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The Effect of the El Nino Southern Oscillation on U.S. Corn

Production and Downside Risk

Abstract

El Niño Southern Oscillation (ENSO) teleconnections imply anomalous weather conditions

around the globe, causing yield shortages, price changes, and even civil unrests. Extreme

ENSO events may cause catastrophic damages to crop yields, thus amplifying downside risk

for producers. This study presents a framework for quantifying the effects of climate on crop

yield distributions. An empirical application provides estimates of the effect that ENSO events

have on the means of U.S. county-level corn yield distributions, as well as the probabilities of

catastrophic crop loss. Our findings demonstrate that ENSO events strongly influence these

probabilities systematically over large production regions, which has important implications

for research and policy analysis in the production, risk management, climate change, and civil

unrest literatures.

Keywords: Climate, El Niño Southern Oscillation, Maximum Entropy, Risk Management,

Yield Distribution

1 Introduction

El Niño Southern Oscillation (ENSO) is a climatic phenomenon that takes place in the tropical

Pacific and has global weather implications (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989;

Rasmusson, 1991; Adams et al., 1999). ENSO has the potential to affect world economies, amplify

social instabilities and may even provoke civil wars in different parts of the world (Handler, 1990;

Solow et al., 1998; Brunner, 2002; Hsiang et al., 2011). In fact, researchers have speculated that

ENSO is responsible for such historically documented events as the biblical droughts in Egypt

(Eltahir, 1996), and the demise of ancient civilizations (Haug et al., 2003; Tsonis et al., 2010).

Linking climatic events to the world socio–political environment is not as paradoxical as it may

first sound, a reasonable causal mechanism being weather’s effect on agricultural production and

thus food prices (Bellemare, 2011), which is, in turn, causally linked to social unrest.
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While weather’s connection to civil war and the demise of civilizations has not been widely

established, there exists clear-cut justifications for linking large-scale medium-frequency weather

events with economic variables. This has generated much interest in studying the role of ENSO

on various measures of economic performance (Brunner, 2002; Kim and McCarl, 2005). Particular

attention has been paid to the causal relationship between ENSO and agricultural and fish produc-

tion and management (e.g. Handler, 1990; Carlson et al., 1996; Hansen et al., 1998; Adams et al.,

1999; Legler et al., 1999; Dalton, 2001).

El Niño is one of two extreme ENSO events, during which trade winds across the tropical Pa-

cific weaken, resulting in unusually warm sea surface temperatures in the region. The counterpart

of El Niño is La Niña, which is associated with very intense trade winds and colder-than-normal

sea surface temperatures. These extreme events have the potential to impact agriculture through

multiple vectors. First, ENSO linkages with precipitation and temperature provide a straightfor-

ward causal connection with crop production. Second, extreme ENSO events are likely to amplify

hazardous weather conditions, resulting in damaging storms, drought, and flooding. Lastly, cli-

mate conditions during ENSO events are correlated with pest damage as extreme conditions can

generate large changes in development rates for insects and germination rates for bacteria, fungi,

and nematodes (Rosenzweig et al., 2000; Iglesias and Rosenzweig, 2007).

Among other regions, the U.S. is greatly affected by ENSO events. Previous research has

linked ENSO with precipitation and temperature patterns in different regions (Ropelewski and

Halpert, 1986; Stone et al., 1996; Montroy, 1997; Barlow et al., 2001). Thus far, studies have found

meaningful connections between La Niña and droughts in the Western Corn Belt (Handler and

Handler, 1983; Handler, 1984, 1990), and increased probabilities of damaging storms and hurricanes

in the Southeast (Bove et al., 1998; Saunders et al., 2000). On the other hand, El Niño events have

been linked to hotter and drier climate, with increased probabilities of wildfires in the Southeastern

U.S. (Swetnam and Betancourt, 1990; Brenner, 1991; Legler et al., 1999).

El Niño and La Niña can impact U.S. agriculture through multiple vectors. First, ENSO

linkages with precipitation and temperature provide a straightforward causal connection with crop

production. Second, extreme ENSO events are likely to amplify hazardous weather conditions,
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resulting in damaging storms, drought, and flooding. Lastly, climate conditions during ENSO events

are correlated with pest damage as extreme conditions can generate large changes in development

rates for insects and germination rates for bacteria, fungi, and nematodes (Rosenzweig et al., 2000;

Iglesias and Rosenzweig, 2007).

Understanding the effects of ENSO is becoming increasingly important as the frequency and

intensity of events will likely increase parallel to climate change (Timmermann et al., 1999; Chen

et al., 2008). In the short run, effects of ENSO events can be measured as their immediate impact

on crop yields. Several papers have analyzed the economic impact of extreme ENSO events, and

found that both El Niño and La Niña have potentially damaging implications for U.S. agriculture

(Solow et al., 1998; Adams et al., 1999; Chen et al., 2002). In the intermediate run, amplified

ENSO conditions associated with climate change may call for adaptive actions by crop producers,

in order to avoid falling into the trap of a “dumb farmer” and not updating production techniques

(Kelly et al., 2005). A better understanding of ENSO events and their effects on crop production

could potentially help mitigate losses associated with climate change, and could result in annual

welfare gains of several hundred million U.S. dollars (Chen et al., 2001).

