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1 Introduction

How should a government set and adjust taxes on labor and capital over time in the face of

shocks to government expenditure and aggregate productivity? Ramsey optimal tax theory

provides two important insights into this question: taxes on labor income should be smoothed

(Barro, 1979; Lucas and Stokey, 1983) while taxes on capital should be set to zero (Chamley,

1986; Judd, 1985; Zhu, 1992; Chari, Christiano, and Kehoe, 1994).

This paper addresses an important shortcoming in interpreting these cornerstone results.

The Ramsey approach casts the optimal tax problem within a representative-agent para-

digm; then, to avoid the first-best allocation, lump-sum taxes—or any combination of tax

instruments that may replicate lump-sum taxes—are ruled out. The second-best problem

chooses the right mix of distortive taxes to maximize the representative agent’s utility subject

to the government’s intertemporal budget condition.

Societies may have their own good reasons for avoiding complete reliance on lump-sum

taxation and resigning themselves to the use of distortionary taxes. Unfortunately, none

of these reasons are explicitly captured by a representative-agent Ramsey framework. Al-

though the first-best allocation is ruled out, an arbitrary second-best problem is set in its

place. What confidence can we have that tax recommendations obtained this way accurately

evaluate the trade-offs faced by society? If, for reasons unspecified in the model, lump-sum

taxes are presumably undesirable for society yet still desirable within the model, how can

we be sure that the tax prescriptions derived are not, for the same unspecified reasons, also

socially undesirable?

Distributional concerns are a natural reason to resort to distortionary taxation (Mirrlees,

1971). If workers are heterogeneous with respect to their labor productivity, and if this trait

is not observable, then society cannot attain almost any of the first-best allocations. In

contrast, by taxing observable differences such as income, redistribution is possible, albeit

at a loss in efficiency. Such a trade-off between redistribution and efficiency provides a solid

microfoundation for the role of distortionary taxes. With this in mind, this paper reexamines

optimal taxation in dynamic economies close to Ramsey models such as Chari, Christiano,

and Kehoe (1994) and others, but modeling distributional concern explicitly.

In our model, workers are heterogenous with respect to the productivity of their work

effort. These differences in relative skill are private information. The aggregate economy

features neoclassical capital accumulation and is subject to fluctuations in government expen-

ditures and technology. We consider two main scenarios regarding the set of tax instruments

available to the government. In the first, labor income taxes are assumed linear, but we allow

for an arbitrary lump-sum tax intercept in the schedule. In the second, we do not restrict
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tax instruments at all, so the government is limited then only by the inherent asymmetry of

information, as in Mirrlees’s (1971) nonlinear taxation model.

In the first case, the labor income tax schedule can be summarized at any moment by

two variables: the intercept Tt, which we refer to as the lump-sum tax component, and the

slope τt, which we refer to as the marginal tax rate. Thus, this simple linear tax case suffices

for incorporating the essential missing tax instrument in Ramsey models: the lump-sum tax

component. Indeed, if all workers had the same skill, then the lump-sum tax component can

be used to attain the first-best allocation. However, with heterogeneity a positive marginal

tax is generally preferable, since then more productive (“richer”) workers bear a larger tax

burden and alleviate that of the less productive (“poorer”) workers. Since it is hard to justify

restricting the lump-sum tax component, heterogeneity seems primordial for a well-motivated

non-trivial tax problem (Mirrlees, 1971).1

Our main analytical result is that perfect tax smoothing is optimal for an interesting

class of preferences. At the optimum, marginal income tax rates are constant over time

and invariant to government expenditure and technology shocks. The government uses debt

and the lump-sum tax component to smooth out these shocks. In addition, we find for the

same class of preferences the tax rate on capital is optimally set to zero—a version of the

Chamley-Judd result (Chamley, 1986; Judd, 1985; Zhu, 1992; Chari, Christiano, and Kehoe,

1994) for our heterogenous agent stochastic economy.

The intuition for the tax smoothing results is that, with heterogenous workers and a lump-

sum tax component, it is distributional concerns that determine the desired level of distortive

taxation. At any point in time, the current tax rate is a measure of redistribution across

workers, while the distribution of relative skills determines the desired level of redistribution.

In the model, this level is constant over time and invariant to government expenditure and

technology shocks because these shocks do not directly affect the distribution of relative

skills across workers.

To bring the distributional concerns to the forefront, we extend the model to allow for

shocks to the distribution of relative skills. We show that the optimal tax rate does then

respond to these shocks, but continues to remain unchanged in the face of aggregate shocks to

the government and technology. In particular, tax rates rise when the dispersion of worker

skills widens. This extension highlights a novel determinant in the dynamic evolution of

optimal tax rates, one that cannot be addressed in a representative-agent Ramsey framework.

More generally, our normative model attributes a crucial role in optimal tax rates to the

1 Indeed, most countries feature a negative intercept when one considers deductibles and transfer pro-
grams. This is the optimal outcome of our model as long as there is enough inequality in skills and a strong
enough taste for equality.
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distribution of relative skills. This relates to positive political economy models where the

distribution of income has always played a prominent role—as in median voter models such

as Meltzer and Richard (1981).

For the unrestricted Mirrleesian tax scenario, we find that tax rates should vary across

workers, but should remain perfectly constant over time for any given worker. This tax

smoothing result suggests a role for taxation based on current and past income averages, as

a way of equating marginal tax rates over time while retaining the desired non-linearity across

workers. Vickery (1947), for other reasons, was an early proponent of such income-averaging

taxation schemes.

Our model also has some novel implications for public debt management. Ramsey models

break Ricardian equivalence, which otherwise renders government debt indeterminate. In

particular, in Barro (1979) and Lucas and Stokey (1983) public debt plays a crucial role in

allowing the government to smooth tax rates over time. In contrast, in our model Ricardian

equivalence reemerges, despite distortionary taxation, as long as a lump-sum tax component

is available. In general, the government can smooth marginal tax rates with various mixes

of debt and lump-sum tax financing. We briefly speculate on extensions of our model that

may render debt management determinate.

