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Woody weeds pose significant threats to the 12I®midollar Australian grazing industry.
These weeds reduce stocking rate, increase mugteffart, and impede cattle access to
waterways. Two major concerns of woody-weed managerare the high cost of weed
management with respect to grazing gross margntsepisodic seedling recruitments due to
climatic conditions. This case study uses a StachBynamic Programming (SDP) model to
determine the optimal weed management decisionshioee applediziphus mauritianfin
northern Australian rangelands to maximise grazrafits. Weed management techniques
investigated include: no-control, burning, poisapinand mechanical removal (blade
ploughing). The model provides clear weed managéemheesholds and decision rules, with
respect to weed-free gross margins and weed marageosts.

Key words: woody weeds, weed control, chinee apphdgelands, grazing, stochastic
dynamic programming

Introduction

To date it is unknown if woody-weed managemenh& Australian rangelands is financially
viable and, if so, what the best strategies arayifcen weed species, grazing gross-margins,
weed management efficacies and cost structures.rébearch aims to develop an economic
framework to establish optimal control decisionsaafody-weeds for Australian rangeland
graziers. It is unlikely that any one method of ttohwill result in an optimal solution
(Monjardino et al, 2005) and this modelling framework enables ugxplore a range of
integrated weed management (IWM) strategies.

Historically, many bioeconomic models have soughtémbine economic and ecological
modelling disciplines, but lacked biological remalisas they over-simplify population
dynamics (Deacoet al, 1998). Economic optimisation models for weed pantlecisions
have tended to be for annual weeds in croppingeswstJonesgt al, 2006; Pannelét al,
2004; Jones & Medd, 2000; Pandey & Medd, 1990; Bhnh990; Taylor & Burt, 1984),
often assuming the whole weed population is aséme stage of development, i.e. same life-
cycle stage. Densities are often measured in tiebeu of seeds or plants within an area.
However, optimal management strategies for longdiperennial weeds need to consider the
size of individual plants, their seed productioffe@s on pasture production, and the
efficacies of different management strategies agadifferent life-cycle stages. The model
developed here accommodates this complex suiteophisical and economic parameters
and we apply it to chinee appl@iZiphus mauritianp in northern Australian rangeland
upland zones.

This study is based on modelling an average heetdren the Australian rangelands and

assumes: (1) seeds are evenly distributed in eactare and population density for the area
is homogenous, (2) weeds do not impede on the ptiuof neighbouring areas, (3) there

are no economies of scale in weed management|l @jees are constant over time, and (5)

an area can be managed independently of its neigkban reality neighbouring areas are

often in a similar state, and are co-managed.
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Stochastic population model

A stage projection matrix model is used to estinfiatiere weed populations and the effect of
control. The temporal transition of the weed popaftacan be represented as:

Xpn = (HX) oY, _(¢ut °X,) 1)

Y, (a Hadamard product) is the stochastic recruitn@nseedlings based on Charters
Towers’ rainfall data (values are selected by Mdbéelo sampling),u; is the control
decision, represented by an element from a vedtoof possible management actipasd

the mortality rate for each life-cycle stage inp@sse to the control decision is represented
by an efficacy vectop from a matrix® for different management actions. isl a density-
dependent stage projection matrix with dimensiomsimwhere n is the number of life cycle
stages.x, is the population vector for the number of induads in each life stage, at tinhe
The three main life cycle stages of woody weedssaezls, juveniles and adults. Seeds are
broken into sub states, new seeds (NS) and sedd (8&)). As are the juvenile (J), and
adults (A) into sub stage§,,J,....J,) and (A.A,...A), based on the time required to reach
maturity and plant longevity (Figure 1). For a dethdescription of how Hs derived over
time see Zulkt al., (2008).
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Figure 1. Life cycle diagram for woody weeds

Weed damage to pasture production is modelled u€ingsens’ (1985) rectangular-
hyperbola function, as follows:

WX
D =— - 2)
1+th
T

D, is the proportion of pasture-production lost e timet due to weedsy is a damage

vector index for the average amount of pastureywrtioin lost per weed in each life stage (as
weed density approaches zero), ant the maximum proportion of pasture-productiosslo
as weed density approaches infinity. Damage ttupaproduction can be reduced through
controlu. The financial return (benefit) in any time perisd

Bt:ﬂwf(l_ Dt{xt’u[})_QJ,t ©))
where 77, is the weed-free grazing gross margiit,fendC; is the cost of contral in timet.