Previous research linking ENSO events to crop production has focused on implications for the

mean of the crop yield distribution. This approach is potentially limiting in that it does not

take into account ENSO’s effect on the overall shape of the distribution (Chen et al., 2004). The

importance of the distribution’s shape for agricultural production and downside risk management is

well established (Chavas and Holt, 1996; Moschini and Hennessy, 2001; Antle, 2010). In addition,

mitigation of downside risk is the dominant driver of nearly all agricultural policy instruments,

whose efficiencies rely on accurate knowledge of the lower tail of the yield distribution. Lastly, recent

research suggests that food price increases (rather than food price volatility) leads to increased social

unrest (Barrett and Bellemare, 2011; Bellemare, 2011). To the extent that crops are storable, price

spikes are likely to be triggered by widespread crop losses, which suggests that the lower tail of the

yield distribution could be part of the causal chain linking ENSO events to social unrest.

The objective of this research is to analyze the effects of extreme ENSO occurrences on corn

yield distributions. We focus on the U.S. as it is the global leader in corn production, and recent
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interest in corn-based ethanol has further amplified the importance of this crop. As the U.S. is also

the world’s largest corn exporter, ENSO’s effect on U.S. production has global implications. We

hypothesize that yield distributions under alternative ENSO regimes are different in two important

ways: (i) the mean of the distribution and (ii) the downside risk captured by the density in the

lower tail of the distribution. We allow for these distributions to be nonlinear functions of ENSO

events and allow for asymmetries across El Niño and La Niña events. This flexibility is consistent

with recent findings in the climate literature suggesting nonlinearities in both ENSO dynamics

and its linkages with weather events (Noel and Changnon, 1998; Hall et al., 2001). Finally, based

on the findings of Chen, McCarl, and Schimmelpfennig (Chen et al., 2004), we allow for spatial

heterogeneity of ENSO effects on crop production across a large panel of U.S. counties. This

represents a considerable downsizing in observational units relative to more common state- and

country-level approaches, and provides a fuller representation of spatial effects.

Our findings reveal important relationships between ENSO events and corn yields, have impor-

tant implications for researchers and policy makers in a broad range of disciplines including crop

production, risk management, climate change, and civil unrest. Consistent with the expectations

this relationship extends to the higher order moments of corn yield distribution, suggesting that

ENSO does impact the downside risk. Moreover, we observe both asymmetries and spatial hetero-

geneity of ENSO effect on yield distribution, once again emphasizing the intricate nature of the

ENSO phenomenon. In what follows, we will first present the empirical framework for this research.

Next, we describe the data and then discuss the empirical results and implications. Finally, we

summarize our main findings and discuss the big picture contributions of this research.

2 Empirical Framework

We utilize a similar empirical framework for linking climate variables to agricultural production

as Tack, Harri, and Coble (Tack et al., 2011), which extended the modeling approach of Schlenker

and Roberts (Schlenker and Roberts, 2006, 2009) by considering higher order moments of the yield

distribution. We further extend the Tack, Harri, and Coble model by directly controlling for El

Niño and La Niña events within the regression framework, which provides additional vectors beyond
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temperature and precipitation for ENSO events to affect yield outcomes. This is an important

adaptation relative to previous models linking ENSO to crop yields as it controls for the effect of

complicated interactions among hazardous weather conditions and environmental pests.

Our approach has two components, and each is described in the following two subsections.

The first component utilizes a data-based regression framework to predict raw moments of the

yield distribution under three ENSO regimes: El Niño, La Niña, and Neutral (we discuss how we

distinguish between these three regimes in the Data section below). The second component utilizes

these predicted moments within a maximum entropy framework to identify how the El Niño and

La Niña regimes perturb the distribution of yields relative to the Neutral regime. This allows us to

quantify the magnitude of the El Niño and La Niña effects on the mean of the yield distribution,

as well as producers’ exposure to downside risk.

Another point of departure between our method is that we utilize centered moments in the

maximum entropy framework, whereas the Tack, Harri, and Coble approach utilized raw moments.

The reason for this departure is twofold. First, the mean, variance, and skewness of crop yields have

been the focus of much of the distribution modeling literature (Day, 1965; Gallagher, 1987; Nelson

and Preckel, 1989; Moss and Shonkwiler, 1993; Goodwin and Ker, 1998; Ker and Coble, 2003;

Ramirez et al., 2003; Sherrick et al., 2004; Hennessy, 2009a,b). Second, it is likely that centered

moments create more stable constraints within the maximum entropy framework relative to raw

moments, whose values get (necessarily) exponentially larger for higher order moments. Centered

moments also have this feature, but the growth is much slower given that they are constructed

using deviations rather than levels.

