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ABSTRACT

We report on experiments that tested the predictions of competing theories of learning in games. Experimental
subjects played a version of the three-person matching-pennies game. The unique mixed-strategy Nash
equilibrium of this game is locally unstable under naive Bayesian learning. Sophisticated Bayesian learning
predicts that expectations will converge to Nash equilibrium if players observe the entire history of play.
Neither theory requires payoffs to be common knowledge. We develop maximum-likelihood tests for the
independence conditions implied by the mixed-strategy Nash equilibrium. We find that perfect monitoring
was sufficient and complete payoff information was unnecessary for average play to be consistent with the
equilibrium (as is predicted by sophisticated Bayesian learning). When subjects had imperfect monitoring and
incomplete payoff information, average play was inconsistent with the equilibrium.
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1. INTRODUCTION

Since the concept of equilibrium in noncooperative games was proposed in the 1950s, theorists have
modeled learning dynamics in games. Their work has addressed several interesting questions: What
sorts of dynamic processes converge to equilibrium? How much information and coordination do
these processes require? How large is the class of environments in which particular dynamic
processes converge to equilibrium? Recent work has identified several environments in which
_particular learning processes cause players to converge, or fail to converge, to a Nash equilibrium.

Nash equilibrium is the primary solution concept in noncooperative game theory, even though
the theory does not typically specify how players arrive at equilibrium. Limits on players’ abilities
to compute the equilibrium and predict their opponents’ strategies may cause players to deviate from
the Nash equilibrium prediction. Therefore, specifying the process by which players arrive at
equilibrium is extremely important.l

We know from earlier laboratory experiments that players (or subjects) do not instantaneously
arrive at the Nash equilibrium, even when it is unique; often, subjects with extensive experience fail
to converge to equilibrium.2 While these findings suggest that subjects might be learning about a
Nash equilibrium, researchers have only recently specified precisely how or what these subjects
might be learning. Because experiments based on competing theories of learning that make different
predictions are rare, separating situation-specific behavior from learning dynamics is difficult. At
best, existing research has identified some qualitative features of learning, or adaptive behavior, by
subjects in specific experiments.3

In this paper, we present a series of experiments that test the predictions of competing
theories of learning in games. We compare the predictive power of different economic theories
under controlled conditions with human subjects motivated by money. We identify distinct learning

processes proposed by theorists with particular informational assumptions and, where competing



theories differ in their predictions, manipulate the information provided to players in laboratory
experiments. In particular, we consider a situation in which the equilibrium strategy is considered
difficult to learn: a mixed-strategy Nash equilibrium.*

Our results suggest that the amount of information available to players significantly affected
whether play was consistent with the unique symmetric Nash equilibrium. When players could
imperfectly observe the entire history of play (had imperfect monitoring) and had incomplete
information about the payoffs of other players, average play was inconsistent with the equilibrium.
In contrast, perfect monitoring of other players’ choices was sufficient for average play to come close
to a Nash equilibrium in many respects, even when players only had access to incomplete
information about others’ payoffs. Similar conclusions followed when players had perfect monitoring
of other players’ actions and the payoffs of all players were common knowledge. Our results show
that heterogeneity in players” strategies persisted when players imperfectly observed the history of
play and had incomplete information about the payoffs of other players. Heterogeneity in players’
strategies disappeared with experience when players could perfectly monitor other players’ choices
and had incomplete information about other players’ payoffs. No heterogeneity in strategies occurred
among even inexperienced players when players had both perfect monitoring and complete payoff
information.

Our results provide qualitative support for certain theories of learning in games. In
particular, we find some support for theories which assert that complete information may not be
necessary as long as players have perfect monitoring. Our results also suggest that perfect
monitoring is sufficient, and in its absence, players may use adaptive behavior that does not
converge, even though they might learn some features of the equilibrium strategy over time. While

theory suggests that players may have difficulty learning equilibria, if they are provided with enough



information and experience, the task of arriving at a Nash equilibrium may be simplified, even for

a mixed-strategy equilibrium that incorporates subtle randomizations.

2. THEORETICAL MODELS AND EXPERIMENTS

Much theoretical work as well as some experimental tests now focus on learning in games.
Explicit models have recently been developed in which partially informed or myopic agents interact
repeatedly. No one—except possibly Boylan and El-Gamal (1993)—has tested these models, and our
interest lies in the testable restrictions that the models impose on learning behavior in the laboratory.
We test whether the experimental data are more or less consistent with the distributions predicted by
particular learning models.

Jordan (1991) provides sufficient conditions for players following a Bayesian strategy process
to converge to equilibrium. He specifies that players are uncertain about the characteristics of other
players and that all players have perfect monitoring. As play proceeds, all players update their
beliefs about the characteristics of other players. As they atiempt to rationalize what characteristics
of other players could be consistent with the optimality of those players’ observed decisions, players
gradually learn the game, and ultimately, their expectations converge to a Nash equilibrium. Similar
results are derived by Kalai and Lehrer (1993). They present a closely related model of rational
learning. However, both models require that players process a large amount of information every
period. We refer to these models as sophisticated Bayesian learning. If we think that a more limited
information-processing capacity is reasonable, we must investigate alternative theories of adaptive
behavior.

A class of models that explicitly requires less information to be processed by players, called
naive Bayesian learning, is presented by Fudenberg and Kreps (1993) and by Jordan (1993). The

basic premise of naive Bayesian learning theory is that players regard other players not as strategists



but rather as statistical processes against which a series of optimal responses must be chosen. Under
naive Bayesian learning, players make decisions that are myopically optimal: they are the best
possible responses to one-shot interactions, given players” beliefs. Over time, players revise their
beliefs about these hypothesized processes, and so the time series of decisions changes. The issue
is whether this form of adaptive behavior converges to equilibrium.

In fact, adaptive behavior may not converge, as Shapley (1964) observes. Jordan (1993)
shows that even in simple situations, naive Bayesian learning generates a dynamic learning process
that leads to cycles. While it is simple and intuitively appealing, naive Bayesian learning often fails
to converge in games.5 Fudenberg and Kreps (1993) point out that for mixed-strategy equilibria,
players have difficulty learning other players’ strategies. This finding suggests that games with
mixed-strategy equilibria are an important starting point for studying how and if subjects learn to
play equilibria.

Some prior experimental evidence exists on the form of learning in games. Boylan and El-
Gamal (1993) analyze other researchers’ data and conclude that fictitious play is a better predictor
than a Cournot best response for a variety of experiments on normal form games. Van Huyck et
al. (1991) examine the power of deterministic dynamic models in predicting the convergence of
bargaining behavior in a game between two populations of players.

Two recent papers that examine the stochastic process of learning are closely related to our
work. Mookherjee and Sopher (1993) conduct an experiment using the zero-sum game of two-
person matching-pennies, in which even naive Bayesian learning is predicted to convérge to
equilibrium. They find that the distribution of play is close to a Nash equilibrium at the aggregate
level and that knowledge about other players’ payoffs has a significant effect on a player’s strategy.
But no simple learning model is found to explain the nature of the choices made. Bloomfield (1995)

reports an experiment for a 2 X 2 game with a unique mixed-strategy equilibrium but no equilibria



in pure strategies. Bloomfield finds stronger evidence of adaptive behavior when players know only
the relative performance of their own strategies than when the performance of both players’ strategies
is common knowledge.