The rest of this paper is organized as follows. Section 2 introduces the basic assumptions

regarding preferences and technology. Section 3 considers the linear taxation scenario. The

main tax smoothing and capital taxation results are obtained in Section 4 for the linear case,

while Section 5 shows that these results extend to the Mirrleesian tax scenario. Section 6

contains our conclusions and some speculations regarding useful extensions for future work.

An appendix collects some proofs and other derivations.

2 The Dynamic Economy

The main purpose of our model’s assumptions is to extend Ramsey dynamic taxation frame-

works in the direction of incorporating heterogeneity, in the spirit of Mirrlees’s (1971) private

information framework, in a simple and tractable way so that taxation can be microfounded

by a desire for redistribution. To this end, our economy is populated by a continuum of

infinitely lived workers with different relative skill levels. To focus on uncertainty at the

aggregate level, we only consider fixed differences across worker types.2 Initially we assume

a fixed distribution of relative productivities. However, later we allow for shocks to this

2 This distinguishes our approach here from an incipient and growing literature that attributes to taxation
an important role in the insurance of ongoing shocks to workers’ productivity (e.g. Golosov, Kocherlakota,
and Tsyvinski, 2003; Albanesi and Sleet, 2004) by assuming the market cannot provide such insurance
arrangements. This paper does not attempt to contribute to this interesting alternative line of work.
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distribution of relative skills.

The population is divided into a finite number of types indexed by i ∈ I, with productivity

level θi and relative size πi. For now we assume that the distribution of productivities,

summarized by {θi, πi}i∈I , is fixed over time; we relax this assumption later in Section 4.

Abler workers produce more efficiency units of labor for any given level of work effort.

Importantly, individual productivity θi and work effort ni are private information to the

worker. Only the product of the two, the efficiency units of labor Li = θini, is publicly

observable. As a result, the government cannot levy discriminatory lump-sum taxes that are

conditional on the worker’s type i ∈ I, which would otherwise allow all first-best allocations

of interest to be attained.

Following Mirrlees (1971), we assume productivity differences to be the only source of

heterogeneity. Individuals have identical preferences represented by the additively separable

utility function
∞∑

t=0

βtE [u(ct)− v(nt)] (1)

In addition, we work with particular specification for the utility from consumption and the

disutility from work effort functions and assume that both are of constant elasticity, so that

u(c) = c1−σ/(1 − σ) and v(n) = αnγ/γ, with σ, α > 0 and γ > 1. As we will see below,

this specification of preferences allows us to derive clean analytical results that are likely to

provide a very useful benchmark for other cases.

There are two sources of aggregate uncertainty: government expenditures and technology

shocks. Both can be captured rather abstractly by assuming a publicly observed state of the

economy st ∈ S in period t, where S is some finite set. Below, both government expenditure

and the production function are functions of st. Let st ≡ (s0, s1, s2, ..., st) ∈ St denote the

history of states; no restriction is placed on the probability distributions Pr(st) governing

the evolution of the state. An allocation specifies consumption, labor and capital, in every

period and history: {ci(st), Li(st), Kt+1(s
t)}.

Production combines labor with capital using a constant returns to scale technology. The

resource constraints are

c(st) + K(st) + gt(st) ≤ F (L(st), K(st−1), st) + (1− δ)K(st−1) (2)

for all periods t = 0, 1, . . . and histories st ∈ St. Aggregates are denoted by c(st) ≡∑
i∈I ci(st)πi and L(st) ≡ ∑

i∈I Li(st)πi.

Note the two roles that the state st is allowed to play. First, government expenditure may

fluctuate over time or with the state of the economy according to the given gt(st) function.
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Second, the production function may depend on the current state to allow for aggregate

technology shocks.

3 Linear and Proportional Taxation

We begin by considering the case where in each period the tax schedule is a linear function

of labor income: τ(st)yi(st) + T (st). A virtue of this simple linear specification, compared

to more complicated tax schemes such as the nonlinear case considered in Section 5, is

that it allows us to focus on the evolution of the marginal tax rate on labor income, a

one-dimensional policy variable. Thus, the notion of tax smoothing is straightforward. For

completeness, we shall also consider the proportional tax case where the lump-sum tax

component Tt is constrained to be zero.

In addition to taxing labor income, the government can levy a proportional tax, denoted

κ(st), on the net return to capital. In our model, as long as the taxation of initial wealth

and the returns to capital are unrestricted, consumption taxes are superfluous and can be

omitted from the analysis without loss in generality.

We allow for complete asset markets as in Lucas and Stokey (1983), Chari, Christiano,

and Kehoe (1994), and many others. A literal interpretation of this envisions government

debt to include a rich set of Arrow-Debreu state-contingent bonds; or equivalently, that the

government issues a single bond but with well-tailored stochastic returns. An alternative,

less literal, interpretation is provided by the fact that even with non-contingent debt there

are other ways of replicating complete market outcomes. For example, Angeletos (2002)

and Buera and Nicolini (2004) show how a portfolio composed of riskless bonds of different

maturities might be used to this end.3

Agent Problem. With complete markets each individual i ∈ I can be seen as facing a

single intertemporal budget constraint:4

∑

t,st

p(st)
(
ci(st) + K i(st)− w(st)(1− τ(st))Li(st)−R(st)Ki(st−1)

) ≤ −T, (3)

where T ≡ ∑
t,st p(st)T (st) is the present value of the lump-sum components of taxes. Here

3 Nevertheless, in this paper we adopt the complete market assumption for its simplicity and as a mech-
anism for focusing attention on other issues, not for its realism. Our stated objective is to extend Ramsey
models by incorporating heterogeneity and lump-sum taxation. Recent work featuring incomplete markets,
but within representative-agent Ramsey economies, includes Aiyagari, Marcet, Sargent, and Seppälä (2002),
Werning (2005) and Farhi (2005).