2.1 Modeling Higher Order Moments

The empirical model for the j = 1, ..., J raw moments of the corn yield distribution is

yjist = αij + βjs1lowit + βjs2medit + βjs3highit + βjs4precit + βjs5prec
2
it

+βjs6ninot + βjs7ninat + βjs8trendit + εijt (1)
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where the dependent variable yjist is the jth power of the yield variable for county i in state s in

period t, αij is a county-by-equation fixed effect, lowit captures the intensity of low temperatures

experienced during the growing season, medit captures the intensity of medium temperatures, and

highit captures the intensity of high temperatures. We include a quadratic effect for precipitation,

and two dummy variables ninoit and ninait that are equal to one if an El Niño or La Niña event

was experienced during the growing season. We also include an equation specific linear trend to

control for technological change over time. Note that we have allowed the parameters to vary by

state, as we will estimate this model for each state in our data.

Under the assumption E (εijt) = 0 the equations in (1) can be thought of as directly formulating

how climate and technological change affect moments of the crop yield distribution. The authors

point out that one can consistently estimate these moments using ordinary least squares techniques

(Tack et al., 2011).

2.2 Regime Specific Distributions

While the parameters in equation (1) capture the causal relationship of climate and technological

change with the higher order moments of the yield distribution, it is not immediately clear how

these variables affect the overall shape of the distribution. The ability to predict the moments

under different regimes does not in and of itself allow us to measure the effect of these regimes on

the entire distribution of yield outcomes (Tack et al., 2011). The inability of a finite set of moments

to determine the entire density is often referred to as the moments problem (Shohat and Tamarkin,

1943), and previous work in the yield modeling literature has demonstrated how this problem can

be ameliorated using the concept of maximum entropy (Stohs, 2003; Tack et al., 2011).

Define by µij ≡ E
(
Y j
i

)
the jth raw moment of the random variable Yi, the yield for county i.

Also define by Xi a county specific random vector for the right-hand side variables of equation (1)

and define the outcomes xnino
i , xnina

i , and xneutral
i as values for the right-hand side variables that

represent the El Niño, La Niña, and Neutral regimes. We define the raw moments conditional

on these outcomes as µninoij ≡
(
Y j
i | Xi= xnino

i

)
, µninaij ≡ E

(
Y j
i | Xi= xnina

i

)
, and µneutralij ≡

E
(
Y j
i | Xi= xneutral

i

)
.
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For an arbitrary county i and regime r ∈ {nino, nina, neutral}, the maximum entropy distri-

bution is defined by

f∗ir = arg max
f

−
∫
f (y) ln f (y) dy (2)

subject to the moment constraints

∫
f (y) dy = 1 and

∫
yjf (y) dy = µrij , j = 1, . . . , J. (3)

The associated Lagrangian for this maximization problem is

L = −
∫
f (y) ln f (y) dy − γ0

[∫
f (y) dy − 1

]
−

J∑
j=1

γj

[∫
yjf (y) dy − µrij

]
(4)

and the implied solution is the maximum entropy density

f∗ir (y) =
1

ψ (γ∗ir)
exp

− J∑
j=1

γ∗ijry
j


ψ (γ∗ir) =

∫
exp

− J∑
j=1

γ∗ijry
j

 dy (5)

where the parameter vector γ∗ir represents the solution to the maximization problem and ψ (γ∗ir) is

the normalizing factor that insures the density integrates to unity. The density in equation (5) is

a member of the well-known exponential family.

Given the previously mentioned reasons for utilizing centered moments as constraints, we amend

this framework slightly to utilize the mean, variance, and skewness of the yield distribution. The

conditional variance and skewness are defined for each regime as

vri ≡ E
[
(Yi − µi1)2 | Xi= xi

]
= µri2 − (µri1)

2 , (6)

sri ≡
E
[
(Yi − µi1)3 | Xi= xi

]
(vri )3/2

=
µri3 − 3µri1 (µri1)

2 + 2 (µri1)
3

(vri )3/2
. (7)

Using the conditional mean, variance, and skewness as the moment constraints, the new Lagrangian
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is

L = −
∫
f (y) ln f (y) dy − γ0

[∫
f (y) dy − 1

]
− γ1

[∫
yf (y) dy − µri1

]
−γ2

[∫
(y − µri1)

2 f (y) dy − vri
]
− γ3

[∫
(y − µri1)

3

(vri )3/2
f (y) dy − sri

]
. (8)

The implied maximum entropy density now takes the form

f∗ir (y) =
1

ψ (γ∗ir)
exp

[
−γ∗i1ry − γ∗i2r (y − µri1)

2 − γ∗i3r (y − µri1)
3 / (vri )3/2

]
,

ψ (γ∗ir) =

∫
exp

[
−γ∗i1ry − γ∗i2r (y − µri1)

2 − γ∗i3r (y − µri1)
3 / (vri )3/2

]
dy. (9)

We use the maxentropy.ado file for Stata (Wittenberg, 2010) to estimate maximum entropy

densities using the predicted conditional mean, variance, and skewness as constraints. The first

step in constructing these constraints is to generate predicted raw moments using equation (1),

which are then used to construct the conditional variance and skewness constraints according to

equations (6) and (7). We estimate the maximum entropy distributions for every county-regime

combination, thus allowing us to trace out spatially heterogeneous distributional effects of El Niño

and La Niña.