In this paper, we examine environments where simple rules of learning, such as naive
Bayesian learning, lead to cycles. If the rule that best describes behavior is indeed naive Bayesian
learning, then that rule imposes restrictions on the data. The distribution of players’ choices should
then be different from what it would be in a Nash equilibrium. Players’ strategies converging to the
Nash equilibrium would be a refutation of naive Bayesian learning. But failing to converge over a
finite horizon is inconclusive—a skeptic could argue that an experiment in which convergence does
not occur is too short. The average length of our experiments was 75 periods, which we consider

long enough to greatly reduce the finite-horizon problem.

2.1. The Three-Person Maiching-Pennies Game

In all the experiments in this study, subjects repeatedly played a version of the three-person
matching-pennies game (see Figure 1), which was first described in Jordan (1993). While theoretical
modelers usually study more complex environments, they could make much more convincing
arguments if they could show that cognitive or experiential limitations which might inhibit
convergence are present in the simple concrete situations used in their experiments. The simplicity
of the three-person matching-pennies game makes it ideally suited to this task. Since the game is
symmetric in decisions and players, the unique mixed-strategy Nash equilibrium is also symmetric.
This structure reduces the computational burden on subjects, however, and could conceivably bias
the experiment toward finding the equilibrium.6

The three-person matching-pennies game has three players (1, 2, and 3), each of whom can

choose either heads (message A) or tails (message B). Each player’s payoff depends on a



comparison of the choice of the player with that of the player’s neighbor, where 1’s neighbor is 2,
2’s neighbor is 3, and 3’s neighbor is 1. The goal of each player is to avoid matching the player’s
neighbor. If 1 and 2 both choose heads (or tails), then 1 earns nothing; but if one of the players
chooses heads and the other chooses tails, then 1 earns a penny. Similarly, 2’s payoff is determined
by comparing the decisions of 2 and 3; 3’s, by compariné the decisions of 3 and 1. This game has
a unique equilibrium in which all three players choose heads with probability 1/2 and tails with
probability 1/2.

The game is formally described as follows. It has three players, and each player has a set
of pure strategies S = {heads, tails} with s; € S, i = 1, 2, 3, denoting the choice of player i.
Player i’s payoff function, p;: S3 » R, is defined for each i as
0, ifs; =3

1) 7"1(51,32,83) = 9
1, if 81 # Sy

0, ifs, =35
(2) 71'2(31,52,33) = 9 2 3
1, if Sy = $3

0, if =
@)  malspspsy) = {0 3T

1, if S5 > Sl.

The unique Nash equilibrium for this game involves each player randomizing between heads and tails
with equal probability. Let p denote the probability with which heads is played. Then the unique
Nash equilibrium is the point (1/2,1/2,1/2) in the unit cube in R3. If we partition {heads, tails}3 into
eight octants, the unique and symmetric mixed-strategy equilibrium leads to a uniform distribution
of actions over the eight octants. In terms of empirical predictions, the Nash equilibrium implies

that the marginal distribution of actions of each player will be uniform between heads and tails



during each period; that is, p; = 1/2 forall i = 1, 2, 3. Let p} be player i’s mixed strategy at time
t. Then p! and pjt' are independent for all i # j, and for all t, t', where t # t'. In addition, for all
i, p% is independent of the history of actions until period t.

By contrast, the Nash equilibrium is locally unstable under any naive Bayesian learning
dynamic. As a consequence, for almost every initial set of beliefs, naive Bayesian learning
approaches a limit cycle in which play is distributed over six octants, excluding the two in which all

three players choose heads or tails. The details of this cycle are discussed in Jordan (1993).

2.2. The Modified Three-Person Marching-Pennies Game

Studying learning dynamics in the laboratory requires experiments with repeated interactions.
However, repeating a one-shot game increases the set of equilibria. In particular, cooperative
equilibria might be supported by threats to punish deviations by individual players. This possibility -
has been advanced as an explanation for the results of prisoners’ dilemma experiments (see Kreps
et al. (1982)).

This confounding effect should be minimized by designing a game in which such individual
punishments are difficult to execute. Therefore, we modify the three-person matching-pennies game
by replacing each player in the original game with a population of three players (see Figure 2).

The modified game is formally described as follows. It has nine players, and each player
has a set of pure strategies S = {heads, tails} with s; € §,1 =1, 2, ..., 9, denoting the choice of
player i. Players are assigned to populations, and each population consists of three players. Thus,
if the players are serially numbered 1, 2, ..., 9, the first three (1,2,3) are assigned to population 1,

the next three (4,5,6) to population 2, and the last three (7,8,9) to population 3.



Let 0 = (s1,87,...,89) be a vector of the players’ choices in a particular period. Let x(+) be
an indicator function that assumes the value one when its argument is true and zero when its

argument is false. For any given period, payoffs to player i are as described here:”’

10 Y5 _ x5 # s, ifi=1,2,3
@ 7m0 =110 Yoo x(s = s), ifi =456

7,89

10 Y5 x5 # 5, ifi

One Nash equilibrium for this game involves each player randomizing uniformly between
heads and tails. A continuum of equilibria also exists, and all of these equilibria generate the same
distribution of {heads, tails}3 for each population. Let p; represent the probability with which player
i selects heads, and let s; denote the choice of player i. A Nash equilibrium for this game is a vector
{pi}?=1 such that each triple {s3;_,,83;_1,83;} is distributed as binomial (3,1/2), that is, with
probability parameter 1/2 for i = 1, 2, 3. The unique symmetric Nash equilibrium involves p; =
1/2 for all i. An example of an asymmetric equilibrium is p; = 1/2 foralli = 1, 2, ..., 7; pg =
1; and pg = 0. Another asymmetric equilibrium is p; = 1, py = 1/2, p; = 0, p, = ps = Pg =
172, p; = 1,pg = 1/2, and pg = 0. In the modified game, the nonconvergénce of naive Bayesian
learning that we described for the three-player game is preserved. Because of symmetry, one
possible outcome of naive Bayesian learning is the limit cycle.

Each player in the modified game is matched with three neighbors (rather than one) in each
period. This game reveals how well a given, unchanging set of players learns to play Nash
equilibria. A consequence of our design is that the same players repeatedly encounter one another

every period. This design could potentially lead to repeared-game eﬁ’ects.8



We think that repeated-game effects are not an issue in the modified game because the unique
perfect equilibrium for that game is a repetition of the mixed-strategy Nash equilibrium every period.
The unique equilibrium rules out trigger strategies, such as those proposed by Green and Porter
(1984) or Benoit and Krishna (1985). Repeated-game effects could still be caused by incomplete
information, however (see Ledyard (1986) and McKelvey and Palfrey (1992)).

Since we want to test whether players learn to play the Nash equilibrium in a game with
incomplete information, we must minimize the likelihood of repeated-game effects, which could
invalidate our statistical inference. This is why we have designed the modified game using
populations. With such a design, repeated-game effects are less likely to be present and trigger
strategies are more difficult to administer. In particular, punishing three players or inferring their

types is less likely to be the driving force behind the experiment.

3. EXPERIMENTAL DESIGN

In the first of our three experimental environments, perfect monitoring and complete payoff
information (PM-CP), subjects have complete information about the game. They observe the entire
history of the game and know exactly how each player’s payoffs are determined. This is a baseline
environment in which convergence is a desirable property if a Nash equilibrium is to have some
predictive content. In this baseline environment, both sophisticated and naive Bayesian learning are
feasible.

