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Volatility Spillovers in Agricultural Commodity Markets: An Application 

Involving Implied Volatilities from Options Markets 

 

Abstract 

This article provides a new approach to analyze the issue of volatility spillovers. In 

particular, we investigate relationships and transmissions between implied volatilities 

in corn and soybean markets – two of the most important agricultural commodity 

markets in the United States. Using weekly average data from 2001 to 2010, we 

estimate a VAR model with Fourier seasonal components as exogenous variables. 

Results from this model indicate that volatility spillovers exist from the corn market to 

the soybean market, but there is no volatility spillover from the soybean market to the 

corn market. Impulse response functions from this model show that a standard positive 

shock in the implied volatility of corn has a positive impact on responses of the implied 

volatility of soybeans. However, responses of the implied volatility of corn to a shock in 

the soybean market are not significant. To examine the time invariance property of this 

model, we conduct three bootstrap versions of Chow tests (sample-split, break-point, 

and Chow forecast). All of these tests suggest significant structural break points in 

several time periods. To improve the accuracy of our model, we develop a threshold 

VAR model with four regimes that depend on previous levels of volatilities. Results 

from the threshold VAR model indicate that when both volatilities are relatively low, 

volatility spills over from the corn market to the soybean market, but when the implied 

volatility of soybeans is relatively high, volatility spillover effects reveal an opposite 

direction. Finally, using futures prices, we estimate a BEKK-GARCH model, which is 

commonly used to investigate volatility spillover effects. Results from the BEKK 

model show that volatility spillovers exist between the two markets, which is different 

from what we have found using implied volatilities. 

 

 

 

 



1. Introduction 

A volume of research has been performed on patterns of volatility across different 

commodities, times, and locations. Most of these studies that have investigated the 

problem of volatility spillovers in commodity markets have applied (multivariate) 

GARCH models using historical “backward-looking” price data. In this study, we 

introduce a new approach to analyze the issue of volatility spillovers. In particular, we 

examine relationships and transmissions between implied volatilities that are derived 

from options prices.  

An implied volatility is calculated by applying an option pricing formula, the most 

common of which is the Black-Scholes formula. The advantage of using this kind of 

volatility instead of alternatives that are based on historical or lagged data is that the 

implied volatility is a forward-looking and market-based measure of price variability 

and uncertainty, thereby interpreting the market’s collective expectation of the future 

volatility of the price of the underlying asset. 

Research on volatility spillovers in agricultural commodity markets has become an 

important issue for market participants whose production and marketing decisions are 

often impacted by uncertainty and risks in commodity markets. To date, only a few 

studies have addressed this topic. Volatility spillovers exist among agricultural 

commodity markets because most such commodities share common market 

information, are typically imperfect substitutes in demand, and compete in the usage of 

some common inputs, such as land and labor. Changes in the volatility of one market 

will often trigger reactions in other markets. Our intent is to model such interactions. 

An understanding of the overall market behavior and the transmission of risks and 

shocks across interrelated markets requires an understanding of these relationships and 

in particular the mechanism for transmission among different markets. The dynamics of 

these linkages is also an important indicator of overall market behavior and 

performance. 

In this study, we investigate the volatility spillover effects between corn and soybean 

markets using implied volatilities derived from nearby options contracts in these two 

markets. We select these two markets because of their important role in U.S. 



agricultural commodity markets. In Section 4.2, we apply a VAR model with Fourier 

seasonal components as exogenous variables, and impulse response functions to 

analyze the volatility spillover effects between these two markets. In Section 4.3, we 

perform three bootstrap versions of Chow tests to test for structural changes in the VAR 

model, and find significant structural break points around the year 2003, 2006 and 2008. 

The Energy Independence and Security Act of 2007 may be the cause of those break 

points around 2006. To improve the performance of our model, in Section 4.4, we 

estimate a threshold VAR with four regimes that depend on previous levels of 

volatilities to overcome the structural change problem. Finally, in Section 4.5, we 

estimate a BEKK-GARCH model, a commonly used model to investigate volatility 

spillover effects, and compare results with what we have found in Section 4.2. 

