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1. Introduction

In this paper, we propose a general principle to construct omnibus specification test for

a wide range of parametric models for a conditional distribution function. For Y ∈ R an

outcome variable and X ∈ RK a vector of covariates, our interest is in testing the validity

of a model that asserts that there exists a possibly function-valued parameter θ = θ(·)

such that

Pr(Y ≤ y|X = x) = F (y|x, θ) for all (y, x) ∈ Z, (1.1)

where F (·|·, θ) is a known function and Z denotes the support of Z = (Y,X). We refer to

any such specification as a conditional distributional model. The alternative hypothesis

is that equation (1.1) is violated for at least one value (y, x) ∈ Z. Allowing unknown

parameters to be function-valued is important in this setting, and constitutes one of the

main innovations of our approach. We also discuss an extension of our procedure that

allows to test the hypothesis in (1.1) for all (y, x) in some set S ⊂ Z chosen by the

analyst. Through an appropriate choice of S one can test whether the parametric model

provides an adequate fit over a particular range of the conditional distribution function,

such as e.g. the area below or above the conditional median.

Our general setting covers a wide range of conditional distributional models that are

of great importance in empirical applications. The leading example is certainly the linear

quantile regression model (Koenker and Bassett, 1978; Koenker, 2005), which implies a

linear structure for the inverse of the conditional CDF, namely that F−1(τ |x, θ) = x′θ(τ)

for some functional parameter θ(·) that is strictly increasing in each of its components.

Nonlinear versions of quantile regression could be considered as well. Another example is

the linear location-scale shift model (Koenker and Xiao, 2002), under which F−1(τ |x, θ) =

x′β + x′γQε(τ), with Qε a univariate quantile function and θ(·) = (β, γ,Qε(·)). We

also cover the distributional regression model (Foresi and Peracchi, 1995), where the

conditional CDF is modeled by a series of binary response models with varying “cutoffs”.

That is, the conditional CDF is specified as F (y|x, θ) = Λ (x′θ(y)) , where Λ is a known

strictly increasing link function such as e.g. the logistic or standard normal distribution

function, and θ(·) is again a function-valued parameter. This latter class of models has
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recently received considerable attention in the econometrics literature (e.g. Chernozhukov,

Fernandez-Val, and Melly, 2009; Fortin, Lemieux, and Firpo, 2011; Koenker, 2010; Rothe,

2011).

Our test is an extension of the method proposed by Andrews (1997) in the context

of parametric models indexed by finite dimensional parameters. The basic idea is to

compare an unrestricted estimate of the joint distribution function of Y and X to a

restricted estimate that imposes the structure implied by the conditional distributional

model. For example, to test the validity of the linear quantile regression model we would

first obtain an estimate of the conditional CDF of Y given X by inverting the estimated

conditional quantile function, and then transform this object into an estimate of the

joint CDF of (Y,X) by “integrating up” the conditioning argument. This restricted CDF

estimate can then be compared to the joint empirical distribution function of (Y,X).

Our test statistic is a Cramer-von Mises type measure of distance between the two

above-mentioned objects, and is therefore called a Generalized Conditional Cramer-von

Mises (GCCM) test.1 We reject the null hypothesis that the parametric model is correctly

specified whenever this distance is “too large”. Since our test statistic is not asymptoti-

cally pivotal, critical values cannot be tabulated, but can be obtained via the bootstrap.

While our test is thus computationally somewhat involved, it is straightforward to im-

plement and has a number of attractive theoretical properties: It is consistent against all

fixed alternatives, has non-trivial power against local deviations from the null hypothe-

sis of order n−1/2 (where n denotes the sample size), and does not require the choice of

smoothing parameters.

The correct specification of conditional distributional models of the type considered in

this paper is critical in many areas of applied statistics. In economics, such specifications

are e.g. employed extensively to study differentials in the distribution of wages between

two time periods, or two subgroups of a particular population. See e.g. Machado and

Mata (2005), Melly (2005), Albrecht, Van Vuuren, and Vroman (2009), Chernozhukov

et al. (2009) or Rothe (2011), and Fortin et al. (2011) for an extensive survey. From a

1We choose to work with the CvM distance instead of other measures, such as e.g. the Kolmogorov
distance used by Andrews (1997), since the resulting test statistics turned out to have substantially
better power properties in simulations. This is in line with classical findings on the power of specification
tests, e.g. Stephens (1974).
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statistical point of view, these methods first obtain an estimate of the conditional CDF

of Y given X. In a second step, this function is integrated with respect to another

CDF, whose exact form depends on the particular application, yielding a new univariate

distribution function. As a final step, features of this new distribution function, such as

its mean or quantiles, are computed. Our concern is the implementation of the first step

of this procedure. For example, the Machado and Mata (2005) decomposition procedure

relies on the assumption that the entire conditional distribution of wages given observable

individual characteristics can be described by a linear quantile regression model. If this

assumption is violated, the method can potentially lead to inappropriate conclusions

(see Rothe, 2010, for some simulation evidence). From a practitioner’s point of view,

misspecification is a serious concern in this context, as the conditional quantiles of the

wage distribution are e.g. known to be extremely flat in the vicinity of the legal minimum

wage, and might thus not be described adequately by a linear specification in this region

(Chernozhukov et al., 2009). Our testing procedure can be used to formally investigate

this issue.

As an additional contribution, our paper provides some empirical evidence on the

last point: using US data from the Current Population Survey, we show that typical

specifications of linear location-scale models and linear quantile regressions containing

a rich set of covariates are frequently rejected by our GCCM test even for small and

moderate sample sizes. On the other hand, we find that the distributional regression

model, which has thus far received only limited interest in the literature, typically cannot

be rejected in such settings. The finding should have a profound impact on the way

researchers model conditional wage distributions in practice, particularly in the context

of decomposition exercises. It should also renew interest in distributional regression

model, whose statistical properties are not yet fully understood (see Koenker (2010) for

some basic results).

There exists an extensive literature on specification testing in parametric models for

the conditional expectation function (see e.g. Bierens, 1990, Härdle and Mammen, 1993,

Bierens and Ploberger, 1997, Stute, 1997 and Horowitz and Spokoiny, 2001), and for

the conditional quantile function at one particular quantile, such as the median (see e.g.

Zheng, 1998, Bierens and Ginther, 2001, Horowitz and Spokoiny, 2002, He and Zhu, 2003,
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and Whang, 2006). In comparison, the related problem of testing the validity of a model

for the entire conditional distribution function that we study in this paper has received

much less attention. Andrews (1997) proposes a test for conditional distributional mod-

els indexed by finite-dimensional parameters, such as e.g. Generalized Linear Models,

which we extend in this paper as described above. Koenker and Machado (1999) and

Koenker and Xiao (2002) consider specification testing in a quantile regression context,

and propose tests for e.g. the validity of the location-scale model, but not the validity

of the quantile regression model itself. Galvao, Kato, Montes-Rojas, and Olmo (2011)

test for threshold effects in linear quantile regression in a time series context. Escanciano

and Velasco (2010) and Escanciano and Goh (2010) both propose testing procedures for

the null hypothesis that a conditional quantile restriction is valid over a range of quan-

tiles. The former paper considers specification testing for dynamic quantile regression

models in a time series setting using a subsampling approach, whereas the latter paper

studies the instrumental variables quantile regression model of e.g. Chernozhukov and

Hansen (2005), obtaining critical values via a multiplier bootstrap scheme. The settings

of these two papers are thus very different from ours in general, but include the usual

quantile regression model with independent observations as a special case. We are not

aware of any paper that provides a general approach to testing the validity of conditional

distributional models indexed by possibly function-valued parameters.

The remainder of the paper is structured as follows. In the next section, we describe

our testing problem, the test statistic, and a bootstrap procedure to obtain critical values.

In Section 3, we establish the theoretical properties of our test under general conditions.