3 Data

We combine three different data sources to construct a county-level panel of yield, temperature,

precipitation, and ENSO data that spans 56 years. The limiting factor for this data is the tem-

perature and precipitation data, which is only available from 1950-2005 and is discussed in more

detail below.

County-level yield data are collected from the National Agricultural Statistics Service and are

measured in bushels per acre. We include all counties that have a complete 56 year yield history,

and further restrict our analysis to states that have at least five counties represented in the data.

Table 1 provides a spatial representation of the data. There are a total of 55,384 observations

representing 989 counties and 16 states. Six states are from the Western Corn Belt region, five
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from the Eastern Corn belt, three from the Southeast, and one each from the East Coast and Mid

South.

We use a monthly time series of the ENSO anomaly, Niño 3.4, derived from the index tabulated

by the Climate Prediction Center at the National Oceanic and Atmospheric Administration. This

index measures the difference in Sea Surface Temperature (SST) in the area of the Pacific Ocean

between 5◦N − 5◦S and 170◦W − 120◦W , and is a strong indicator of ENSO occurrence. The Niño

3.4 monthly measure is an average of daily values interpolated from the weekly measures obtained

both from satellites and actual locations around the Pacific. The anomaly is the deviation of the

Niño 3.4 monthly measure from the average historic measure for that particular month from the

period 1971 – 2000.

In order to allow for El Niño and La Niña events to impact yields through vectors beyond

temperature and precipitation, we utilize monthly SST anomaly data to construct dummy variables

for each regime. For each year in the data set, we utilize the minimum and maximum monthly

STT anomaly values (measured in ◦C) within the six month corn growing season (April through

September) to construct the annual ranges shown in Figure 1. For each year, the top bar represents

the highest monthly SST anomaly and the lower bar the lowest monthly anomaly. Denote by sstt

and sstt the maximum and minimum of the six monthly measures in year t, then the El Niño and

La Niña dummy variables are constructed according to

ninot =

 1 if sstt > 1◦C

0 otherwise
and ninat =

 1 if sstt < −1◦C

0 otherwise

The above definition implies that any upper bar that breaks the 1◦C line in Figure 1 denotes a

growing season that was impacted by El Niño, and any lower bar that breaks the −1◦C line denotes

a La Niña growing season. Thus, there are ten growing seasons that fall into the El Niño regime

(1957, 1965, 1972, 1982, 1983, 1987, 1992, 1993, 1997, and 2002), and eleven that fall into the La

Niña regime (1950, 1954, 1955, 1964, 1970, 1971, 1973, 1975, 1988, 1998, 1999). The remaining

years thirty five years are considered the Neutral Regime.

Descriptive statistics for the data are reported in Table 2. The first set of statistics correspond
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to the entire data, and the remaining sections correspond to the Neutral, El Niño, and La Niña

regimes. We construct our yield measure as county-level production divided by harvested acres.

Yields in the El Niño regime have a higher mean and lower variance compared to the Neutral

regime, whereas yields in the La Niña regime have a lower mean and variance. However, yields

across the regimes are not directly comparable because we have not taken into account the effect

of technological change. Figure 2 provides box plots of the county-level yield data by year, and

demonstrates that there is significant intra-annual variation across counties and a consistent increase

in both the mean and variance of corn yields through time.

We use the same weather data as in Schlenker and Roberts (Schlenker and Roberts, 2009),

which spans 1950-2005 and is based on the rectangular grid system underling PRISM that covers

the contiguous United States. The authors construct a distribution of temperatures within each

day using a sinusoidal curve between minimum and maximum temperatures. They then estimate

time in each 1◦C temperature interval between −5◦C and 50◦C. The area-weighted average time

at each degree over all PRISM grid cells within a county is constructed, and are then summed over

the six month corn growing season from April through September.

We use the same temperature intervals described in Schlenker and Roberts (Schlenker and

Roberts, 2009). The measure of low temperature is constructed as the number of degree days

above 0◦C minus the number of degree days above 9◦C, thus capturing the number of degree days

within the interval. The measure of medium temperature is constructed in the same way but

with the bounds 10◦C and 29◦C. The high measure is the number of degree days above 29◦C.

Precipitation is measured in centimeters and is aggregated across the growing season in the same

way as the temperature variables. Figure 3 provides annual box plots of the temperature and

precipitation data.

Previous studies linking this weather data to yield outcomes (Tack et al., 2011; Schlenker and

Roberts, 2006, 2009) have found that high temperatures and precipitation have a strong influence

on yields. Table 2 shows that both the mean and variance of high temperatures under the El Niño

and La Niña regimes increase relative to the neutral regime; thus suggesting periods of exposure to

very extreme heat. This effect is much more pronounced for the La Niña regime in which both the
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mean and variance increase substantially. For the precipitation variable, El Niño and La Niña have

opposite effects. El Niño generates an increase in the mean and decrease in the variance, while La

Niña generates a decrease in the mean and increase in the variance. Importantly, these measures

are averages across several different regions of the U.S. which likely masks spatially heterogeneous

effects of ENSO events on temperature and precipitation.