 

2. Previous Research  

The time-varying volatility, as a measure of risk, has attracted considerable attention 

since the 1980s due to its importance in analyzing price data and the development of 

econometric models. Understanding the behavior of volatility is crucial for making 

market decisions such as hedging strategies and asset location decisions. The 

time-varying volatility is usually modeled by Engle’s (ARCH) models or Bollerslev’s 

generalized autoregressive conditional heteroscedasticity (GARCH) models.  

In agricultural economics, researchers started to realize the importance of price 

volatility and to study the source of price volatility three decades ago. For example, 

among those early studies, Anderson (1985) investigated determinants of futures price 

volatilities in eight major agricultural commodity markets. And Streeter and Tomek 

(1992) performed an integrated study about the futures price volatility in the soybean 

market. ARCH and GARCH models have proven useful in many studies on agricultural 

commodity price risks (or volatilities). For instance, Aradhyula and Holt (1990) argued 

that the application of the GARCH model improved the forecasting accuracy of 

measuring changes in price risk over time. 

As the development of econometric tools for resolving the problem of 

heteroscedasticity, models have been extended to the multivariate dimension. This new 



type of multivariate model triggered the popularity of another research topic – volatility 

spillovers. By definition, examining volatility spillover effects answers the question 

that how price volatility of one commodity is affected by previous values of price 

volatilities of other commodities. Understanding the transmission mechanism of price 

risks between markets is especially important for market participants, producers, 

researchers, and policy makers. For example, when making policy changes in the 

market of one commodity, policy makers need to consider how its price volatility spills 

over to price volatilities of its substitutes through market channels.  

Although the topic of volatility spillovers has been extensively discussed in studies 

of financial markets, very few studies have been done in agricultural commodity 

markets. Among these few studies, Natcher and Weaver (1999) discussed the 

transmission of price volatilities in beef markets. Apergis and Rezitis (2003) 

investigated volatility spillover effects across agricultural input prices, output prices 

and retail food prices in Greece. Buguk, Hudson, and Hanson (2003) tested volatility 

spillovers for prices in the supply chain, and found strong evidence of price volatility 

spillovers from feeding material (corn, soybeans, menhaden) to catfish feed and farm- 

and wholesale-level catfish prices.  

Another type of volatility, the “implied volatility”, can also be used to investigate the 

price variability (or risk). Differing from the historical volatility, an implied volatility is 

a forward-looking measure of the price variability, and it is calculated from an option 

pricing formula, such as the Black-Scholes model and the Cox-Ross-Rubinstein 

binomial model. Given the values of the option price, interest rate, and time to 

expiration, the option pricing formula relates the option price to the volatility of the 

underlying asset. To calculate the implied volatility, we need to enter the prices of 

options premiums into an option pricing model and then solve for the volatility. This 

type of volatility is the market's estimate of how volatile the underlying futures prices 

will be from the present until the option’s expiration. The question of whether the 

implied volatility is a good forecast of future volatility was discussed by many 

researchers during the 1970s and 1980s. Some of them (e.g., Latane and 

Rendleman1976; Chiras and Manaster 1978; Beckers 1981) suggested that the implied 



volatility performed better than the historical volatility. Although some researchers 

found conflicting results, most studies still supported the conclusion that the implied 

volatility could forecast the future volatility effectively. 

Although the implied volatility is widely considered to be a good way to measure the 

future volatility, very little research on implied volatilities has been done in agriculture. 

McNew and Espinosa (1994) found that USDA reports have strong impacts on implied 

volatilities in corn and soybean markets by demonstrating a strong relationship between 

USDA crop reports and implied volatilities. To examine the importance of implied 

volatility in agricultural markets, Giot (2003) compared the incremental information 

content of lagged implied volatility to results from GARCH models. He found that past 

squared returns only marginally improve the information content provided by the 

lagged implied volatility, and VaR (Value at Risk) models that rely on lagged implied 

volatility perform as well as those derived from the GARCH models. A more recent 

study refers to the work of Isengildina-Massa, Irwin, Good and Gomez (2008). They 

found that WASDE reports lead to a statistically significant reduction of implied 

volatility in corn and soybean markets. 

