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Hatem Smaoui

CEMOI, Université de La Réunion
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Abstract. This paper provides a simple formula describing all Nash equilibria
in symmetric monotone singleton congestion games. Our approach also yields a
new and short proof establishing the existence of a Nash equilibrium in this kind of
congestion games without invoking the potential function or the finite improvement
property.
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1 Introduction

Congestion games provide a natural framework for a wide range of economics and
computer science applications such as resource allocation, routing and network
design problems. Rosenthal [8], who was the first to consider this class of
noncooperative games, showed by a potential function argument, that they possess
a pure-strategy Nash equilibrium. In fact, Nash dynamics, where players iteratively
improve their utilities, always converge to an equilibrium after a finite number of
steps. In Rosenthal’s model, a player’s strategy consists of a subset of a common set
of resources. The payoff received for selecting a particular resource depends only
on the total number of players sharing this resource. The utility a player derives
from a combination of resources is the sum of the payoffs associated with each
resource included in his choice. A slightly different formulation of congestion games
was introduced by Milchtaich [5] under the name of congestion games with player-
specific payoff functions. Each player has individual non increasing payoff functions
and is allowed to choose any resource but must choose exactly one. Milchtaich

∗Corresponding author. Tel.:+33 2 31 56 66 29; fax: +33 2 31 56 55 62. E-mail
addresses: samir.sbabou@gmail.com (S.Sbabou), Université de Caen 14032 Caen, France,
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showed that each game in this class admits at least one Nash equilibrium that can
be rehashed as a terminal point of a particular improvement dynamic.

A substantial literature has been devoted to particular subclasses and extensions
of congestion games. Most of the studies focus on the problem of finding and
computing efficiently only one Nash equilibrium, leaving open the question of
identifying all Nash equilibria. However, the characterization of the set of all
equilibria, beyond its theoretical interest, can be very useful when we have to
choose between these equilibria on the basis of performance criteria such as social
optimality, or to explore intrinsic proprieties of the game such as the price of
anarchy1. In this paper, we address this question for a simple subclass of congestion
games which lie in the intersection between Rosenthal’s and Milchtaich’s model. We
refer to games in this class as monotone singleton congestion games. Our approach
yields a new and short proof establishing the existence of a Nash equilibrium in this
kind of congestion games and shows how to compute all equilibria using a simple
and direct formula. The rest of this paper is organized as follows: In section 2,
we introduce notations and definitions, section 3 reviews related work, section 3
destabilizes the result and section 4 concludes the paper.

2 Definitions and notations

A game (in strategic form) is defined by a tuple Γ = (N, (Si)i∈N , (ui)i∈N ), where
N = {1, 2, . . . , n} is a set of n players, Si a finite set of strategies available to player
i and ui : S = S1 × . . . × Sn → R is the utility function for player i. The set S is
the strategy space of the game, and its elements are the (strategy) profiles. For a
profile σ = (σi)i∈N on S, we will use the notation σ−i to stand for the same profile
with i’s strategy excluded, so that (σ−i, σi) forms a complete profile of strategies.
A (pure) Nash equilibrium of the game Γ is a profile σ∗ such that each σ∗i is a
best-reply strategy: for each player i ∈ N , ui(σ∗) ≥ ui(σi, σ∗−i), for all σi ∈ Si.
Thus, no player can benefit from unilaterally deviating from his strategy.

