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Abstract. This study investigates the impact of climate change adaptation on farm households’ downside 
risk exposure (e.g., risk of crop failure) in the Nile Basin of Ethiopia. The analysis relies on a moment-
based specification of the stochastic production function. We estimate a simultaneous equations model 
with endogenous switching to account for the heterogeneity in the decision to adapt or not, and for 
unobservable characteristics of farmers and their farm. We find that (i) climate change adaptation reduces 
downside risk exposure, i.e., farm households that implemented climate change adaptation strategies get 
benefits in terms of a decrease in the risk of crop failure; (ii) farm households that did not adapt would 
benefit the most in terms of reduction in downside risk exposure from adaptation; and (iii) there are 
significant differences in downside risk exposure between farm households that did and those that did not 
adapt to climate change. The analysis also shows that the quasi-option value, that is the value of waiting 
to gather more information, plays a significant role in farm households’ decision to adapt to climate 
change. Farmers that are better informed may value less the option to wait to adapt, and so are more 
likely to adapt than other farmers.  
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production function, skewness. 
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1. Introduction 
 
One consequence of climate change in sub Saharan Africa is that farmers will be more exposed to 
production risk. More erratic and scarce rainfall and higher temperature can imply that farmers will be 
facing a larger extent of uncertainty. A prime example is Ethiopia. Rainfall variability and associated 
drought have been major causes of food shortage and famine in Ethiopia. During the last forty years, 
Ethiopia has experienced many severe droughts leading to production levels that fell short of basic 
subsistence levels for many farm households (Relief Society of Tigray, REST and NORAGRIC at the 
Agricultural University of Norway 1995, p. 137). Harvest failure due to extreme weather events is the 
most important cause of risk-related hardship of Ethiopian rural households, with adverse effects on farm 
household consumption and welfare (Dercon 2004, 2005). Future prospects of climate change are likely 
to exacerbate these issues. The implementation of adaptation strategies is very important. Farmers may 
need to implement adaptation measures to invest in soil conservation measures in the attempt of keeping 
soil moisture. Alternatively they can plant trees to procure some shading on the soil or resort to water 
harvesting technologies. On the other hand, if the conditions become far too challenging, then farmers 
may see less of a scope for investment (i.e., prospect are too gloomy), and they might be forced out of 
agriculture and migrate with very important implications in terms of livelihoods. 

This paper investigates whether the set of strategies (e.g., change crops, soil and water 
conservation) implemented in the field by farm households in response to long term changes in 
environmental conditions (i.e., temperature and rainfall) affect production risk exposure. In other words, 
are farm households that implemented climate change adaptation strategies getting benefits in terms of a 
reduction in risk exposure? Are there significant differences in risk exposure between farm households 
that did and those that did not adapt to climate change? Looking at the risk implications of adaptation to 
climate change is a novel contribution to the literature. There is a very large and growing body of 
literature assessing the impact of climate change in agriculture. This literature, however, focuses on the 
implications in terms of productivity of land values of climatic variables (e.g., Mendelsohn et al. 1994; 
Kurukulasuriya and Rosenthal 2003; Seo and Mendelsohn 2008; Deressa and Hassan 2010). To our 
knowledge the empirical assessment of the role of adaptation on risk exposure has not been investigated 
yet. We aim to fill this gap.  

We define risk exposure in terms of downside risk (e.g., probability of crop failure). The analysis 
relies on a moment-based specification of the stochastic production function (Antle 1983; Antle and 
Goodger 1984). This method has been widely used in the context of risk management in agriculture (Just 
and Pope 1979; Kim and Chavas 2003; Koundouri et al. 2006; and Di Falco and Chavas 2009).The focus 
on crop failure seems natural in our setting. Avoiding crop failure is indeed the major preoccupation of 
farmers in Ethiopia. Moreover, since the variance does not distinguish between unexpected good and bad 
events, we consider the skewness in risk analysis, that is we approximate downside risk exposure by the 
third moment of the crop yield distribution. If the skewness of yield increases then it means that 
downside risk exposure decreases, that is the probability of crop failure decreases (Di Falco and Chavas 
2009). This approach can thus capture the full extent of risk exposure. In addition, we assume that 
uncertainty comes from random climate variables, incomplete information, and from future profit flows, 
which depend on price and production uncertainty due to sudden changes in global markets (e.g., in 
agricultural commodities).  

We investigate the effects of adaptation on risk exposure in an endogenous switching regression 
framework by using data from a survey undertaken in the Nile Basin of Ethiopia in 2005. The survey 
collected information on both farm households that did and did not adapt plus on a very large set of 
control variables. We take into account that the differences in risk exposure between those farm 
households that did and those that did not adapt to climate change could be due to unobserved 
heterogeneity. Indeed, not distinguishing between the casual effect of climate change adaptation and the 
effect of unobserved heterogeneity could lead to misleading policy implications. We account for the 
endogeneity of the adaptation decision by estimating a simultaneous equations model with endogenous 
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switching by full information maximum likelihood estimation. Finally, we build a counterfactual 
analysis, and compare the expected downside risk exposure under the actual and counterfactual cases that 
the farm household adapted or not to climate change. Treatment and heterogeneity effects are calculated 
to understand the differences in downside risk exposure between farm households that adapted and those 
that did not adapt.  