 

3. Methodology 

3.1. VAR model 

Considering the advantage of implied volatility and the importance of volatility 

spillovers in agricultural commodity markets, we develop a new method to examine the 

issue of volatility spillovers. In particular, we estimate a vector autoregressive (VAR) 

model with Fourier seasonal components as the exogenous variables, using implied 

volatilities of corn and soybeans. 

After testing for stationarity for implied volatilities of corn and soybeans, if they both 

appear to be stationary in levels, a vector autoregressive model of order p with 

exogenous variables (VAR(p)) can be conducted. The VAR(p) model is shown as 

follows: 
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where  ,t t ty c s  , tc  is the implied volatility of corn, ts  is the implied volatility of 
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is the coefficient matrix, tx  is a 1k   vector of exogenous variables, D  is a 2 k  

matrix of parameters, and 1 2( , )t t tu u u   is a 2-dimensional white noise, that is, given 

the information at 1t  , ( ) 0tE u  , ( )t t uE u u    , and ( ) 0t sE u u    if s t . 

In this study, we apply Fourier seasonal components as exogenous variables to depict 

the periodicity of implied volatilities. The Fourier seasonal component is defined as 
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where w  represents the number of week in the year. Thus, the VAR(p) model of our 

study can be written as 
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To test volatility spillovers effects, we only need to test the significance of 12,ib ’s and 

21,ib ’s. For example, if the null hypothesis is no volatility spillover from the soybean 

market to the corn market, then we should test the significance of 12,ib ’s. 

In this study, we also use impulse responses to measure volatility spillover effects. 

With stationary time series variables, an impulse response function is generally applied 

to discuss responses of a variable to a shock. A VAR(p) model with stationary variables 

can be rewritten as a vector moving average model with infinite order (VMA( )) 

1
t t i t i

i

y c  





    ,  (3.2) 

where i ’s are 2 2  matrices, and t  is a 2-dimensional white noise, that is, given 



the information at 1t  , ( ) 0tE   , ( )t tE      , and ( ) 0t sE      if s t . The 

response of the thi  variable to one standard positive shock (one unit change) in the thj  

variable h  periods before is estimated by the thij  element in h  (coefficient matrix 

at lag h ).  

 

3.2. Bootstrapped Chow Tests 

In the second step of this study, we conduct structural change tests to check the time 

invariance property of the model. The most commonly used structural change test in 

time series analysis is the Chow test. When the structural break point is unknown, 

although the structural change test can be conducted repeatedly for a range of potential 

structural break points, the outcomes of these repeated tests are not independent, and 

thus the p-values from the series of tests may be misleading (Andrews, 1993). Some 

research has been done to resolve this problem (see, for example, Andrews and 

Ploberger 1994; and Hansen 1997), by making corrections to the p-values or critical 

values. Furthermore, Candelon and Lutkepohl (2001) developed the bootstrap versions 

of Chow tests to improve the accuracy for testing in common sample sizes. Lutkepohl 

(2004) also extended the bootstrap versions of Chow tests to multivariate models.  

In this study, we conduct three bootstrap versions of Chow tests to examine the time 

invariance property of our model. In particular, they are sample-split, break-point, and 

forecast bootstrapped Chow tests. Assuming that a structural break has happened at 

time t , the sample-split and break-point tests compare parameter estimates obtained 

from the model using data before t  with those from the same model but using data 

after t . The sample-split test assumes that the variance-covariance matrix is invariant 

for the two subsamples, while the break-point test also checks the constancy of the 

variance-covariance matrix. The Chow forecast test checks whether forecasts from the 

model for the first subsample are compatible with observations in the second 

subsample. For more details, please refer to Appendix A.  

 

 



3.3. Threshold Model 

From the results of bootstrapped Chow tests, we found significant structural break 

points in the VAR model (see Section 4.3). To improve the accuracy of our model, we 

estimate a threshold VAR model with four regimes: 

High volatility of corn – High volatility of soybeans, 

High volatility of corn – Low volatility of soybeans, 

Low volatility of corn – High volatility of soybeans,  

Low volatility of corn – Low volatility of soybeans. 