In a (standard) congestion game [8] we are given a finite set R = {1, . . . ,m}
of m resources. A player’s strategy is to choose a subset of resources among
a family of allowed subsets: Si ⊆ 2R, for all i ∈ N . A payoff function
dr : {1, . . . ,m} → R is associated with each resource r ∈ R, depending only
on the number of players using this resource. For a profile σ and a resource r,
the congestion on resource r (i.e. the number of players using r) is defined by
nr(σ) = |{i ∈ N : r ∈ σi}|. The vector (n1(σ), . . . , nm(σ)) is the congestion vector
corresponding to σ. The utility of player i from playing strategy σi in profile σ
is given by ui(σ) =

∑
r∈σi

dr(nr(σ)). Rosenthal [8] shows that every congestion
game possesses at least one Nash equilibrium by considering the exact potential
function P : S → N with P (σ) =

∑m
r∈R

∑nr(σ)
j=1 dr(j) 2, ∀σ ∈ S. A consequence of

the existence of an exact potential function is the finite improvement property
1When utilities are replaced by costs, the price of anarchy of a game is the ratio of the

social cost in the worst Nash equilibrium to the minimum social cost possible.
2Rosenthal’s potential function shows that congestion games are potential. Monderer

and Shapley (1996) proved that every potential game can be represented in a form of a
congestion game. Thus, classes of potential games and congestion games coincide. Hence,
congestion games are essentially the only class of games for which one can show the
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(FIP) (Monderer and Shapley [6]): Any sequence of strategy-profiles in which
each strategy-profile differs from the preceding one in only one coordinate and the
unique deviator in each step strictly increases his utility (such a sequence is called
an improvement path), is finite. Obviously, any maximal improvement path, an
improvement path that cannot be extended, terminates by a Nash equilibrium. A
slightly different formulation of congestion games was introduced by Milchtaich [5]
under the name of congestion games with player-specific payoff functions 3. Each
player i has individual payoff functions (dir)r∈R: The payoff function associated with
each resource is not common but player-specific. In this sense, theses games are
more general than Rosenthal’s model. However, this generalization is accompanied
by two limiting (restrictive) assumptions. The first restriction is that each player
is allowed to choose any resource from R but must choose only one. The second
restriction is that, for each player i and each resource r, the specific payoff function
dir is a monotonically non increasing function along with the number of players
selecting r. Milchtaich shows that games in this class do not generally satisfy the
FIP (thus they are not potential games anymore) but that they always possess Nash
equilibria. In fact, he showed that the best-replay dynamics may cycle (i.e. the
improvement paths in which players iteratively shift to the best-replay strategy do
not necessarily lead to an equilibrium). Nevertheless, he also proved that there is
always at least one best-replay improvement path that connects an arbitrary initial
profile to a Nash equilibrium.

In this study, we are interested in the simple class of monotone symmetric
singleton congestion games (singleton congestion games for short) which can be
seen as the intersection between Rosenthal’s and Milchtaich’s model. A game in
this class is defined by a tuple Γ(N,R, (dr)r∈R), where N is a set of n players, R is
a set of m resources/strategies (a player’s strategy consists of any single resource
in R) and dr is a non increasing payoff function associated with resource r. The
utility of player i for a profile σ is simply given by ui(σ) = dσi(nσi(σ)). Note
that these games are symmetric : players share the same strategy set (Si = R,
for all i ∈ N) and the same utility function. Since the utility of an anonymous
player derived from selecting a single resource depends only on the number of the
players doing the same choice, the common utility function is simply a mapping:
u : R× {1, . . . , n} → R, (r, k) 7→ u(r, k), where u decreases with k.

3 Related work

Since singleton congestion games are a special case of standard congestion games
(with the restrictions cited above), the existence of a Nash equilibrium is guaranteed
by Rosenthal’s potential function. This class of games has been initially studied by
Milchtaich [5] as the symmetric case of his model. Without invoking a potential
function, he showed that, unlike general (nonsymmetric) congestion games with
specific-payoff functions, monotone singleton congestion games possess the finite
improvement property. It follows from this proof that best-replay dynamics always
converge to an equilibrium in a polynomial number of steps. Ieong et al. [3]

existence of pure equilibria with an exact potential function.
3This class of games was also investigated, independently and under different names