Key findings of our analysis are (i) that adaptation to climate change decreases downside risk 
exposure, and so the risk of crop failure; (ii) that there are significant and non negligible differences in 
downside risk exposure between the farm households that adapted and those that did not adapt; (iii) that 
farm households that did not adapt would benefit the most in terms of reduction in risk exposure from 
adaptation; and (iv) that provision of information through radio, farmer-to-farmer extension, and 
extension officers is a key driver of adaptation. This implies that the quasi-option value, that is the value 
of waiting to gather more and better information, plays a significant role in farm households’ decisions to 
adapt to climate change.  

The next section presents a description of the study sites and survey instruments. Sections 3 and 4 
outline the model and the estimation procedure used. Section 5 presents the results, and Section 6 
concludes the paper by offering some final remarks.  

 

2. Survey Design and Data Description 

 

This study relies on a survey conducted on 1,000 farm households located within the Nile Basin of 
Ethiopia in 2005. The sampling frame considered traditional typology of agro-ecological zones in the 
country (namely, Dega, Woina Dega, Kolla and Berha), percent of cultivated land, degree of irrigation 
activity, average annual rainfall, rainfall variability, and vulnerability (number of food aid dependent 
population). The sampling frame selected the woredas (an administrative division equivalent to a district) 
in such a way that each class in the sample matched to the proportions for each class in the entire Nile 
basin. The procedure resulted in the inclusion of twenty woredas. Random sampling was then used in 
selecting fifty households from each woreda.  

One of the survey instruments was in particular designed to capture farmers’ perceptions and 
understanding on climate change, and their approaches on adaptation. Questions were included to 
investigate whether farmers have noticed changes in mean temperature and rainfall over the last two 
decades, and reasons for observed changes. About 90 percent of the sample perceived long term changes 
in mean temperature or/and rainfall over the last 20 years. About 68, 4, and 28 percent perceived mean 
temperature as increasing, decreasing and remaining the same over the last twenty years, respectively. 
Similarly, 18, 62 and 20 percent perceived mean annual rainfall increasing, declining and remaining the 
same over the last twenty years, respectively. Overall, increased temperature and declining rainfall are the 
predominant perceptions in our study sites. 

Furthermore, some questions investigated whether farm households made some adjustments in 
their farming in response to long term changes in mean temperature and rainfall by adopting some 
particular strategies. We define the undertaken strategies as “adaptation strategies,” and create the 
variable adaptation equal to 1 if a farm household adopted any strategy in response to long-term changes 
in mean temperature and rainfall, 0 otherwise. Changing crop varieties, adoption of soil and water 
conservation strategies, and tree planting were major forms of adaptation strategies followed by the farm 
households in our study sites. These adaptation strategies are mainly yield-related and account for more 
than 95 percent of the adaptation strategies followed by the farm households who actually undertook an 
adaptation strategy. The remaining adaptation strategies accounting for less than five percent were water 
harvesting, irrigation, non-yield related strategies such as migration, and shift in farming practice from 
crop production to livestock herding or other sectors. About 58 percent and 42 percent of the farm 
households had taken no adaptation strategies in response to long term shifts in temperature and rainfall, 
respectively. More than 90 percent of the respondents who took no adaptation strategy indicated lack of 
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information, land, money, and shortages of labour, as major reasons for not undertaking any adaptation 
strategy. Lack of information is cited as the predominant reason by 40-50 percent of the households.  

In addition, detailed production data were collected at different production stages (i.e., land 
preparation, planting, weeding, harvesting, and post harvest processing). The area is almost totally 
rainfed. Only 0.6 percent of the households are using irrigation water to grow their crops. Production 
input and output data were collected for two cropping seasons, i.e., Meher (long rainy season), and Belg 
(the short rainy season) at the plot level. However, many plots have two crops grown on them annually 
(one during each of the Meher and Belg seasons). The farming system in the survey sites is very 
traditional with plough and yolk (animals’ draught power). Labor is the major input in the production 
process during land preparation, planting, and post harvest processing. Labor inputs were disaggregated 
as adult male’s labor, adult female’s labor, and children’s labor. This approach of collecting data (both 
inputs and outputs) at different stages of production and at different levels of disaggregation should 
reduce cognitive burden on the side of the respondents, and increase the likelihood of retrieving a better 
retrospective data. The three forms of labor were aggregated as one labor input using adult equivalents. 
We employed the standard conversion factor in the literature on developing countries where an adult 
female and children labor are converted into adult male labor equivalent at 0.8 and 0.3 rates, respectively. 