A key assumption of Optimal Control (OC) is thaé tquation of motion is continuously
differentiable with respect to the state and cdmwariables. Many woody-weed control
practises have dichotomous application rateskfuming or mechanical removal of plants do
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not have degrees of application it is or is notliagp hence not continuously differentiable,
and OC can not be used. An alternative to OC isadyc programming (DP) which is a
computationally effective method for solving maxgaiion problems and does not rely on
differentiation (Kennedy, 1988DP offers the benefit of identifying thresholds.,i.a@pply a
given control @) if an infestation is greater than a given levwased on the temporal effects
of the population dynamics and efficacy of contmeéasures; thus providing biological
thresholds for management actions. The DP groupgosakible population structures into
‘states’ and divides the planning horizon into g&s’, and uses backward recursion to seek
optimal decisions. Solutions were obtained for anplng horizon T) of 25 years, with a
discount rate of 5 per cent, in MATLAB (MathworkX)07).

Control measures

There are four different control methods considdrethis study. Although, not mutually
exclusive in the field they are seldom used in Hane year, but can be applied in
consecutive years. The variable costs for weed gemnant are density-dependent and
increase with increasing density as more effort avaderials are required to control very
dense infestations. Fixed costs for each contrdiksztare, are unrelated to weed density, but
do vary from treatment to treatment. These mayuthelsearching for weeds, setting up,
transport, etc. Costs are listed in Table 1. Thiic&dies of the four control options are
provided in Table 2, representing the proportioringfividuals removed from the different
life-cycles stages, after natural or climatic mirga

Table 1: Control options; and cost per hectare

[ Control method ) Fixed costs Variable costs  Total Cost h#
ha' ha' (full density )
1.  No control $0 $0 $0
2. Burning $15 $0 $15
3. Chemical (poisoning) $37.50 $112.5 $150
4.  Mechanical (blade $50 $50 $100
ploughing)

Table 2: Efficacies of different chinee apple masragnt options in upland zones. Values
represent the proportion of the population thatamoved in each life-cycle stage.

Control method (U) and efficacy

No control Burning Chemical Mechanical
) (2) (©) (4)
New seeds (NS) 0 0.9 0 0
Seedbank (SB) 0 0.9 0 0
Seedlings (J1) 0 0.4 0.8 0.05
?@f’ Small juveniles (J2) 0 0.2 0.9 0.05
o Medium juveniles (J3) 0 0.01 0.9 0.5
:%‘ Large juveniles (34) 0 0.01 0.9 0.5
%) Small adults (A1) 0 0.01 0.95 0.95
Medium adults (A2) 0 0.01 0.95 0.95
Large adults (A3) 0 0.01 0.95 0.95
0 0.01 0.95 0.95

Largest adults (A4)




Curse of dimensionality

Individual woody weeds can exist in one of mang-tif/cle stages for many annual cycles.
Additionally, individuals in different life-cycletages will have different effects on pasture
production. Even the efficacy of different managatrstrategies is dependent on plants’ life-
cycle stage. This means that the state of the wepdlation must be described by the state
of its life-cycle stages. However, this will resirita large number of possible combinations
of states. For example, if there are ten life ey each stage can have ten states, then the
population can be one of a possiblé®igiates. Presuming there are four control variables
and a 25 year timeline, DP require$?li€erations (Kennedy, 1988). In reality land manage
do not need such detailed information on populasimactures to develop or implement fine
scale management strategies. Decisions are maly lia be based on the total number of
seeds, and damage from juveniles and adults. lliféwycle is reduced to 3 main stages the
total number of states declines to’ #0d the numerical problem only require$ itérations.
Put another way, if it takes four hours to solve teduced problem, it will take about 45
billion years to solve the unreduced problem, hgiiting the curse-of-dimensionality’
(Bellman, 1957). Any chinee apple infestation isussed to be in one of 5280 population
states Z), derived from 11 seeds, 24 juvenile, and 20 ashiaites. The number of seeds in
seed life cycle stages, range between 0 and 2560d0damages to pasture production from
juvenile and adult states range between zero &8lahd 43.65 per cent.

