOSM(j′)−βi

j′ and µSOSM(j) = µSOSM(j′)−βj
j′ , with βi

j′ < βj
j′ , which

implies d̃+(j′, µSOSM(j′)) − d−(j′, µSOSM(i)) < d̃+(j′, µSOSM(j′)) − d−(j′, µSOSM(j)), or,
(b.3) : µSOSM(i) = (µSOSM(j′) + αj′ − γj′) and µSOSM(j) = µSOSM(j′) − βj′ ,

then we get,

� µCCM(i) = (µSOSM(j′))
µCCM(j) ≠ (µSOSM(j′)).

Case (c) : Now, consider (µSOSM(i)+αi) ≠ (µSOSM(j)+αj), αi,αj ∈ N++, αi = αj or αi ≠ αj,
and (LI(j′)�µSOSM(i)) ≈ (LI(j′)�µSOSM(j)). Here, either µSOSM(j′) ≠ (µSOSM(k)+αk), for
k = i∨j, or µSOSM(j′) ≠ (µSOSM(k)+αk), for k = i, j. Under this latter situation, there is no
problem. Each individual acts independently towards an option (µSOSM(k)+αk−γk), with
γk ∈ N+, γk ∈ [0;αk[, k = i, j, if there exist at least two other individuals j′′, j′′′ ∈ N�{i, j, j′}
for whom µSOSM(j′′) = (µSOSM(i)+αi−γi) and µSOSM(j′′′) = (µSOSM(j)+αj−γj) and when
it is possible to have
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� µσ(i) = (µSOSM(j′′))
µσ(j) ≠ (µSOSM(j′′′)).

We go back to the Extended -SOSM. And so on.
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