4 Results

The first subsection presents and discusses the results for the regression based estimation of the raw

moments given by equation (1). The second subsection presents the maximum entropy distributions

for the largest producing county within each state to demonstrate the qualitative effects of El

Niño and La Niña on the shape of the corn yield distribution. In addition, the second subsection

presents the quantitative effects of El Niño and La Niña on the mean and downside risk of the yield

distribution for every county in the data.

4.1 Estimation of Raw Moments

Predicting the mean, variance, and skewness first requires estimating the first three raw moments

according to the specifications given in equation (1). We estimate each equation and each state

separately, and include county-level fixed effects and robust standard errors clustered at the county-

level. There are over 3,000 parameters in the model, way too many to report here, so we will

highlight the more interesting findings.

We find that the state-specific regression models for the three moments provide a reasonable

level of fit for the data. Figure 4 provides the r-squared values of the three moment equations for

each state. The goodness of fit statistic ranges from a low of 0.49 (Alabama, third moment) to a

high of 0.90 (Minnesota, first moment). The range for the first moment equation is from 0.75 to

0.90, for the second it is from 0.61 to 0.84, and for the third it is from 0.49 to 0.76.

The left panel of Figure 5 reports 95 percent confidence intervals for the state-specific trend

coefficients for the first moment equation. We find that technological change has had a positive

and statistically significant effect on mean yields for all states. The non-overlap of the confidence
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intervals provides evidence that there has been heterogeneous technological change across states.

Although not reported, technological change continues to play an important causal role for the

higher order moments. For the second and third moment equations, the linear trend variable is

statistically significantly different from zero for all 16 states at a 1 percent significance level.

Recall that for equation j in state s, the overall effect of precipitation is given by βjs4precit +

βjs5prec
2
it. To evaluate the causal role of precipitation, we conduct joint hypothesis tests of the

form H0 : βjs4 = βjs5 = 0. The right panel in Figure 5 reports the state-specific p-values associated

with these tests for the first moment equation, and we find that the p-values are below 0.5 for all

but two states. Although not reported here, the corresponding test results for the higher order

moments imply that precipitation continues to play an important causal role for the higher order

moments as the associated p-values are below 0.10 for 15 of the 16 states for both the second and

third moment equations.

The left panel of Figure 6 reports 95 percent confidence intervals for the state-specific low

temperature parameters for the first moment equation. We find that exposure to low temperature

has a statistically significant effect on mean yields for 9 of the 16 states. Again, we see strong

evidence of heterogeneity across states. Although not reported, exposure to low temperatures

continues to play an important causal role for the higher order moments. For the second moment

equation, the low temperature variable is statistically significantly different from zero for 11 states

at a 10 percent significance level. The same finding exists for 12 states for the third moment

equation.

The middle panel of Figure 6 reports 95 percent confidence intervals for the state-specific

medium temperature parameters for the first moment equation. We find that exposure to medium

temperature has a statistically significant effect on mean yields for 14 of the 16 states. Again, we

see strong evidence of heterogeneity across states. Although not reported, exposure to medium

temperatures continues to play an important causal role for the higher order moments. For the

second moment equation, the medium temperature variable is statistically significantly different

from zero for 14 states at a 5 percent significance level. The same finding exists for 15 states for

the third moment equation.
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The right panel of Figure 6 reports 95 percent confidence intervals for the state-specific low

temperature parameters for the first moment equation. We find that exposure to high temperature

has a negative and statistically significant effect on mean yields for all 16 states. Again, we see strong

evidence of heterogeneity across states. Although not reported, exposure to high temperatures

continues to play an important causal role for the higher order moments. For the second and third

moment equations, the high temperature variable is statistically significantly different from zero

for all 16 states at a 1 percent significance level.

The left panel of Figure 7 reports the state-specific parameter estimates and associated 95

percent confidence intervals of the El Niño dummy variable for the first moment equation. This

approach allows us to test whether El Niño affects yields through vectors beyond temperature and

precipitation, and we find that this is the case for 13 of the 16 states. Again, we see strong evidence

of heterogeneity across states. Although not reported, the El Niño dummy variable continues to

play an important causal role for the higher order moments. For the second and third moment

equations, the El Niño variable is statistically significantly different from zero for 14 states at a 10

percent significance level.

The right panel of Figure 7 reports the state-specific parameter estimates and associated 95

percent confidence intervals of the La Niña dummy variable for the first moment equation. This

approach allows us to test whether La Niña affects yields through vectors beyond temperature and

precipitation, and we find that this is the case for all 16 states. Again, we see strong evidence of

heterogeneity across states. Although not reported, the La Niña dummy variable continues to play

an important causal role for the higher order moments. For the second moment equation, the La

Niña variable is statistically significantly different from zero for 13 states at a 1 percent significance

level. The same finding exists for 14 states for the third moment equation.