4 It is standard to derive such a single intertemporal budget constraint from a sequence of temporary
budget constraints, solving out for the bond holdings, see Lucas and Stokey (1983) or Chari, Christiano, and
Kehoe (1994).
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p(st) represents the Arrow-Debreu price of the consumption good in period t and history st,

and we normalize so that p(s0) = 1; the real wage is w(st); and R(st) ≡ 1+(1−κ(st))(r(st)−δ)

is the after-tax gross rate of return on capital, where r(st) denotes the rental rate of capital.

Firms. Each period firms solve a static maximization of profits, F (K, L, s)−r(st)K−w(st)L,

leading to the usual marginal conditions

r(st) = FK(L(st), K(st−1), st), (4)

w(st) = FL(L(st), K(st−1), st). (5)

Profits are zero in equilibrium given constant returns to scale.

Government Budget Constraint. With complete markets the government faces a single

intertemporal budget constraint

∑

t,st

p(st)g(st) ≤ T +
∑

t,st

p(st)
(
τ(st)w(st)L(st) + κ(st)(r(st)− δ)K(st−1)

)

By a version of Walras law, the government budget constraint holds with equality whenever

the resource constraints (2) and the worker budget constraints (3) all hold with equality.

Competitive Equilibria. A competitive equilibrium is a sequence of taxes {T (st), τ(st),

κ(st)}, prices {p(st), r(st), w(st)}, and quantities {ci(st), Li(st), K(st)}, such that: (i)

workers maximize: consumption and labor choices {ci(st), Li(st)} maximize utility taking

prices and taxes as given for all individuals i ∈ I; (ii) firms maximize: capital and labor

K(st−1) and L(st) solve the static profit maximization taking the rental and real wage rate

as given; (iii) the government’s budget constraint holds; (iv) markets clear: the resource

constraints (2) hold for all periods and histories.

Characterizing Equilibrium Allocations. Our first goal is to provide a useful char-

acterization of the set of allocations that are sustainable by a competitive equilibrium for

some taxes and prices. This later allows for a primal approach that formulates the taxation

problem directly in terms of allocations.

The necessary and sufficient first-order conditions for the worker’s maximization prob-
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lem are

w(st)(1− τ(st)) =
1

θi

v′
(

Li(st)
θi

)

u′(ci(st))
, (6)

p(st)

p(s0)
= βt u

′ (ci(st))

u′ (ci(s0))
Pr(st), (7)

p(st) =
∑

st+1∈S

p(st, st+1)R(st, st+1), (8)

together with the budget constraint (3) holding with equality. Equation (6) is the intratem-

poral optimality conditions equating the marginal rate of substitution between consumption

and labor with the real after-tax wage. Equation (7) is the standard intertemporal optimality

condition. Equation (8) ensures no arbitrage for investment in capital.

The first-order conditions (6)–(7) and the assumption that marginal utility and disutil-

ity u′(c) and v′(n) are power functions imply that individual consumption and labor are

proportional to their aggregates

ci(st) = ωi
c c(st), (9)

Li(st) = ωi
L L(st), (10)

with some fixed weights ωi
c and ωi

L with
∑

i∈I ωi
jπ

i = 1, for j = c, L.

Substituting conditions (6)–(10) into the budget constraint (3), and using the fact that

u′(c)c = (1− σ)u(c) and v′(n)n = γv(n) yields

∑

t,st

βt

(
(1− σ)(ωi

c)
1−σu(c(st))− γ

(ωi
L

θi

)γ

v(L(st))

)
Pr(st) = (ωi

c)
−σcσ

0 (R0K
i
0 − T ), (11)

which we call the implementability constraint for agent i ∈ I.

In Ramsey models the representative agent’s implementability condition turns out to fully

characterize, along with the resource constraints, the restrictions on competitive equilibria.

In contrast, in our setup we need an additional restriction to capture the fact that all workers

face the same marginal tax on labor. Using the proportionality conditions from (9)–(10) in

equation (7) implies

w(st)(1− τ(st))
u′(c(st))

v′(L(st))
=

1

θiα

v′
(

ωi
L

θi

)

u′(ωi
c)

,

where we use the fact that with power functions: u′(xy) = u′(x)u′(y) and v′(xy) = v′(x)v′(y)/α.

The right-hand side of this equation depends on i, but not on t nor st; in contrast, the left-
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hand side depends on t and st, but not on i. It follows that both sides must equal some

constant independent of t, st and i. In particular,

1

θiα

v′
(

ωi
L

θi

)

u′(ωi
c)

= φ i ∈ I for some φ > 0 (12)

is the additional restriction needed to characterize equilibrium allocations.5

We have shown that conditions (9)–(12) together with the resource constraint (2) are

necessary for an equilibrium. It turns out that the converse is also true: these equations

fully characterize allocations that can be supported as an equilibrium for some tax and price

sequences. Indeed, these tax policies and prices are obtained from the first-order conditions

and the definition of φ:

τ(st) = 1− φ
v′(L(st))

u′(c(st))

1

FL(L(st), K(st−1), st)
, (13)

p(st)

p(s0)
= βt u

′(c(st))

u′(c(s0))
Pr(st), (14)

Factor prices r(st) and w(st) are given by the marginal product conditions (4)–(5). The

tax rates on capital income κ(st) can be set in any way that satisfies condition (8) with

prices (14).6

Proposition 1 An allocation {ci(st), Li(st), K(st−1)} can be supported by a competitive equi-

librium if and only if there are distributional weights (ωi
L, ωi

c) and aggregates {c(st), L(st)}
so that the resource constraint (2) and conditions (9)–(12) hold.

4 Tax Smoothing and Zero Capital Taxation

Based on Proposition 1 we can write the optimal tax problem as maximizing a weighted sum

of utilities using Pareto weights {πiλi}:
∑
i∈I

λiπi
∑

t,st

βt
(
(ωi

c)
1−σu(c(st))−

(ωi
L

θi

)γ

v(L(st))
)

Pr(st)

5 This representation of an allocation in terms of {ωi
c, ω

i
L}, {ct, Lt}, φ and T is the most convenient for

our present purposes. However, other equivalent representations are possible. Indeed, in Appendix B we
adopt a slightly different one, which is more convenient for the purposes pursued there.

