
Inference on sets in finance

Victor Chernozhukov
Emre Kocatulum
Konrad Menzel

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP04/12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6719064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INFERENCE ON SETS IN FINANCE

VICTOR CHERNOZHUKOV† EMRE KOCATULUM§ KONRAD MENZEL‡

Abstract. In this paper we introduce various set inference problems as they appear in

finance and propose practical and powerful inferential tools. Our tools will be applicable

to any problem where the set of interest solves a system of smooth estimable inequalities,

though we will particularly focus on the following two problems: the admissible mean-

variance sets of stochastic discount factors and the admissible mean-variance sets of

asset portfolios. We propose to make inference on such sets using weighted likelihood-

ratio and Wald type statistics, building upon and substantially enriching the available

methods for inference on sets.
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1. Introduction

In this paper we introduce various set inference problems as they appear in finance

and propose practical and powerful inferential tools. Our tools will be applicable to any

problem where the set of interest solves a system of estimable inequalities, though we

will particularly focus on the following two problems: The first problem will deal with

mean-variance sets of stochastic discount factors and the second with mean-variance sets

of admissible portfolios.

Let us now introduce the problem. We begin by recalling two equations used by

[Cochrane, 2005] to effectively summarize the science of asset pricing:

Pt = Et[Mt+1Xt+1]

Mt+1 = f(Zt+1, parameters),

where Pt is an asset price, Xt+1 is the asset payoff, Mt+1 is the stochastic discount factor

(SDF) or pricing kernel (PK), which is a function f of some data Zt+1 and parameters,

and Et is the conditional expectation given information at time t. The set of SDFs

Mt that can price existing assets generally form a proper set, that is, a set that is not

a singleton. SDFs are not unique, because the existing payoffs to assets do not span

the entire universe of possible random payoffs. Dynamic asset pricing models provide

families of potential SDFs, for example, the standard consumption model predicts that

an appropriate SDF can be stated in terms of intertemporal marginal rate of substitution:

Mt = β
u′(Ct+1)

u′(Ct)
,

where u denotes a utility function parameterized by some parameters, Ct denotes con-

sumption at time t, and β denotes the subjective discount factor.

The basic econometric problem is to check which families of SDFs price the assets

correctly and which do not. In other words, we want to check whether given families or

subfamilies of SDFs are valid or not. One leading approach for performing the check is
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to see whether mean and standard deviation of SDFs

{µM , σM}

are admissible. The set of admissible means and standard deviations

Θ0 := { admissible pairs (µ, σ2) ∈ R2 ∩K},

which is introduced by [Hansen and Jagannathan, 1991] is known as the Hansen-Jagannathan

set and the boundary of the set Θ0 is known as the Hansen-Jagannathan bound. In order

to give a very specific, canonical example, let v and Σ denote the vector of mean returns

and covariance matrix to assets 1, ..., N which are assumed not to vary with information

sets at each period t. Let us denote

A = v′Σ−1v, B = v′Σ−11N , C = 1′NΣ−11N (1.1)

where 1N is a column vector of ones. Then the minimum variance σ2(µ) achievable by

a SDF given mean µ of the SDF is equal to

σ2 (µ) = (1− µv)′ Σ−1 (1− µv) = Aµ2 − 2Bµ + C

Therefore, the HJ set is equal to

Θ0 = {(µ, σ)︸ ︷︷ ︸
θ

∈ R2 ∩K︸ ︷︷ ︸
Θ

: σ(µ)− σ︸ ︷︷ ︸
m(θ)

≤ 0},

where K is any compact set. That is,

Θ0 = {θ ∈ Θ : m(θ) ≤ 0}.

Note that the inequality-generating function m(θ) depends on the unknown parameters,

the means and covariance of returns, m(θ) = m(θ, γ) and γ = vec (v, Σ).

Let us now describe the second problem. The classical [Markowitz, 1952] problem is

to minimize the risk of a portfolio given some attainable level of return:

min
w

Et[rp,t+1 − Et[rp,t+1]]
2 such that Et[rp,t+1] = µ,
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where rp,t+1 is portfolios return, determined as rp,t+1 = wrt+1, where w is a vector of

portfolio “weights” and rt+1 is a vector of returns on available assets. In a canonical

version of the problem, we have that the vector of mean returns v and covariance of

returns Σ do not vary with time period t, so that the problem becomes:

σ(µ) = min
w

w′Σw such that w′v = µ.

An explicit solution for σ(µ) takes the form,

σ2 (µ) =
Cµ2 − 2Bµ + A

AC −B2

where A,B and C are as in equation 1.1.

Therefore, the Markowitz (M) set of admissible standard deviations and means is

given by

Θ0 = {(µ, σ)︸ ︷︷ ︸
θ

∈ R2 ∩K︸ ︷︷ ︸
Θ

: σ(µ)− σ︸ ︷︷ ︸
m(θ)

≤ 0},

that is,

Θ0 = {θ ∈ Θ : m(θ) ≤ 0}.

The boundary of the set Θ0 is known as the efficient frontier. Note that as in HJ

example, the inequality-generating function m(θ) depends on the unknown parameters,

the means and covariance of returns, m(θ) = m(θ, γ), where γ = vec (v, Σ).