In the second environment, perfect monitoring and incomplete payoff information (PM-IP),
subjects have less information about the game. At the end of every period, they observe the actions
of every player. Thus both sophisticated and naive Bayesian learning are feasible here too. A player
does not know the incentives of the other players, but if the player’s cognitive limitations are not too

severe, he or she could learn what is needed to converge. Even if the experiment is too short, it
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yields a testable implication: if cycles occur, then naive Bayesian learning theory describes behavior
better than sophisticated Bayesian learning theory.

In the third environment, imperfect monitoring and incomplete payoff information (IM-1P),
subjects receive the least amount of information about the game. They know that their payoffs
depend on a comparison of their actions with those of their three neighbors, but they lack sufficient
information to infer the incentives of their neighbors. They also do not observe the actions of the
other five players. At the end of each period, however, they do observe the choices of their three
neighbors. The goal of experiments in IM-IP is to see whether subjects can learn the process that
generates their neighbors’ choices and respond to it. This environment is close to that posited by
Fudenberg and Kreps (1993) and Jordan (1993). Naive Bayesian learning theory predicts that
players will not converge and that players’ choices over time will follow a particular cyclical pattern.
In IM-IP, players do not have enough information for sophisticated Bayesian learning because this
type of learning requires that players should be able to use the entire history of the game to form
their strategies.

We conducted a total of 18 e:xperiments:9 five sessions in each of the PM-CP, PM-IP, and
IM-IP environments with inexperienced subjects and three sessions repeated in the IM-IP environ-
ment using subjects who had been in an experiment involving IM-1P environments before.

Each session consisted of nine subjects recruited by telephone from the student population
at the University of Minnesota between January 11 and May 15, 1993. Subjects were predominantly
undergraduates, and all had previously participated in at least one unrelated individual-choice
experiment. Subjects who participated were paid $5 plus earnings; subjects who were bumped due
to overbooking were paid $8. Upon arrival at the laboratory, each subject drew a chip without
replacement from a cup; this chip indicated seat placement in the experiment. Each subject was

surrounded by partitions designed to maintain privacy. A no-talking rule was strictly enforced.
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Experiments were conducted over a computerized network. Subjects were paid their earnings in cash
over the duration of the experiment, which ranged from 45 minutes to an hour and a half.

Once subjects were seated, the instructions were read aloud by an experimenter. These
instructions are reproduced in Appendixes A, B, and C. After the instructions were read and any
questions were answered, the first period started. In each period, each subject selected either
message A or message B, called here heads or rails. Once all nine subjects had confirmed their
selections, each subject was informed about his or her payoffs and given relevant information (which
varied according to the environment) about the choices of other players. The computer waited until
all subjects had made their choices so that subjects could not reveal their identity by making early
or late decisions. Experiments were run for n periods, where n was distributed uniformly between

70 and 79 periods.10

4. ECONOMETRIC METHODS

Our goal was to test whether the subjects in each experiment played the unique mixed-
strategy equilibrium of selecting heads with probability 1/2, where the probability of heads was
independent of all players’ past actions.

One simple way to test this proposition is simply to look at the fraction of the times that
heads was played in each experiment and test whether that fraction was equal to 1/2. B.ut this test
ignores the possibility of straregic interdependence—that a player’s actions in one period could
depend on the player’s own past play or that of the player’s opponents. In this section, we develop
new tests of strategic interdependence. |

Suppose we consider a matching-pennies game which has m = 1, 2, ..., M populations of
n =1, 2, ..., N players each. The payoff for a member of a population m in a given period is

determined by comparing the person’s play in that period to that of the members of population
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m + 1, using the rules described in Section 3, except that members of population M are compared
to members of population 1.

Suppose, further, that each player bases his or her current play on, at most, the previous
period’s play by all players whose actions the player can observe. In this case, we will denote the
conditional probability that player n of population m will play heads in the current period as
Pmn(il 1,112,...,i1\,IN), where imn is an indicator variable that takes a value of one if player n of
population m played heads in the previous period and zero if player n played tails.

Since the conditional probability that player n of population m will play heads in the current
period could be different for each combination of plays that this player could observe in the previous
period, potentially 2MN (ifferent conditional probabilities exist of playing heads currently, one for
each past observable state. In the three-person, three-population matching-pennies game, up to 512 ‘
different conditional probabilities exist that player n of population m will play heads. Further, the
conditional probability of playing heads in the current period may differ for each player.

If we observed the conditional probabilities of playing heads for each player for each of the
possible states in the previous period, we could compute the state-transition matrix from one period
to the next as a function of those conditional probabilities.

Suppose that we are interested in the element of the 2MN x 2MN gtate_transition matrix that
indicates the conditional probability that all players will play heads in this period, given that they all
played heads in the previous period. We could denote that probability as P(1,1,...,1|1,1,...,1).

The key to computing this conditional probability as a function of the conditional probabilities
that the individual players will play heads is to note that the current play of each player is condition-

ally independent of the current play of all other players. Thus

M N
) P11, L1, ) = ] 1 Pm(1.1.....0).
m=1n=1 "
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Similarly, the conditional probability of all players playing heads in the current period, conditioned

on any arbitrary state of play in the previous period, is simply

M N
6)  P(L1,..., 1[I pip e oing) = mr=I1 nI=II P (1 i1yl

Equation (6) completely describes the last row of the state-transition matrix as a function of MN X
2MN conditional probabilities for the individual players.

We can compute the entire state-transition matrix by noting that for player n of population m,
the conditional probability of playing tails, given any arbitrary state of play in the previous period,
isl1 — Pmn(ill,ilz,...,iM N). If jm,, is an indicator variable that takes the value of one if member n
of population m plays heads in the current period and zero if member n plays tails, then we can

compute any element of the state-transition matrix

(7) P(jll’jlz’”"jMNlill’ill"”’iMN) = H H Pmn(ill’iIZ"”’iMN) H H (1 b
m n m
W =1 VI =0

Pmn(ill,ilz,...,iMN)).
Note that all the elements in the IMN 5 9OMN (ransition matrix are functions of the MN X oMN

conditional probabilities used to compute the last row of the state-transition matrix.

4.1. Restrictions
Although this parameterization greatly reduces the number of free elements in the state-
transition matrix, the number of free parameters is still far too large to estimate if the conditional
probabilities are unknown. In the three-person, three-population matching-pennies game, the
unrestricted state-transition matrix would have 262,144 parameters. Even the restricted version,

described above, would still have 4,608 parameters. We must, therefore, use additional restrictions



14

to reduce the number of free parameters in the state-transition matrix. We propose the following

additional restrictions.

RESTRICTION 1: Irrelevance of Within-Population Permutations. Permutations in the
previous period’s play within populations do not affect a player’s conditional probability of playing
heads in the current period. Only the total number of heads played in the previous period by a given

population can affect the current conditional probability.

Suppose we denote the total number of heads played by population m in the previous period

asry, = E§=1imn- Then this restriction means that Pmn(rl,rz,...,rM) = Pmn(ill,ilz,...,iMN).

RESTRICTION 2: Within-Population Symmetry. Each player within a population has the same

conditional probability.

This restriction, when combined with Restriction 1, is exactly the same as de Finetti’s (1990)

concept of partial-column exchangeability.!! Note that these two restrictions imply that

€)) Po(r{:rp,....0) = Pmn(rl,rz,...,rM) = Pmk(rl,rz,...,rM), forallk,n3l =k, n < N.