6 Note that with a single agent equation (3) has ωc = ωL = 1 and this condition simply defines φ = 1.
Equation (13) is then the standard expression used in the Ramsey literature to back out tax rates.

8



subject to the resource constraint (2), the implementability condition (11) and the con-

sistency condition (12).7 The maximization is performed over the distributional weights

(ωi
L, ωi

c), the aggregates {c(st), L(st)}, the constant φ and, if available, a lump-sum tax T .

An interesting benchmark is the Utilitarian case where Pareto weights are simply group size,

so that λi = 1.

The arguments that follow only involve the optimality conditions with respect to aggre-

gate variables, not those related to distributional weights or φ. The first-order conditions

with respect to c(st) for t ≥ 1, and L(st) for any t ≥ 0, yield

u′(c(st))
∑
i∈I

(ωi
c)

1−σ(λi − (1− σ)µi)πi = η(st), (15)

v′(L(st))
∑
I∈i

(ωi
L

θi

)γ

(λi − γµi)πi = η(st)FL(L(st), K(st−1), st), (16)

where the multiplier on the resource constraint is βtη(st) Pr(st) and that on the left-hand

side of the implementability condition for agent i ∈ I is µiπi.8

Our first result concerns the optimal taxation of capital. The first-order condition with

respect to capital K(st) is

η(st) = β
∑
st+1

η(st+1)R∗(st+1) Pr(st+1|st),

where R∗(st) ≡ FK(L(st), K(st−1), st)+1− δ is the social marginal rate of return on capital.

Condition (15) implies that η(st) is proportional to u′(c(st)) for t ≥ 1, so this gives

u′(c(st)) = β
∑
st+1

u′(ct+1(s
t+1))R∗(st+1) Pr(st+1|st)

for t ≥ 1. Comparing this condition with condition (8) with prices in (14) reveals that the

tax on capital can be set to zero κ(st) = 0 for all t ≥ 2.

We now show that a very strong form of marginal tax smoothing is optimal. Dividing

equation (16) by (15) and rearranging, we obtain

v′(L(st))

u′(c(st))

1

FL(L(st), K(st−1), st)
=

∑
i∈I(ω

i
c)

1−σ(λi − (1− σ)µi)πi

∑
i∈I

(ωi
L

θi

)γ
(λi − γµi)πi

7 Note that for each individual i ∈ I the left-hand side of the implementability condition is comparable
to their contribution in the objective function except that more relative weight is placed on the disutility of
work than on consumption, since γ > 1 and 1− σ < 1.

8 The first-order condition for initial period consumption c(s0) is derived later. It is not crucial for any
of our main results. As usual, it is slightly different due to the presence initial wealth.
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for all t ≥ 1. Combining this with equation (13) and using the definition of φ then gives

τ(st) = τ̄ ≡ 1−
∑

i∈I u′(ωi
c)ω

i
c(λ

i − (1− σ)µi)πi

∑
i∈I u′(ωi

c)ω
i
L(λi − γµi)πi

. (17)

Hence, labor income tax rates are constant across time and states.

We summarize both results in the next proposition.

Proposition 2 Perfect tax smoothing is optimal τ(st) = τ̄ given by equation (17), for t ≥ 1.

The optimal tax on capital is zero κ(st) = 0 for all t ≥ 2. Both results hold with or without

a lump-sum tax component.

Our interpretation for the zero tax on capital result is based on the well-known uniform

taxation principles due to Diamond and Mirrlees (1971). The assumption that the utility

function has constant elasticity of substitution implies a homotheticity in preferences over

consumption time paths. This, in turn, implies that consumption at different dates should

be taxed uniformly, which is only possible if capital income is untaxed. Basically, our model

does not upset the main logic of the Chamley-Judd result.9

The intuition for the tax smoothing result is best conveyed by considering in turn the cases

with and without the lump-sum tax component. With lump-sum taxes distortionary taxation

is simply a redistribution mechanism. A positive marginal tax rate is the instrument by which

the “rich” pay more taxes than the “poor”, which is desirable whenever redistribution is.

The optimal tax level balances concerns for redistribution and efficiency. Tax smoothing

emerges as long as the determinants of inequality are invariant to government expenditure

or aggregate technology shocks. The desired amount of redistribution is then constant over

time, and a perfectly constant optimal tax rate results.

In representative-agent Ramsey models tax smoothing results are often informally ex-

plained by the following intuition: in order to minimize the total cost from distortions it

is optimal to equate the marginal cost of distortions over time by equating tax rates over

time. Our tax smoothing result refines this intuition. Consider first the more natural sce-

nario where a lump-sum tax component is available. In this case, optimality dictates that

the marginal cost of increased distortions be equated to the marginal benefit from increased

redistribution. In our model the latter is invariant to government expenditure and aggregate

technology shocks. Hence, the marginal cost from distortions should be equated over time

and perfect tax smoothing is optimal.

Interestingly, the results regarding tax smoothing and capital taxation hold even when a

lump-sum tax component is not available. However, there are some important differences.

9 Indeed, in different ways, zero capital tax results have been derived allowing for heterogeneity and some
forms of redistribution (e.g., see Chamley, 1986; Judd, 1985).
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First, note that for this case the average level of taxation cannot be determined by distribu-

tional considerations. To take an extreme case, even in the absence of inequality—that is, if

productivities were identical across workers—distortive taxation is still required. Moreover,

for any given distribution of relative skills the distributional tastes are irrelevant. For ex-

ample, even if equality is not valued—say, if the weights λi are higher for more productive

workers—then positive distortive taxation will still be required to meet the government’s

budget constraint. In this sense, the level of taxation is determined by budgetary needs,

not distributional concerns. This is, of course, in contrast to the case where a lump-sum

tax component is available, where we have argued that distributional concerns are at center

stage.