The basic problem of this paper is to develop inference methods on HJ and M sets,

accounting for uncertainty in the estimation of parameters of the inequality-generating

functions. The problem is to construct a confidence region R such that

lim
n→∞

P{Θ0 ⊆ R} = 1− α.

We will construct confidence regions for HJ sets using LR and Wald-type Statistics,

building on and simultaneously enriching the approaches suggested in [Chernozhukov et al., 2007],

[Beresteanu and Molinari, 2008], and [Molchanov, 1998]. We also would like to ensure

that confidence regions R are as small as possible and converge to Θ0 at the most rapid
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attainable speed. We need the confidence region R for entire set Θ0 in order to test va-

lidity of sets of SDFs. Once R is constructed, we can test infinite number of composite

hypotheses, current and future, without compromising the significance level. Indeed, a

typical application of HJ sets determines which sets of (µ, σ)’s within a given family fall

in the HJ set and which do not. Similar comments about applicability of our approach

go through for the M sets as well.

Our approach to inference using weighted Wald-type statistics complements and en-

riches the approach based on the directed Hausdorff distance suggested in [Beresteanu and Molinari, 2008]

and [Molchanov, 1998]. By using weighting in the construction of the Wald-type statis-

tics, we endow this approach with better invariance properties to parameter transforma-

tions, which results in noticeably sharper confidence sets, at least in the canonical empri-

cal example that we will show. Thus, our construction is of independent interest for this

type of inference, and is a useful complement to the work of [Beresteanu and Molinari, 2008]

and [Molchanov, 1998]. Furthermore, our results on formal validity of the bootstrap for

LR-type and W-type statistics are also of independent interest.

The rest of the paper is organized as follows. In Section 2 we present our estimation

and inference results. In Section 3 we present an empirical example, illustrating the

constructions of confidence sets for HJ sets. In Section 4 we draw conclusions and

provide direction for further research. In the Appendix, we collect the proofs of the

main results.

2. Estimation and Inference Results

2.1. Basic Constructions. We first introduce our basic framework. We have an

inequality-generating function:

m : Θ 7→ R.

The set of interest is the solution of the inequalities generated by the function m(θ) over

a compact parameter space Θ:

Θ0 = {θ ∈ Θ : m(θ) ≤ 0}.
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A natural estimator of Θ0 is its empirical analog

Θ̂0 = {θ ∈ Θ : m̂(θ) ≤ 0},

where m̂(θ) is the estimate of the inequality-generating function. For example, in HJ

and M examples, the estimate takes the form

m̂(θ) = m(θ, γ̂), γ̂ = vec (v̂, Σ̂).

Our proposals for confidence regions are based on (1) LR-type statistic and (2) Wald-

type statistic. The LR-based confidence region is

RLR =
{

θ ∈ Θ :
[√

nm̂(θ)/s(θ)
]2

+
≤ k̂(1− α)

}
, (2.1)

where s(θ) is the weighting function; ideally, the standard error of m̂(θ); and k̂(1 − α)

is a suitable estimate of

k(1− α) = (1− α)− quantile of Ln,

where

Ln = sup
θ∈Θ0

[√
nm̂(θ)/s(θ)

]2

+
(2.2)

is the LR-type statistic, as in [Chernozhukov et al., 2007].

Our Wald-based confidence region is

RW = {θ ∈ Θ : [
√

nd(θ, Θ̂0)/w(θ)]2 ≤ k̂(1− α)}, (2.3)

where w(θ) is the weighting function, particular forms of which we will suggest later;

and k̂ is a suitable estimate of

k(1− α) = (1− α)− quantile of Wn,

where Wn is the weighted W-statistic

Wn = sup
θ∈Θ0

[
√

nd(θ, Θ̂0)/w(θ)]2. (2.4)
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Recall that quantity d(θ, Θ̂0) is the distance of a point θ to a set Θ̂0, that is,

d(θ, Θ̂0) := inf
θ′∈bΘ0

‖θ − θ′‖.

In the special case, where the weight function is flat, namely w(θ) = w for all θ, the

W-statistic Wn becomes the canonical directed Hausdorff distance ([Molchanov, 1998],

[Beresteanu and Molinari, 2008]):√
Wn ∝ d(Θ0, Θ̂0) = sup

θ∈Θ0

inf
θ′∈bΘ0

‖θ − θ′‖.

The weighted statistic (2.4) is generally not a distance, but we argue that it provides

a very useful extension of the canonical directed Hausdorff distance. In fact, in our

empirical example precision weighting dramatically improves the confidence regions.

2.2. A Basic Limit Theorem for LR and W statistics. In this subsection, we

develop a basic result on the limit laws of the LR and W statistics. We will develop this

result under the following general regularity conditions:

R.1 The estimates θ 7→ m̂(θ) of the inequality-generating function θ 7→ m(θ) are

asymptotically Gaussian, namely, we have that in the metric space of bounded

functions `∞(Θ)

√
n(m̂(θ)−m(θ)) =d G(θ) + oP (1),

where G(θ) is a Gaussian process with zero mean and a non-degenerate covariance

function.