Finally, although a total of 48 annual crops were grown in the basin, the first five major annual 
crops (teff, maize, wheat, barley, and beans) cover 65 percent of the plots. These are also the crops that 
are the cornerstone of the local diet. We limit the estimation to these primary crops. The final sample 
includes twenty woredas, 941 farm households (i.e., on average about forty-seven farm households per 
woreda), and 2,807 plots (i.e., on average about three plots per farm household). The scale of the analysis 
is at the plot level. The basic descriptive statistics are presented in table 1, and the definition of the 
variables in table A1 of the appendix. 

 
[TABLE 1 ABOUT HERE] 

 
3. Adaptation to Climate Change and Risk Exposure 
 
The climate change adaptation decision and its implications in terms of risk exposure can be modeled in 
the setting of a two stage framework.1 In the first stage, we use a selection model for climate change 
adaptation where a representative risk adverse farm household i chooses to implement climate change 
adaptation strategies if the expected utility from final benefits if she adapts U(π1) is greater than the 
expected utility if she does not adapt U(π0), i.e., 
(1)    1 0( ) ( ) 0E U E U    

where E is the expectation operator based on the subjective distribution of the uncertain variables facing 
the decision maker, and U(.) is the von Neumann-Morgenstern utility function representing the farm 
household preferences under risk. In addition, we should consider the value that farm households assign 
to information. Farm households may decide to delay the adoption of climate change adaptation strategies 
in order to collect more information on climate change and on the adaptation strategies, for example, 
through extension officers, and farmer-to-farmer extension. This implies that the farm household chooses 
to adapt iff 
(2)    1 0( ) ( )E U E U    , 

where I ≥ 0 represents the information value, which depends on the farm household’s characteristics, the 
uncertainty on the adoption of new strategies, and the fixed costs of new investments (Koundouri et al. 
2006).  

                                                 
1 A more comprehensive model of climate change adaptation is provided by Mendelsohn (2000). 
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Let A* be the latent variable that captures the expected benefits from the adaptation choice with 
respect to not adapting. We specify the latent variable as  

(3) *
i iA  iZ α  with 

*1 0

0
i

i

if A
A

otherwise

 
 


, 

that is farm household i will choose to adapt (Ai = 1), through the implementation of some strategies in 
response to long term changes in mean temperature and rainfall, if A* > 0, and 0 otherwise. The vector Z 
represents variables that affect the expected benefits of adaptation. These factors can be classified in 
different groups. First, we consider the characteristics of the operating farm (e.g., soil fertility and 
erosion). For instance, farms characterized by more fertile soil might be less affected by climate change 
and therefore relatively less likely to implement adaptation strategies. Since extension services are one 
important means for farmers to gain information on this, access to extension (both government and 
farmer-to-farmer) can be used as a measure of access to information. Particularly relevant in this setting 
is that farmers received information on climate. Farmer head and farm household’s characteristics (e.g., 
age, gender, education, marital status, if the farmer head has an off-farm job, and farm household size), 
and the presence of assets (e.g., machinery and animals) may in principle also affect the probability of 
adaptation. Experience is approximated by age and education. 

In the second stage, we model the effect of adaptation on risk exposure by relying on a moment-
based specification of the stochastic production function (Antle 1983; Antle and Goodger 1984) This is a 
very flexible device that has been largely used in agricultural economics to model the implication of 
weather risk and risk management (Just and Pope 1979; Kim and Chavas 2003; Koundouri et al. 2006; 
and Di Falco and Chavas 2009). Consider a risk averse farm household that produces output y using 
inputs x under risk through a production technology represented by a well-behaved (i.e., continuous and 
twice differentiable) stochastic production function y = g(x, υ), where υ is a vector of random variables 
representing risk, that is uncontrollable factors affecting output such as changes in temperature and 
rainfall, and extreme events. 

Risk exposure is represented by the moments of the production function g(x, υ). The moments are 
computed following Kim and Chavas (2003), and Di Falco and Chavas (2009). We consider the 
following econometric specification for g(x, υ): 
(4) 1( , ) ( , )g f u 1x υ x γ  

where  1( , ) ( , )f E g1x γ x υ  is the mean of ( , )g x υ , that is the first central moment, and 

1( , ) ( , )u g f  1x υ x γ  is a random variable with mean zero whose distribution is exogenous to farmers’ 

actions. The higher moments of g(x, υ) are given by  

(5)   1( , ) ( , ) | ( , )
k

kE g f f 1 kx υ x γ x x γ  

for k = 2, 3. This implies that 2 ( , )f 2x γ  is the second central moment, that is the variance, and 3( , )f 3x γ  

is the third central moment, that is the skewness. This approach provides a flexible representation of the 
impacts of inputs, (e.g., seeds, fertilizers, manure, and labour), assets (e.g., machinery and animals), and 
soil’s characteristics (e.g., soil fertility and erosion level) on the distribution of output under production 
uncertainty. In this study we go beyond standard mean-variance analysis by considering the effects of 
skewness and downside risk exposure. An increase in skewness implies a reduction in downside risk 
exposure, which implies for example a reduction in the probability of crop failure. Reducing downside 
risk means decreasing the asymmetry (or skewness) of the risk distribution toward high outcome, holding 
both means and variance constant (Menezes, Geiss, and Tessler 1980). 