Turning to the timing of taxes, debt becomes critical when no lump-sum tax component

is available. If, instead, a government were forced to balance the budget each period, tax

smoothing would be simply infeasible. Debt allows the government to spread out the collec-

tion of taxes and meet a single present-value budget constraint. Intuitively, smoothing tax

rates is then optimal because it minimizes total efficiency costs by equating the marginal

efficiency costs from distortions over time.

Before moving on, note that our model nests the standard representative-agent Ramsey

model. That is, if we restrict the government to no lump-sum tax and if the distribution of

labor productivity is trivial, so that θi = 1 for all i, our model is equivalent to the standard

Ramsey framework. Restricted within this Ramsey case, our result on zero capital taxation

echoes results in Chari, Christiano, and Kehoe (1994). As for labor income taxation, they

report numerical results using various preference specifications that are different from the

class required for our analytical results. Their simulations, however, turn out minuscule

variations in labor income taxes, which they attribute intuitively to a strong tax smoothing

motive.

These numerical results show the relevance of our analytical result away from our baseline

class of preferences. Conversely, our analytical result, proving perfect tax smoothing for a

baseline class of preferences, help explain numerical findings of near perfect tax smoothing

away from our baseline class, such as those found by Chari, Christiano, and Kehoe (1994)

and others. Thus, the results obtained in our model, which permits heterogeneity and lump-

sum taxation, are also of interest when restricted to the Ramsey case with no heterogeneity

nor lump-sum taxation.

Distributional Shocks. To bring out the importance of distributional concerns in deter-

mining the marginal tax rate, we now extend the model by and allow the distribution of

relative skills to vary over time or with the state of the economy. The productivity of a

worker of type i ∈ I is now given by θi
t(st). The analysis of this extended model is contained

11



in Appendix B. Here we discuss the main implications for our results.

For the extended model, the results in Proposition 2 on zero capital taxation are un-

changed. The appendix shows that the optimal tax rate on labor income is given by

τ(st) = τ̄t(st) ≡ 1−
∑

i∈I u′(ωi
c)ω

i
c (λi − (1− σ) µi) πi

∑
i∈I u′(ωi

c)ω
i
L,t (st) (λi − γµi) πi

, (18)

which generalizes equation (13).10 The only difference is that now an individual’s share

of labor income ωi
L,t(st) potentially varies over time and with the current state, due to

potential underlying variations in the skill distribution. Indeed, the share ωi
L,t(st), and

hence the tax τ̄t(st), is solely a function of the current distribution {θi
t(st)}. Thus, tax

smoothing continues to be optimal in that tax rates remain unresponsive to shocks that

affect government expenditure or aggregate technology. The only source of variations in tax

rates are changes in the distribution of relative skills.

With a redistributive motive, optimal tax rates are higher during times of higher disper-

sion of relative skills. The reason is that the redistribution from “rich” to “poor” workers

that can be engineered by labor income taxation is more powerful then. To see this clearly,

consider the Utilitarian case where λi = 1 and suppose a lump-sum tax is available. Then

formula (18) becomes

τ̄t(st) = 1− E[u′(ωi
c)] + Cov(ωi

c, u
′(ωi

c)(1− (1− σ)µi))

E[u′(ωi
c)] + Cov (ωi

L(st), u′(ωi
c)(1− γµi))

(19)

where the expectations and covariances use the population fractions {πi} as probabilities.

This formula uses the first-order condition for the nondiscriminatory lump-sum tax T which

implies that
∑

i∈I u′(ωi
c)µ

iπi = 0. Although only nondiscriminatory lump-sum taxation is

allowed in our model, here u′(ωi
c)µ

i represents the value of a small fictitious discriminatory

lump-sum tax to individual i. Thus, redistribution is desirable whenever u′(ωi
c)µ

i increases

with skill θi, making the covariance term in the denominator positive. A period of high skill

dispersion then increases dispersion of the labor income share ωi
L(st), which increases the

covariance term in the denominator. As a result, the optimal tax rate is then higher.

Movements in the distribution of relative skills turn out to be the only source for tax

rate fluctuations in our model. This underscores the point made earlier, that a crucial

determinant for tax rates is distributional concerns. Indeed, as discussed above, when a

lump-sum tax component is available distributional concerns are the main determinant of

the overall level of tax rates. Fluctuations in the distribution of skills then lead to optimal

10 Once again, this formula holds when T is free (the case with a lump-sum tax component), as well as
when it is restricted to being zero (the case without a lump-sum tax component).

12



fluctuations in tax rates over time.

Recall the intuition that, with a lump-sum tax component, the marginal cost from distor-

tions should equal the marginal benefit from increased redistribution in each period. Then,

as long as the skill distribution does not vary, the marginal benefit from redistribution is

unchanging. Thus, the marginal cost from distortions should be equated over time, which

in turn implies that tax rates should be constant. However, when the distribution of skills

does shift, the marginal benefit from redistribution shift with it, so the marginal cost from

distortions should not be equated over time. As a result, the optimal tax rate responds to

such shifts.

Interestingly, changes in the distribution of skills affect tax rates with or without the

availability of a lump-sum tax component. As argued previously, if no lump-sum tax com-

ponent is available, then distributional concerns simply cannot shape the overall level of tax

rates. They can, however, affect their timing: during times of high skill dispersion a greater

fraction of taxes are paid by those who have the most; hence, it is optimal to concentrate

taxation then.

Debt Management. Since Barro (1979), second-best tax problems have been used to

avoid the neutrality results implied by Ricardian equivalence. In Ramsey models the optimal

timing of taxes implies an optimal management of debt. Barro was the first to argue that

distortionary tax rates should be smoothed: by analogy with permanent income theory,

tax rates should be set with an eye towards permanent government spending, as opposed

to current spending. As a result, government debt should be used to buffer any resulting

deficits and surpluses. Lucas and Stokey (1983) extended this argument by allowing state-

contingent debt: then taxes should also be smoothed across states of the world, as well as

across time.

Both models share the essential feature that the solution to the tax problem determines

a debt management policy. This is the case because, with proportional taxation, average

and marginal taxes coincide.