by Quint and Shubik [7] and by Konishi et al. [4]).
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generalized this result to the largest class of singleton congestion games (where the
payoff functions are not required to be monotone). They also showed that even
optimal equilibria (Nash equilibria that maximize the sum of players utilities) can
be found in a polynomial time. Holzman and Law-Yone [2] and Voorneveld et al.
[10] investigated the set of strong Nash equilibria 4 in monotone singleton congestion
games. It turns out that this set coincides with the set of Nash equilibria and with
the set of profiles which maximize the potential. Variants of (monotone) singleton
congestion games have been studied in terms of time convergence of the best-reply
dynamics to a Nash equilibrium (Even-Dar et al. [1]) and in terms of the existence
of alternative concept of solution (Rozenfeld and Tennenholtz, [9]).

4 The result

The main drawback of Rosenthal and Milchtaich methods is that they give only
one equilibrium, ignoring the general structure of the set of all Nash equilibria.
In what follows, we propose to improve the study of singleton congestion games
by providing a simple formula describing all these equilibria. In order to state our
result, we need first to simplify the analysis by moving to the ordinal representation
of preferences. Indeed, in the case of singleton congestion games, we can, without
affecting the set of Nash equilibria, replace the values of the payment functions by
their ranks in a preference ordering representing the common utility function. More
formally, a singleton congestion game will be represented by a tuple Γ(N,R,-)
where N is a set of n players, R a set of m resources and - a weak ordering on
R× {1, . . . , n}. In this ordinal context, a strategy profile σ∗ is a Nash equilibrium
of the game Γ if σ∗ % (σi, σ∗−i) for all σi in R. We also note that, since players are
anonymous, all strategy profiles that differ only by a permutation of players can
be identified with the corresponding congestion vector. We refer to a congestion
vector σ∗ = (n1, . . . , nm) as a Nash equilibrium if, for all r, r′ in R with r 6= r′,
we have (r, nr) % (r′, nr′ + 1). Thus, no player can benefit from joining a group of
players sharing a different resource.

Our result is based on the following notion

Definition 1 Let - be a (weak) ordering on R×{1, . . . , n}. An n-sequence derived
from - is a subset T of R× {1, . . . , n} such that:

• |T | = n.

• ((r, k) ∈ T and (r′, k′) 6∈ T )⇒ (r, k) % (r′, k′).

• (r, k) ∈ T ⇒ ((r, k′) ∈ T, ∀k′ < k).

Thus, an n−sequence is simply a set of the most preferred n elements of R ×
{1, . . . , n}. To illustrate this definition, let’s consider the two following situations.

4 A strong Nash equilibrium is a profile for which no subset of players has a joint
deviation that strictly benefits all of them, while all other players are expected to maintain
their equilibrium strategies.

4



Example 1

• Let N = {1, 2, 3, 4, 5} and R = {a, b, c}. For simplicity, we will denote the
couple (r, k) by rk. Suppose that the common ordinal utility function is given
by the following strictly decreasing ordering:

5c ≺ 4c ≺ 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3a ≺ 3b ≺ 2b ≺ 2a ≺ 3c ≺ a ≺ 2c ≺ c ≺ b︸ ︷︷ ︸ .
By definition 1, the unique 5-sequence is T = {3c, a, 2c, c, b}.

• Let N = {1, 2, 3, 4, 5, 6, 7, 8} and R = {a, b, c, d}. Suppose that the players’
preferences are given by following weak ordering:
8c ∼ 8b ≺ 8a ∼ 8d ≺ 7c ∼ 7b ∼ 6c ≺ 7d ∼ 5c ∼ 4c ≺ 3c ∼ 6b ∼ 6d ≺ 5d ∼
5b ∼ 4b ∼ 7a ≺ 5a ∼ 4d ∼ 6a ≺ 4a ∼ 3a ∼ 3b ∼ 2b ∼ 3d ≺ 2a ∼ b ∼ 2c ≺
c ∼ 2d ≺ a ∼ d.
We have exactly three 8-sequences: T1 = {3d, 2a, b, 2c, c, 2d, a, d}, T2 =
{2b, 2a, b, 2c, c, 2d, a, d} and T3 = {3a, 2a, b, 2c, c, 2d, a, d}.