The simplest approach to examine the impact of adaptation to climate change on farm 
households’ downside risk exposure would be to include in the skewness equation a dummy variable 
equal to one if the farm-household adapted to climate change, and then, to apply ordinary least squares. 
This approach, however, might yield biased estimates because it assumes that adaptation to climate 
change is exogenously determined while it is potentially endogenous. The decision to adapt or not to 
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climate change is voluntary and may be based on individual self-selection. Farmers that adapted may 
have systematically different characteristics from the farmers that did not adapt, and they may have 
decided to adapt based on expected benefits. Unobservable characteristics of farmers and their farm may 
affect both the adaptation decision and risk exposure, resulting in inconsistent estimates of the effect of 
adaptation on production risk and risk of crop failure. For example, if only the most skilled or motivated 
farmers choose to adapt and we fail to control for skills, then we will incur upward bias.  

We account for the endogeneity of the adaptation decision by estimating a simultaneous equations 
model of climate change adaptation and risk exposure with endogenous switching by full information 
maximum likelihood (FIML). For the model to be identified it is important to use as exclusion 
restrictions, thus as selection instruments, not only those automatically generated by the nonlinearity of 
the selection model of adaptation (1) but also other variables that directly affect the selection variable but 
not the outcome variable. In our case study, we use as selection instruments the variables related to the 
information sources (e.g., government extension, farmer-to-farmer extension, information from radio, 
and, if received information in particular on climate), and the farmer head and farm household 
characteristics. We establish the admissibility of these instruments by performing a simple falsification 
test: if a variable is a valid selection instrument, it will affect the adaptation decision but it will not affect 
the risk exposure among farm households that did not adapt. The information sources and the farmer head 
and farm household characteristics can be considered as valid selection instruments: they are statistically 
significant determinants of the decision to adapt or not to climate change (2 = 27.33 and 93.16) but not 
of downside risk exposure among farm households that did not adapt (F-stat. = 1.09 and 1.49).2 

To account for selection biases we adopt an endogenous switching regression model of downside 
risk exposure where farmers face two regimes (1) to adapt, and (2) not to adapt defined as follows: 
(6a) Regime 1: 1 1 1i i iy if A  1i 1X β  

(6b) Regime 2: 2 2 0i i iy if A  2i 2X β  

where yi is the third central moment 3( , )f 3x γ  of production function (4) in regimes 1 and 2, i.e., the 

skewness, and Xi represents a vector of inputs (e.g., seeds, fertilizers, manure, and labour), and of the 
soil’s characteristics, and assets included in Z. The error terms in equations (3), (6a) and (6b) are 
assumed to have a trivariate normal distribution, with zero mean and covariance matrix , i.e., (η, ε1, ε2)' 
 N(0, Σ) 

with 

2

2
1 2
2

1 1
2

2

.

.

  





  
 
 

 
   
  

Σ ,  

where 2
  is the variance of the error term in the selection equation (1), which can be assumed to be equal 

to 1 since the coefficients are estimable only up to a scale factor (Maddala 1983, p. 223), 2
1  and 2

2  are 

the variances of the error terms in the skewness functions (6a) and (6b), and 1  and 2  represent the 

covariance of i and 1i and 2i.
3 Since y1i and y2i are not observed simultaneously the covariance between 

1i and 2i is not defined (reported as dots in the covariance matrix , Maddala 1983, p. 224). An 
important implication of the error structure is that because the error term of the selection equation (1) i 
is correlated with the error terms of the skewness functions (6a) and (6b) (1i and 2i), the expected values 
of 1i and 2i conditional on the sample selection are nonzero: 

                                                 
2 The results are available from the authors upon request. 
3 For notational simplicity, the covariance matrix  does not reflect the clustering implemented in the empirical analysis.  
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 1 1 1 1

( )
| 1

( )i i iE A  
     


i

i

Z α

Z α
, and  2 2 2 2

( )
| 0

1 ( )i i iE A  
      


i

i

Z α

Z α
, where (.) is the 

standard normal probability density function, (.) the standard normal cumulative density function, and 

1

( )

( )i

 


i

i

Z α

Z α
, and 2

( )

1 ( )i

  


i

i

Z α

Z α
. If the estimated covariances 1ˆ   and 2ˆ   are statistically 

significant, then the decision to adapt and downside risk exposure are correlated, that is we find evidence 
of endogenous switching and reject the null hypothesis of the absence of sample selectivity bias. This 
model is defined as a “switching regression model with endogenous switching” (Maddala and Nelson 
1975). An efficient method to estimate endogenous switching regression models is full information 
maximum likelihood estimation (Lee and Trost 1978).4 The logarithmic likelihood function given the 
previous assumptions regarding the distribution of the error terms is 

 

1
1 1

1 1

2
2 2

2

(7) ln ln ln ln ( )

(1 ) ln ln ln 1 ( ) ,

N
i

i i i
i

i
i i

L A

A

  


  




  
     

  
  

      
  


where 

 
2

/
, 1, 2

1

j ji j

ji

j

j
  





 



iZ α
, with j  

denoting the correlation coefficient between the error term i of the selection equation (1) and the error 
term ji of equations (6a) and (6b), respectively.  
 