However, in our model, with a lump-sum tax component available, this link is broken and

marginal tax rates alone do not determine revenue. Ricardian equivalence is then recovered,

rendering the debt level indeterminate in our model. Indeed, government debt is simply

irrelevant. Nothing is lost if for some reason the government is required to balance its

budget each period—the lump-sum component can do all the work.11

Things are quite different if we rule out the lump-sum tax component in our model.

Government debt is then key to smoothing tax rates over time, just as in representative-

11 However, note that even though the government may not need to issue bonds, in our model the asset
market may still be important to allow the heterogenous agents to trade with each other.
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agent Ramsey models. The optimal tax policy then uniquely determines an optimal debt

management policy.

Initial Period Taxation. We now turn to the determinants of optimal taxation in the very

first periods. There are two distortive taxes to consider. First, there is the initial tax rate

on labor income τ0. Second, there is the capital income tax κ(s1) which distorts investment

in the initial period. Finally, there is also the initial time-zero capital levy κ0 which is not

distortive.

The first-order condition for initial aggregate consumption c0 contains a few extra terms

relative to equation (15):

u′(c0)
∑
i∈I

u′(ωi
c)

(
ωi

c(λ
i − µi) + (R0K

i
0 + T )µi

)
πi = η0.

Of course, if no lump-sum tax is available the same condition holds but with T = 0. When a

lump-sum tax is available, the first-order condition with respect to T is
∑

i∈I u′(ωi
c)µ

iπi = 0.

In both cases, it follows that the term involving T vanishes:

u′(c0)
∑
i∈I

u′(ωi
c)

(
ωi

c(λ
i − µi) + R0K

i
0µ

i
)
πi = η0.

Now, unless the term involving initial capital income also drops out, the initial tax rate

τ0, determined by equation (13), will be affected and differ from the constant tax rate τ̄

we found for all other periods. Likewise, the tax on capital income κ(s1) will not be zero.

However, the term involving capital does drop out in two important cases.

First, whenever the time-zero capital levy κ0 is unrestricted, its first-order condition

yields
∑

i∈I(ω
i
c)
−σµiKi

0π
i = 0. As a result, the first-order condition for c0 is then identical to

that of any other periods. In this case the conclusions in Proposition 2 extend and τ(st) = τ̄

for all t ≥ 0, and κ(st) = 0 for all t ≥ 1.

Second, even if the initial capital levy is restricted, if there is no initial inequality in

asset wealth so that R0K
i
0 = R0K

j
0 , then the term involving capital also drops out using the

first-order condition for T .12 Once again, the conclusions from Proposition 2 extend to all

periods. Moreover, in this case the time-zero capital levy κ0 can be set to zero and any ad

hoc restriction on initial wealth taxation is nonbinding.13

Time-Zero Capital Tax Levy. In Ramsey models a striking contrast emerges between

12 This is an interesting benchmark as it corresponds to the canonical optimal taxation situation where
heterogeneity is due solely to productivity differences (Mirrlees, 1971).

13 However, it seems difficult to justify ad hoc restrictions on the taxation of initial wealth. Moreover,
even if explicit taxes on wealth are limited, consumption taxes could perfectly replicate their effects.
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long-run and short-run capital tax prescriptions: eventually capital should go untaxed, but

initially it should be taxed heavily. Time-zero capital levies provide revenues without dis-

tortions, mimicking the desired missing lump-sum tax.14 The tension between long-run and

short-run tax prescriptions has been viewed as an important source for time inconsistency

of government policy.

In contrast, as discussed above in our framework, time-zero capital levies have the poten-

tial of being completely irrelevant. Indeed, the reason for their irrelevance is precisely what

makes them so desirable in Ramsey models: capital levies that imitate them bring nothing

new to the table when a lump-sum tax is already available. This is a noteworthy difference

of our model with the more standard Ramsey framework. Thus, if positive time-zero capital

levies are ever desired in our model, it must be for different reasons than in the standard

Ramsey models.

In our model, capital levies cease to be neutral if we assume unequal initial asset holdings.

For example, consider an extreme case where more productive workers are also wealthier,

so that θi > θj implies Ki > Kj. A proportional tax on initial wealth then acts as an

ideal redistributive device, taking more from the rich, as income taxation does, but without

introducing distortions. In such a case, as long as equality is valued, an initial wealth tax is

desirable. Indeed, Pareto improvements may be possible if the tax on assets is coupled with

a reduction in the distortionary tax rate on labor income.

In a nutshell, the Ramsey model is about the need to “redistribute” from the private

to the public sector, in order to finance the government. Then any initial wealth in the

hands of the private sector is best expropriated. In contrast, in our model the government

may also need resources from the private sector, but the central tension is not getting these

without distortions—which it could always do by raising the lump-sum tax. Rather, it is the

distributional concern about who it is extracting resources from. Instead of redistribution

from private to public sector, it is redistribution within the private sector that is at center

stage.

Thus, a desire for initial wealth taxation can also be generated in our model. Moreover,

this desire may also provide a source for time-inconsistent policy as long as more productive

workers tend to accumulate more assets as time passes.15 However, the mechanism is entirely

different and suggests new issues. In particular, the distribution of assets within the private

sector is brought to the forefront, something which cannot be addressed in a representative-

agent Ramsey model.

14 Hence, to avoid the first-best, most analyses proceed by imposing ad-hoc upper bounds on the amount
of such levies.

15 Note that a similar time-inconsistency issue arises if taxation based on past income were possible.
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Replicating Completing Markets with Taxes. For Ramsey models, Chari, Christiano,

and Kehoe (1994) show how capital taxation can help implement complete-market outcomes

even when markets are incomplete. When markets are complete the tax rate on capital can

be set in advance, so that at date t it is conditioned only on st−1; the relevant tax rate is

then known at the moment of investment. However, if one conditions further on st, so that

in addition to st−1 the tax now depends on st, one can replicate any state-contingent profile

of revenue, without introducing additional distortions to investment. As a result, state-

contingent debt becomes inessential when the government can tax capital flexibly enough.