In Section 4, we apply these general results to several concrete examples. Section 5 dis-

cusses an extension of our test procedure that allows to check the model’s validity for some

particular part of the conditional CDF. Section 6 contains some Monte Carlo evidence

on the finite sample properties of our test, and Section 7 evaluates the appropriateness of

various models for the conditional distribution of wages given individual characteristics

in the US. Finally, Section 8 concludes.

5



2. Testing General Conditional Distributional Models

2.1. Testing Problem. We observe an outcome variable Yi ∈ R and a vector of

explanatory variables Xi ∈ RK for i = 1, . . . , n. The random vector Zi = (Yi, Xi) has a

joint cumulative distribution function (CDF) H, and its random subcomponent Xi has

joint CDF G. We assume throughout the paper that the data points are independent

and identically distributed, although it would also be possible to extend our analysis to

certain forms of temporal dependence. Our aim is to test the validity of certain classes

of parametric specifications for the conditional CDF F of Yi given Xi. Let F be the class

of all conditional distribution functions on the support of Y given X that satisfy certain

weak regularity conditions given below, and consider a conditional distributional model,

i.e. a parametric family

F0 = {F (·|·, θ) for some θ ∈ B(T ,Θ)} ⊂ F

of conditional distribution functions indexed by a (potentially) functional parameter θ

taking values in B(T ,Θ), the class of mappings u 7→ θ(u) such that θ(u) ∈ Θ ⊂ Rp for

u ∈ T ⊂ R. The hypothesis we would like to test is that F coincides with an element of

F0:

H0 : F (y|x) = F (y|x, θ) for some θ ∈ B(T ,Θ) and all (y, x) ∈ Z (2.1)

vs. H1 : F (y|x) 6= F (y|x, θ) for all θ ∈ B(T ,Θ) and some (y, x) ∈ Z. (2.2)

This paper proposes a testing procedure of the problem in (2.1)–(2.2) for conditional

distributional models in which the true value of the functional parameter is identified

under the null hypothesis through a moment condition. Specifically, let ψ : Z × Θ ×

T 7→ Rp be a uniformly integrable function whose exact form depends on the specific

conditional distributional model F0, and suppose that for every u ∈ T the equation

Ψ(θ, u) := E (ψ(Z, θ, u)) = 0 (2.3)

has a unique solution θ0(u). Then we assume that under the null hypothesis any value
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θ ∈ B(T ,Θ) of the functional parameter that satisfies F (y|x) = F (y|x, θ) for all (y, x) ∈ Z

also satisfies θ(u) = θ0(u) for all u ∈ T . The moment condition (2.3) thus uniquely de-

termines the value of the “true” functional parameter. Under the alternative, θ0 remains

well-defined as the solution to (2.3), and can thus be thought of as a pseudo-true value

of the functional parameter in this case. Condition (2.3) also suggests that θ0(u) can be

estimated by a Z-estimator.

The class of conditional distributional models that satisfy the above conditions con-

tains a number of important specifications that are frequently used in applied work. It

e.g. includes the scale-location shift model, quantile regression, and distributional regres-

sion, amongst many others. We illustrate how these examples fit into our framework in

more detail in Section 4. General results on estimation and inference in this class of mod-

els are derived in Chernozhukov et al. (2009). Their findings are important for the later

technical arguments in this paper. When the parameter θ0 = θ0(u) does not depend on

u the framework also includes many limited dependent variable models and generalized

linear models.

2.2. Test Statistic. To motivate our test statistic for the problem in (2.1)–(2.2), we

rewrite the null hypothesis and the alternative in a slightly different form. Following the

above discussion, it is clear that (2.1) is equivalent to the statement that

F (y|x) = F (y|x, θ0) for all (y, x) ∈ RK+1, (2.4)

with θ0(u) the unique solution to (2.3), since by assumption F (·|·, θ0) is the only element

of F0 that is a potential candidate value for the true conditional CDF F of Yi given Xi.

Equation (2.4) is a conditional moment restriction, that can equivalently be stated as

E(I{Y ≤ y} − F (y|x, θ0)|X = x) = 0 for all (y, x) ∈ RK+1. (2.5)

Using a result from Billingsley (1995, Theorem 16.10(iii)), this conditional moment re-

striction can be transformed into an unconditional one without loss of information by
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“integrating up” with respect to x: statement (2.5) is true if and only if

R(y, x) := E((I{Y ≤ y} − F (y|X, θ0))I{X ≤ x}) = 0 for all (y, x) ∈ RK+1.

Note that the same approach it also used in e.g. Stute (1997) for testing parametric

specifications of conditional expectation functions. The function R(y, x) has an intuitive

interpretation as the pointwise distance between the joint CDF

H(y, x) = P (Y ≤ y,X ≤ x)

of (Y,X) and another CDF

H0(y, x) =

∫
t≤x

F (y|t, θ0)dG(t)

that imposes the structure implied by the conditional distributional model. To see this,

note that it follows from the Law of Iterated Expectations that

R(y, x) =

∫
t≤x

F (y|t)dG(t)−
∫
t≤x

F (y|t, θ0)dG(t) =: H(y, x)−H0(y, x).

With the above notation, our testing problem (2.1)–(2.2) is equivalent to

H0 : R(y, x) = 0 for all (y, x) ∈ RK+1

vs. H1 : R(y, x) 6= 0 for some (y, x) ∈ RK+1.

A test statistic for this problem can then be constructed from an empirical analogue of

the function R(y, x), given by

R̂n(y, x) =
1

n

n∑
i=1

(I{Yi ≤ y} − F̂n(y|Xi))I{Xi ≤ x} =: Ĥn(y, x)− Ĥ0
n(y, x).

Here F̂n(y|x) = F (y|x, θ̂n) is a parametric estimate of F based on an estimate θ̂n of

θ0, and thus R̂n(y, x) is the pointwise difference between the joint empirical distribution
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function

Ĥn(y, x) = n−1
n∑
i=1

I{Yi ≤ y,Xi ≤ x}

and the semiparametric CDF estimate

Ĥ0
n(y, x) = n−1

n∑
i=1

F̂n(y|Xi)I{Xi ≤ x}.

We take θ̂n to be an approximate Z-estimator satisfying

‖Ψ̂n(θ̂n(u), u)‖ = op(n
−1/2),

where Ψ̂n(θ, u) := n−1
∑n

i=1 ψ(Zi, θ, u) is the sample analogue of the moment condition

in (2.3). Such an approach is feasible for all examples we consider in this paper.

Under general conditions described in the following section, the random process

(y, x) 7→ R̂n(y, x) converges to zero in probability under the null hypothesis, and to

a non-zero probability limit under the alternative. One can thus construct a specifica-

tion test for the conditional distributional model F0 based on a Cramer-von Mises type

measure of distance between R̂n and zero, scaled by the sample size. Specifically, the test

statistic Tn is defined as:

Tn = n

∫
R̂n(y, x)2dĤn(y, x) =

n∑
i=1

R̂n(Yi, Xi)
2.

Large realizations of Tn indicate a possible violation of the null hypothesis. Since our

testing principle shares some similarity with the Conditional Kolmogorov2 test in Andrews

(1997), we refer to our test in the following as a Generalized Conditional Cramer-von

Mises (GCCM) test.

2The reason for departing from Andrews (1997) with respect to the distance measure is that our
simulation experiments suggested that Cramer-von Mises type statistics have somewhat better power
properties than those based on the Kolmogorov distance. It would of course conceptionally be straight-
forward to consider other measures of distance between R̂n and zero to construct a test statistic for the
problem in (2.1)–(2.2). The properties of such a test could be derived in exactly the same way as the
one presented in the following subsections.
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2.3. Bootstrap Critical Values. As we show in more detail below, for most common

conditional distributional models the null distribution of Tn is non-pivotal and depends

on the data generating process in a complex fashion. We therefore obtain critical values

for our test statistic by a semiparametric bootstrap procedure, using the restricted es-

timate Ĥ0
n as the bootstrap distribution. Since F̂n ∈ F0 by construction, this approach

ensures that the bootstrap mimics the distribution of the data under the null hypothesis,

even though the data might be generated by an alternative distribution. A bootstrap

realization of our test statistic is computed as follows:

Step 1: Draw a bootstrap sample of covariates {Xb,i, 1 ≤ i ≤ n} with replacement from

the realized values {Xi, 1 ≤ i ≤ n}.