4.2 Mean and Downside Risk Effects

Following the procedure outlined in Empirical Framework section, we construct three maximum

entropy distributions for each county, one for each ENSO regime. First, we use equation (1) and
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the estimated parameters reported in the previous section to predict conditional moments as

µ̂rij = α̂ij + β̂jx̄
r
i , i = 1, . . . , 969, j = 1, 2, 3, r ∈ {nino, nina, neutral} , (10)

where x̄r
i are county-specific predictors under each regime. For the El Niño regime, we fix the

temperature and precipitation variables at their sample average for the ten El Niño years, the El

Niño and La Niña dummy variables are set to one and zero respectively, and we hold the trend

variable at it sample average of twenty eight. We do the same for the La Niña regime using the

eleven La Niña years, but fix the El Niño and La Niña variables to zero and one respectively. For

the Neutral regime, we use the thirty five Neutral years to construct sample averages and fix both

dummy variables to zero.

The next step is the construction of the conditional variance and skewness using the second and

third moments from equation (10) combined with equations (6) – (7). This yields the final set of

constraints for each county-regime combination, {µ̂ri1, v̂ri , ŝri }, which are then used to estimate the

maximum entropy density functions. Since we cannot report all of the estimated distributions here,

we provide distributions for the largest producing county (based on historical average of production)

within each state. These distributions are presented in Figures 8 – 10.

4.2.1 El Niño and La Niña Mean Effects

The effect of El Niño (La Niña) on mean corn yields is measured as the percentage change in the

mean of the El Niño (La Niña) distribution relative to the mean of the Neutral distribution, i.e.

100 ×
(
µninoi − µneutrali

)
/µneutrali for El Niño and 100 ×

(
µninai − µneutrali

)
/µneutrali for La Niña.

Figure 11 reports state-specific box plots of the El Niño effect for all counties in the data. In

the Western Corn Belt, the effect ranges from −13.3% to 7.8%, with 76 percent of all counties

experiencing a reduction in yields. The range of effects in the Eastern Corn Belt is from −11.7% to

1.4 (96 percent), and in the Other Regions the range is −23.5% to 2.5% (97 percent). On average,

the effect of El Niño is mean reducing, and there exists significant heterogeneity both within and

across states. Interestingly, the largest reduction occurs in Maryland, and the average reduction in

the Western and Eastern Corn Belts is small relative to the reductions in other regions.
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Figure 12 reports state-specific box plots of the La Niña effect for all counties in the data.

The effect ranges from −15.1% to 2.6% (97 percent experience a reduction) in the Western Corn

Belt, from −13.0% to −1.3% (100 percent) in the Eastern Corn Belt, and from −24.1% to −4.4%

(100 percent) for the Other Regions. The effect of La Niña is mean reducing for all but a few

counties, and again we see strong evidence of spatial heterogeneity. On average, the effect is

stronger as one moves eastward across the different regions with the largest reductions occurring

in the Carolinas, Kentucky, and Maryland. Comparing the effects across figures 11 and 12, we see

important asymmetries in the mean effects as the median effect in each state is typically larger

under La Niña.

Figures 13 and 14 present spatial distributions of ENSO effects on mean corn yields across the

U.S. These maps illustrate the asymmetries and heterogeneity of ENSO-related yield outcomes. La

Niña events are the most damaging for the southern tier of both the Western and Eastern Corn Belt

states, along with the Southeastern region of the U.S. Although, the magnitude of these effects are

comparable (between 15 and 25 percent decrease in mean yield) the climatic reasons are different.

In the case of the Corn Belt states this is because of excessive droughts, while in the case of the

Southeastern states the likely reason for yield reductions are damaging storms associated with La

Niña. Effects of El Niño are less severe but more heterogeneous. Most of the Corn Belt is only

marginally affected by El Niño events, with an exception of central Iowa. Interestingly, negative El

Niño effects are more dramatic in the neighborhood of the Appalachia.

Overall, our findings suggest that both El Niño and La Niña have a negative effect on mean corn

yields for the majority of corn producing counties in our data, and that these effects are spatially

heterogeneous both within and across the Western Corn Belt, Eastern Corn Belt, East, Southeast,

and Mid South regions. These represent important findings as they conform with previously studies

(Handler, 1990; Phillips et al., 1999; Jones, 1999) suggesting correlation between ENSO and corn

yields in the Corn Belt and Southeastern region of the U.S. The findings suggest that the county-

level analysis of ENSO effects is important, because the ENSO events may have diverging effects

on corn yields in different parts of the same state.
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4.2.2 El Niño and La Niña Downside Risk Effects

The effect of El Niño (La Niña) on downside risk is measured as the percentage change in the proba-

bility of a particular tail event under the El Niño (La Niña) distribution relative to the Neutral distri-

bution. We define a catastrophic event in county i, Ωi, as any outcome below sixty five percent of the

mean of the Neutral Regime (µ̂neutrali1 ), i.e. Ωi =
{
yi : yi ≤ 0.65µ̂neutrali1

}
. Define y∗i = 0.65µ̂neutrali1 to

be the threshold for the catastrophic event and denote by Fir (y) the cumulative distribution func-

tion associated with the maximum entropy distribution fir (y), then the probability of a catastrophic

event in any regime is just Fir (y∗i ). The effect of El Niño (La Niña) on a catastrophic event is mea-

sured as the percentage change in the probability under the El Niño (La Niña) distribution relative

to the probability under the Neutral distribution, i.e. 100×
[
Fnino
i (y∗i )− Fneutral

i (y∗i )
]
/Fneutral

i (y∗i )

for El Niño, and 100×
[
Fnina
i (y∗i )− Fneutral

i (y∗i )
]
/Fneutral

i (y∗i ) for La Niña.