The regimes are defined by the previous levels of implied volatilities of corn and 

soybeans. The reason we use the levels of implied volatility to define the regimes is 

because we believe that the dynamic transmissions of volatilities may behave very 

differently from a low volatility regime to a high volatility regime, according to the 

properties of the data. The threshold VAR model we propose is 
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1C  and 2C  define the thresholds of this model, and they are chosen by the 

maximum likelihood method. 

 

3.4. BEKK-GARCH Model 

A traditional approach to testing volatility spillovers is to estimate a GARCH model 

and to test the significance of the parameter estimates. A popular type of multivariate 

GARCH models used to examine volatility spillover effects is the BEKK model, 

which ensures the positive semi-definite property of the variance-covariance matrix. 

The purpose of estimating a BEKK-GARCH model using futures price returns is to 



compare our results from the VAR model with those from the traditionally used 

method. A BEKK model with two time series is shown as follows: 
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where ctr  and str  are corn and soybean futures returns (defined as 

   , 1ln lnct ct c tr p p    and    , 1ln lnst st s tr p p   , where ctp  and stp  are the 

nearest futures prices of corn and soybeans), 1t   is the known information at time 

t , and tH  is the time-varying variance-covariance matrix. After several steps of 

derivation, 2
1,t  and 2

2,t  can be rewritten as  
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  From the equations above, testing for return spillover effects from one market to 

the other is equivalent to testing the significance of 12,i  and 21,i  in equation (3.3). 

To test volatility spillover effects from soybeans to corn, we need to perform the 

hypothesis test:  



0 21 21: 0H     (No volatility Spillover from soybeans to corn) 

: at least one of them not 0aH . 

And to test volatility spillover effects from corn to soybeans, we need to perform the 

hypothesis test: 

0 12 12: 0H     (No volatility Spillover from corn to soybeans) 

: at least one of them not 0aH  

 

4. Results 

4.1. Data 

The data we use in this study consist of weekly average implied volatilities derived 

from nearby option contracts in corn and soybean markets from 1/5/2001 to 11/1/2010. 

These implied volatilities are calculated from the Black option pricing model, using 

the mean of the two nearest-the-money calls and the two nearest-the-money puts. 

Figure 1 shows the time series plots for the weekly average prices of the nearest 

corn and soybean futures contracts. It illustrates that the futures markets of corn and 

soybeans have undergone dramatic changes since 2007. Specifically, both price levels 

have increased significantly since 2007. The cause of these dramatic changes is the 

significant structural shocks from the Energy Independence and Security Act of 2007. 

This Energy Act sets a modified standard that starts at 9.0 billion gallons of renewable 

fuel in 2008 and rises to 36 billion gallons by 2022. 21 billion gallons of the latter 

total is required to be obtained from ethanol and other advanced biofuels. This 

modified standard has increased the demand for corn which is the major source for 

ethanol. On the other hand, the price of soybeans is highly correlated with the price of 

corn, because corn and soybeans are basically grown in the same region and compete 

for the same land. Changes in the demand for corn will probably incur changes in 

production decisions of soybeans, and therefore affect the price of soybeans. In 

particular, as higher corn prices bid away acreage toward corn, soybean prices will 

rise. 
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Figure 1. Prices for the Nearest Futures Contracts of Corn and Soybeans (Weekly Average) 

 

Figure 2 and 3 show the time series plots of weekly average implied volatility for 

corn and soybean markets. For the corn market, the implied volatility displays a 

strong periodical pattern before 2007. The maximum implied volatilities appear to 

occur approximately in June and July, immediately prior to the harvest season of corn. 

This is a period of time when new information regarding the upcoming crop is being 

processed by the market. The minimum implied volatilities appear in winter, 

following harvest. For the soybean market, though the seasonal pattern of the implied 

volatility is not as significant as in the corn market, implied volatility still displays 

regular patterns before 2006. The minimum implied volatilities generally appear to 

occur in winter. 