Step 2: For every 1 ≤ i ≤ n put Yb,i = F̂−1n (Ub,i|Xb,i), where {Ub,i, 1 ≤ i ≤ n} is a

simulated i.i.d. sequence of standard uniformly distributed random variables.

Step 3: Use the bootstrap data {(Yb,i, Xb,i), 1 ≤ i ≤ n} to compute an estimate R̂b,n(y, x)

of R(y, x) exactly as described in the previous subsection, and compute the corre-

sponding bootstrap realization of the test statistic:

Tb,n = n

∫
R̂b,n(y, x)2dĤn(y, x).

The distribution of Tb,n can be determined through the usual repeated resampling of the

data, and, as shown formally below, then be used as an approximation to the distribution

of Tn under the null hypothesis for a wide range of conditional distributional models. An

asymptotically valid level α critical value ĉn(α) for the testing problem in (2.1)–(2.2) can

be obtained by computing the (1−α)-quantile of the distribution of Tb,n, i.e. ĉn(α) is the

smallest constant that satisfies

Pb (Tb,n ≤ ĉn(α)) ≥ 1− α,

where Pb is the probability with respect to bootstrap sampling. The test thus rejects H0

if Tn > ĉn(α) for some pre-specified significance level α ∈ (0, 1).
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3. Theoretical Properties

This section shows that the GCCM test has correct asymptotic size, consistency against

fixed alternatives, and non-trivial power against local deviations from the null hypothesis

of order n−1/2. We write “
d→” to denote convergence in distribution of a sequence of

random variables, and “⇒” to denote weak convergence of a sequence of random func-

tions. In addition, we write “the data are distributed according to F̃” whenever the joint

distribution function of Z = (Y,X) is given by H̃(y, x) =
∫
F̃ (y|t)I{t ≤ x}dG(t) for some

F̃ ∈ F , and denote the expectation taken with respect to any such CDF H̃ by EH̃ . All

limits are taken as n→∞.

3.1. Limiting Distribution of the Test Statistic. To derive large sample properties

of our test statistic we impose the following assumptions.

Assumption 1. The set Θ is a compact subset of Rp and T is either a finite subset or

a bounded open subset of R.

Assumption 2. For each u ∈ T , there exists a unique value θ0(u) in the interior of Θ

such that Ψ(θ0(u), u) = 0.

Assumption 3. The mapping (θ, u) 7→ ψ(Z, θ, u) is continuous at each (θ, u) ∈ Θ × T

with probability one, and continuously differentiable at (θ0(u), u) with a uniformly bounded

derivative on T (where differentiability in u is only required when T is not finite). The

function Ψ̇(θ, u) := ∂θΨ(θ, u) is nonsingular at θ0(·) uniformly in u ∈ T .

Assumption 4. The set of functions G = {ψ(Z, θ, u), (θ, u) ∈ Θ×T} is H-Donsker with

a square integrable envelope.

Assumption 5. The mapping θ 7→ F (·|·, θ) is Hadamard differentiable at all θ ∈ B(T,Θ),

with derivative h 7→ Ḟ (·|·, θ)[h].

Assumptions 1–4 are standard regularity conditions also imposed by Chernozhukov

et al. (2009). They ensure that a functional central limit theorem can be applied to

the Z-estimator process u 7→
√
n(θ̂n(u) − θ0(u)), and thus that this process converges

to a Gaussian limit as n tends to infinity. Assumption 5 is a smoothness condition that
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can be verified directly in applications. Together with the Functional Delta Method,

it implies that the restricted CDF estimator process (y, x) 7→
√
n(Ĥ0

n(y, x) − H0(y, x))

also converges to a Gaussian limit process G2. This convergence can be shown to be

jointly with that of the empirical CDF process (y, x) 7→
√
n(Ĥn(y, x) − H(y, x)) to an

H-Brownian Bridge G1. Since R̂n(y, x) = Ĥn(y, x) − Ĥ0
n(y, x), the limiting distribution

of our test statistic Tn follows from an application of the continuous mapping theorem,

and from the fact that the functions H and H0 coincide under the null hypothesis, but

differ on a set with positive probability under the alternative.

Theorem 1. Under Assumption 1–5, the following statements hold.

i) Under the null hypothesis, i.e. when the data are distributed according to some F

that satisfies (2.1),

Tn
d→
∫

(G1(y, x)−G2(y, x))2 dH(y, x),

where G = (G1,G2) is a bivariate mean zero Gaussian process given in the Appendix.

ii) Under any fixed alternative, i.e. when the data are distributed according to some F

that satisfies (2.2),

lim
n→∞

P (Tn > c)→ 1 for all constants c > 0.

3.2. Local Alternatives. This section derives the limiting distribution of our test

statistic under a sequence of local alternatives that shrink towards an element of F0 at

rate n−1/2, where n denotes the sample size. That is, the conditional distribution function

of Y given X is given by

Qn(y|x) = (1− δ/
√
n)F ∗(y|x) + (δ/

√
n)Q(y|x), (3.1)

where F ∗ is a CDF such that F ∗(y|x) = F (y|x, θ) for some θ ∈ B(T ,Θ) and all (y, x) ∈ Z,

Q is a CDF such that Q(y|x) 6= F (y|x, θ) for all θ ∈ B(T ,Θ) and some (y, x) ∈ Z, and

δ ≤ n1/2 is some constant, satisfying the following assumption.
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Assumption 6. The sequence Hn(y, x) =
∫
Qn(y|t)I{t ≤ x}dG(t) of distribution func-

tions implied by the local alternative Qn given in (3.1) is contiguous to the distribution

function H∗(y, x) =
∫
F ∗(y|t)I{t ≤ x}dG(t) implied by F ∗.

The requirement that the local alternatives are contiguous (see e.g. Van der Vaart,

2000, Section 6.2 for a formal definition of contiguity) to the limiting distribution function

is standard when analyzing local power properties. When the conditional distribution

functions F ∗ and Q admit conditional density functions f ∗ and q with respect to the

same σ-finite measure (e.g. the Lebesgue measure), respectively, a sufficient condition for

contiguity is

sup
(x,y):f∗(y|x)>0

q(y|x)

f ∗(y|x)
<∞. (3.2)

Intuitively, this would be the case when Q has lighter tails than F ∗. This statement is

formally proven in Section B in the Appendix.

The following theorem shows that under local alternatives of the form (3.1) the

limiting distribution of Tn contains an additional deterministic shift function ensur-

ing non-trivial local power of the test. To describe this function, define ΨQ(θ, u) =

EQ (ψ(Z, θ, u)) and Ψ∗(θ, u) = EF ∗ (ψ(Z, θ, u)), and let θQ and θ∗ be the functions satis-

fying ΨQ(θQ(u), u) = 0 and Ψ∗(θ∗(u), u) = 0 for all u ∈ T , respectively.

Theorem 2. Under Assumption 1–6, and if the data are distributed according to a local

alternative Qn as given in (3.1),

Tn
d→
∫

(G1(y, x)−G2(y, x) + µ(y, x))2 dH(y, x).

where

µ(y, x) = δ

∫ (
Q(y|t)− F (y|t, θ∗) + Ḟ (y|t, θ∗) [h]

)
I{t ≤ x}dG(t)

with h(u) = ∂θ′ΨF ∗(θ∗(u), u)−1ΨQ(θ∗(u), u).

Note that the function F ∗ to which the local alternative Qn shrinks can be cho-

sen as F (·|·, θQ), the probability limit of estimator F̂n under Q. In this case, we have
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ΨQ(θ∗(u), u) = 0 for all u ∈ T , and hence the drift term in Theorem 2 simplifies to

µ(y, x) = δ

∫
(Q(y|t)− F (y|t, θ∗)) I{t ≤ x}dG(t),

and is thus proportional to the difference between the joint distribution functions implied

by Q and F ∗.