R.2 Functions θ 7→ m̂(θ) and θ 7→ m(θ) admit continuous gradients ∇θm̂(θ) and

∇θm(θ) over the domain Θ, with probability one, where the former is a uniformly

consistent estimate of the latter, namely uniformly in θ ∈ Θ

∇θm̂(θ) = ∇θm(θ) + oP (1).

Moreover, the norm of the gradient ‖∇θm(θ)| is bounded away from zero.
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R.3 Weighting functions satisfy uniformly in θ ∈ Θ

s(θ) = σ(θ) + op(1), w(θ) = ω(θ) + op(1),

where σ(·) ≥ 0 and ω(·) ≥ 0 are continuous functions bounded away from zero.

In Condition R.1, we require the estimates of the inequality-generating functions to

satisfy a uniform central limit theorem. There are plenty of sufficient conditions for this

to hold provided by the theory of empirical processes. In our example, this condition will

follow from asymptotic normality of the estimates of the mean returns and covariance

of returns. In Condition R.2, we require that gradient of the estimate of the inequality-

generating function is consistent for the gradient of the inequality-generating function.

Moreover, we require that the minimal eigenvalue of ∇θm(θ)∇m(θ)′ is bounded away

from zero, which is an identification condition that allows us to estimate, at a usual

speed, the boundary of the set Θ0, which we define as

∂Θ0 := {θ ∈ Θ : m(θ) = 0}.

In Condition R.3, we require that the estimates of the weight functions are consistent

for the weight functions, which are well-behaved.

Under these conditions we can state the following general result.

Theorem 1 (Limit Laws of LR and W Statistics). Under R.1-R.3

Ln =d L+ op(1), L = sup
θ∈∂Θ0

[
G(θ)

σ(θ)

]2

+

, (2.5)

Wn =d W + op(1), W = sup
θ∈∂Θ0

[
G(θ)

‖∇θm(θ)‖ · ω(θ)

]2

+

, (2.6)

where both W and L have distribution functions that are continuous at their (1 − α)-

quantiles for α < 1/2. The two statistics are asymptotically equivalent under the follow-

ing condition:

Wn =d Ln + op(1) if w(θ) =
‖∇θm(θ)‖

σ(θ)
for each θ ∈ Θ.
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We see from this theorem that the LR and W statistics converge in law to well-behaved

random variables that are continuous transformations of the limit Gaussian process G(θ).

Moreover, we see that under an appropriate choice of the weighting functions, the two

statistics are asymptotically equivalent.

For our application to HJ and M sets, the following conditions will be sufficient

C.1 Estimator of the true parameter value γ0 characterizing the inequality generating

function m(θ) = m(θ, γ0), where γ0 denotes the true parameter value, is such

that
√

n(γ̂ − γ0) →d Ω1/2Z, Z = N(0, Id).

C.2 Gradients ∇θm(θ, γ) and ∇γm(θ, γ) are continuous over the compact parameter

space (θ, γ) ∈ Θ × Γ, where Γ is some set that includes an open neigborhood of

γ0. Moreover, the minimal eigenvalue of ∇θm(θ, γ)∇θm(θ, γ)′ is bounded away

from zero over (θ, γ) ∈ Θ× Γ.

It is straightforward to verify that these conditions hold for the canonical versions of

the HJ and M problems.

Under these conditions we immediately conclude that the following approximation is

true uniformly in θ, that is, in the metric space of bounded functions `∞(Θ):

√
n(m̂(θ)−m(θ)) = ∇γm(θ, γ̄)′

√
n(γ̂ − γ0) + op(1) (2.7)

= d∇γm(θ, γ0)
′Ω1/2Z + op(1), (2.8)

where ∇m(θ, γ̄) denotes the gradient with each of its rows evaluated at a value γ̄ on

the line connecting γ̂ and γ0, where value γ̄ may vary from row to row of the matrix.

Therefore, the limit process in HJ and M examples takes the form:

G(θ) = ∇γm(θ, γ0)
′Ω1/2Z. (2.9)
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This will lead us to conclude formally below that conclusions of Theorem 1 hold with

L = sup
θ∈∂Θ0

[
∇γm(θ, γ)′Ω1/2

σ(θ)
Z

]2

+

, (2.10)

W = sup
θ∈∂Θ0

[
∇γm(θ, γ)′Ω1/2

‖∇θm(θ, γ)‖ · ω(θ)
Z

]2

+

. (2.11)

A good strategy for choosing the weighting function for LR and W is to choose the

studentizing Anderson-Darling weights

σ(θ) = ‖∇γm(θ, γ0)
′Ω1/2‖, (2.12)

ω(θ) =
‖∇γm(θ, γ0)

′Ω1/2‖
‖∇θm(θ, γ0)‖

. (2.13)

The natural estimates of these weighting functions are given by the following plug-in

estimators:

s(θ) := ‖∇γm(θ, γ̂)′Ω̂1/2‖, (2.14)

w(θ) :=
‖∇γm(θ, γ̂)′Ω̂1/2‖
‖∇θm(θ, γ̂)‖

. (2.15)

We formalize the preceding discussion as the following corollary.