RESTRICTION 3: Circular Symmeiry Across Populations. Since the payoff for a member of
population m is based on a comparison of that member’s play with the play of all members of
population m + 1 and the payoff for a member of population M is based on a comparison of that
member’s play with the play of all members of population 1, it seems reasonable 0 assume that the
conditional probability of playing heads in the current period for a member of population m,
P, (ri,ry,....7yp) Is the same as the conditional probability of playing heads in the current period for

a member of populationm + £ = P, . ,(81,5,,...,5,,) if and only if

©® s, =r,.e foralm 1l s=m<M-1¢,
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a0 s, = e foralm, m —{ <m < M.

So, for example, in the three-person, three-population matching-pennies game,

(1) Py(1,1,0) = P,(1,0,1) = P5(0,1,1).

Using Restrictions 1 and 2, we can limit the number of unique conditional probabilities that a
member of population m will play heads in the current period to (N+ DM, or the number of unique
values of heads that a person can play in a given period raised to the power of the number of
populations. Restriction 3 implies that the conditional probabilities for all other populations are just
permutations of the conditional probabilities for population 1. Thus Restrictions 1, 2, and 3 reduce
the number of free parameters in the three-person, three-population matching-pennies game from
4,608 to 64.

Although we have greatly reduced the number of free parameters in the state-transition
matrix, so far we have implicitly allowed for considerable flexibility. First, we have allowed the
players of each population to condition on the play of the players of all other populations. Second,
we have assumed that members of each population have the same information about the past play of
every population. We must impose additional restrictions that are consistent with the payoff and

information structure of the three-person matching-pennies game, as described in Section 3.

RESTRICTION 4: Irrelevance of Unmatched Population. Since the payoff for a member of
each population is based on a comparison of his or her play with thar of the next population, at
most, the player will condition current play on the past play of his or her own population and that

of the next population.

In addition, the number of distinguishable states for each of these two populations may be

different. Suppose that a player of population 1 can distinguish among a states for his or her own
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population and b states for the next population. Then the player can distinguish, at most, a X b
different states in the play of the two populations during the previous period. This would restrict
the total number of unique conditional probabilities to a X b. In the case of full information, as with
the three-person, three-population matching-pennies game, a = b = 4, so 16 unique conditional
probabilities exist.

Thus our most general unrestricted model will have only 16 free parameters, instead of
262,144. We will now discuss how we conduct our statistical inference and how we test whether
the players in our experiments condition on the past play of their own population or the next

population in determining the probability that they will play heads in the current period.

4.2. Maximum Likelihood Estimation

Suppose that in each period S possible states exist that describe the combination of play by
all players. (In the three-person, three-population matching-pennies game, S = 512.) We have
shown that the S? elements of the state-transition matrix can be described as a function of a X b free _
parameters. (Inthe full-information, three-person, three-population matching-pennies game, we need
only 16 parameters.)

Let us denote the conditional probability of moving from state i in period t — 1 to state j in
period t as P;. We know that for given values of the parameters §, Py is a function of those
parameters. We also know that E;‘?:IPij = 1.

The likelihood of observing a given transition pair, given the parameters 8, is

1) 2ass = T1 ] P%
(12)  20I(6) = iI=I“_I=I1 i
~where dij is an indicator variable that takes on a value of one if and only if (i,j) = (I,J) and zero

otherwise. If we observe a vector of N transition pairs, X, the log-likelihood of the sample is
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S S
i=1j=1

where Cij is the count of the number of transitions from i to j in the sample. All estimates we

present in Section 5 are the result of maximizing the log-likelihood function (13).

4.3. Tests of Straregic Interdependence
We propose three likelihood ratio tests to determine the extent of strategic interaction in our
experimental data. All of these tests assume that players use the same strategy throughout the
experiment. These tests employ successively stronger restrictions to determine whether players use
the unique mixed-strategy equilibrium in each case. For ease of exposition, we restrict our
discussion to the cases of experiments in PM-CP and PM-IP, where the players have full information

about the past play of all other players. All of these tests assume Restrictions 1-4 discussed above.

4.3.1. Mixed-Straregy Equilibrium

The simplest test of mixed-strategy play is to restrict the model further than Restrictions 1-4
by assuming that each player plays heads with the same probability regardless of the past play of his
or her population or the next population. This leaves only one parameter to estimate: the
unconditional probability of playing heads. We can test whether each player plays the mixed-strategy
equilibrium by comparing the maximized value of the likelihood function in the one-parameter model
with the value of the likelihood function obtained by restricting the probability of playing heads
to 1/2. Two times the log-difference of the likelihood values should be distributed asymptotically

as a x% random variable if each player plays the mixed-strategy equilibrium.
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4.3.2. Past Play of the Player’s Own Population

If players are able to unconditionally randomize their play, we can test the next level of
randomization: Do players adequately randomize on their own population’s past play? Suppose we
allow different probabilities that a player will play heads in the current period for each of the values
of the number of heads played by that player’s population in the last period: 0, 1, 2, or 3. Based
on this assumption and Restrictions 1-4, we have four free parameters in our model. If each player
plays the mixed-strategy equilibrium, no statistically significant difference should exist between the
maximized value of the likelihood for this four-parameter model and the value of the likelihood if
the probability of playing heads is 1/2. Two times the log-difference of these likelihood values
should be distributed asymptotically as a x% random variable if each player’s strategy is conditionally

independent of the past play of his or her own population.

4.3.3. Past Play of Both the Player’s Own and the Next Population

If players are able to unconditionally randomize and randomize with respect to their own
population, we can conduct our final test: Do players simultaneously randomize with respect to the
past play of both their own population and the next population?

In the three-person, three-population matching-pennies game, when a player has full
information about the past play of all players, the unrestricted model described in Section 3 allows
for 16 different probabilities that a player will play heads in the current period—one for each
combination of the total number of heads played in the previous period by the player’s population
and the next population. Of course, in the mixed-strategy equilibrium, all of these probabilities
should be the same and each should be 1/2.

If we maximize the likelihood function of this 16-parameter model, we can form a likelihood

ratio test by comparing the maximized value of the likelihood function for this model with the value
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of the likelihood function, assuming that the probability of playing heads is 1/2. Two times the log
difference of the likelihood values should be distributed asymptotically as a X%6 random variable if
each player’s strategy is conditionally independent of the past play of his or her own population and

the next population.

5. EMPIRICAL RESULTS

In Figures 3, 4, and 5, we graph a typical nine-subject session for each of the three
environments. A solid square indicates that a subject chose message B (tails); a space, that he or
she chose message A (heads). Thus a solid bar indicates a run of message B’s of some length, and
a gap indicates a run of message A’s. One conclusion which follows immediately from the raw
choice data is that the naive Bayesian prediction of run lengths increasing (asymptotically, according
to the Fibonacci ratio) is not supported.

Our failure to find the pattern of runs predicted by the naive Bayesian model indicates that
we should make a closer examination of the mixed-strategy prediction, i.e., p = 1/2. To do this,
we aggregate our individual data in two ways. First, we present the empirical distribution of runs
in individual choices, and second, we look at average period earnings.