3.3. Validity of the Bootstrap. As a final step, we establish asymptotic validity of

the critical values obtained via the bootstrap procedure described in Section 2.3. This

does not require any further assumptions. Under the null hypothesis, Assumptions 1–

5 ensure that the bootstrap consistently estimates the limiting distribution of the test

statistic Tn, and hence consistently estimates the true critical values. Under any fixed

alternative, the bootstrap critical values can be shown to be bounded in probability.

Together with Theorem 1(ii), this implies that the power of our test converges to one in

this case. Finally, since contiguity preserves convergence in probability, it follows from

Assumption 6 that under any local alternative the bootstrap critical values converge

to the same value as under the null hypothesis. We can thus deduce from Anderson’s

Lemma that our test has non-trivial local power. The following theorem formalizes these

arguments.

Theorem 3. Under Assumption 1–6, the following statements hold for any α ∈ (0, 1):

i) Under the null hypothesis, i.e. when the data are distributed according to some CDF

F that satisfies (2.1), we have that

lim
n→∞

P (Tn > ĉn(α)) = α.

ii) Under any fixed alternative, i.e. when the data are distributed according to some CDF

F that satisfies (2.2), we have that

lim
n→∞

P (Tn > ĉn(α)) = 1.

iii) Under any local alternative, i.e. when the data are distributed according to some
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CDF Qn that satisfies (3.1), we have that

lim
n→∞

P (Tn > ĉn(α)) ≥ α.

4. Application to Specific Models

In this subsection, we discuss a number of conditional distributional models whose correct

specification can be investigated via our GCCM test. We also provide primitive condi-

tions that imply the “high-level” conditions in Assumption 1–5 that we used to derive

asymptotic properties.

4.1. Quantile Regression. Arguably the most important example of a conditional

distributional model indexed by function-valued parameters in the sense of this paper

is the linear quantile regression model (Koenker and Bassett, 1978; Koenker, 2005). It

postulates that the conditional τ -quantile of Y given X = x is linear in a vector of

parameters that vary with τ :

F0 = {F−1(τ |x) = x′θ(τ) for some θ(τ) ∈ Θ ⊂ Rp and all τ ∈ (0, 1)}.

Such a model is correctly specified if the true data generating process can be represented

by the random coefficient model Y = X ′θ0(U), where U ∼ U [0, 1] is independent of X

and the function θ0(·) is strictly increasing in each of its arguments. We consider the

usual estimator θ̂n(u) of θ0(u), given by

θ̂n(u) := argmin
θ

1

n

n∑
i=1

ρu(Yi −X ′iθ),

where ρu(s) = s (u− I{s ≤ 0}) is the usual “check function”. This estimator is con-

tained in the class of approximate Z-estimators we consider in this paper, as it satisfies

‖Ψ̂n(θ̂n(u), u)‖ = op(n
−1/2), where Ψ̂n(θ, u) := n−1

∑n
i=1 ψ(Zi, θ, u) and ψ(Zi, θ, u) =

(u− I{Yi −X ′iθ ≤ 0})Xi. The conditional distribution function implied by the linear

quantile regression model can then be obtained as F (y|x, θ̂n) =
∫
(0,1)

I{x′θ̂n(u) ≤ y}du.

Note that F (y|x, θ̂n) is monotone in y by construction for every x, even if the estimated

15



quantile curve u 7→ x′θ̂n(u) is not. The test statistic Tn can then be computed in a

straightforward fashion. Our asymptotic analysis in Section 3 applies to the linear quan-

tile regression example under the conditions of the following theorem.

Theorem 4. Suppose that (i) the distribution function F (·|X) admits a density function

f(·|X) that is continuous, bounded and bounded away from zero at X ′θ0(u), uniformly

over u ∈ (0, 1), almost surely. (ii) The matrix E(XX ′) is finite and of full rank, (iii) the

parameter θ0(·) solving E (ψ (Z, θ0(u), u)) = 0 is such that θ0(u) is in the interior of the

parameter space Θ for every u ∈ (0, 1). Then Assumption 1–5 hold for the linear quantile

regression model with Ḟ (y|x, θ)[h(·)] = −f(y|x)x′ [h (F (y|x, θ))].

The role of the conditions in Theorem 4, which are standard in the literature, is

essentially ensure that the moment condition E (ψ (Z, θ0(u), u)) = 0 has a unique solution

θ0(u) for every u ∈ T , and that the process u 7→
√
n(θ̂n(u) − θ0(u) converges to a

Gaussian limit under both the null hypothesis and the alternative. A similar result

could be obtained for various nonlinear quantile regression models by imposing analogous

conditions that ensure these two properties.

4.2. Location Shift and Location-Scale Shift Models. The testing procedures

proposed in this paper can also be used to assess the validity of various special cases

of quantile regression. A leading example is the linear location-scale shift model, under

which

F0 = {F−1(τ |x) = x′β + x′γQε(τ) for some

θ(τ) = (β, γ,Qε(τ)) ∈ R2p+1 and all τ ∈ (0, 1)}, (4.1)

with Qε some univariate quantile function. In this model, covariates affect both the

location and the scale of the conditional distribution of Y given X, but have no influence

on its shape. Such a model would e.g. be correctly specified if the data are generated as

Yi = X ′iβ0 + (X ′iγ0)εi for some random variable εi ∼ Fε that is independent of Xi. An
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important special case in this class is the linear location shift model, for which (X ′iγ) = 1:

F0 = {F−1(τ |x) = x′β +Qε(τ) for some θ(τ) = (β,Qε(τ)) ∈ Rp+1 and all τ ∈ (0, 1)}.

(4.2)

Location and location-scale shift models can be estimated in a variety of different

ways. See for example Rutemiller and Bowers (1968), Harvey (1976) or Koenker and

Xiao (2002). For simplicity, we restrict attention to simple two- and three-step methods,

respectively. In the pure location shift model (4.2), we can estimate the parameter β0

by ordinary least squares, and the quantile function Qε by taking the empirical quantile

function of the regression residuals. The corresponding estimator θ̂n(·) = (β̂n, Q̂ε,n(·)) is

contained in the class of approximate Z-estimators we consider in this paper, as it satisfies

‖Ψ̂n(θ̂n(u), u)‖ = op(n
−1/2), where Ψ̂n(θ, u) := n−1

∑n
i=1 ψ(Zi, θ, u) and ψ(Zi, (β, α), u) =

[u − I{Yi − X ′iβ ≤ α}, εi(β)Xi] with εi(β) = Yi − X ′iβ. For the location-scale shift

model in (4.1), we continue to estimate β0 by OLS, estimate γ0 by nonlinear regression

of εi(β̂n)2 on (X ′iγ)2, and obtain an estimate Q̂ε,n via the empirical quantile function of

the standardized regression residuals εi(β̂n)/(X ′iγ̂n). Again, this in a Z-estimator in the

sense of this paper with ψ(Zi, (β, γ, α), u) = [u − I{εi(β)/X ′iγ ≤ α}, εi(β)Xi, (εi(β)2 −

(X ′iγ)2)X ′iγXi]. The following theorem gives conditions for the validity of the “high level”

conditions in Section 3 in the location-scale shift case. Conditions for the pure location

shift model are similar, with obvious simplifications.

Theorem 5. Suppose that (i) the residuals εi = (Yi − X ′iβ)/(X ′iγ) are continuously

distributed with density function fε, which is continuous, bounded and bounded away from

zero at Qε(τ), uniformly over τ ∈ (0, 1), almost surely, (ii) P (X ′iγ0 > 0) = 1, (iii) the

matrix E(XX ′) is finite and of full rank, (iv) E(Y 2) is finite, and (v) the parameter θ0(·) =

(β0, γ0, Qε(·)) solving E (ψ (Z, θ0(τ), τ)) = 0 is such that θ0(τ) is in the interior of the

parameter space Θ for every τ ∈ (0, 1). Then Assumption 1–5 hold for the linear location-

scale shift model with Ḟ (y|x, θ)[h(·)] = −fε((y − x′β)/(x′γ))(x′β + x′γQε(h(F (y|x, θ)))).