Corollary 1(Limit Laws of LR and W statistics in HJ and M problems). Suppose

that Conditions C.1-C.2 hold. Then conditions R.1 and R.2 hold with the limit Gaussian

process stated in equation (2.9). Furthermore, the plug-in estimates of the weighting

functions (2.14) and (2.15) are uniformly consistent for the weighting functions (2.12)

and (2.13), so that Condition R.3 holds. Therefore, conclusions of Theorem 1 hold with

the limit laws for our statistics given by the laws of random variables stated in equations

(2.10) and (2.11).

2.3. Basic Validity of the Confidence Regions. In this section we shall suppose

that we have suitable estimates of the quantiles of LR and W statistics and will verify

basic validity of our confidence regions. In the next section we will provide a construction

of such suitable estimates by the means of bootstrap and simulation.
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Our result is as follows.

Theorem 2 (Basic Inferential Validity of Confidence Regions). Suppose that for

α < 1/2 we have consistent estimates of quantiles of limit statistics W and L, namely,

k̂(1− α) = k(1− α) + op(1), (2.16)

where k(1 − α) is (1 − α)-quantile of either W or L. Then as the sample size n grows

to infinity, confidence regions RLR and RW cover Θ0 with probability approaching 1−α:

PrP [Θ0 ⊆ RLR] = PrP [Ln ≤ k̂(1− α)] → PrP [L ≤ k(1− α)] = (1− α), (2.17)

PrP [Θ0 ⊆ RW ] = PrP [Wn ≤ k̂(1− α)] → PrP [W ≤ k(1− α)]=(1− α). (2.18)

The result further applies to HJ and M problems.

Corollary 2(Limit Laws of LR and W statistics in HJ and M problems). Sup-

pose that Conditions C.1-C.2 hold and that consistent estimates of quantiles of statistics

(2.10) and (2.11) are available. Then conclusions of Theorem 2 apply.

2.4. Estimation of Quantiles of LR and W Statistics by Bootstrap and Other

Methods. In this section we show how to estimate quantiles of LR and W statistics

using bootstrap, simulation, and other resampling schemes under general conditions.

The basic idea is as follows: First, let us take any procedure that consistently estimates

the law of our basic Gaussian process G or a weighted version of this process appearing

in the limit expressions. Second, then we can show with some work that we can get

consistent estimates of the laws of LR and W statistics, and thus also obtain consistent

estimates of their quantiles. It is well-known that there are many procedures for accom-

plishing the first step, including such common schemes as the bootstrap, simulation, and

subsampling, including both cross-section and time series versions.
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In what follows, we will ease the notation by writing our limit statistics as a special

case of the following statistic:

S = sup
θ∈∂Θ0

[V (θ)]+, V (θ) = τ(θ)G(θ). (2.19)

Thus, S = L for τ(θ) = 1/s(θ) and S = W for τ(θ) = 1/[‖∇θm(θ)‖ ·ω(θ)]. We take τ to

be a continuous function bounded away from zero on the parameter space. We also need

to introduce the following notations and concepts. Our process V is a random element

that takes values in the metric space of continuous functions C(Θ) equipped with the

uniform metric. The underlying measure space is (Ω,F) and we denote the law of V

under the probability measure P by the symbol QV .

Suppose we have an estimate QV ∗ of the law QV of the Gaussian process V . This

estimate QV ∗ is a probability measure generated as follows. Let us fix another measure

space (Ω′,F ′) and a probability measure P ∗ on this space, then given a random element

V ∗ on this space taking values in C(Θ), we denote its law under P ∗ by QV ∗ . We thus

identify the probability measure P ∗ with a data-generating process by which we generate

draws or realizations of V ∗. This identification allows us to encompass such methods of

producing realizations of V ∗ as the bootstrap, subsampling, or other simulation methods.

We require that the estimate QV ∗ is consistent for QV in any metric ρK metrizing weak

convergence, where we can take the metric to be the Kantarovich-Rubinstein metric.

Let us mention right away that there are many results that verify this basic consistency

condition for various rich forms of processes V and various bootstrap, simulation, and

subsampling schemes for estimating the laws of these processes, as we will discuss in

more detail below.

In order to recall the definition of the Kantarovich-Rubinstein metric, let θ 7→ v(θ)

be an element of a metric space (M, d), and Lip(M) be a class of Lipschitz functions

ϕ : M → R that satisfy:

|ϕ(v)− ϕ(v′)| ≤ d(v, v′) ∧ 1, |ϕ(v)| ≤ 1,
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The Kantarovich-Rubinstein distance between probability laws Q and Q′ is

ρK(Q,Q′; M) := sup
ϕ∈Lip(M)

|EQϕ− EQ′ϕ|.

As stated earlier, we require that the estimate QV ∗ is consistent for QV in the metric

ρK , that is

ρK(QV ∗ ,QV ; C(Θ)) = op(1). (2.20)

Let QS denote the probability law of S = W or L, which is in turn induced by the

law QV of the Gaussian process V . We need to define the estimate QS∗ of this law.

First, we define the following plug-in estimate of the boundary set ∂Θ0, which we need

to state here:

∂̂Θ0 = {θ ∈ Θ : m̂(θ) = 0}. (2.21)

This estimate turns out to be consistent at the usual root-n rate, by the argument like

the one given in [Chernozhukov et al., 2007]. Then define QS∗ as the law of the following

random variable

S∗ = sup
θ∈d∂Θ0

[V ∗(θ)]+ (2.22)

In this definition, we hold the hatted quantities fixed, and the only random element is

V ∗ that is drawn according to the law QV ∗ .