We define a run of length n to be n-consecutive choices of heads or n-consecutive choices
of tails, followed by a switch to the opposite choice, where these choices are all made by the same
individual. Within each environment, we compare the frequency of actual runs across subjects,
sessions, and periods. Figures 6, 7, and 8 present these frequencies for all periods, the first half of
each session, and the second half of each session. We compare the actual frequency of runs to the
expected frequency distribution under the maintained assumption that subjects are playing a mixed

strategy with p = 1/2. Note that this frequency distribution is multinomial with probability weights

of (p,p2,p3,...).
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In PM-CP, we find that the actual distribution of runs is close to the expected distribution.
In PM-IP and IM-IP, however, the actual distributions differ from the expected distributions in
systematic and similar ways. These differences, which are stronger in the second half of the data,
mainly consist of a much lower frequency of runs of length one and a much higher frequency of runs
of length three. Thus the pattern of runs that would be observed if the mixed-strategy equilibrium
were being played are not present in the data.

Comparing average earnings per period, we find further evidence for systematic differences
between our baseline environment, PM-CP, and our environments PM-IP and IM-IP. In Figure 9,
we plot average earnings for all subjects and all sessions within a given environment. We also
indicate the 95 percent confidence interval for these means. Note that if subjects are playing the
mixed-strategy equilibrium, then expected period earnings are 15 cents, while the naive Bayesian
limit cycle results in a higher expected period earnings of 20 cents. The baseline PM-CP results in
significantly lower earnings than in the other environments. And the payoff in both of those
environments significantly differs from either the 15-cent prediction or the 20-cent prediction.

Tables I-IIT show the results of the econometric tests described in Section 4 for the three sets
of experiments. These tables show how differences in the information available to players affect
their ability to play the unique symmetric mixed-strategy equilibrium and whether players learn, in
the sense that they are better able to play the mixed-strategy equilibrium in the second half of the
experiment than in the first.

In Table I, which shows the results for the first set of experiments, the first row displays the
tests for unconditional randomization. With perfect monitoring and complete payoff information,
players in this set of experiments unconditionally randomized in each half of the experiment and for

the experiment as a whole.
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The second row of Table I displays these tests for randomization with respect to the past play
of a player’s own population. Players in this set of experiments randomized with respect to the past
play of their own population in both the first and the second half of each experiment. But, for the
experiments as a whole, randomization is rejected at the 5 percent level. This rejection for the entire
sample can occur, even though randomization was not rejected for each half of the experiment,
because this test has more power—the same number of parameters are estimated with more
observations. Therefore, we can detect some deviation from complete randomization in a sample
of over 3,300 observations.

The third row of Table I displays the tests for simultaneous randomization with respect to the
past play of a player’s own population and the next population. The results shown here seem
anomalous. The first column of the third row shows that in the first half of each experiment, players
adequately randomized. But the second column shows that we can reject at the 5 percent level the
hypothesis that they adequately randomized in the second half of each experiment. And the third
column shows that they failed to adequately randomize over each experiment, as a whole. These
results suggest that players forgot, rather than learned, how to randomize. The results also suggest
that for the experiment as a whole, players’ strategies depended on the past play of the next
population, which is a violation of mixed-strategy equilibrium.

In Table II, which shows the results for the second set of experiments, the first row displays
the tests for unconditional randomization. With perfect monitoring and incomplete payoff
information, players in this set of experiments unconditionally randomized in each half of the
experiment and for the experiment as a whole.

The second row of Table II displays the tests for randomization with respect to the past play
of a player’s population. Players in this set of experiments randomized in this respect in each half

of the experiment and for the experiment as a whole.
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The third row of Table II displays the tests for simultaneous randomization with respect to
a player’s own population and the next population. Players in this set of experiments simultaneously
randomized in each half of the experiment. But we can reject at the 5 percent level the hypothesis
that players adequately randomized over the entire experiment.

The most interesting result from this set of experiments is that no statistically significant
difference existed in players’ abilities to perform any particular randomization between the first and
the second half of each experiment. Players appeared to learn quickly enough so that they adequately
randomized in the first half of each experiment, on average, even though they had incomplete
information about payoffs. In fact, the players in this set of experiments did a better job of
randomization than the players in the first set of experiments, who had both perfect observability and
complete information about payoffs.

Table IIT shows the results for the third set of experiments. The first column of the first row
shows that in the first half of each expériment, players could not unconditionally randomize their
play with imperfect monitoring and incomplete information; that is, we can reject the hypothesis of
unconditional randomization at the 5 percent level. But the second column of that row shoxévs that
players learned to unconditionally randomize by the second half of the experiment. This is evidence
of adaptive behavior.

However, even in the second half of the experiment, players were not able to randomize
along other dimensions. The second and third rows of the second column show that we can reject
at the 5 percent level the hypothesis that players successfully randomized with respect to their own
past play or that they simultaneously randomized with respect to their own past play and the past play

of the next population. 12
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6. TESTS FOR HOMOGENEITY

Our analysis thus far has assumed that all players have homogeneous strategies; that is, the
probability that a player will play heads conditional on the past play of the player’s own population
and the next population is the same for all players. This assumption may be extremely unrealistic
at the start of an experiment for environments with either imperfect monitoring or incomplete payoff
information.

A test of whether players attain the mixed-strategy Nash equilibrium that controls for
potential heterogeneity would be stronger than the tests we have used thus far. If players learned
successfully about the structure of the game, they would eventually have homogeneous strategies:
every player would play the unique mixed-strategy equilibrium. In this section, we propose a test
of homogeneous strategies. We test not only whether players, on average, attain the mixed-strategy
equilibrium, but also whether they all attain it.

Let us consider one way to model persistent individual heterogeneity in choice probabilities:
a probit random-effects model. (This model was first considered by Heckman (1981).) Suppose
each player acts as if his or her probability of playing heads in a given period is affected by three
components: (i) a constant ¢, which is the same for all players; (ii) a player-specific draw of a
mean-zero random variable Fm,» which is constant for a player across time but uncorrelated across
players; and (iii) a period-specific mean-zero random variable €m, t> which is independent across

players and time periods. For a given period t, player m,, will choose heads if
(14) «a+ P, 1 €mt > 0

and will choose tails otherwise. If, in addition to the previous assumptions about s, and ¢ we

mp,t?

assume that g and ¢ are normally distributed, we can estimate (14) using a probit random-
my mp,t y

effects model. Of course, if the players are playing the mixed-strategy Nash equilibrium, the
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estimated value of « should also be zero. In addition, if players have homogeneous strategies, then
var(u) = var(,u.mn) for all m, n should be zero. We can thus perform a joint test of homogeneity and
mixed-strategy Nash play by testing whether o = 0 and var(u) = 0.

The results of this test are displayed in Table IV for each of the three sets of experiments.
We perform the test using data from each set of experiments as a whole and from the first and
second halves of the experiments, to see whether any type of learning occurs. All estimates
presented use Keane’s (1994) panel-data method-of-simulated-moments estimator, which has been
shown in a Monte Carlo study to be superior to other probit random-effects estimators. The results
in the first row of Table IV show that when players had perfect monitoring and complete payoff
information, the test fails to reject the null hypothesis of a mixed-strategy Nash equilibrium play and
homogeneous strategies for the experiments as a whole or for each half separately. This result
suggests that in this environment a/l players immediately recognized the mixed-strategy equilibrium
and used it in all periods; no learning was necessary.

The results in the second row of Table IV show that when players had perfect monitoring but
incomplete payoff information, the test fails to reject the null hypothesis of mixed-strategy Nash
equilibrium play and homogeneous strategies for the combined sample. However, the test results
for the two halves of the sample are very different: the hypothesis of mixed-strategy play and
homogeneity is rejected for the first half of the experiments, but not for the second half.