4. Conditional Expectations, Treatment and Heterogeneity Effects 
 
The endogenous switching regression model can be used to compare the expected downside risk 
exposure of farm households that adapted (a) with respect to farm households that did not adapt (b), and 
to investigate the expected downside risk exposure in the counterfactual hypothetical cases (c) that the 
adapted farm households did not adapt, and (d) that the non-adapted farm household adapted. The 
conditional expectations for downside risk exposure in the four cases are defined as follows: 
(8a) 1 1 1( | 1)i i iE y A    1i 1X β  

(8b) 2 2 2( | 0)i i iE y A    2i 2X β   

(8c) 2 2 1( | 1)i i iE y A    1i 2X β   

(8d) 1 1 2( | 0)i i iE y A    2i 1X β  . 

Cases (a) and (b) represent the actual expectations observed in the sample. Cases (c) and (d) 
represent the counterfactual expected outcomes. In addition, following Heckman et al. (2001), we 
calculate the effect of the treatment “to adapt” on the treated (TT) as the difference between (a) and (c), 
(9) 1 2 1 2 1( | 1) - ( | 1) ( )i i i i iTT E y A E y A         1i 1 2X (β -β ) ,  

which represents the effect of climate change adaptation on downside risk exposure of the farm 
households that actually adapted to climate change. Similarly, we calculate the effect of the treatment on 
the untreated (TU) for the farm households that actually did not adapt to climate change as the difference 
between (d) and (b), 
(10) 1 2 1 2 2( | 0) - ( | 0) ( )i i i i iTU E y A E y A         2i 1 2X (β -β ) . 

We can use the expected outcomes described in (8a)-(8d) to calculate also the heterogeneity 
effects. For example, farm households that did not adapt may have been exposed to lower downside risk 

                                                 
4 An alternative estimation method is the two-step procedure (see Maddala 1983, p. 224 for details). However, this method is 
less efficient than FIML, it requires some adjustments to derive consistent standard errors (Maddala 1983, p. 225), and it 
poorly performs in case of high multicollinearity between the covariates of the selection equation (3) and the covariates of the 
skewness equations (6a) and (6b) (Hartman 1991; Nelson 1984; and Nawata 1994).  
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than farm households that adapted regardless of the fact that they decided not to adapt but because of 
unobservable characteristics such as their abilities. We follow Carter and Milon (2005) and define as “the 
effect of base heterogeneity” for the group of farm households that decided to adapt as the difference 
between (a) and (d),  
(11) 1 1 1 1 1 2( | 1) - ( | 0) = ( )i i i i i iBH E y A E y A       1i 2i 1i(X - X )β . 

Similarly for the group of farm households that decided not to adapt, “the effect of base 
heterogeneity” is the difference between (c) and (b),  
(12) 2 2 2 2 1 2( | 1) - ( | 0) = ( )i i i i i iBH E y A E y A       1i 2i 2i(X - X )β . 

Finally, we investigate the “transitional heterogeneity” (TH), that is whether the effect of adapting 
to climate change is larger or smaller for the farm households that actually adapted to climate change or 
for the farm household that actually did not adapt in the counterfactual case that they did adapt, that is the 
difference between equations (9) and (10), i.e., (TT) and (TU). 
 
5. Results 
 
Table 2 reports the estimates of the endogenous switching regression model estimated by full information 
maximum likelihood with clustered standard errors at the woreda level.5 The first column presents the 
estimation of downside risk exposure by ordinary least squares (OLS) with no switching and with a 
dummy variable equal to 1 if the farm household adapted to climate change, 0 otherwise. The second, 
third and fourth columns present, respectively, the estimated coefficients of selection equation (3) on 
adapting or not to climate change, and of downside risk exposure, which is represented by skewness 
functions (6a) and (6b) (i.e., the third central moments of production function (4) in regimes (1) and (2)), 
for farm households that did and did not adapt to climate change.6  

 
[TABLE 2 ABOUT HERE] 

 
The results of the estimation of equation (3) suggest that key drivers of farm households’ decision 

to adopt some strategies in response to long term changes in mean temperature and rainfall are 
represented by the information sources farm households have access to, in particular the provision of 
climate information both from formal and informal institutions, (table 2, column (2)). Farm households 
that received information about future climate change, and had access to formal agricultural extension, 
farmer-to-farmer extension or the media are more likely to adapt. These positive effects may indicate that 
farmers that are better informed may value less the option to wait, and so are more likely to adapt than 
other farmers. This implies that waiting for gathering more and better information might have a positive 
value (Koundouri et al. 2006). 