We will show that the estimated law QS∗ is consistent for QS in the sense that

ρK(QS∗ ,QS ; R) = op(1). (2.23)

Consistency in the Kantarovich-Rubinstein metric in turn implies consistency of the esti-

mates of the distribution function at continuity points, which in turn implies consistency

of the estimates of the quantile function.

Equipped with the notations introduced above we can now state our result.

Theorem 3 (Consistent Estimation of Quantiles) Suppose Conditions R.1-R.3 hold,

and any mechanism, such as bootstrap or other method, is available, which provides a
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consistent estimate of the law of our limit Gaussian processes V , namely equation (2.20)

holds. Then, the estimates of the laws of the limit statistics S = W or L defined above

are consistent in the sense of equation (2.23). As a consequence, we have that the esti-

mates of the quantiles are consistent in the sense of equation (2.16).

We now specialize this result to the HJ and M problems. We begin by recalling that

our estimator satisfies
√

n(γ̂ − γ) =d Ω1/2Z + op(1).

Then our limit statistics take the form:

S = sup
θ∈∂Θ0

[V (θ)]2+, V (θ) = t(θ)′Z,

where t(θ) is a vector valued weight function, in particular, for S = L we have t(θ) =

(∇γm(θ, γ)′Ω1/2)/σ(θ) and for S = W we have t(θ) = (∇γm(θ, γ)′Ω1/2)/(‖∇θm(θ, γ)‖ ·

ω(θ)). Here we shall assume that we have a consistent estimate QZ∗ of the law QZ of

Z, in the sense that,

ρK(QZ∗ ,QZ) = op(1). (2.24)

There are many methods that provide such consistent estimates of the laws. Bootstrap is

known to be valid for various estimation methods ([van der Vaart and Wellner, 1996]);

simulation method that simply draws Z ∼ N(0, I) is another valid method; and subsam-

pling is another rather general method ([Politis and Romano, 1994]). Next, the estimate

QV ∗ of the law QV ∗ is then defined as:

V ∗(θ) = t̂(θ)′Z∗, (2.25)

where t̂(θ) is a vector valued weighting function that is uniformly consistent for the

weighting function t(θ). In this definition we hold the hatted quantity fixed, and the

only random element is Z∗ that is drawn according to the law QZ∗ . Then, we define the

random variable

S∗ = sup
θ∈d∂Θ0

[V ∗(θ)]2+,
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and use its law QS∗ to estimate the law QS .

We can now state the following corollary.

Corollary 3 (Consistent Estimation of Quantiles in HJ and M problems) Sup-

pose Conditions C.1-C.2 hold, and any mechanism, such as bootstrap or other method,

that provides a consistent estimate of the law of Z is available, namely equation (2.24)

holds. Then, this provides us with a consistent estimate of the law of our limit Gaussian

process G, namely equation (2.20) holds. Then, all of the conclusions of Theorem 3 hold.

3. Empirical Example

For empirical example we use HJ bounds which are widely used in testing asset pricing

models. For comparison purposes, the data used in this section is very similar to data

used in [Hansen and Jagannathan, 1991]. The two asset series used are annual trea-

sury bond returns and annual NYSE value-weighted dividend included returns. These

nominal returns are converted to real returns by using implicit price deflator based

on personal consumption expenditures as in [Hansen and Jagannathan, 1991]. Returns

data is from CRSP. Implicit price deflator is available from St. Louis Fed and based on

National Income and Product Accounts of United States. The time period is 1959-2006

(inclusive).

Figure 1 simply traces out the mean-standard deviation pairs which satisfy

m (θ, γ̂) = 0

where γ̂ is estimated using sample moments.

Figure 2 represents the uncertainity caused by the estimation of γ. To estimate the

distribution of γ̂ bootstrap method is used. Observations are drawn with replacement

from the bivariate time series of stock and bond returns. 100 bootstraps result in 100

γ̂. The resulting HJ bounds are included in the figure.
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In Figure 3 in addition to the bootstrapped curves 90% confidence region based on

LR statistic is presented. LR based confidence region covers most of the bootstrap

draws below the HJ bounds as expected. An attractive outcome of using this method is

that the resulting region does not include any unnecessary areas that is not covered by

bootstrap draws.

Figure 4 plots 90% confidence region based on unweighted LR statistic. Comparison

of Figure 3 and Figure 4 reveals that precision weighting plays a very important role

in delivering good confidence sets. Without precision weighting LR statistic delivers a

confidence region that includes unlikely regions in the parameter space where standard

deviation of the discount factor is zero. On the other hand precision weighted LR based

confidence region is invariant to parameter transformations, for example, changes in

units of measurement. This invariance to parameter transformations is the key property

of a statistic to deliver desirable confidence regions that does not cover unnecessary

areas.