Since we already know from Table II that the hypothesis of mixed-strategy play alone is not
rejected in either half of the PM-IP experiments, the rejection of the joint hypothesis for the first half
of the PM-IP environment must be due to heterogeneity in strategies across players. Such
heterogeneity is perfectly rational at the beginning of these experiments since the players did not

know each others’ payoffs.
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However, as players acquired more information about the likely characteristics of other
players in the experiment by observing the choices of the other players, the players’ strategies appear
to converge to a homogeneous strategy. One way to interpret the lack of rejection of the joint
hypothesis of mixed-strategy play and homogeneity in the second half of the PM-IP experiments is
that by the second half of the experiment, all players were playing the mixed-strategy equilibrium.
This behavior is consistent with sophisticated Bayesian learning.

Table IV also shows that players had more difficulty in uniformly playing the mixed-strategy
equilibrium when they had imperfect monitoring and incomplete payoff information. Note that the
joint hypothesis of mixed-strategy play and homogeneity is completely rejected for the IM-ID
environment, which did not happen for either of the other two environments. The joint hypothesis
is also rejected at the 1 percent level for the first half of each experiment and at the 10 percent level
for the second half of each experiment. In fact, the joint hypothesis is almost rejected at the S
percent level for the second half of each experiment. This poor performance of the joint hypothesis
suggests that when players are provided with not only incomplete payoff information, but also

imperfect monitoring, they have difficulty in uniformly playing the mixed-strategy equilibrium.

7. CONCLUSIONS

Our analysis of experimental results from the three-person matching-pennies garﬂe suggests
that the type of information available to subjects significantly affected whether play was consistent
with the unique symmetric mixed-strategy Nash equilibrium. The information also had a significant
effect on whether the choices of subjects in a particular population were conditionally independent
of the past play of subjects in their own population or subjects in the neighboring population.

For the imperfect monitoring and incomplete payoff information environment (IM-IP), we

reject the hypothesis that players randomized unconditionally in the first half of the experiment, but
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we fail to reject unconditional randomization in the second half. This finding suggests that players
learned one implication of a mixed-strategy Nash equilibrium. However, we reject the hypothesis
that players’ choices were independent of the past play of the neighboring population and that of their
own population. This observation is consistent with learning theories which suggest that with
imperfect monitoring and incomplete payoff information, players may use adaptive behavior that does
not converge to a Nash equilibrium.

For the perfect monitoring and incomplete payoff information environment (PM-IP), for each
half of the experiment, we fail to reject the hypothesis that players randomized unconditionally or
randomized with respect to the past play of their own population or that of the neighboring
population. This finding suggests that players’ behavior satisfies several key features of a mixed-
strategy Nash equilibrium. Further, the first and second halves of the experiment are qualitatively
similar. This observation is consistent with theories of sophisticated Bayesian learning, which
suggest that perfect monitoring may suffice for convergence to a Nash equilibrium, even in the
presence of incomplete payoff information. However, we reject the hypothesis that players’ choices
were independent of the past play of the neighboring population and that of their own population for
the entire experiment.

For the perfect monitoring and complete payoff information environment (PM-CP), which
served as our baseline environment, for each half of the experiment, we fail to reject unconditional
randomization or randomization with respect to the past play of a player’s own population. This
finding is also consistent with some of the predictions of sophisticated Bayesian theories of learning.
However, we find that players were able to simultaneously randomize with respect to the past play
of their own population and that of the neighboring population in the first half, but were unable to

do so in the second half. This failure suggests that play in the second half of this experiment, despite
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perfect monitoring and common knowledge of payoffs, was less consistent with a Nash equilibrium
in the second half of the experiment than in the first.

Our tests for individual heterogeneity suggest that in the first half of PM-IP and IM-IP,
players were heterogeneous in their choices. However, for both environments, we cannot reject the
joint hypothesis of homogeneity and Nash equilibrium play in the second half of each experiment.
We interpret this as evidence of players learning one aspect of the equilibrium strategy, namely,
unconditional randomization with probability 1/2. For PM-CP, we conclude that all players
immediately recognized the equilibrium strategy and did not require time to learn it. Even though
players learned homogeneous unconditional Nash equilibrium play in the second half, we can reject
the joint hypothesis over the entire experiment for IM-IP.

These results provide qualitative support for certain theories of learning in games. In
particular, the experiments provide insights into the issue of how much information subjects need to
arrive at a Nash equilibrium. Results from the PM-IP environment provide support for theories of
sophisticated Bayesian learning since these results suggest that perfect monitoring is sufficient.
Results from the IM-IP environment further suggest that perfect monitoring is necessary, and without
it, players may use adaptive behavior that does not converge. Results from the PM-CP and PM-IP
environments suggest that the problem of learning mixed-strategy equilibria may be considerably
simplified, if not solved, by providing historical information on other players’ choices and repeating
the game several times.

Our conclusions are limited, however, since we have not explicitly analyzed the dynamics
of the process of convergence to a Nash equilibrium and how significantly players’ choices deviate
from the best response. Developing a deeper understanding of the dynamics of learning seems to

be a promising area for further research.
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In summary, by studying a game which is known to be locally unstable with respect to all
naive Bayesian learning dynamics, we can examine the degree of sophistication in the learning
dynamics of cash-motivated players. By analyzing our data, we can develop specific maximum-
likelihood tests for the independence conditions implied by mixed-strategy behavior. Our results
suggest that the amount of information available to players significantly affects their ability to achieve
the independence conditions predicted by the mixed-strategy Nash equilibrium. Furthermore, we find
support for theories of sophisticated Bayesian learning which assert that complete information may

not be necessary as long as players have perfect monitoring.
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Footnotes

IThis issue is discussed by Roth and Erev (1993) and Davis and Holt (1993).

ZRoth and Erev cite the ultimatum game in Roth et al. (1991).

30ne example of an experiment showing qualitative features of learning is found in the work
of Van Huyck et al. (1991), who test for evolutionarily stable strategies.

4Arguments about why a mixed-strategy equilibrium may be difficult to learn are presented
in Fudenberg and Kreps (1993) and Jordan (1993).

31t is well known that fictitious play, a variant of naive Bayesian learning, converges in zero-
sum games (shown by Brown (1951) and Robinson (1951)) and in 2 X 2 two-person nonzero-sum
games (Miyasawa (1961)) but not in a simple 3 X 3 two-person game (Shapley (1964)).

SRichard Boylan has informed us of an unpublished experiment in which a skew-symmetric
mixed-strategy Nash equilibrium was not attained.

7Payoﬂ”s are in terms of dimes rather than pennies—hence the prefix 10.

8While the repetition could potentially introduce repeated-game effects into the dynamics of
the experiment, an alternative less vulnerable to this problem would involve repeated interactions
among a changing set of players. We think that players might have more difficulty learning in this

environment than in a stationary environment.

9o avoid leakage of information within the subject pool, all experiments were run
sequentially: first, the five inexperienced IM-IP experiments; second, the three experienced IM-IP

experiments; third, the five PM-IP experiments; and fourth, the five PM-CP experiments.
10This was done to prevent subjects from predicting the last period.

Ugee de Finetti (1990). Exchangeability is partial because observations are exchangeable
only within a population. Exchangeability does not extend to rows because, in our unrestricted

model, we are allowing current play to potentially depend on past play.
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12Note that we test for randomization with respect to the past play of a player, not that of
the player’s population. This difference arises because the actions of the other members of a player’s
team cannot be monitored. Imperfect monitoring also affects the number of degrees of freedom in

these tests because states that were distinguishable in the previous set of experiments are indistin-

guishable in this set of experiments.
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TABLE I?