In our model, however, such a scheme will generally not work. The reason is related to our

previous discussion on the role that capital levies then play: redistribution. The lump-sum

tax can already provide a non-distortive source of state-contingent revenue. However, when

markets are incomplete, it is not simply a source of non-distortive state-contingent revenue

that is missing. Indeed, replicating complete markets requires replicating the insurance

arrangements that heterogenous worker’s were able to provide for each other. It is easy to

see that, in general, a proportional tax on capital will not do the trick.

However, we speculate that there are possibly some interesting tax schemes that do work

and relieve the role played by asset markets. We postpone exploring this issue further for

future work.

5 Mirrleesian Taxation: Constrained Efficiency

We now consider the Mirrleesian scenario, where no restrictions are placed on tax instru-

ments. That is, we study the constrained efficient allocations for our economy. The tax

schemes required to implement these allocations are necessarily more complicated than the

linear schemes we have considered so far. Our main goal is to characterize the shadow mar-

ginal tax rates for constrained efficient allocations. In particular, we examine whether some

form of tax smoothing emerges and whether capital should not be distorted. Towards the

end of this section we also discuss a relatively simple tax scheme with features suggested

from the analysis.

Pareto Problem. Invoking the revelation principle, we set up a direct truth-telling mech-

anism. Workers submit reports regarding their type and receive an allocation as a function

of this report. Incentive compatibility constraints then ensure that individuals report truth-

fully.

To simplify the exposition and notation, we treat the case with two types θH > θL of

equal size. The analysis trivially extends to more general cases. Thus, we maximize the
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utility of the high type

∑

t,st

βt
(
u(ch(st))− v

(Lh(st)

θh

))
Pr(st)

subject to delivering some lower bound utility for the low type

∑

t,st

βt

(
u(cl(st))− v

(Ll(st)

θl

))
Pr(st) ≥ UL,

the incentive constraints

∑

t,st

βt
(
u(ch(st))− v

(Lh(st)

θh

))
Pr(st) ≥

∑

t,st

βt

(
u(cl(st))− v

(Ll(st)

θh

))
Pr(st),

∑

t,st

βt

(
u(cl(st))− v

(Ll(st)

θl

))
Pr(st) ≥

∑

t,st

βt
(
u(ch(st))− v

(Lh(st)

θl

))
Pr(st),

and the resource constraints (2).

In the discussion that follows we consider the case of greatest interest, where only the first

incentive compatibility constraint binds. This amounts to the region where redistribution

takes place from high to low types, for high enough UL. Indeed, a Utilitarian planner always

favors this region of the Pareto frontier.

Implicit Marginal Taxes. Letting the multipliers be γ for the participation constraint, µ

for the first incentive constraint and βtη(st)π(st) for the resource constraint, the first-order

conditions are

1

θh
v′

(Lh(st)

θh

)
(1 + µ) = η(st)W ∗(st), (20)

u′(ch(st))(1 + µ) = η(st), (21)

γ
1

θl
v′

(Ll(st)

θl

)
− µ

θh
v′

(Ll(st)

θh

)
= η(st)W ∗(st), (22)

u′(cl(st))(γ − µ) = η(st), (23)

η(st) = β
∑
st+1

ηt+1(s
t+1)R∗(st+1) Pr(st+1|st), (24)

where R∗(st) = FK(L(st), K(st−1), st)+1−δ denotes the social gross rate of return to capital

and where W ∗(st) ≡ FL(L(st), K(st−1), st) is the marginal product of labor.
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We first address the issue of capital taxation. Equations (21), (23) and (24) imply that

u′(ci(st)) = β
∑
st+1

u′(ci
t+1(s

t+1))R∗(st+1) Pr(st+1|st), (25)

which is the standard undistorted intertemporal Euler equation for individuals. Hence,

capital income should go untaxed.16

Define the shadow marginal tax rate on labor as the solution to

v′
(

Li(st)
θi

)

u′(ci(st))
= (1− τ i(st))θiW ∗(st)

It follows from equations (20) and (21) that τh(st) = 0, so that the highest type is not

distorted—a standard result in optimal tax theory. As for the low type, combining equa-

tions (22) and (23) gives

τ l(st) = µ
1− (θl/θh) ε(Ll(st))

γ − (θl/θh)µ ε(Ll(st))
,

where ε(L) ≡ v′(L/θh)/v′(L/θl). Thus, the tax rate is constant if ε(L) is independent of L,

which is true if v(n) = αnγ/γ.

Proposition 3 At the constrained efficient allocation: (a) capital accumulation is not dis-

torted, that is, the standard Euler equation (25) holds; (b) if v(n) = αnγ/γ, each type’s

marginal income tax is constant: τ i(st) = τ̄ i for all t and st.

This result provides an interesting benchmark for zero capital taxation and constant

marginal tax rates on labor income. Tax smoothing is optimal in that tax rates for a given

worker are constant across time and states, as in the case of linear taxation. However,

here the optimal tax schedule is nonlinear in the sense that marginal tax rates vary across

individuals.

Income Tax Averaging. The analysis suggests tax schemes that equate marginal tax

rates over time but still allow them to vary across individuals. One arrangement with such

a feature is taxation based on income averages, as opposed to only current income. Such

rules were advocated by Vickery (1947) for different reasons.17

16 Distorting the standard Euler condition is optimal if there are ensuing privately observed productiv-
ity shocks at the individual level (Diamond and Mirrlees, 1977; Rogerson, 1985; Werning, 2002; Golosov,
Kocherlakota, and Tsyvinski, 2003; Farhi and Werning, 2005).