Figure 5 plots confidence region based on Wald-based statistic with no precision

weighting. This is identical to the confidence region based on Hausdorff distance. Simi-

lar to Figure 4 this region covers a large area of the parameter space where no bootstrap

draws appear. This picture reveals a key weakness of using an unweighted Wald-based

statistic or Hausdorff distance to construct confidence regions. These methods are not

invariant to parameter transformations which results in confidence regions with unde-

sirable qualities that cover unnecessary areas in the parameter space. The problem in

Figure 4 and Figure 5 are of similar nature. In both of these cases the statistics un-

derlying the confidence regions are not invariant to parameter transformations therefore

when drawing confidence regions uncertainity in one part of the plot is assumed to be

identical to uncertainity in other parts of the plot. However a quick look at the Figure 2

reveals that uncertainity regarding the location of the HJ bound varies for a given mean

or standard deviation of the stochastic discount factor.
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Figure 6 plots the confidence region based on weighted Wald statistic. Weighting fixes

the problem and generates a statistic that is invariant to parameter transformations.

The resulting confidence set looks very similar to weighted LR based confidence set in

Figure 3 as it covers most of the bootstrap draws below the HJ bounds and does not

include unnecessary regions in the parameter space.

4. Conclusion

In this paper we provided various inferential procedures for inference on sets that

solve a system of inequalities. These procedures are useful for inference on Hansen-

Jagannathan mean-variance sets of admissible stochastic discount factors and Markowitz

mean-variance sets of admissible portfolios.
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Appendix A. Proofs

A.1. Proof of Theorem 1. Part 1. (Limit law of Ln.) Let Gn =
√

n(m̂−m). Then

Ln = sup
θ∈Θ0

[√
nm̂(θ)/s(θ)

]2

+
= sup

θ∈Θ0

[
(Gn(θ) +

√
nm(θ))/s(θ)

]2

+

=d sup
θ∈Θ0

[
(G(θ) +

√
nm(θ))/σ(θ) + op(1)

]2

+

= sup
θ∈∂Θ0

[
(G(θ) +

√
nm(θ))/σ(θ) + op(1)

]2

+

The steps, apart from the last, immediately follow from Conditions R.1 and R.3. The

last step follows from the argument given below. Indeed, take any sequence θn ∈ Θ0

such that

sup
θ∈Θ0

[
(G(θ) +

√
nm(θ))/σ(θ) + op(1)

]2

+
=

[
(G(θn) +

√
nm(θn))/σ(θn) + op(1)

]2

+
.

In order for this to occur we need to have that

√
nm(θn)/σ(θn) = Op(1),

which is only possible in view of condition R.2 if, for some stochastically bounded se-

quence of positive random variables Cn = Op(1),

√
nd(θn, ∂Θ0) ≤ Cn.

Therefore we conclude that

sup
θ∈Θ0

[
(G(θ) +

√
nm(θ))/σ(θ) + op(1)

]2

+

= sup
θ∈∂Θ0,θ+λ/

√
n∈Θ0,‖λ‖≤Cn

[
(G(θ + λ/

√
n) +

√
nm(θ + λ/

√
n))/σ(θ + λ/

√
n) + op(1)

]2

+

Using stochastic equicontinuity of G and continuity of σ, the last quantity is further

approximated by

sup
θ∈∂Θ0,θ+λ/

√
n∈Θ0,‖λ‖≤Cn

[
(G(θ) +

√
nm(θ + λ/

√
n))/σ(θ) + op(1)

]2

+
.
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Because
√

nm(θ + λ/
√

n) ≤ 0 and m(θ) = 0 for θ ∈ Θ0 and θ + λ/
√

n ∈ Θ0, we

conclude that the last quantity is necessarily equal to supθ∈∂Θ0
[G(θ)/σ(θ)]2+ , yielding

the conclusion we needed.

Part 2. (Limit Law of Wn). We will begin by justifying the approximation holding

with probability going to one

sup
θ∈Θ0

√
nd(θ, Θ̂0) = sup

Θn

√
nd(θ, Θ̂0). (A.1)

where

Θn = {θ ∈ Θ0 :
√

nd(θ, ∂Θ0) ≤ Cn}

where Cn is some stochastically bounded sequence of positive random variables, Cn =

Op(1). Note that right hand side is less than or equal to the left hand side in general,

so we only need to show that the right hand side can not be less. Indeed, let θn be any

sequence such that

sup
θ∈Θ0

√
nd(θ, Θ̂0) =

√
nd(θn, Θ̂0).

If m̂(θn) ≤ 0, then d(θn, Θ̂0) = 0, and the claim follows trivially since the right hand

side of (A.1) is non-negative and is less than or equal to the left hand side of (A.1).

If m̂(θn) > 0, then d(θn, Θ̂0) > 0, but for this and for θn ∈ Θ0 to take place we must

have that 0 < m̂(θn) = Op(1/
√

n), which by Condition R.2 implies that d(θn, Θ̂0) =

Op(1/
√

n).

In the discussion the quantity θ∗(θ) as follows

θ∗(θ) ∈ arg min
θ′∈∂Θ0

‖θ − θ′‖2.