Changes in futures prices will also result in changes in price volatilities. Implied 

volatilities in these two markets have changed remarkably since 2007. For example, 

the implied volatility of corn remained at a relatively high level after 2007. The 

average implied volatility increased by approximately 47%, compared with the 

average over the period from 2001 to 2006. For the soybean market, implied volatility 

increased to a relatively high level from the beginning of 2008, and then it started to 

decline from the middle of 2009. Descriptive statistics of these implied volatilities are 

reported in Table 1. 
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Figure 2. Weekly Average Implied volatility in the corn market 
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Figure 3. Weekly Average Implied volatility in the soybean market 

 

 

 

 

 

 

 

 

 



Table 1. Summary Statistics 

  tc    ts   

Observations 513 513 

Mean 29.451 27.333 

Standard Deviation 8.497 14.903 

Minimum 15.07 13.71 

Maximum 55.64 54.19 

Skewness 0.414 0.882 

Kurtosis -0.523 -0.045 

 

 

In the analysis of time series data, generally, the first step is to test for stationarity 

(or unit-root) for the data because non-stationary data under the ordinary least squares 

framework tend to result in biased estimates. We conduct both augmented 

Dickey-Fuller (ADF) and Phillips-Perron tests to evaluate the stationarity for the two 

endogenous variables in the model. Table 2 shows the ADF and Phillips-Perron test 

statistics, which indicates that both variables are stationary at a 5% significance level. 

Thus, no cointegration test needs to be conducted. 

 

Table 2. ADF and Phillips-Perron Tests Results 

 ADF Test Phillips-Perron 

Variable Single Mean Trend Single Mean Trend 

tc  -3.84***  -4.88*** -3.52***  -4.43*** 

ts  -3.83***  -4.04*** -3.37***  -3.91**  

Note: (1) ***, and ** refer to the rejection of the null hypothesis of a unit root at 1% and 5%.  

(2) No unit root in levels is found at 1% significance level.  

 

4.2. VAR model with Fourier Seasonal Components 

The order of the VAR model and the order of the Fourier seasonal components are 

decided by the Schwartz Bayesian Criterion (SBC), a commonly used criterion for 

determining the order of a VAR model. By the minimum value of SBC, the order of 

the VAR model and the order of the Fourier seasonal components are both one. That is, 



two trigonometric exogenous variables,  cos 2 52w  and  sin 2 52w , are 

included as exogenous variables in the VAR model. Thus, the VAR(1) model becomes 
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.   (4.1) 

Estimates of coefficients in this VAR(1) model are shown in Table 3. The results of 

the estimates indicate that volatility spillovers exist from the corn market to the 

soybean market at a significance level of 5%. However, there is no significant 

volatility spillover from the soybean market to the corn market. 

 

Tabel 3. Estimates of the VAR(1) model 

  tc  equation  ts  equation 

constant 1.534 1.018 

 (0.435)*** (0.437)** 

1tc   0.960 0.051 

 (0.021)*** (0.021)** 

1ts   -0.012 0.908 

 (0.021) (0.021)***

 cos 2 52w  -0.023 -0.072 

 (0.165) (0.166) 

 sin 2 52w  0.466 0.326 

 (0.156)*** (0.157)** 

 

Note: (1) Standard errors are in parentheses.  

(2) ***, **, and * denote significance level of 1%, 5% and 10%. 

 

Impulse response functions illustrate the effect of a positive shock (a one unit 

change) in a variable on the future values of the other variables and itself. In this study, 

we used the simple impulse response functions to examine effects of a shock in an 

implied volatility. Unlike an orthogonal impulse response function, a simple impulse 



response function (equation (3.2)) is not affected by the ordering of the variables. 

Figure 4 and 5 show the impulse responses of the VAR(1) model up to 40 weeks 

after a positive shock (a one unit change in level) in one variable. A shock in the 

implied volatility of corn has a positive and significant impact on the implied 

volatility of soybeans. The significance persists for approximately 33 weeks at a 5% 

significance level. The responses increase for about 13 weeks, and then start to 

decline. However, a shock in the implied volatility of soybeans has no significant 

impact on the implied volatility of corn. 