Reducing the DP model from ten life cycles to thisecomplex, as vital ecological
information may be lost. A transition probabilityriction (TPF) is therefore used to capture
the transition from one state to others, basederiull population dynamics of the plant and
method of control, whilst decreasing the numberstafte variables. Let the reduced state
variable be denoted by, a function ofx. To derive z requires two steps. First aample
set of various possible states over timg, ) is derived using the stage projection matrix

model Eq.(1), capturing the population dynamicsedv and recovering infestations, from
different management scenarios. Thep is condensed intoz states. This requires a

summation of the seeds and the area occupied Inidodl juveniles and adults. The next
step is to map the relationships between the ‘stt@bles’x, andz , through the truncation

of X, and z . Values are stored in matrices X and Z, which Wwél used as lookup tables
whilst solving the DP solution.

Stochastic dynamic programming framework

The decision rule is now based on the current statethe probabilities of going into other
states. The state of the infestatia{x,} is known before selecting a control valug),(

resulting in known current benefi{z{x }, § . However, with stochastic influences the
future states of the weed population are unknowp{x,,,} = f{x, u, Y;.} , as are future

rewards R,, =75, (1- D,.{2{ %}, & Y.3})— G.. The expectation operator of episodic

recruitmentY, has known probabilities that are assumed to bepieddently and identically

distributed {id). The equation of motion is replaced with a thdegeensional TPF whose
elementPjy represents the transition probability from state statej, given decisiord if

control was appliedug). Let the Markovian probability matri¥(u,) D 0" denote the state

transition probabilities when policyy is followed. The recursive equation with stochasti
recruitment is:
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subject to
P{u}=r{z.=z 12{x}=2{x} .y =y} (5)

B is the discount facto(l+r)™ for discount rate. V, is the optimal return in the current
period. The solution is solved backwards, fromT tot = 1. The recursive Eq. (4) provides
the optimal decision policyJ*{X} for any given state.

Applying control rules U*

As the problem is autonomous, based on Markov clpaotesses where the future is
independent of the past, an suite of decision ril&sZ %} can be obtained (Odom et al.,
2003). This ‘package’ of control decisions can bedito manage any infestation based on its
current stateu* is a function of the populations stat® (hich in turn is a function of
number and size of juvenile and adult plants a$ agethe number of seeds.

Figure 2 investigates how* changes with respect to changes in the humbegexfss and
the damages from juvenile and adult plants. Fomgte, in Figure 2 (b), assuming there are
few seeds and low levels of damage from adult plé&¢1) & A(1)), U* suggests No-control
until the level of damage from juveniles to pastpreduction is > 1.6 per cent; after this

point chemical control is used. The model was rith wormal control costs and,, = $20.
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Figure 2: Recommended control decisidn*) for changes in the quantity of (a) seed,

(b) juvenile and (c) adult damages, whilst keetiger state parameters fixed. S(1) = low,
S(2) = high seedbank; J(1) = low, J(2) = high juilerdamage; and A(1) = low, and A(2) =
high adult damage.



As there are three primary measures for the stht#heo infestation to consider (seeds,
juvenile and adults damage), all three have bedimidgually varied whilst keeping the others
fixed (at either low or high values). Figure 2 f{@icates that control decisions are not based
on the number of seeds present. Although the nuwitereds will affect how the population
state will change it has little affect on contr@cisions {U*). Changes in both the level of
damage to grazing pasture production by juvenitesadults will affect the control decision
implemented, Figure 2(b) & (c). The figures foralotveed density thresholds are not
presented due to their likeness to damage threshold

As the control decision appears to be independetiteoquantity of seeds present, a control
decision table can be constructed based on thédédamage from both juvenile and adult
plants (Figure 3). Note that the maximum level aimdge to pasture production from
juvenile plants (4%) is far less than that from l&l(#4%).