We can now formulate our result.

Theorem 1 . Let Γ(N,R,-) be a monotone symmetric singleton congestion game,
with |N | = n et |R| = m. Then,

1. There is a unique Nash equilibrium per n-sequence. Let T be an n-
sequence of -. The corresponding Nash equilibrium is defined by: σ =
((1, α1), . . . , (m,αm)), where αj is the greater integer p satisfying (rj , p) ∈ T .

2. When the players’ preferences are expressed by a strictly decreasing ordering,
the game Γ admits exactly one Nash equilibrium.

3. The number of Nash equilibria of the game Γ equals the number of all n-
sequences extracted from -.

Proof. Since the second and the third point are simple consequences of the
first assertion, we have just the following statement.Let T be an n-sequence
and let σ∗ = ((1, α1), . . . , (m,αm)) be the m− components vector defined by:

αr = max{p : (r, p) ∈ T}. By definition of T and σ∗, we have
m∑
r=1

αr = n. Indeed,

the sequence T consists exclusively of the following terms:

(1, α1), . . . , (1, 1), (2, α2), . . . , (2, 1), . . . , (m,αm), . . . , (m, 1).

Therefore, σ∗ is a congestion vector. Furthermore, for all r, r′ in R, (r, αr) %
(r′, αr′ + 1) because (r, αr) ∈ T and (r′, αr′ + 1) 6∈ T . Hence, σ∗ is a Nash
equilibrium. Reciprocally, let σ∗ = ((1, α1), . . . , (m,αm)) be a Nash equilibrium. It
is easy to see that T = {(1, α1), . . . , (1, 1), . . . , (m,αm), . . . , (m, 1)} is an n-sequence.

In fact, as σ∗ is a congestion vector, we have
m∑
r=1

αr = n and so |T | = n. On the

other hand, by definition of T , (r, k) ∈ T ⇒ ((r, k′) ∈ T, ∀k′ < k). Finally, let
(r, k) ∈ T and (r′, k′) 6∈ T . By definition of T , we have k ≤ αr and k′ ≥ αr′ + 1.
Since σ∗ is a Nash equilibrium, we have (r, αr) � (r′, αr′ +1). By the monotonicity
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hypothesis, we obtain (r, k) % (r, αr) % (r′, αr′ + 1) % (r′, k′). �

To illustrate the above theorem, we continue with the previous example to show
how we can easily characterize all Nash equilibria.

Example 2 Reconsider the two cases of the first example. Applying our theorem,
we can easily find a Nash equilibrium for each n-sequence.

• Let N = {1, 2, 3, 4, 5} and R = {a, b, c}. Considering the players’ ordinal
utility : 5c ≺ 4c ≺ 5a ≺ 5b ≺ 4b ≺ 4a ≺ 3a ≺ 3b ≺ 2b ≺
2a ≺ 3c ≺ a ≺ 2c ≺ c ≺ b︸ ︷︷ ︸, we obtain T = {b, c, 2c, a, 3c}. Selecting the

greatest integer corresponding to each resource, we identify the unique Nash
equilibrium: σ∗ = (a, b, 3c).

• Let N = {1, 2, 3, 4, 5, 6, 7, 8} and R = {a, b, c, d} and the weak ordering :
8c ∼ 8b ≺ 8a ∼ 8d ≺ 7c ∼ 7b ∼ 6c ≺ 7d ∼ 5c ∼ 4c ≺ 3c ∼ 6b ∼ 6d ≺ 5d ∼
5b ∼ 4b ∼ 7a ≺ 5a ∼ 4d ∼ 6a ≺ 4a ∼ 3a ∼ 3b ∼ 2b ∼ 3d ≺ 2a ∼ b ∼ 2c ≺
c ∼ 2d ≺ a ∼ d.
Here we find one Nash equilibrium per n-sequence:

For T1 = {d, a, 2d, c, 2c, b, 2a, 3d}, σ∗1 = (2a, b, 2c, 3d);
For T2 = {d, a, 2d, c, 2c, b, 2a, 2b}, σ∗2 = (2a, 2b, 2c, 2d);
For T3 = {d, a, 2d, c, 2c, b, 2a, 3a}, σ∗3 = (3a, b, 2c, 2d).