Figure 15 reports state-specific box plots of the El Niño downside risk effect for all counties

in the data. The effect ranges from −79.0% to 42.3% (72 percent experience a reduction) in the

Western Corn Belt, from −67.9% to 48.8% (71 percent) in the Eastern Corn Belt, and from −99.1%

to 90.8% (51 percent) in the Other Regions. It is evident that El Niño can be both risk reducing

and risk enhancing, and that this heterogeneity occurs both within and across most states.

Figure 16 reports state-specific box-plots of the La Niña downside risk effect. The effect ranges

from −47.6% to 66.1% (2 percent experience a reduction) in the Western Corn Belt, from −16.6%

to 143.9% (less than 1 percent) in the Eastern Corn Belt, and from −63.3% to 79.5% (9 percent)

in the Other Regions. Alternative to the El Niño findings, these results suggest La Niña events

are associated with an increase in downside risk, and that these increases can be quite large. On

average, the largest effects occur in Illinois and Wisconsin, and the Eastern Corn Belt as a whole

experiences larger increases relative to other parts of the U.S.

Spatial distributions of these effects are illustrated in Figures 17 and 18. El Niño effects prove

to be heterogeneous across different regions of the U.S. In central Iowa, as well as western parts if

Illinois and Ohio, El Niño results in up to a 40 percent increase in the probability of a catastrophic

event. On the contrary, in South Dakota, Nebraska and Missouri, as well as the Mid South and the

Southeastern regions of the U.S. the probabilities of catastrophic events decrease during El Niño.
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Reasons for this could be low probabilities of droughts in the Midwest, as well as mitigation of

damaging storm and hurricanes in the Southeastern region during an El Niño event. Alternatively,

La Niña consistently increases probabilities of catastrophic events across the corn producing regions.

The largest relative changes in downside risk are observed in the heart of the Corn Belt, most likely

due to exacerbated drought conditions. Finally, the sign and magnitude of the La Niña effect on

downside risk is respectively less consistent and smaller in the Southeastern U.S.

Overall, our findings suggest that La Niña has a negative effect on downside risk for the majority

of corn producing counties in our data, while the El Niño effects are spatially heterogeneous both

within and across the U.S. These represent important findings as they provide additional insights

about ENSO’s impact on corn production, and represent a useful aid for downside risk management

for both crop producers and government agencies.

5 Conclusions

ENSO’s impact on world commodity production and prices has well been documented, and recent

research suggests a causal relationship with social unrest and civil conflict (e.g. Handler, 1990;

Solow et al., 1998; Brunner, 2002; Ubilava and Holt, 2009; Hsiang et al., 2011). However, research

focused on higher order effects of ENSO is lacking, especially in the area of agricultural production.

This is the focus of this article, as we illustrate the impacts of ENSO on U.S. corn production

using county-level data spanning 1950 to 2005. Our findings greatly complement previous studies

and have implications for researchers and policy makers in several disciplines including production,

climate change, and civil unrest.

Our findings have strong implications for modelling efforts linking ENSO events to agricultural

production. Previous approaches primarily focus on the effects of ENSO on the mean of the yield

distribution, rather than the distribution itself. This approach is short sighted as our findings clearly

demonstrate that ENSO events can dramatically alter probabilities of large scale crop losses. We

remedy this short-coming of current modeling approaches by providing an empirical framework

that is tractable, utilizes actual yield history that is publicly available, and is not restrictive in the

number of locations included. This approach has several advantages over simulation-based exercises
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as in Legler, Bryant, and O’brien and Chen, McCarl, and Adams (Legler et al., 1999; Chen et al.,

2001). Within this framework, we also demonstrate how the effect of ENSO on crop yields can be

modeled through multiple causal vectors in a regression based framework, rather than adopting ad

hoc methods that estimate the effect through groupings of regression residuals (Chen et al., 2008)

or the use of spectral density methods (Hansen et al., 1998).

This study has immediate implications for corn producers and policy makers as our results

clearly demonstrate that ENSO events alter the entire distribution of yields. Interestingly, these

effects are asymmetric across the two major ENSO events, El Niño and La Niña, and spatially

heterogeneous. While we focus on U.S. corn yields, it is likely that these findings extend to other

crops and countries. We demonstrate ENSO’s effect on downside risk, which represents a key

finding for risk management decision making and development of agricultural policy instruments.

An interesting line of future research would be to combine the conditional yield distributions derived

in this article with a predictive model of ENSO events to formulate ex ante unconditional yield

distributions. To the extent that these unconditional distributions differ from current approaches

that ignore ENSO impacts, this line of research would help producers better manage their exposure

to risk and help policy makers construct more efficient policy instruments.