4.3. Distributional Regression. Another class of conditional distributional models

covered by our framework are so-called distributional regression models, which were intro-
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duced by Foresi and Peracchi (1995). These models have recently received considerable

interest in the economics literature, as they conveniently allow to model certain features

of conditional wage distributions, such as nonlinearities around the level of the minimum

wage (e.g. Chernozhukov et al., 2009; Rothe, 2011; Fortin et al., 2011). The basic idea is

to directly model the conditional CDF of Y given X through a family of binary response

models for the event that the dependent variable Y exceeds some threshold y ∈ R. More

specifically the model is given by

F0 = {F (y|x) = Λ(x′θ(y)) for some θ(y) ∈ Θ ⊂ Rp and all y ∈ R}, (4.3)

where Λ(·) is a known strictly increasing link function, e.g. the logistic or standard normal

distribution function, or simply the identity function. Compared to quantile regression,

distributional regression models the conditional CDF directly, and may thus be preferred

in applications where the CDF is the actual object of interest. Distributional regression

also does not require the dependent variable to be continuously distributed. See Koenker

(2010) for some comparisons of the two approaches in the location shift model.

Since for every threshold value y ∈ R the distributional regression model resembles a

standard binary response model, it can be fitted the same way one would e.g. proceed with

a logistic regression. A natural estimator for the functional parameter θ0(·) is the “point-

wise” maximum likelihood estimator θ̂n(·), which solves the equation ‖Ψ̂n(θ̂n(y), y)‖ = 0,

with Ψ̂n(θ, y) := n−1
∑n

i=1 ψ(Zi, θ, y) and

ψ(Zi, θ, y) = (Λ(X ′iθ) (1− Λ(X ′iθ)))
−1

(Λ(X ′iθ)− I{Yi ≤ y})λ(X ′iθ)Xi

the usual score function, and λ the derivative of Λ. The estimated conditional CDF of

Y given X is then given by F̂n(y|x) = Λ(x′θ̂n(y)), and the test statistic Tn is straight-

forward to compute from this expression. The following theorem gives conditions for the

distributional regression model to satisfy the “high level” conditions in Section 3.

Theorem 6. Suppose that (i) the support Y of Y is either a finite set or a bounded

open open subset of R, (ii) the distribution function F (·|X) admits a density function

f(·|X) that is continuous, bounded and bounded away from zero at all y ∈ Y, almost

18



surely, (iii) the matrix E(XX ′) is finite and of full rank, (iv) the parameter θ0(·) solving

E (ψ (Z, θ0(y), y)) = 0 is such that θ0(y) is in the interior of the parameter space Θ for

every y ∈ Y, and (v) the quantity Λ(X ′θ) is bounded away from zero and one uniformly

over θ ∈ Θ, almost surely. Then Assumption 1–5 hold for the distributional regression

model in (4.3) with Ḟ (y|x, θ)[h(·)] = (∂Λ (x, θ(y)) /∂θ′)[h(y)].

5. Extension: Testing over a Subset of the Support

In some applications, it is not only interesting to test the validity of a conditional dis-

tributional model for the entire conditional CDF, but also its adequacy over some range

of the conditional distribution. For example, for models formulated in terms of condi-

tional quantiles, one might be interested in whether the model is correctly specified for

all conditional τ -quantiles with τ ∈ (τL, τU) and 0 < τL < τU < 1. Another question that

might be of interest is whether the parametric model correctly describes the conditional

CDF on the subset of the support where Y and/or some components of X takes values

in a particular interval. To accommodate such settings, we can consider the following

generalization of our testing problem (2.1)–(2.2):

H0 : F (y|x) = F (y|x, θ) for some θ ∈ B(T ,Θ) and all (y, x) ∈ S (5.1)

vs. H1 : F (y|x) 6= F (y|x, θ) for all θ ∈ B(T ,Θ) and some (y, x) ∈ S (5.2)

for some suitably chosen closed and connected set S ⊂ Z. The two above-mentioned

examples correspond to choosing S = {(y, x) : F−1(τL|x) ≤ y ≤ F−1(τU |x)} for 0 < τL <

τU < 1, and S = {(y, x) : yL ≤ y ≤ yU , xL ≤ x ≤ xU} for some −∞ ≤ yL < yU ≤ ∞ and

−∞ ≤ xL < xU ≤ ∞, respectively. Of course, other choices of S are possible as well.

We now outline how our GCCM test can be adapted to the modified testing problem

in (5.1)–(5.2) through three principal adjustments. First, it might be necessary to modify

the moment function ψ used to compute the approximate Z-estimator θ̂n such that the

latter remains consistent for a population value θ0 satisfying

F (y|x) = F (y|x, θ0) for all (y, x) ∈ S
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under the null hypothesis. The details of this step critically depends on the type of

conditional distributional model under consideration, and also the exact form of the set

S. It is therefore difficult to give a general recipe. For example, when testing the linear

quantile regression specification and S = {(y, x) : y ≥ yL} for some constant yL ∈ R one

could e.g. work with the censored quantile regression estimator of Powell (1986). Second,

one has to redefine the test statistic such that the process R̂n(y, x) is only evaluated over

S. This can be accomplished by simply putting

Tn = n

∫
S

R̂n(y, x)2dĤn(y, x) =
n∑
i=1

I{(Yi, Xi) ∈ S}R̂n(Yi, Xi)
2.

Third, one has to modify the bootstrap sampling scheme in order to impose the new null

hypothesis (5.1). To do so, one can obtain a bootstrap data set {(Yb,i, Xb,i), 1 ≤ i ≤ n}

by i.i.d. sampling from the distribution with CDF Ĥ∗n, where

Ĥ∗n(y, x) =

Ĥn(y, x) if (y, x) /∈ S

Ĥ0
n(y, x) if (y, x) ∈ S,

and proceed as usual with the new data set. Theoretical properties analogous to those

derived in Section 3 can be established for the modified testing procedure using the same

type of arguments. If the set S is unknown, it can be replaced in the steps outlined

above by some consistent estimate Ŝn. It can be shown that this does not affect the

test’s asymptotic properties as long as Ŝn satisfies the weak regularity condition that

n−1
∑n

i=1(I{(Yi, Xi) ∈ Ŝn} − I{(Yi, Xi) ∈ S})
p→ 0.

6. Simulation Results

6.1. Setup. In order to demonstrate the usefulness of our proposed testing procedure,

we conduct a number of simulation experiments to assess the size and power properties

in finite samples. In particular, we simulate a dependent variable Y according to one of
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the following data generating processes:

(DGP1): Y = X1 +X2 + U

(DGP2): Y = X1 +X2 + V

(DGP3): Y = X1 +X2 + (.5 +X1)U

(DGP4): Y = X1 +X2 + (.5 +X1 +X2
2 )1/2U

(DGP5): Y = X1 +X2 + .2(.5 +X1 +X2
2 )3/2 + U

where X1 ∼ Binom(1, .5), X2 ∼ N(0, 1), U ∼ N(0, 1) and V = (1 − 2V ∗1 )V ∗2 /
√

8 with

V ∗1 ∼ Binom(1, .5) and V ∗2 = χ2(2). All random variables we just mentioned are in-

dependent of each other. We consider the sample sizes n = 100 and n = 300, and set

the number of replications to 1000. In each simulation run, we use our GCCM test for

correctness of the specification of the four types of models discussed in Section 4: the

location shift model (LS), the location-scale shift model (LSS), the linear quantile regres-

sion model (QR) and the distributional regression model (DR) with Λ being the standard

normal distribution function. For the LS and LSS specification, we also compute the test

based on Khmaladzation described in Koenker and Xiao (2002); and for the QR speci-

fication we consider the test in Escanciano and Goh (2010)3. We are not aware of any

specification test for the DR model other than the one proposed in this paper.