PERFECT MONITORING AND
COMPLETE PAYOFF INFORMATION

First Second Full
Test df half half experiment

1 1 1.040 0.890 0.010

(0.308) (0.345) (0.920)
2 4 7.640 - 4.630 9.850

(0.106) (0.327) (0.043)
3 16 19.200 41.100 69.000

(0.256) (0.001) (0.000)

N=1647 N=1,665 N =3,312

Significance levels in parentheses.

TABLE II*

PERFECT MONITORING AND

INCOMPLETE PAYOFF INFORMATION

First Second Full
Test df half half experiment
1 1 0.100 1.000 0.880
(0.752) (0.317) (0.348)
2 4 5.000 6.100 8.540
(0.287) (0.192) (0.074)
3 16 14.340 25.640 29.960

(0.573) (0.059) (0.019)

N=1,611 N=1638 N =3249

8Significance levels in parentheses.



TABLE Il

IMPERFECT MONITORING AND
INCOMPLETE PAYOFF INFORMATION

First Second Full

Test df half half experiment

1 1 5.150 0.950 5.220
(0.023) (0.330) (0.022)

2 2 5.830 9.590 12.360
(0.054) (0.008) (0.002)

3 8 51.870 82.990 128.860
(0.000) (0.000) (0.000)

N=2610 N=2664 N=25274

8Significance levels in parentheses.



TABLE IV

JOINT TESTS OF HOMOGENEITY AND

MIXED-STRATEGY NASH EQUILIBRIUM PLAY

Test Statistics

First Second Full
Environment df half half experiment
PM-CP 2 0.007 0.008 0.086
(0.999) (0.999) (0.958)

N=1647 N=1,65 N =3,312

PM-IP 2 6.302% 0.516 2.961
(0.043) (0.773) (0.228)

N = 1,611 = 1,638 N = 3,249

IM-IP 2 23.374% 5.899 12.977*
(0.000) (0.052) (0.002)

N=2610 N=2,664 N=257274

*Indicates significance at the 5 percent level.
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Appendix A: Instructions for Environment IM-IP
Instructions
This is an experiment in decision making. Various research foundations have provided funds for this
research. The instructions are simple and if you follow them carefully, you can earn a considerable amount
of money which will be paid to you in cash. Before we proceed to describe the experiment, we would like
to lay down some simple rules. '
(i) Please do not talk during the experiment. Communication of any form without the permission
of the experimenter is not allowed. The partitions are there to provide privacy.
(ii) If you have any questions at any time during the experiment , please raise your hand. An
experimenter or a monitor will answer your questions.
(ii) To repeat, this is an experiment in decision-making. You will have to make your own
choices in this experiment. We cannot recommend particular decisions to you. But we can clarify
questions about procedures.

The experiment will consist of a series of many separate decision making periods. In each period you will
be paired with three other persons. We will call these persons your counterparts. The identity of your
counterparts will not change over time.

Payoffs

In each period, your payoffs will be based on your decision and the decisions of your three counterparts.
Each period you can choose either A or B. Your decision will be compared with the decision of each of
your counterparts. If you make the same decision as your counterpart, you will earn zero: this will happen
if both of you choose A or both of you choose B. If you choose A and your counterpart chooses B, or you
choose B and your counterpart chooses A, then you will eamn 10 cents. These payoffs in cents are listed in
Table 1 where the row is your decision, and the column is the decision by your counterpart. Thus if you
choose A and your counterpart chooses B, your earnings are 10 cents.

Table 1
Your earnings (in cents)
) Your counterpart’s decision
| Your decision A B
A 0 10
| B 10 0
‘At the beginning of the experiment you will see the following screen.
Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Counterparts”  Earnings
Choice Choices Given Period
Period (A/B) #A’s #B’s #A's+#B’s = Earnings
MESSAGES

Please input your choice (A/B) 7

At this stage you should enter your decision, either A or B, by pressing the appropriate key on the
keyboard.
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The computer will ask you to confirm your decision. For instance if you chose B the screen will look like
this:

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Counterparts’  Earnings
Choice Choices Given Period
Period (A/B) #A's #B's #As+#B’s = Earnings
MESSAGES

Your CHOICE is B. Is this Correct ?
Press y to accept this number or press n to try again.

You should confirm your decision by pressing y or press n if you wish to change it.

Once all participants have made decisions, the computer will calculate earnings and report them to
everyone. These will appear on a screen that will resemble the figure below. We will now explain the
numbers in the figure to make sure you understand how you will earn money during this experiment.

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Counterparts’ Earnings
Choice Choices Given Period
Period (A/B) . #A’s #B’s #A's+#B’s = Earnings
1 B 2 1 20 0 20
MESSAGES
Your choice was B.

2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR to continue

In the setting described above, you chose B. Of the three counterparts you were matched with, 2 chose A,
and 1 chose B. So you MATCHED 1 (earnings zero per match) , and DID NOT MATCH with 2 (earnings
10 cents per match), which adds up to period earnings of 20 cents.

At the end of the period, please press the SPACE-BAR on your keyboard to continue to the next period.

The same procedure will be repeated for several periods. At the end of the experiment, we will pay you the
total earnings (sum of your period earnings) in cash.
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Here’s what the screen might look like after 5 periods.

Period: 5 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Counterparts’ Eamnings
Choice Choices Given Period
Period (A/B) #A's #DB's #A's+#B’s Earnings
1 B 2 1 20 0 20
2 A 1 2 0 20 20
3 A 2 1 0 10 10
4 B 0 3 0 0 0
5 B 2 1 20 0 20
MESSAGES
Your choice was B.
2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR to continue

To ensure that you understand the instructions answer the following questions. An experimenter will check
your answers when you are finished.

(a) Please write T if you believe the following statement is true or F if false.
You will be matched with the same three counterparts every period.

T F

(b) In period 5, you chose A. Two of your counterparts chose B, and one chose A. Your earnings for this

period were (circle one)
zero

10c

20c

30c

none of these

(c) In period 11, you chose B. Two of your counterparts chose A, and one chose B. Your earnings for this

period were (circle one)
zero

10c

20c

3c

none of these

(@) In period 18, you chose A. All three counterparts chose B. Your earnings for this period were (circle

one)
Zero

10¢

20c¢

3¢

none of these

(e) In period 25, you chose B. All three counterparts chose B. Your earnings for this period were (circle

one)
Zero

Are there any questions?

10¢

20c¢c

30c

none of these
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Appendix B: Instructions for Environment PM-IP
Instructions
This is an experiment in decision making. Various research foundations have provided funds for this
research. The instructions are simple and if you follow them carefully, you can earn a considerable amount
of money which will be paid o you in cash. Before we proceed to describe the experiment, we would like
to lay down some simple rules.
(i) Please do not talk during the experiment. Communication of any form without the permission
of the experimenter is not allowed. The partitions are there to provide privacy.
(ii) If you have any questions at any time during the experiment , please raise your hand. An
experimenter or a monitor will answer your questions.
(iii) To repeat, this is an experiment in decision-making. You will have to make your own
choices in this experiment. We cannot recommend particular decisions to you. But we can clarify
questions about procedures.

The experiment will consist of a series of many separate decision making periods. In each period you will
be paired with three other persons. We will call these persons your counterparts. The identity of your
counterparts will not change over time.