 

 

 

Figure 4. Responses to impulse in the implied volatility of corn 

 



 

Figure 5. Responses to impulse in the implied volatility of soybeans 

 

 

4.3. Structural Change Tests 

From Figure 2 and 3, we observed dramatic changes in implied volatilities in corn and 

soybean markets since 2007. To check the time invariance property of our model, 

three bootstrap versions of Chow tests (break-point, sample-split and forecast) are 

conducted. Figure 5 shows the p-values for these three types of Chow tests when 

structural change points are unknown. Small p-values suggest structural changes at a 

given time. For example, significant structural changes can be observed around 2003, 

the second quarter of 2006, and the first quarter of 2008. 
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   Figure 6. Bootstrapped Versions of Chow Tests 

 



  After the structural change tests, we separate the data set into two subsamples to 

compare results from the subsamples. The first subsample contains observations 

before 2007, and the second contains observations from 2006. The year 2006 is 

covered in both subsamples. The reason of separating the data set in this way is 

because dramatic changes can be observed after 2007 from Figure 1 to 3, and 

significant structural changes can be found during the year 2006 (especially in the 

second quarter) from the three bootstrap versions of Chow Tests. Also, we want to 

observe the changes aroused by the shock of the Energy Act of 2007.  

The estimates of the VAR models for the two subsamples are shown in Table 4. 

Results from the first subsample suggest that volatility spillovers exist from the corn 

market to the soybean market at a significance level of 10%. However, no spillover 

effect can be observed for the second subsample. These results are quite different 

from what we found in Section 4.2 for the complete data set. Figure 7 to 10 show the 

impulse responses up to 40 weeks after a shock in one variable for each subsample. 

These impulse responses are also quite different from those in Section 4.2. For the 

first subsample (Figure 7 and 8), a shock in the implied volatility of corn has a 

positive effect on the implied volatility of soybeans (the two blue lines indicate the 

interval at 5% significance level), while a shock in the implied volatility of soybeans 

has a negative effect on the implied volatility of corn. For the second subsample 

(Figure 10), a shock in the implied volatility of soybeans has a positive effect on the 

implied volatility of corn.  

 

 

 

 

 

 

 

 

 



Table 4. Estimates of VAR(1) for two subsamples 

   2001-2006     2006-2010  

  tc  equation  ts  equation  tc  equation  ts  equation 

constant 3.588 1.427 3.130 0.835 

 (0.756)*** (0.772)* (0.978)*** (0.945) 

1tc   0.888 0.063 0.874 0.028 

 (0.036)*** (0.037)* (0.042)*** (0.040) 

1ts   -0.031 0.878 0.045 0.940 

 (0.029) (0.029)*** (0.032) (0.031)*** 

 cos 2 52w  -0.583 -0.096 0.182 -0.014 

 (0.255)** (0.260) (0.253) (0.245) 

 sin 2 52w  0.757 0.409 0.185 0.230 

 (0.194)*** (0.198)** (0.249) (0.240) 

 

Note: Standard errors are in parentheses.  

***, **, and * denote significance level of 1%, 5% and 10%. 

 

 

 

Figure 7. Responses to impulse in the implied volatility of corn (2001-2006) 



 

 

Figure 8. Responses to impulse in the implied volatility of soybeans (2001-2006) 

 

 

 

Figure 9. Responses to impulse in the implied volatility of soybeans (2006-2010) 

 



 

 

Figure 10. Responses to impulse in the implied volatility of soybeans (2006-2010) 

 

 

4.4. Threshold Model 

Results in Section 4.3 indicate that significant structural changes may exist in our 

model. And transmissions of volatilities between the corn and soybeans markets may 

behave differently from a low volatility condition to a high volatility condition. 

Therefore, we develop a threshold model with four thresholds (see Section 3.3), and 

results of this model are shown in Table 5. The optimal values of 1C  and 2C  are 

35.355 and 31.926, which are obtained from the maximum likelihood method. These 

two values are both in the middle of the ranges of these two implied volatilities. 