The argmin set θ∗(θ) is a singleton simultaneously for all θ ∈ Θn, provided n is sufficiently

large. This follows from condition R.2 imposed on the gradient ∇θm. Moreover, by

examining the optimality condition we can conclude that we must have that for θ ∈ Θn

(I −∇θm(θ)(∇θm(θ)′∇θm(θ))−1∇θm(θ)′)(θ − θ∗) = op(1) (A.2)
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The projection of θ ∈ Θ onto the set Θ̂ := {θ ∈ Θ : m̂(θ) ≤ 0} is given by

θ̃(θ) = arg min
θ: bm(θ′)≤0

‖θ − θ′‖2.

If m̂(θ) ≤ 0, then θ̃(θ) = θ. If m̂(θ) > 0, then θ̃(θ) = θ̄(θ), where

θ̄(θ) = arg min
θ: bm(θ′)=0

‖θ − θ′‖2.

In what follows we will suppress the indexing by θ in order to ease the notation, but

it should be understood that we will make all the claims uniformly in θ ∈ Θn. For each

θ, the Lagrangian for this problem is ‖θ − θ′‖2 + 2m̂(θ′)′λ. Therefore, the quantity θ̄(θ)

can be take to be an interior solution of the saddle-point problem

(θ̄ − θ) +∇θm̂(θ̄)λ = 0

m̂(θ̄) = 0

The corner solutions do not contribute to the asymptotic behavior of Wn, and thus can

be ignored. A formal justification for this will be presented in future versions of this

work. Using mean-value expansion we obtain

(θ̄ − θ) +∇θm̂(θ̄)λ = 0

m(θ∗) +∇θm(θ̌)(θ̄ − θ∗) + m̂(θ̄)−m(θ̄) = 0

Since ∇θm̂(θ̌) = ∇θm(θ) + op(1) and ∇θm(θ̄) = ∇θm(θ) + op(1) uniformly in θ ∈ Θ,

solving for (θ̄ − θ) we obtain

θ̄ − θ∗ = [∇θm(θ)(∇θm(θ)′∇θm(θ))−1 + op(1)](m̂(θ̄)−m(θ̄))

+ (I −∇θm(θ)(∇θm(θ)′∇θm(θ))−1∇θm(θ)′ + op(1))(θ − θ∗)

Using that
√

n(m̂(θ)−m(θ)) =d G(θ) + op(1), we obtain

√
n(θ̄ − θ∗) =d ∇θm(θ)(∇θm(θ)′∇θm(θ))−1G(θ)

+ (I −∇θm(θ)(∇θm(θ)′∇θm(θ))−1∇θm(θ)′)(θ − θ∗)
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Furthermore, by θ ∈ Θn and by the approximate orthgonality condition (A.2) we further

have that (I −∇θm(θ)(∇θm(θ)′∇θm(θ))−1∇θm(θ)′)(θ − θ∗) = op(1), so that

√
n(θ̄ − θ∗) =d ∇θm(θ)(∇θm(θ)′∇θm(θ))−1G(θ) + op(1).

We next approximate 1(m̂(θ) > 0) using that

√
nm̂(θ) =

√
nm̂(θ̄) + M̌θ

√
n(θ − θ̄)

= ∇m(θ)′
√

n(θ − θ̄) + op(1),

= G(θ) + op(1)

where we used that m̂(θ̄) = 0.

Thus, uniformly in θ ∈ Θn we have that

√
nd(θ, Θ̂n) = ‖θ̄ − θ‖21{∇m(θ)

√
n(θ − θ̄) > 0 + op(1)}

= |∇θm(θ)′∇θm(θ))−1/2G(θ)|1{G(θ) > 0 + op(1)}

= [‖∇θm(θ)‖−1G(θ) + op(1)]+

Therefore, given the initial approximation (A.1) we obtain that

Wn =d sup
θ∈∂Θ0

[‖∇θm(θ)‖−1G(θ)]+ + op(1). (A.3)

Part 3. (Continuity of the Limit Distributions). The continuity of the distribution

function L on (0,∞) follows from the Davydov et al (1998) and from the assumption

that the covariance function of G is non-degenerate. Probability that L is greater than

zero is equal to the probability that maxj supθ∈Θ Gj(θ) > 0 which is greater than the

probability that Gj′(θ
′) > 0 for some fixed j′ and θ′, but the latter is equal to 1/2.

Therefore the claim follows. The claim of continuity of the distribution function of W

on (0,∞) follows similarly. �
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A.2. Proof of Corollary 1. This corollary immediately follows from the assumed con-

ditions and from the comments given in the main text preceding the statement of Corol-

lary 1. �

A.3. Proof of Theorem 2. We have that PrP [Θ0 ⊆ RLR] = PrP [Ln ≤ k̂(1−α)] by the

construction of the confidence region. We then have that for any α < 1/2 that k(1− α)

is a continuity point of the distribution function of L, so that for any sufficiently small ε

PrP [Ln ≤ k̂(1− α)] ≤ PrP [Ln ≤ k(1− α) + ε] → PrP [L ≤ k(1− α) + ε]

PrP [Ln ≤ k̂(1− α)] ≥ PrP [Ln ≤ k(1− α)− ε] → PrP [L ≤ k(1− α)− ε]

Since we can set ε as small as we like and k(1−α) is a continuity point of the distribution

function of L, we have that

PrP [Ln ≤ k̂(1− α)] → PrP [L ≤ k(1− α)] = (1− α).