Figure 3 illustrates a number of thresholds betwieatment types, being between No-
control and Burning, No-control and Chemical cohtrand between Chemical and
Mechanical control. Burning was only chosen asation when damages from both juvenile
and adults plants is low.

Proportion of damage per ha by adults
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Figure 3: Control decision(U") with respect to changes in juvenile and adult

damages, whilst ignoring the quantity of seeds4s&00,000 seeds Ha

To see how the decision rule (U*) could affect aodyweed population see Figure 4.
figures (a), (b) and (c) indicate the damage, @bnnd NPVS over the same time period.
The management decision rule (U*) was applied tteearetical fully developed chinee apple
population in an upland zone over a 100-year tiragod. This provides an indication of



temporal weed damage, management decisions, asadcial benefits. Eq. (1) was used to
generatex, over time.

Results indicate that controlling chinee apple wacrease profit margins, Figure 4(c).

although it took 45 years to break even when cbstrategies were implemented. The solid
line represents how the damage to pasture produtiaffected by climatic condition, when

control is not administered. Damage to pasture yrtion is decreased from about 45 per
cent down to around 5 percent when control decisibis administered, given normal weed

management costs amt, = $20.

The model also indicates that it accounts for diceondition. The solid line represents the
damage if control was not implemented, which is gimulation decreased over the first 40
year, and then increased. This has also been tedflét the controlled population where the
infestation is initially managed and the not colia for another 30 years. However, when
the level of damage from the untreated populatohigh, indicating favourable climatic for
chinee apple, so to is the frequency of control.
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Figure 4: Simulation is based on normal weed manag#® costs andrz,, = $20. (a)

Shows the damage over time for both controlled aod-controlled infestations. (b) The
types of control options implemented. (c) Discodrdemulative profits for controlled and
non-controlled infestations.

Results in Figure 4 are based on a set of randochdgen climatic events. Therefore, every
simulation run will result in different temporal a@& damage, management decisions, and
financial benefits. Future climatic events and rtheipacts are unknown. Therefore current
decisions must be based on the probability of &itfoenefits and costs. To investigate the
probable benefits of using U* compared to ignorihg infestation; 400 simulations where
run. The NPV of weed management is the differenddRVs from managing the infestation



and ignoring it. On average U* will result in wesnagement having a NPV of $10.61 ha
with NPVs ranging between $-94.72 and $22.87 {figure 5). The lower and upper"0
percentiles where $0.17 and $14.9T haith U* resulting in a positive NPV 90 per cerit 0
the time.
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Figure 5: Cumulative distribution function of naepent values (NPV) of using control
decisionU* , based on normal weed management costsrgne $20.

Distribution of NPVs is due to episodic recruitmertchinee apple, as a result of climatic
conditions. The lower ten per cent of Figure 5 widgative NPVs is due to adverse climatic
conditions after a chosen method of weed managemenimplemented, i.e. higher rainfall

and levels of recruitment.

Evaluating the model with changing control costs and
gross margins

The model thus far has resulted in higher NPVs dmazers if control decision U* is
administered for normal weed management cost d@p&-$20. The question now remains

how will expected NPVs change with respect to clkeang weed management costs and/or
weed-free gross margins. Additionally, the dimenaity of the SDP model needs to be
tested to ensure that U* retains the correct sebofrol decisions for different combinations
of weed management costs and grazing gross margins.

To investigate the effects of changing weed managemost andr,,, both parameters

where changed simultaneously and the SDP was solvedvas applied against the full
stochastic population model (Eq.(1)) for 400 itenas, for each combination of parameters.
Weed management costs are expressed as a perceledigetion of current costs. The
expected (average) total NPVs are presented inré&igu The black area represents the
expected NPVs when ignoring the infestation, ardgiey area is when U* is administrated.
As iz, increases there is a clear bifurcation betweereipected NPVs from ignoring the
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infestation and controlling using U*. When . is low the expected NPVs from the U*

mostly coincides with ignoring the infestation,@se of the control options of U* is to “No
Control”.