Our data generating processes are designed is such a way that a different set of models

is correctly specified in each of them. DGP1 is a simple location shift model with normally

distributed errors, and hence all four specifications are correct in this case. DGP2 is again

a simple location shift model, but now the errors follow a mixture of a “positive” and a

“negative” χ2 distribution with 2 degrees of freedom (normalized to have unit variance).

We consider this DGP to investigate if our test of the DR specification is able to pick

up a misspecified link function. DGP3 is a location-scale shift model, and thus the LSS

and QR model are correct, whereas the LS and DR specification are not. Finally, under

DGP4 and DGP5 all four models considered for this simulation study are misspecified.

3Escanciano and Goh (2010) point out that for the case of i.i.d. data we consider in this paper the
properties of their procedure are superior to those of tests based on subsampling, as e.g. in Escanciano
and Velasco (2010), and hence we do not consider the latter for our simulations
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6.2. Results. In Table 1 we show the empirical rejection probabilities of our GCCM

test and the competing procedures for the nominal levels of 5% and 10%. The GCCM

tests generally exhibit good size properties, with rejection rates close to the nominal

levels under correct specification. The same is true for Escanciano and Goh’s (2010) test

of the QR specification. In contrast, the tests for the LS and LSS specification from

Koenker and Xiao (2002) seem to be slightly conservative, particularly for n = 100.

In terms of power, our GCCM-QR test exhibits good properties, which are roughly on

par with those of the test in Escanciano and Goh’s (2010), for both sample sizes under

consideration. The GCCM-LS test also performs well, with rejection rates substantially

above those of the corresponding test from Koenker and Xiao (2002). The behavior of

the GCCM-LSS test under DGP4 and DGP5 is somewhat peculiar in our simulations,

in the sense that it exhibits rejection rates that are substantially below those of the

GCCM-QR test, even though one is testing a more restrictive hypothesis in these cases.

We conjecture that this is a small sample phenomenon due to the particular form of

the data generating processes: under both DPG4 and DGP5 the errors tend to contain

some large outliers. This causes instability in the least squares estimates of the scale

parameters γ0, which in turn leads to a loss of power. On the other hand, quantile

regression is well-known to be robust against outliers, which seems to be the reason that

the corresponding test exhibits better properties in this case. However, our GCCM-LSS

still dominates the corresponding test from Koenker and Xiao (2002) in terms of power.4

Finally, the GCCM-DR also performs well in our simulation exercise. It is e.g. able to

pick up the misspecified link function in DGP2 even for n = 100, and produces rejection

rates under DGP4 which are substantially higher than that of the GCCM-QR test. In

summary, the (certainly limited) simulation evidence suggest that our GCCM tests have

good finite sample properties even in relatively small samples, and compare favorably to

their respective relevant competitors.

4The tests in Koenker and Xiao (2002) generally exhibit poor power properties in our simulation
study, particularly under DGP4–DGP5. We therefore repeated the simulations with larger sample sizes,
and found that the procedures lead to substantial rejection probabilities only for n > 2000. For such
sample sizes, the rejection probabilities under misspecification are virtually equal to one for all other
procedures we consider in this paper.
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Table 2: Empirical Application: Empirical Rejection Frequencies of the Generalized Conditional

Cramer van Mises (GCCM) Test for Correct Specification of various Conditional Distributional

Models.

GCCM-LS GCCM-LSS GCCM-QR GCCM-DR

n = 500 10% 5% 10% 5% 10% 5% 10% 5%

Covariates 1 1.000 0.992 0.961 0.936 0.997 0.975 0.992 0.975

Covariates 2 0.837 0.661 0.549 0.397 0.691 0.520 0.352 0.211

Covariates 3 0.129 0.070 0.070 0.029 0.088 0.029 0.029 0.009

n = 2000 10% 5% 10% 5% 10% 5% 10% 5%

Covariates 1 1.000 1.000 0.997 0.997 1.000 1.000 1.000 1.000

Covariates 2 1.000 0.997 0.947 0.921 0.994 0.983 0.789 0.556

Covariates 3 0.760 0.592 0.507 0.323 0.538 0.369 0.136 0.067

GCCM denotes our Generalized Conditional Cramer van Mises test. Suffixes denote the spec-

ification being tested: location shift (LS), location-scale shift (LSS), quantile regression (QR)

or distributional regression (DR).

7. Empirical Application

In this section, we use our GCCM test to assess the validity of various commonly used

models for the conditional distribution of wages given certain individual characteristics.

As pointed out in the introduction, such models play an important role in the literature on

decomposing counterfactual distributions (Fortin et al., 2011). There are doubts, however,

that standard models like linear quantile regression are able to capture some important

features of conditional wage distributions, such as e.g. the irregular behavior around the

minimum wage. The results in this subsection shed some light on this important empirical

issue.

We use a data set constructed from the 1988 wave of the Current Population Sur-

vey (CPS), an extensive survey of US households. The same data is used in DiNardo,

Fortin, and Lemieux (1996), to which we refer for details of its construction. It con-

tains information on 74,661 males that were employed in the relevant period, including

the hourly wage, years of education, years of potential labor market experience, and in-

dicator variables for union coverage, race, marital status, part-time status, living in a

Standard Metropolitan Statistical Area (SMSA), type of occupation (2 levels), and the

industry in which the worker is employed (20 levels). As in the previous subsection, we

consider the location shift model (LS), the location-scale sift model (LSS), the linear
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quantile regression model (QR), and the distributional regression model (DR) using the

normal CDF as a link function. We test the correct specification of each model with log

hourly wage as the dependent variable, and the following three different subsets of the

explanatory variables, respectively:

• Covariates 1: union coverage, education, experience.

• Covariates 2: all variables in Covariates 1, experience (squared), education inter-

acted with experience, martial status, part-time status, race, SMSA.

• Covariates 3: all variables in Covariates 2, occupation, industry.

Given the large sample size, we would expect all specifications to be rejected by the

data, since every statistical model is at best a reasonable approximation to the true data

generating mechanism. However, this would not directly imply that such specifications

result in misleading conclusions, as in large samples our GCCM test should be able to pick

up deviations from the null hypothesis even if they are not of economically significant

magnitude. On the other hand, we would have much more reason to be concerned if

flexible models using many covariates would be rejected even in small samples. We

therefore conduct a simulation experiment, where in each run we test the validity of

various conditional distributional models using Covariates 1–3, respectively, for random

subsamples of the data of size n = 500 and n = 2000.

In Table 2, we report the empirical rejection probabilities from 1000 replications of

the simulation experiment described above. We can see that using the information in

Covariates 1 and Covariates 2 none of the four specifications we consider lead to an

adequate fit of the conditional wage distribution. All empirical rejection rates are close

to one for both sample sizes in case of Covariates 1. For Covariates 2, we observe rejection

rates between about 22% and 66% at the nominal 5% level for n = 500, with the lowest

rates coming from the DR model. For n = 2000, the QR specification (or one of its

special cases) are rejected in almost all runs at the 5% level, while rejection rates for the

DR model are somewhat lower at about 55%. For the most extensive set Covariates 3,

rejection rates for all specifications are around or below the respective nominal level for

n = 500. When moving to n = 2000, rejection rates for the QR specification rise to about
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37% at the 5% nominal level. The LSS and LS specification are rejected at a similar or

higher rate, respectively. On the other hand, rejection rates for the DR model remain

around the respective nominal level in this case. Our simulation results in the previous

subsection suggest that this last finding should not be due to a lack of power of our test

under the DR specification. The class of distributional regression models might thus be

more adequate to capture the particular features of conditional wage distributions, such

as e.g. the nonlinearities close to the legal minimum wage level.