We can conclude similarly for the W-statistic Wn. �.

A.4. Proof of Corollary 2. This corollary immediately follows from the assumed con-

ditions and Corollary 1. �

A.5. Proof of Theorem 3. We have that

EP ∗ [ϕ(V ∗)]− EP [ϕ(V )] = op(1) uniformly in ϕ ∈ Lip(C(Θ)).

This implies that

EP ∗ [ϕ([V ∗]+)]− EP [ϕ([V ]+)] = op(1) uniformly in ϕ ∈ Lip(C(Θ)),

since the composition ϕ◦ [·]+ ∈ Lip(C(Θ)) for ϕ ∈ Lip(C(Θ)). This further implies that

EP ∗ [ϕ′(sup
Rn

[V ∗]+)]− EP [ϕ′(sup
Rn

[V ]+)] = op(1) uniformly in ϕ′ ∈ Lip(R),

since the composition ϕ′(supRn
[·]+) ∈ Lip(C(Θ)) for ϕ′ ∈ Lip(R) and Rn denoting any

sequence of closed non-empty subsets in Θ. We have that ∂̂Θ0 converges to ∂Θ0 in the
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Hausdorff distance, so that

|EP [ϕ′(supd∂Θ0

[V ]+)− ϕ′(sup
∂Θ0

[V ]+)]|

≤ E[| supd∂Θ0

[V ]+ − sup
∂Θ0

[V ]+| ∧ 1] = op(1) uniformly in ϕ′ ∈ Lip(R),

since sup d∂Θ0
[V ]+ − sup∂Θ0

[V ] = op(1) by stochastic equicontinuity of the process V .

Since metric ρK is a proper metric that satisfies the triangle inequality, we have shown

that

ρK(QS∗ ,QS) = op(1).

Next, we note that the convergence ρK(QSn ,QS) = o(1), for any sequence of laws QSn

of a sequence of random variables Sn defined on probability space (Ω′,F ′, Pn) implies

the convergence of the distribution function

PrQSn
[Sn ≤ s] = PrQS [S ≤ s] + o(1)

at each continuity point (0,∞) of the mapping s 7→ Pr[S ≤ s] and also convergence of

quantile functions

inf{s : PrQSn
[Sn ≤ s] ≥ p} = inf{s : PrQS [S ≤ s] ≥ p}+ o(1)

at each continuity point p of the mapping s 7→ inf{s : PrQS [S ≤ s] ≥ p}. Recall from

Theorem 1 that the set of continuity points necessarily includes the region (0, 1/2).

By the Extended Continuous Mapping Theorem we conclude that since ρK(QS∗ ,QS) =

op(1), for any sequence of laws QS∗ of random variable S∗ defined on probability space

(Ω′,F ′, P ∗), we obtain the convergence in probability of the distribution function

PrQS∗ [S
∗ ≤ s] = PrQS [S ≤ s] + op(1)

at each continuity point (0,∞) of the mapping s 7→ Pr[S ≤ s] and also convergence in

probability of the quantile functions

inf{s : PrQS∗ [S
∗ ≤ s] ≥ p} = inf{s : PrQS [S ≤ s] ≥ p}+ op(1)

at each continuity point p of the mapping s 7→ inf{s : PrQS [S ≤ s] ≥ p}. �
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A.6. Proof of Corollary 3. In order to prove this corollary it suffices to show that

ρK(Qt̂′Z∗ ,Qt′Z ; C(Θ)) = op(1).

Without loss of generality we can take sup ‖t̂‖ ≤ 1 and sup ‖t‖ ≤ 1. The claim will

follow from

ρK(Qt̂′Z∗ ,Qt′Z ; C(Θ)) ≤ ρK(Qt̂′Z∗ ,Qt̂′Z ; C(Θ)) + ρK(Qt̂′Z ,Qt̂′Z ; C(Θ)) = op(1).

That ρK(Qt̂′Z∗ ,Qt̂′Z ; C(Θ)) = op(1) follows immediately from ρK(QZ∗ ,QZ) = op(1) and

from the mapping ϕ(t̂′·) ∈ Lip(Rk) (indeed, |ϕ(t̂′z) − ϕ(t′z)| ≤ sup |t̂′(z − z′)| ∧ 1 ≤

[(sup ‖t‖ sup ‖z − z′‖) ∧ 1] ≤ [sup ‖z − z′‖ ∧ 1]. That ρK(Qt̂′Z ,Qt̂′Z ; C(Θ)) = op(1)

follows because uniformly in ϕ ∈ Lip(C(Θ)

|E[ϕ(t̂′Z)]− ϕ(t′Z)| ≤ E[sup |(t̂− t)′Z| ∧ 1] ≤ E[sup ‖t̂− t‖‖Z‖ ∧ 1] = op(1). �
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Figure 1. Estimated HJ Bounds
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Figure 2. Estimated HJ Bounds and Bootstrap Draws
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Figure 3. 90% Confidence Region using LR Statistic
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Figure 4. 90% Confidence Region using Unweighted LR Statistic
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Figure 5. 90% Confidence Region using Unweighted W Statistic (H-Distance)
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Figure 6. 90% Confidence Region using Weighted W Statistic