U* resulted in equal to or higher expected NPVatignoring the infestation except for a
small section, see Figure 6, whag 77, < 15. As weed-free grazing gross margins are set to

be positive (7,, >$0), and the damage from weeds is never greaardhe (<y <r<1), an

unmanaged (ignored) infestation will always haveasitive NPV. Likewise, stochastic
climatic conditions will affect woody-weed populati dynamics; however, it can never
occupy more than 100 per cent of the area, anéfthrerthe premise remains that the NPVs
>%$0. Control decisionU* should have the same or a higher NPV than ignotirg
infestation. The lower NPVs from U* may be due le truncation of the states being too
coarse and the predicted transition between papolastates within the TPF is over
estimated. For example, in reality the infestatimay require two years to go from truncated
State-A to State-B; however the TPF may have estignthat it takes one only year. One
solution is to increase the number of states thathie infestation is truncated into a state
between these two states in the first year and theves into State-B in the following year.
However this will result in the curse-of-dimensibtya(Bellman, 1957). Additionally, it may
not be of any real benefit out in the field. Thairol decision U* only results in lower NPVs
when the benefits of control are marginal, i.e. wtilee NPVs from U* are similar to ignoring
the infestation. An alternative is to accept U*yonlhen it has the same or greater NPV than
for ignoring the infestation.

800

700~ With weed control
I No weed control

600~

Total NPV hat
w D (o))
o o o
o o o
l l l

Figure 6: Expected total NPVs from grazing with amthout using U* with respect to
changing weed management costs ang.



Now the expected benefits of woody weed managenvéhalways have NPVs> 0. To
determine the set of control decisions U* has odditmnal step. First, U* is defined;
second, if expected NPV is positive it is acceptedpt it is rejected and the infestation is
ignored. Based on this procedure a single thresioidier between ignoring and managing
the chinee apple infestation has been establisbedjven weed management costs amgl

(Figure 7).

NPV ha! from weed management using U*
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Figure 7: Expected NPVs from using*{X} . The lines and their values represent expected
NPVs from using U* .

Discussion

An economic SDP framework has been developed tp kletermine optimal control
decisions for woody-weed management in the Ausmaliangelands. The framework
captures the stochasticity of the system and commepulation dynamics, whilst
significantly reducing the ‘curse of dimensiondlitpommonly encountered in DP models.
This was achieved through the truncation of possgiapulations, which must weigh up cost
of losing valuable population dynamics information.

This framework provides a contingent based managenm®l, i.e. given all the known
information, if the weed population is in state tken administer management decisions
u*{x} . This decision does not consider whether managehsnor will be undertaken in

the future. It is Markovian in the true sense, ngemaent decisions are made independently
at each stage in time (Nemhauser, 1966). As thel weeulation changes so too does the
optimal control strategy. Therefore, there will #enumber of control thresholds, for each
type of weed control (Pannell, 1990), see Figurdn4this research, the term “threshold
frontier” (Figure 7) has been used to indicateghit after which an infestation is managed
— below this point it is ignored. Beyond the thmdshfrontier the infestation will be
controlled, but not actively treated every year.
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Some of the simulations represented here have ihwgbed-free grazing gross margirg, ()

than those currently achievable from grazing. Gir,, values are estimated to be around

$4.50, $6.50, and $13.21 hdor poor, average and good land conditions (Mad, €007,
pers. Comm.,). The premise for including highersgrmargins was to show the relationship
between different control variables, population @yics of the infestation and climatic
effects. Moreover, if only low, yet realistic, geosnargins were used many of the results
would suggest “No Control”. Under current weed ngeraent costssz,, must be > $15 to

justify control if chinee apple. If control costseehalved the threshold would lag, >10.

The results from this study indicate a minimum leg€é weed control and a maximum
acceptable level of woody-weed density and damiagkiding ecological and public costs is
likely to further increase the intensity of weed magement and decrease optimal weed
densities. Additionally, potential spatial spreatbinon-infested areas was not included, nor
was their potential damage and control costs. ifdisates that these results give a minimum
level of control for graziers.
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