The question now is whether farm households that implemented climate change adaptation 
strategies got benefits in terms of a reduction in downside risk exposure, (e.g., a decrease in the 
probability of crop failure). The simplest approach to answer this question consists in estimating an OLS 
model of downside risk exposure that includes a dummy variable equal to 1 if the farm household 
adapted, 0 otherwise (table 2, column (1)). An increase in skewness implies a reduction in downside risk 
exposure. This approach would lead us to conclude that having adapted to climate change did not 
significantly reduce farm households’ downside risk exposure (the coefficient of the dummy variable 
adaptation is positive but insignificant). This approach, however, assumes that adaptation to climate 
change is exogenously determined while it is a potentially endogenous variable. The estimation via OLS 
would yield biased and inconsistent estimates. In addition, OLS estimates do not explicitly account for 

                                                 
5 We use the “movestay” command of STATA to estimate the endogenous switching regression model by FIML (Lokshin and 
Sajaia 2004).  
6 The estimated coefficients of the production function (4) in regimes (1) and (2) from which we derived the third central 
moments are available from the authors upon request. 
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potential structural differences between the skewness function of farm households that adapted to climate 
change and the skewness function of farm households that did not adapt. The estimates presented in the 
last two columns of table 2 account for the endogenous switching in the skewness function. Both the 
estimated coefficients of the correlation terms j  are not significantly different from zero (table 2, 

bottom row). Although we could not have known it a priori, this implies that the hypothesis of absence of 
sample selectivity bias may not be rejected.  

However, the differences in the coefficients of the skewness functions between the farm 
households that adapted and those that did not adapt illustrate the presence of heterogeneity in the sample 
(table 2, columns (3) and (4)). The skewness function of farm households that adapted to climate change 
is significantly different from the skewness function of farm households that did not adapt (at the 1 
percent statistical level, F-stat. = 612.71). Among farm households that adapted to climate change inputs 
such as seeds and manure, and assets such as animals are significantly associated with an increase in the 
skewness, and so in a decrease in downside risk exposure, while infertile soils are associated with an 
increase in downside risk exposure. However, these factors do not significantly affect the downside risk 
exposure of farm households that did not adapt. 

Table 3 presents the expected downside risk exposure under actual (cells (a) and (b)) and 
counterfactual conditions (cells (c) and (d)). Cells (a) and (b) represent the expected downside risk 
exposure observed in the sample if farm households adapted or not to climate change. The last column 
presents the treatment effects of adaptation on downside risk exposure. Our results show that adaptation 
to climate change significantly increases the skewness, that is decreases downside risk exposure, and so 
the probability of crop failure. In addition, we find that the transitional heterogeneity effect is negative, 
that is, farm households that did not adapt would have benefited the most in terms of reduction in risk 
exposure from adaptation. Finally, the last row, which adjusts for the potential heterogeneity in the 
sample, shows that farm households that actually did not adapt are less exposed to downside risk than the 
farm households that adapted in both counterfactual and actual conditions. This highlights that there are 
some important sources of heterogeneity that makes the non-adapters less exposed to downside risk than 
the adapters irrespective to the issue of climate change.  

 
[TABLE 3 ABOUT HERE] 

 
5. Conclusions 
 
This paper investigated the implications of farm households’ decision to adapt to climate on downside 
risk exposure. We used a moment-based approach that captures the third moment of a stochastic 
production function as measure of downside yield uncertainty. Then, we estimated a simultaneous 
equations model with endogenous switching to account for unobservable factors that influence downside 
risk exposure and the decision to adapt. 

The first step of the analysis highlighted that access to information about climate change and 
extension services are key determinants of adaptation. They significantly increase the likelihood that farm 
households adapt to climate change. This finding is consistent with Koundouri et al. (2006) on irrigation 
technology adoption under production uncertainty. Farm households that are better informed may value 
less the option to wait, and so are more likely to adopt new technologies than other farmers. This implies 
that waiting for gathering more and better information might have a positive value, and the provision of 
information on climate change might reduce the quasi-option value associated with adaptation. 
Koundouri et al. (2006) conclude that “policy makers may use information provision to induce faster 
diffusion of adoption among farmers” (p. 659). They also emphasize that subsidies can be an alternative 
instrument to incentivise adoption and diffusion of new technology. However, subsidy policies may cause 
income transfers from other economic sectors with consequential welfare losses (Stoneman and David, 
1986). 
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In addition, we can draw four main conclusions from the results of this study on the effects of 
climate change adaptation on downside risk exposure. First, climate change adaptation reduces downside 
risk exposure. Farm households that implemented climate change adaptation strategies get benefits in 
terms of a decrease in the risk of crop failure. Second, farm households that did not adapt would benefit 
the most in terms of reduction in downside risk exposure from adaptation. Third, there are significant 
differences in downside risk exposure between farm households that did and those that did not adapt to 
climate change. These differences represent sources of variation between the two groups that the 
estimation of an OLS model including a dummy variable for adapting or not to climate change cannot 
take into account. Fourth, there are some important sources of heterogeneity that makes the non-adapters 
less exposed to downside risk than the adapters irrespective to the issue of climate change. 