Remark 1. A particular feature of the CPS data is that the empirical distribution of

hourly wages contains a number of mass points, since many workers are paid a “round”

amount of dollars, or at least report it in the survey. Since the linear quantile regression

model implies a strictly increasing conditional CDF, it is not able to reproduce such

patterns. In order to check whether our high rejection rates are simply due to this

issue, we repeated the above empirical exercise with the following modification: First,

we computed the rank of each individual in the distribution of wages, breaking ties at

random. Second, we replaced the observed wage by the quantile of a smoothed version

of the empirical distribution of wages (obtained by linear interpolation of jump points)

corresponding to the individual’s rank. That is, we were “spreading” the mass points

evenly in order to obtain a “smooth” distribution of wages without ties. The results of

our empirical exercise remained qualitatively unchanged using the modified data set, and

are hence not reported for brevity. There are no theoretical issues related to mass points

in the distribution of outcomes when using the class of distributional regression models,

which was also confirmed in our simulation.

8. Conclusions

This paper provides a specification test for a general class of conditional distributional

models indexed by function-valued parameters. Our method is straightforward to imple-

ment and does not require the choice of smoothing parameters. We establish consistency

of our testing procedure against fixed alternatives under general conditions, and study its

local power properties. We illustrate the usefulness of our procedure via a simulation pro-

cedure, highlighting its favorable practical properties compared to a competing approach.
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In an application to real data, we show that our test is able to detect misspecification

of standard linear quantile regression models for conditional distribution of wages in the

US even in small samples, while a rich distributional regression model can typically not

be rejected.

A. Appendix

A.1. Proofs of Theorems. In this subsection, we collect the proofs of our main the-

orems. Some auxiliary results needed in the course of the proofs are given in Section A.2

of this Appendix.

Proof of Theorem 1. Recall the definition that

H0(y, x) =

∫
t≤x

F (y|t, θ0)dG(t),

where under the assumptions of the theorem θ0 is well-defined under both the null and

the alternative as the probability limit of the estimate θ̂n. Also note that by construction

H0 ≡ H under the null, and that P (H0(Y,X) 6= H(Y,X)) > 0 under the alternative.

We also define the processes

ν(y, x) =
√
n(Ĥn(y, x)−H(y, x)) and

ν0(y, x) =
√
n(Ĥ0

n(y, x)−H0(y, x)),

and note that

√
nR̂n(y, x) = (ν(y, x)− ν0(y, x)) +

√
n(H(y, x)−H0(y, x)).

To prove part i) of the theorem, we use the fact that under the null our test statistic can

be rewritten as follows:

Tn =

∫
(ν(y, x)− ν0(y, x))2dH(y, x) +

∫
(ν(y, x)− ν0(y, x))2d(Ĥn(y, x)−H(y, x)).

From Lemma 2, we know that (ν, ν0)⇒ G, where G = (G1,G2) is a tight bivariate mean
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zero Gaussian process. Applying the Continuous Mapping Theorem and the Glivenko-

Cantelli Theorem, we thus have that

Tn =

∫
(G1(y, x)−G2(y, x))2dH(y, x) + op(1),

as claimed. To show part ii), note that under a fixed alternative we have that

Tn =

∫
(ν(y, x)− ν0(y, x) +

√
n(H(y, x)−H0(y, x)))2dH(y, x) + op(1) = Op(n)

since H0 and H differ on a set with positive probability under the alternative. The test

statistics becomes arbitrarily large with probability approaching 1 as n → ∞ in this

case.

Proof of Theorem 2. To prove the result, we first define the empirical processes λ1(y, x) =
√
n((Ĥn(y, x)−

∫
F ∗(y|t)I{t ≤ x}dG(t)) and λ2(θ, u) =

√
n(Ψ̂n(θ, u)− EF ∗(ψ(Z, θ, u))),

and denote the joint process by λ(y, x, θ, u) = (λ1(y, x), λ2(θ, u)). It then follows with

Lemma 3 that

λ⇒
(
G1 + δµ1, G̃1 + δµ̃2

)
,

where µ1(y, x) =
∫

(Q(y|t) − F ∗(y|t))I{t ≤ x}dG(t) and µ̃2(θ, u) = EQ(ψ(Z, θ, u)) −

EF ∗(ψ(Z, θ, u)). Next, define the empirical processes ν∗(y, x) =
√
n(Ĥn(y, x)−H∗(y, x))

and ν∗0(y, x) =
√
n(Ĥ0

n(y, x) − H∗(y, x)), with H∗(y, x) =
∫
F ∗(y|t)I{t ≤ x}dG(t). Pro-

ceeding in the same way as in the proof of Lemma 2, we find that

(ν, ν0)⇒ (G1 + δµ1,G2 + δµ2),

where µ2(y, x) =
∫
Ḟ (y|t)[h]I{t ≤ x}dG(t) and h(u) = ∂θ′ΨF ∗(θ∗(u), u)−1ΨQ(θ∗(u), u).

The statement of the Theorem then follows from the continuous mapping theorem, in

the same way as in the proof of Theorem 1.

Proof of Theorem 3. To prove part i) let c(α) be the “true” critical value satisfying

P (Tn > c(α)) = α + o(1). Then it follows from Lemma 4 that ĉn(α) = c(α) + op(1).

This implies that Tn and T̃n = Tn − (ĉn(α)− c(α)) converge to the same limiting distri-

bution as n→∞, and hence we have that P (Tn > ĉn(α)) = α + o(1) as claimed.
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To prove part ii), note that by Lemma 4 the bootstrap critical value ĉ(α) is bounded

in probability under fixed alternatives. Hence for any ε > 0 there exists a sufficiently

large constant M such that P (ĉn(α) > M) < ε+ o(1). Using elementary inequalities, we

also have that

P (Tn ≤ ĉn(α)) = P (Tn ≤ ĉn(α), Tn ≤M) + P (Tn ≤ ĉn(α), Tn > M)

≤ P (Tn ≤M) + P (ĉn(α) > M).

From Theorem 1(ii), we know that P (Tn ≤M) = o(1), and thus P (Tn ≤ ĉn(α)) < ε+o(1),

which implies the statement of the theorem since ε can be chosen arbitrarily small.

To show part iii), define c(α) as in the proof of part i), i.e. the α-quantile of the

limiting distribution of the test statistic Tn under the null hypothesis. Using Anderson’s

Lemma, we find that

P

(∫
(G1(y, x)−G2(y, x) + µ(y, x))2 dH(y, x) > c(α)

)
≥ P

(∫
(G1(y, x)−G2(y, x))2 dH(y, x) > c(α)

)
= α,

because the Gaussian process G1−G2 has mean zero (see also Andrews (1997, p. 1114)).

Under a local alternative, we therefore have that P (Tn > c(α)) ≥ α+ o(1). Furthermore,

we have already shown in part i) that P (Tn > ĉn(α)) = P (Tn > c(α)) + o(1) under the

null hypothesis. By using contiguity arguments, this can also shown to be true under the

local alternative, see e.g. the proof of Corollary 2.1 in Bickel and Ren (2001).

Proof of Theorem 4–6. This follows by straightforward applications of results in Cher-

nozhukov et al. (2009, Appendix F).

A.2. Auxiliary Results. In this subsection, we collect a number of auxiliary results

used in the proofs of our main results above.

Lemma 1. Define the empirical processes ν(y, x) =
√
n(Ĥn(y, x)−H(y, x)) and w(θ, u) =

√
n(Ψ̂n(θ, u)−Ψ(θ, u)). Then, under either the null hypothesis or a fixed alternative, and

Assumptions 1-6, it holds that (v, w) ⇒ G̃ in l∞(Z × Θ × T ), where G̃ = (G1, G̃2) is a
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tight bivariate mean zero Gaussian process. Moreover, the bootstrap procedure in Section

2.3 consistently estimates the law of G̃.

Proof. This lemma is a minor generalization of Lemma 13 in Chernozhukov et al. (2009),

and can thus be proven in the same way.