17 Vickery (1947) argued based of horizontal equity: if the tax schedule is convex then individuals with
highly fluctuating earnings would otherwise pay more taxes on average than individuals with steadier earn-
ings. In our case, they serve to implement constant marginal income tax rates over time, while retaining the
non-linearities across individuals.
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We briefly discuss one such simple scheme that works for a deterministic dynamic econ-

omy, and which may be suggestive for other cases. The government does not tax capital

income and instead sets a non-linear income tax payment as a function of the present value

of lifetime earnings. In the first period workers must pay

Ψ

( ∞∑
t=0

ptW
∗
t Lt

)
,

for some typically non-linear tax function Ψ.18 Worker i ∈ I maximizes
∑

t β
t(u(ct)−v(Lt/θ))

subject to
∑

t ptct ≥
∑

t ptW
∗
t Lt − p0Ψ (

∑
t ptW

∗
t Lt). The first-order conditions yield

v′
(

Li
t+1

θi

)

u′(ci
t)

=

(
1−Ψ′

( ∞∑
t=0

ptL
i
t

))
W ∗

t .

so that the derivative Ψ′(·) plays the role of the constant marginal tax rate in all periods.

Thus, taxation based on income averages automatically ensures that individuals’ marginal

tax rates are constant over time, as we found for our implicit tax rates in our constrained

efficient allocation, while allowing these to vary across individuals. Indeed, it is easy to see

that one can always find a smooth Ψ function that implements the allocation.

6 Conclusions

This paper provides a tractable framework to address issues of optimal taxation in dynamic

economies. Unlike representative-agent Ramsey models, distortive taxation is microfounded

by a concern for redistribution. Our framework is tractable and can handle rich specifications

of the dynamic economy, such as those used in representative-agent Ramsey analyses. Indeed,

our model nests the standard representative-agent Ramsey model as a special case, and our

analytical results are also of interest restricted within this context.

Our results provide interesting benchmarks for perfect tax smoothing of labor income

taxes and for zero taxation of capital income. Although the mechanisms and insights are

quite different, it is comforting that a microfounded model of taxation does not disturb

these cornerstone results in Ramsey tax theory. Our model does suggest a novel source

for variations in optimal tax rates—for deviating from perfect tax smoothing. In particu-

lar, movements in the relative skill distribution induce changes in the optimal amount of

redistribution, and thus, in the optimal tax rate.

18 It is easy to change things slightly so that the worker does not make a single period in the first period,
but instead pays each period as a function of past labor incomes.
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Unlike Ramsey models, our model recovers a form of Ricardian equivalence that renders

debt management indeterminate. We speculate that extensions of our model that overcome

perfect Ricardian neutrality are likely to provide a determinate theory of debt management.

One interesting possibility is to model some individuals as having limited participation in

asset markets.19 A simple, but extreme, example might be to suppose that one group of

workers is hand-to-mouth, with no initial assets and no access to asset markets whatsoever.

The desire to smooth consumption, and hence income net of taxes, for such nonparticipants

could then pin down the lump-sum tax component, and public debt with it.

Appendix

A Proof of Proposition 1

Condition (2) directly implies condition (iv) for an equilibrium. Factor prices given by

(4)–(5) ensure that the firm maximizes, so that condition (ii) for an equilibrium is met.

Conditions (9)–(12) ensure that consumers are maximizing given taxes and prices given

by (13)–(14), so that condition (i) for a competitive equilibrium is met. Finally, condition

(iii) is automatically met given that the resource constraints and budget constraints of all

individuals hold with equality.

B Shocks to Skill Distributions

The first-order conditions from the worker’s maximization problem are

α
(
Li

t

(
st

))γ−1
= νi

(
θi

t (st)
)γ

w(st)p(st)(1− τ
(
st

)
),

(
ci
t

(
st

))−σ
= νip(st),

where νi is the multiplier individual i ∈ I has on its own budget constraint (3). Solving

Li
t

(
st

)
=

(
νi

α

(
θi

t (st)
)γ

) 1
γ−1 (

w(st)p(st)(1− τ
(
st

)
)
) 1

1−γ ,

19 Another interesting direction may be an overlapping generations framework.
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it follows that Li
t (st) = ωi

L (st) L (st) with

ωi
L (st) ≡

(
νi

α

) 1
γ−1

(θi
t (st))

γ
γ−1

∑
i∈I

(
νi

α
(θi

t (st))
γ) 1

γ−1 πi

.

For future reference, note that

(
ωi

L (st)

θi (st)

)γ

=

(
νi

α

) γ
γ−1−1+1

(θi
t (st))

γ
γ−1

(∑
i∈I

(
νi

α
(θi

t (st))
γ) 1

γ−1 πi
)γ−1+1 =

νi

α
ωi

L (st)(∑
i∈I

(
νi

α
(θi

t (st))
γ) 1

γ−1 πi
)γ−1 . (26)

Dividing the worker’s two first-order conditions by each other (i.e., the intratemporal

optimality condition):

θi (st)
−γ (ωi

L (st))
γ−1

u′(ωi
c)

=
u′(c (st))

v′ (L (st))
wt

(
st

) (
1− τ

(
st

))

Using equation (26) and rearranging it follows that

νi

α

1

u′(ωi
c)

=

(∑
i∈I

(
νi

α

(
θi

t (st)
)γ

) 1
γ−1

πi

)γ−1

u′(c (st))

v′ (L (st))
wt

(
st

) (
1− τ

(
st

))

must be equal to some constant φ because one side depends on i but not on st, and the other

depends on st but not on i.

The rest of the analysis proceeds along the same lines as in Section 4. In particular

the first-order conditions with respect to the aggregates c(st) and L(st) are identical to

equations (15)–(16), which can be solved for wt(s
t)u′(c(st))/v′(L(st)). Using equation (13)

we then arrive at

τ(st) = 1− φ

(∑
i∈I

(
νi

α

(
θi

t (st)
)γ

) 1
γ−1

πi

)1−γ ∑
i∈I u′ (ωi

c) ωi
c (λi − (1− σ) µi)

∑
i∈I

(
ωi

L(st)

θi(st)

)γ

(λi − γµi)

= 1− φ

∑
i∈I u′ (ωi

c) ωi
c (λi − (1− σ) µi)∑

i∈I
νi

α
ωi

L (st) (λi − γµi)

= 1−
∑

i∈I u′(ωi
c)ω

i
c (λi − (1− σ) µi)∑

i∈I u′(ωi
c)ω

i
L (st) (λi − γµi)

,

where the last equality follows from the definition of φ.
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