These results are particularly important to design polices for effective adaptation strategies to 
cope with the potential impacts of climate change. Public policies can play an important role in helping 
farm households to adapt. The dissemination of climate change information and extension services are of 
paramount importance in determining the implementation of adaptation strategies, which could result in 
more food security for all farmers irrespective of their unobservable characteristics. The availability of 
information on climate change may raise farmers’ awareness of the threats posed by the changing 
climatic conditions. Extension services provide an important source of information and education, for 
instance, on changing crops and specific soil conservation measures that can deliver food productivity 
gains. Future research will investigate the role of different adaptation strategies, and whether the 
beneficial effects of adaptation are sensitive to different rainfall areas. 

. 
Appendix  
Table A1. Variables Definition 
 

Variable name Definition 

Dependent variables  
adaptation dummy =1 if the farm household adapted to climate change, 0 otherwise 
downside risk exposure skewness 

3
( , )f

3
x γ : third central moment of production function (4) / 10,000,000,000 

Explanatory variables  
Soil characteristics  
high fertility dummy =1 if the soil has a high level of fertility, 0 otherwise 
infertile dummy =1 if the soil is infertile, 0 otherwise 
no erosion dummy=1 if the soil has no erosion, 0 otherwise 
severe erosion dummy=1 if the soil has severe erosion, 0 otherwise
Assets  
machinery  dummy =1 if machineries are used, 0 otherwise 
animals  dummy=1 if farm animal power is used, 0 otherwise 
Inputs  
labour labour use per hectare (adult days) 
seeds seeds use per hectare (kg) 
fertilizers fertilizers use per hectare (kg) 
manure  manure use per hectare (kg) 

Farmer head and farm household 
characteristics 

 

literacy  dummy =1 if the household head is literate, 0 otherwise 
male  dummy =1 if the household head is male, 0 otherwise
married  dummy =1 if the household head is married, 0 otherwise 
age age of the household head 
household size household size 
off-farm job dummy =1 if the household head took a off-farm job, 0 otherwise 
relatives number of relatives in the woreda 
Information sources  
government extension  dummy =1 if the household head got information/advice from government extension workers, 0 otherwise 
farmer-to-farmer extension  dummy =1 if the household head got information/advice from farmer-to-farmer extension, 0 otherwise 
radio information  dummy =1 if the household head got information from radio, 0 otherwise 
climate information  dummy =1 if extension officers provided information on expected rainfall and temperature, 0 otherwise 
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Table 1. Descriptive Statistics  
 

Variable name Total sample 
Farm households  

that adapted 
Farm households  
that did not adapt 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Dependent variables       
adaptation 0.689 0.463 1.000 0.000 0.000 0.000 
downside risk exposure 0.608 15.330 0.865 18.454 0.034 0.324 

Explanatory variables       

Soil characteristics       
highly fertile 0.280 0.449 0.257 0.437 0.331 0.471 
infertile 0.158 0.365 0.172 0.377 0.128 0.335 
no erosion 0.484 0.500 0.472 0.499 0.510 0.500 
severe erosion 0.104 0.305 0.114 0.318 0.081 0.274 

Assets       
machinery  0.019 0.136 0.024 0.153 0.007 0.084 
animals  0.874 0.332 0.887 0.317 0.842 0.365 

Inputs       
labour 100.994 121.268 105.867 133.409 90.176 87.657 
seeds 114.905 148.650 125.672 163.896 91.001 103.473 
fertilizers 60.609 176.767 61.996 177.867 57.530 174.362 
manure  198.148 831.347 254.560 951.670 72.758 438.123 

Farmer head and farm household 
characteristics       
literacy  0.489 0.500 0.524 0.500 0.412 0.492 
male  0.926 0.263 0.932 0.252 0.912 0.284 
married  0.927 0.261 0.930 0.256 0.920 0.272 
age 45.717 12.550 46.239 11.926 44.556 13.770 
household size 6.597 2.190 6.760 2.138 6.234 2.260 
off-farm job 0.250 0.433 0.285 0.452 0.170 0.376 
relatives 16.464 43.630 19.534 51.284 9.457 13.259 

Information sources       
government extension  0.609 0.488 0.761 0.426 0.269 0.444 
farmer-to-farmer extension  0.516 0.500 0.660 0.474 0.196 0.397 
radio information  0.307 0.461 0.382 0.486 0.139 0.346 
climate information  0.422 0.494 0.563 0.496 0.110 0.313 

Sample size 2,807 1,936 871 
Note: The sample size refers to the total number of plots. The final total sample includes 20 woredas, 941 farm households and 
2,807 plots. 
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Table 2. Parameters Estimates of Climate Change Adaptation and Downside Risk Exposure 
 
 (1) (2) (3) (4) 

Model OLS Endogenous Switching Regressiona 

 
 
 
 
Dependent Variable 
 
 

 
 
 

Downside risk 
exposure 

 
 