 

 

 

 

 



Table 5. Estimates of the Threshold VAR model 

 

1 35.355tc    and 1 31.926ts  

( 1 98n  )   

1 35.355tc    and 1 31.926ts    

( 2 37n  ) 

  tc  equation  ts  equation  tc  equation  ts  equation 

constant 13.533 12.609 13.064 2.441 

 (2.917)*** (2.978)*** (7.507)* (7.665) 

1tc   0.546 -0.104 0.657 -0.045 

 (0.083)*** (0.084) (0.203)*** (0.207) 

1ts   0.140 0.796 -0.031 0.982 

 (0.071)* (0.073)*** (0.157) (0.161)*** 

 cos 2 52w  2.377 0.368 -0.308 -0.277 

 (0.477)*** (0.487) (0.771) (0.788) 

 sin 2 52w  0.181 0.696 0.396 0.129 

 (0.362) (0.369)* (0.813) (0.830) 

 

 

1 35.355tc    and 1 31.926ts  

( 3 30n  ) 

1 35.355tc    and 1 31.926ts    

( 4 348n  ) 

  tc  equation  ts  equation  tc  equation  ts  equation 

constant 22.206 25.489 1.428 1.912 

 (7.284)*** (7.437)*** (0.833)* (0.850) 

1tc   0.761 -0.090 0.998 0.057 

 (0.121)*** (0.123) (0.033)*** (0.033)* 

1ts   -0.467 0.295 -0.047 0.859 

 (0.169)*** (0.173)* (0.041) (0.042)*** 

 cos 2 52w  -3.312 -3.848 -0.119 0.054 

 (1.109)*** (1.132)*** (0.206) (0.211) 

 sin 2 52w  1.706 0.564 0.391 0.207 

 (0.636)*** (0.649) (0.189)** (0.193) 

Note: in  is the number of observations in Regime i . 



 

  From the results of Table 5, coefficients of 12b  (based on equation (4.1)) are 

significant in the two regimes where 1 31.926ts   . The coefficient of 21b  is 

significant only in the regime where 1<35.355tc   and 1<31.926ts  . Therefore, we 

can conclude that when the volatility of soybeans is high (Regime 1 and 3), volatility 

spillovers exist from the soybean market to the corn market. In Regime 1 (high 

volatility of corn), the volatility of soybeans has a positive spillover effect on the 

volatility of corn; while in Regime 3 (low volatility of corn), this effect becomes 

negative. And when both volatilities are low, volatility spillovers exist from the corn 

market to the soybean market.  

 

4.5. BEKK-GARCH Model 

The data we use in this section are weekly average prices of the nearest corn and 

soybean futures contracts. Table 6 reports descriptive statistics of the returns. And 

Table 7 shows the results for the bivariate BEKK-GARCH model (equation (3.3) and 

(3.4)). These results indicate that parameters 21 , 12 , 21 , and 12  are statistically 

significant, which means return spillovers exist from the corn market to the soybean 

market, and volatility spillover effects exist between these two markets. Results from 

the BEKK model are quite different from what we have obtained from Section 4.2. 

 

Table 6. Summary Statistics for returns of corn and soybeans 

    ctr      str   

Mean 0.00181 0.00176 

Standard Deviation 0.03631 0.03299 

Minimum -0.15119 -0.13300 

Maximum 0.13453 0.09685 

Skewness -0.17141 -0.75245 

Kurtosis  1.49920  1.79848 

 

 



Table 7. Estimates of the BEKK(1,1) Model 

Parameter Estimate  
 Standard  

Error 
 P-Value 

01  0.00152 0.00158 0.3381 

02  0.00129 0.00141 0.3603 

11   0.20622 0.05365 0.0001 

12  -0.02658 0.05906 0.6529 

21  0.12264 0.04792  0.0108 

22   0.16089  0.05274  0.0024 

1  -0.03531  0.00160  0.0000 

2  -0.01589  0.00227  0.0000 

3   0.01164  0.00076  0.0000 

11   0.39387  0.10890  0.0003 

12   1.49556  0.15134  0.0000 

21   0.37142  0.12850  0.0039 

22   0.52223  0.16165  0.0012 

11   0.19242  0.16190  0.2346 

12  -0.24579  0.10134  0.0153 

21  -0.01450  0.09898  0.8835 

22   0.42265  0.00863  0.0000 

 