Hence, the are exactly three Nash equilibria in this game.

Note that for the nonsymmetric case, Theorem 1 does not work. The following
example illustrates this fact.

Example 3 Let N = {1, 2, 3} and R = {a, b, c}. We consider the following players’
ordinal utility:

3a ≺1 3b ≺1 2 ≺1 3c ≺1 2b ≺1 a ≺1 b ≺1 2c ≺1 c.

3c ≺2 2c ≺2 3b ≺2 c ≺2 2b ≺2 3a ≺2 b ≺2 2a ≺2 a.

3c ≺3 3a ≺3 2a ≺3 2c ≺3 3b ≺3 c ≺3 2b ≺3 b ≺3 a.

The concept of an n−sequence does not apply in this case because we have three
different utility functions. For player 1, we have the 3-sequence b ≺1 2c ≺1 c, for
player 2: b ≺2 2a ≺2 a and for player 3: 2b ≺3 b ≺3 a. Applying Theorem 1 to
these sequences, we obtain the following three congestion vectors: (b, 2c), (2a, b) and
(a, 2b). None of these three congestion vectors is appropriate to the three players
simultaneously. We can then think about taking the last term of each of the three
utility functions. In this way, the strategy profile is (c, a, a). But one can easily
check that this profile does not correspond to a Nash equilibrium. Nevertheless,
there is a Nash equilibrium (c, a, b).
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5 Concluding remarks

In this paper we have proposed a new approach which allows to find all Nash
equilibria of a given singleton congestion game. While we do not address
the question of the computational complexity, we believe that our formula can
contribute to the algorithmic analysis of this class of congestion games. For
example, it can help to improve the time complexity of computing optimal Nash
equilibria or calculating the price of anarchy. As a future research, we hope to
extend our approach to the general case of nonsymmetric congestion games with
player-specific payoff functions.

References

[1] E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to Nash
equilibria. In : Proceedings of the 30th Int. Coll. on Automata, Languages and
Programming (ICALP), pages 502–513, 2003.

[2] R. Holzman and N. Law-Yone. Strong equilibrium in congestion games. Games
and Economic Behavior, 21:85–101, 1997.

[3] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun. Fast and
compact: On a simple class of congestion games. To appear in the 20th National
Conference on Artificial Intelligence, pages 489-494, 2005.

[4] H. Konishi, M. Le Breton, and S. Weber. Equilibrium in a model with partial
rivalry. Journal of Economic Theory, 72:225–237, 1997.

[5] I. Milchtaich. Congestion games with player-specific payoff functions. Games
and Economic Behavior, 13:111–124, 1996.

[6] D. Monderer and L.S. Shapley. Potential games. Games and Economic
Behavior, 14:124–143, 1996.

[7] T. Quint and M. Shubik. A model of migration. Cowles Foundation DP 1088,
1994.

[8] R. Rosenthal. A class of games possessing pure-strategy Nash equilibrium.
International Journal of Game Theory, 2:65–67, 1973.

[9] O. Rozenfeld and M. Tennenholtz. Strong and correlated strong equilibria in
monotone congestion games. In WINE, pages 74–86, 2006.

[10] M. Voorneveld, P. Borm, F. Megen, S. van Tijs, and G. Facchini. Congestion
games and potentials reconsidered. International Game Theory Review,
1(3):283–299, 1999.

7


	Couverture 201114
	201114
	Introduction
	Definitions and notations
	Related work
	The result
	Concluding remarks