 

Adaptation 1/0 
 

Regime 1 
(Adaptation = 1) 

 
Downside risk exposure 
among farm households 

that adapted 

Regime 2 
(Adaptation = 0) 

 
Downside risk exposure 
among farm households  

that did not adapt 

Adaptation 1/0 0.662    

 (0.389)    
Soil characteristics  
highly fertile  -0.470 -0.209 -0.639 -0.018 
 (0.366) (0.108) (0.518) (0.011) 
infertile -0.907* 0.090 -1.256** -0.007
 (0.467) (0.163) (0.622) (0.020) 
no erosion -0.181 0.065 -0.306 0.031 
 (0.567) (0.142) (0.812) (0.020)
severe erosion -0.248 0.189 -0.368 0.015 
 (0.751) (0.135) (1.057) (0.039) 
Assets     
machinery  -0.832* 0.534 -1.186* -0.051
 (0.426) (0.481) (0.677) (0.034) 
animals  0.529 0.159 0.745* 0.025 
 (0.329) (0.189) (0.398) (0.021)
Inputs     
labour  -0.351  -0.468 0.013 
 (0.326)  (0.406) (0.025) 
squared labour 0.025  0.031 -0.004 
 (0.022)  (0.025) (0.003) 
seeds  0.689***  0.848*** -0.037 
 (0.221)  (0.267) (0.022) 
squared seeds -0.032**  -0.039** 0.008 
 (0.014)  (0.016) (0.005) 
fertilizers  -0.087  -0.086 -0.001 
 (0.090)  (0.122) (0.011) 
squared fertilizers 0.003  0.002 -0.000 
 (0.002)  (0.003) (0.0003) 
manure 0.058*  0.051* 0.000 
 (0.028)  (0.030) (0.003) 
squared manure -0.001**  -0.001*** 0.000 
 (0.0003)  (0.000) (0.0001) 
Farmer head and farm 
household characteristics 

    

literacy   0.152   
  (0.152)   
male   -0.039   
  (0.329)   
married   -0.264   
  (0.295)   
age  0.013**   
  (0.006)   
household size  0.032   
  (0.035)   
off-farm job   0.343***
  (0.124)   
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relatives   0.009**   
  (0.004)
Information sources     
government extension   0.592***   
  (0.113)   
farmer-to-farmer extension   0.538***   
  (0.143)   
radio information   0.500**   
  (0.203)
climate information   0.625***   
  (0.166)   
constant -0.275 -1.269 0.612 -0.017 
 (0.358) (0.376) (1.129) (0.022) 

i
    

18.170*** 0.312***
   (6.730) (0.082) 

j
    

-0.048 -0.150 
   (0.035) (0.110) 
Note: aEstimation by full information maximum likelihood at the plot level. Sample size: 2,807 plots. Robust standard errors 
clustered at the woreda level in parentheses. The dependent variable “downside risk exposure” refers to the third central moment 

3 ( , )f 3x γ  (i.e., the skewness) of production function (4); 
i

 denotes the square-root of the variance of the error terms ji in the 

outcome equations (6a) and (6b), respectively; 
j

  denotes the correlation coefficient between the error term i of the selection 

equation (3) and the error term ji of the outcome equations (6a) and (6b), respectively. The inputs coefficients have been 
multiplied by 100. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 
 
  
 
Table 3. Average Expected Downside Risk Exposure; Treatment and Heterogeneity Effects 
 

 Decision Stage  

Sub-samples To Adapt Not to Adapt Treatment Effects 

Farm households that adapted 
(a) 0.867 
(0.023) 

(c) -0.013 
(0.003) 

TT = 0.880*** 
(0.024) 

Farm households that did not adapt 
(d) 1.624 
(0.031) 

(b) 0.037 
(0.001) 

TU = 1.588*** 
(0.031) 

Heterogeneity effects 
BH1 = -0.757 

(0.041) 
BH2= -0.049*** 

(0.005) 
TH = -0.708*** 

(0.041) 

Note: (a) and (b) represent observed downside risk exposure, that is the third central moment 3 ( , )f 3x γ  of production 

function (4); (c) and (d) represent the counterfactual expected downside risk exposure. (a) 1( | 1)i iE y A  ; (b) 

2( | 0)i iE y A  ; (c) 2( | 1)i iE y A  ; (d) 1( | 0)i iE y A   where 

Ai = 1 if farm households adapted to climate change; Ai = 0 if farm households did not adapt; 
y1i: third central moment if farm households adapted; 
y2i: third central moment if farm households did not adapt; 
TT: the effect of the treatment (i.e., adaptation) on the treated (i.e., farm households that adapted); 
TU: the effect of the treatment (i.e., adaptation) on the untreated (i.e., farm households that did not adapt); 
BHi: the effect of base heterogeneity for farm households that adapted (i = 1), and did not adapt (i = 2); 
TH = (TT - TU), i.e., transitional heterogeneity. 
 
Standard errors in parentheses. *** Significant at the 1% level. 
 