 

 

 



5. Conclusion and Discussion  

In this study, we investigate the relationships and transmissions between implied 

volatilities in two major agricultural commodity markets – corn and soybeans, by 

applying a VAR model, impulse response functions, bootstrap versions of structural 

change tests, and a threshold VAR model. In the first step, the VAR model suggests 

that volatility spillovers exist from the corn market to the soybean market, but there is 

no volatility spillover from the soybean market to the corn market.  

From the results of three bootstrap versions of Chow tests, we can conclude that 

there may be several structural break points in our model. Then, taking into account 

the dramatic changes for both implied volatilities, we develop a threshold VAR model 

with four regimes depending on the levels of previous volatilities. Results from the 

threshold VAR model suggest that volatility spillovers from the corn market to the 

soybean market only exists when both volatilities are at relatively low levels. When 

the soybean market is in a high volatility situation, volatility may spill over from the 

soybean market to the corn market. 

Finally, we estimate a bivariate BEKK-GARCH model to examine the volatility 

spillover effects using futures returns. Results from this model provide evidence of 

double-directional volatility spillover effects between the two markets, which is 

different from what we have found in Section 4.2. In other words, conclusions from 

the historical backward futures data may be different from those based on the 

forward-looking measure of volatilities.  

 

 

 

 

 

 

 

 

 



Appendix A: Bootstrap Versions of Chow Test 

Suppose that the structural break occurred at time BT  for a K -dimensional VAR(p) 

model with M  exogeneous variables: 

1
1

p

t i t t t
i

y a y Dx u


     . 

Then the model under consideration is estimated from the full sample T  

observations and the first 1T  and last 2T  observations, where 1 1BT T   and 

2 1BT T T   . The residuals from the full sample and the two subsamples are 

denoted as ˆtu , (1)ˆtu , and (2)ˆtu , respectively. ˆtu , (1)ˆtu , and (2)ˆtu  are 1K   vectors. 
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The sample-split test statistics is given by  

     1 21 2

1 2 12
1 2

ˆ ˆ
ˆlog logSS

T T
T T

T T


          
. 

The break-point test statistics is given by 

       1 2 1 212 1 2
ˆ ˆ ˆlog log logBP T T T T        . 

SS  and BP  have approximate 2 -distributions. The degrees of freedom (DoF) are 

the difference between the sum of the number of free coefficients in the first and last 

subsamples and the number of free coefficient in the full sample model. For SS , the 

DoF is 2pK K KM  , and for BP , the DoF is  2 1 2pK K KM K K    . 

The Chow forecast test statistic is given by 



 
 

 
12

12

1 1
,

1

s

r

CF s

r

R Ns q
F Kk Ns q

KkR
 



  
   


, 

where 1k T T    is the number of forecast periods considered by the test, 
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and 1k  is the number of regressors in the restricted time-invariant model. 

  Bootstrap versions of Chow tests are obtained by estimating the model of interest, 

denoting the residuals as ˆtu , computing centered residuals 1̂u u , 2û u ,…, 

ˆTu u , where 
1

ˆ
T

tt
u u T


  , and generating bootstrap residuals 1u , 2u ,…, Tu  by 

randomly drawing with replacement from the centered residuals. These quantities are 

then used to compute the bootstrap time series recursively starting from given 

presample values 1py  ,…, 0y . The model of interest is then reestimated with and 

without stability restriction and a bootstrap version of the statistic of interest, say SS , 

BP , or CF , is computed. Repeating these steps a large number of times, a critical 

value is then obtained as the relevant percentage point, say crit , from the empirical 

distribution of the bootstrap test statistic and the stability hypothesis is rejected if 

crit  . Alternatively, the P-value of the test can be estimated as the fraction of times 

that the values of the bootstrap statistics exceed  . 
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