The nexus of climate change and agricultural production research continues to focus on the

mean of the yield distribution, and assumes that the key predictive variables are temperature and

precipitation. These approaches omit the impacts of ENSO events under future climate scenarios,

even though evidence suggests that ENSO events and climate change are correlated. We demon-

strate that temperature and precipitation are not the only vectors by which ENSO affects yields,

thus implying that the omission of variables that control for ENSO events in a predictive yield

model is likely problematic.

There exists a burgeoning scientific literature linking climatic phenomenons to civil unrest in

developing countries where food shortages and poverty are consistent concerns (Hsiang et al., 2011).

The exact mechanism by which ENSO causes social unrest has not been credibly identified, however

high commodity prices have been linked to social unrest (Barrett and Bellemare, 2011; Bellemare,

2011). We find evidence that ENSO events, particularly La Niña, can generate large increases in
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the probability of catastrophic crop losses. Given that these increased probabilities occur for nearly

all of the counties in our data, realized crop losses could occur simultaneously across large, diverse

production regions . This is exactly the type of outcome that could trigger large price spikes and

consequently civil unrest. Thus, our findings contribute to this literature by providing a candidate

for the missing piece in the causal chain linking ENSO events to civil unrest.
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Tables

Table 1: Spatial Representation of Data

State Number Counties Obs

Western Corn Belt
Iowa 99 5,544
Minnesota 58 3,248
Missouri 83 4,648
Nebraska 89 4,984
North Dakota 14 784
South Dakota 53 2,968

Eastern Corn Belt
Illinois 102 5,712
Indiana 87 4,872
Michigan 42 2,352
Ohio 82 4,592
Wisconsin 58 3,248

Southeast
Alabama 17 952
North Carolina 73 4,088
South Carolina 30 1,680

East Cost
Maryland 21 1,176

Mid South
Kentucky 81 4,536

United States
Total 989 55,384

Notes: We only include counties that have a complete yield histroy from 1950-2005.
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Table 2: Yield and Climate Data: 1950-2005
Variable Sample Mean (s.d.) Min Max Obs

All Years
Corn Yield (bushels per acre) 85.36 (36.56) 0.04 200.00 55384
Low Temperature (degree days) 2445.50 (140.57) 1425.70 1829.40 55384
Medium Temperature (degree days) 1009.50 (249.14) 848.30 2703.40 55384
High Temperature (degree days) 25.94 (24.16) 0.00 240.43 55384
Precipitation (centimeters) 56.87 (14.61) 11.76 147.19 55384
El Nino (Yes = 1) 0.18 (0.38) 0.00 1.00 55384
La Nina (Yes = 1) 0.20 (0.40) 0.00 1.00 55384

Neutral Regime
Corn Yield (bushels per acre) 87.29 (37.10) 4.00 200.00 34615
Low Temperature (degree days) 1720.20 (65.04) 1460.31 1828.21 34615
Medium Temperature (degree days) 1728.60 (317.62) 928.88 2694.61 34615
High Temperature (degree days) 24.21 (22.73) 0.00 216.85 34615
Precipitation (centimeters) 56.66 (14.48) 11.76 132.13 34615

El Niño Regime
Corn Yield (bushels per acre) 92.45 (33.69) 10.00 195.28 9890
Low Temperature (degree days) 1708.70 (67.75) 1458.62 1828.11 9890
Medium Temperature (degree days) 1708.40 (337.87) 848.31 2663.25 9890
High Temperature (degree days) 24.60 (23.48) 0.01 139.85 9890
Precipitation (centimeters) 59.00 (14.38) 17.00 126.93 9890

La Niña Regime
Corn Yield (bushels per acre) 72.80 (34.35) 0.04 172.39 10879
Low Temperature (degree days) 1726.50 (66.13) 1425.77 1829.43 10879
Medium Temperature (degree days) 1782.50 (313.44) 922.39 2703.47 10879
High Temperature (degree days) 32.64 (27.75) 0.05 240.43 10879
Precipitation (centimeters) 55.57 (15.04) 16.17 147.20 10879

Notes: Values reported for temperature and precipitation variables correspond to the April through September

growing season. Low temperature measures degree days between 0◦C and 9◦C; medium temperature measures

degree days between 10◦C and 29◦C; and high temperature measures degree days above 29◦C. A list of the El Niño,

La Niña, and Neutral years is provided in the text.
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Figures

Figure 1: SST Anomalies During the Growing Seasons
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Figure 2: Corn Yields across Counties by Year

28



F
ig

u
re

3:
T

em
p

er
at

u
re

an
d

P
re

ci
p

it
at

io
n

A
cr

os
s

C
ou

n
ti

es
b
y

Y
ea

r

29



Figure 4: R2 Values of the Three Moments Equations by State
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iñ
a’

s
E

ff
ec

t
on

D
ow

n
si

d
e

R
is

k

44


	Introduction
	Empirical Framework
	Modeling Higher Order Moments
	Regime Specific Distributions

	Data
	Results
	Estimation of Raw Moments
	Mean and Downside Risk Effects
	El Niño and La Niña Mean Effects
	El Niño and La Niña Downside Risk Effects


	Conclusions
	References
	Tables
	Figures