Lemma 2. Let either the null hypothesis or a fixed alternative, and Assumptions 1-6

be true. Define the empirical processes ν(y, x) =
√
n(Ĥn(y, x) −H(y, x)) and ν0(y, x) =

√
n(Ĥ0

n(y, x)−H0(y, x)). Then it holds that (ν, ν0)⇒ G in l∞(Z×Z), where G = (G1,G2)

is a tight bivariate mean zero Gaussian process.

Proof. Under either the null hypothesis or a fixed alternative, it follows from our Lemma

1 and Lemma 11 in Chernozhukov et al. (2009) that

√
n

Ĥn(·, ·)−H(·, ·)

θ̂n(·)− θ0(·)

⇒
 G1(·, ·)

−Ψ̇−1θ0(·),·[G̃2(θ0(·), ·)]


in `∞(Z)× `∞(T ). Next, it follows from Assumption 5 that

√
n(F̂n(y|x)− F (y|x))⇒ −Ḟ (y|x, θ0)[Ψ̇−1θ0(·),·[G̃2(θ0(·), ·)]] =: G∗2(y, x).

The statement of the Lemma then follows directly from Hadamard differentiability of the

mapping (A,B) 7→
∫
A(·)I{t ≤ ·}dB(t), and the Functional Delta Method. In particular,

for the second component G2 of the joint limiting process we have that

G2(y, x) =

∫
F (y|t)I{t ≤ x}dG1(∞, t) +

∫
G∗2(y, t)I{t ≤ x}dG(t),

which follows from the form of the Hadamard differential of the mapping (A,B) 7→∫
A(·)I{t ≤ ·}dB(t).

Lemma 3. Suppose the data are distributed according to a local alternative Qn sat-

isfying Assumption 7. Define the processes vn(y, x) =
√
n(Ĥn(y, x) − Hn(y, x)) and

wn(θ, u) =
√
n(Ψ̂n(θ, u) − Ψn(θ, u)), where Hn(y, x) =

∫
Qn(y|t)I{t ≤ x}dG(t) and

Ψn(θ, u) = EQn(ψ(Z, θ, u)). Then it holds (vn, wn) ⇒ G̃ in l∞(Z × Θ × T ), where the

limiting process G̃ has the same properties as the one in Lemma 1.

30



Proof. This follows by an application of Lemma 2.8.7 in Van der Vaart and Wellner

(1996), using the fact that by Assumption 4, Qn is the linear combination of two measures

under which the function class G is Donsker with a square integrable envelope.

Lemma 4. Define the bootstrap empirical processes νb(y, x) =
√
n(Ĥb,n(y, x)− Ĥ0

n(y, x))

and νb,0(y, x) =
√
n(Ĥ0

b,n(y, x)− Ĥ0
n(y, x)). Then it holds under either the null hypothesis

or a fixed alternative that (νb, νb,0)⇒ Gb, where Gb = (Gb1,Gb2) is a tight bivariate mean

zero Gaussian process whose distribution coincides with that of the process G in Lemma 1

under the null hypothesis.

Proof. This follows from Lemma 1 and the Functional Delta Method for the bootstrap

(Van der Vaart and Wellner, 1996, Theorem 3.9.11)

B. Sufficient Condition for Contiguity.

In this section, we show that the condition given in (3.2) is sufficient for contiguity.

Our argument is analogous to the one given in Andrews (1997), and stated here only

for completeness. For and distribution function H, let PH be the probability mea-

sure induced by H. By definition, PHn is contiguous to PH∗ if PH∗(An) → 0 implies

PHn(An) → 0 for every sequence of measurable sets An. By an application of Le Cam’s

First Lemma (Van der Vaart, 2000, Theorem 6.4) this is the case if dPHn/dPH∗ con-

verges in distribution to a random variable V with E(V ) = 1 under PH∗ . We show that

log(dPHn/dPH∗)
d→ N(−σ2/2, σ2) for some value σ2 > 0, which directly implies that

the aforementioned condition is fulfilled (see also Example 6.5 in Van der Vaart (2000)).

Writing an = δ/
√
n, it holds by the definition of dPHn and dPH∗ that

dPHn

dPH∗
=

∏n
i=1 ((1− an)f ∗(Yi|Xi)g(Xi) + anq(Yi|Xi)g(Xi))∏n

i=1 f
∗(Yi|Xi)g(Xi)

,
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and we thus have that

log

(
dPHn

dPH∗

)
=

n∑
i=1

log

(
(1− an)f ∗(Yi|Xi)g(Xi) + anq(Yi|Xi)g(Xi)

f ∗(Yi|Xi)g(Xi)

)
=

n∑
i=1

log

(
1 + an

q(Yi|Xi)− f ∗(Yi|Xi)

f ∗(Yi|Xi)

)
=

n∑
i=1

log(1 + Zi),

where

Zi = an
q(Yi|Xi)− f ∗(Yi|Xi)

f ∗(Yi|Xi)
.

A Taylor expansion of log(1 + Zi) around 1 yields

log

(
dPHn

dPH∗

)
=

n∑
i=1

(
Zi −

1

2
Z2
i +

1

6
Z3
i

2

(1 + ξi)3

)

for some ξi ∈ [−Zi, Zi], as log(1) = 0.Next, we show that by the central limit theorem∑n
i=1 Zi converges in distribution to a normally distributed random variable, that by

the law of large numbers
∑n

i=1 Z
2
i converges almost surely to a constant, and that the

remaining summand

Z∗n :=
n∑
i=1

(
1

6
Z3
i

2

(1 + ξi)3

)
converges to 0 in probability.

First consider the expectation of the random variable Z̃i = δ q(Yi|Xi)−f∗(Yi|Xi)
f∗(Yi|Xi)

under P :

E(Z̃i) = δ

∫ ∫
q(y|x)− f ∗(y|x)

f ∗(y|x)
f ∗(y|x)dµ(y)dG(x)

= δ

∫ ∫
(q(y|x)− f ∗(y|x)) dµ(y)dG(x)

= δ

∫ ∫
q(y|x)dµ(y)dG(x)− δ

∫ ∫
f ∗(y|x)dµ(y)dG(x) = δ − δ = 0.

Furthermore, note that with (3.2) we have that

E(|Z̃i|p) = E
(∣∣∣∣ q(Yi|Xi)

f ∗(Yi|Xi)
− 1

∣∣∣∣p) <∞
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for all values of p. Since
∑n

i=1 Zi = 1√
n

∑n
i=1 Z̃i, we can directly apply the standard

central limit theorem for i.i.d. random variables and get

n∑
i=1

Zi
d→ N

(
0,E

(
(Z̃i)

2
))

.

Moreover, we have
∑n

i=1 Z
2
i = 1

n

∑n
i=1(Z̃i)

2. As E
(

(Z̃i)
2
)
< ∞, the usual strong law of

large numbers yields
n∑
i=1

Z2
i →a.s. E

(
(Z̃i)

2
)
.

To show convergence of the remaining summand to 0, we apply Markov’s inequality to

Z∗n. For any ε > 0, we have

E(|Z∗n|)
ε

≤ 1

6

1√
nε

E(|Z̃3
i |)E

(
2

|(1 + ξi)3|

)
. (B.1)

Since we have ξi ∈ [−Zi, Zi], and since (3.3) implies that

|Zi| =
1√
n
δ

∣∣∣∣ q(Yi|Xi)

f ∗(Yi|Xi)
− 1

∣∣∣∣ ≤ C1/
√
n

for a constant C1, we obtain the bound |ξi| < 1 for sufficiently large n. Therefore, the

expression on the right-hand side of (B.1) is bounded, and we find that for arbitrary

ε > 0, sufficiently large n and a constant C2 it holds that

P(|Z∗n| > ε) ≤ E(|Z∗n|)
ε

≤ C2√
n
,

and thus Z∗n
p→ 0, as claimed. Taken together, we now thus show that

log

(
dPHn

dPH∗

)
d→ N

(
−1

2
E
(

(Z̃i)
2
)
,E
(

(Z̃i)
2
))

,

which completes the argument.
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