Payoffs

In each period, your payoffs will be based on your decision and the decisions of your three counterparts.
Each period you can choose either A or B. Your decision will be compared with the decision of each of
your counterparts. If you make the same decision as your counterpart, you will earn zero: this will happen
if both of you choose A or both of you choose B. If you choose A and your counterpart chooses B, or you
choose B and your counterpart chooses A, then you will earn 10 cents. These payoffs in cents are listed in
Table 1 where the row is your decision, and the column is the decision by your counterpart. Thus if you
choose A and your counterpart chooses B, your earnings are 10 cents.

Table 1
Your earnings (in cents )
Your counterpart’s decision

Your decision A B
A 0 10
B 10 0
At the beginning of the experiment you will see the following screen.
Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your  Counterparts’ Total Earnings Other Decision
Choice  Choices Given Period Makers” Choices
Period (A/B) S T U #As#BsAs+ Bs = Earnings V W X Y Z
MESSAGES

Please input your choice (A/B) ?

At this stage you should enter your decision, either A or B, by pressing the appropriate key on the
keyboard.
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The computer will ask you to confirmn your decision. For instance if you chose B the screen will look like
this:

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your  Counterparts’ Total Eamings Other Decision
Choice  Choices Given _ Period Makers’ Choices
Period (A/B) S T U #As#BsAs+ Bs = Earnings VWIXYZ
MESSAGES

Your CHOICE is B. Is this Correct ?
Press y to accept this number or press n to try again.

You should confirm your decision by pressing y or press n if you wish to change it.

Once all participants have made decisions, the computer will calculate earnings and report them to
everyone. These will appear on a screen that will resemble the figure below. We will now explain the
numbess in the figure to make sure you understand how you will earn money during this experiment.

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your  Counterparts’ Total Earnings Other Decision
Choice Choices Given Period Makers’ Choices
Period (A/B) S T U #As#Bs As+ Bs = Earnings V W X Y Z
1 B A A B 2 1 20 0 20 B A B AB
MESSAGES

Your choice was B.
2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR 1o continue

In the setting described above, you chose B. Of the three counterparts you were matched with, 2 chose A,
and 1 chose B. So you MATCHED 1 (earnings zero per match) , and DID NOT MATCH with 2 (earnings
10 cents per match), which adds up to period earnings of 20 cents. On your screen, S, T and U are the
columns for your three counterparts. So S is your first counterpart, T your second and U your third. Their
choices are shown separately, just before the eamings calculation. There are five other people in the room,
listed as V,W, X, Y and Z on your screen. Their choices will also be reported to you at the end of each
period of the experiment. Thus V is the first of these five people, W the second, and so on.
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At the end of the period, please press the SPACE-BAR on your keyboard to continue to the next period.
The same procedure will be repeated for several periods. At the end of the experiment, we will pay you the
total earnings (sum of your period earnings) in cash.

Here’s what the screen might look like after 5 periods.

Period: § Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your  Counterparts’ Total Eamings Other Decision
Choice Choices Given Period Makers’ Choices
Period (A/B) S T U #As#Bs As+ Bs = Earnings vV W X Y Z
1 B A A B 2 1 20 0 20 B A B A B
2 A A A A 3 0 0 0 0 A A B AB
3 A B B B 0 3 0 30 30 A B B A A
4 A A B A 2 1 0 10 10 B A BB B
5 B B A A 2 1 20 0 20 B A B A B
MESSAGES
Your choice was B.

2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR to continue

So if you look down the column for S, you will see the decisions made by person S during the
experiment for the last 5 periods on this screen. To repeat, your three counterparts are code-named S,T and
U; you can see the decision for your first counterpart in column S, for your second in column T, for your
third in column U; though not necessarily in that order. The same person’s decision is in each column
every period. So for example, S chose A, A, B, A and B in the first five periods.

To ensure that you understand the instructions answer the following questions. An experimenter
will check your answers when you are finished.

(a) Please write T if you believe the following statement is true or F if false.
T F You will be matched with the same three counterparts every period.

(b) In period 5, you chose A. Two of your counterparts chose B, and one chose A. Your earnings for this
period were (circle one)
zero 10c 20¢ 30c none of these

(c) In period 11, you chose B. Two of your counterparts chose A, and one chose B. Your earnings for this
period were (circle one)
Zero 10c 20c 30c none of these

(d) In period 18, you chose A. All three counterparts chose B. Your earnings for this period were (circle
one)

Zero 10c 20¢ 30c none of these

() In period 25, you chose B. All three counterparts chose B. Your eamings for this period were (circle
one)

7ero 10c¢ 20¢c 3¢ none of these

(f) Please write T if you believe the following statement is true or F if false.
T F Decisions reported under a particular column such as S, T or U [for counterparts] or V,W,
X, Y or Z [ for other decision makers] are those of the same person every period.

{g) Please match the two items reported below:

1. Three counterparts’ choices DOV, W, X, YorZ
2. Other five decision-makers’ choices G)s, T,U

Are there any questions?
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Appendix C: Instructions for Environment PM-CP
Instryctions |

This is an experiment in decision making. Various research foundations have provided funds for this
research. The instructions are simple and if you follow them carefully, you can earn a considerable amount
of money which will be paid to you in cash. Before we proceed to describe the experiment, we would like
to lay down some simple rules.
(i) Please do not talk during the experiment. Communication of any form without the permission
of the experimenter is not allowed. The partitions are there to provide privacy.
(i If you have any questions at any time during the experiment , please raise your hand. An
experimenter or a monitor will answer your questions.
(iii) To repeat, this is an experiment in decision-making. You will have to make your own
choices in this experiment. We cannot recommend particular decisions to you. But we can clarify
questions about procedures. '

The experiment will consist of a series of many separate decision making periods. In each period you will
be paired with three other persons. We will call these persons your counterparts. The identity of your
counterparts will not change over time.

Payoffs

In each period, your payoffs will be based on your decision and the decisions of your three counterparts.
Each period you can choose either A or B. Your decision will be compared with the decision of each of
your counterparts. If you make the same decision as your counterpart, you will earn zero: this will happen
if both of you choose A or both of you choose B. If you choose A and your counterpart chooses B, or you
choose B and your counterpart chooses A, then you will earn 10 cents. These payoffs in cents are listed in
Table 1 where the row is your decision, and the column is the decision by your counterpart. Thus if you
choose A and your counterpart chooses B, your earnings are 10 cents.

Table 1
Your earnings (in cents)
Your counterpart’s decision
Your decision A B
A 0 10
B 10 0
At the beginning of the experiment you will see the following screen.
Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Other
Your  Counterparts’ Total Earnings Period Group’s Group’s
Choice  Choices Given Eamnings Choices Choices
Period (A/B) S T U #As#Bs As+ Bs = VvV W XY Z
MESSAGES

Please input your choice (A/B) ?
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At this stage you should enter your decision, either A or B, by pressing the appropriate key on the
keyboard.

The computer will ask you to confirm your decision. For instance if you chose B the screen will look like
this:

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Other
Your  Counterparts’ Total Eamings Period Group’s Group’s
Choice  Choices Given Eamings Choices Choices
Period (A/B) S T U #As#Bs As+ Bs = vV W XY Z
MESSAGES

Your CHOICE is B. Is this Correct ?
Press y to accept this number or press n to try again.

You should confirm your decision by pressing y or press n if you wish to change it.

Once all participants have made decisions, the computer will calculate earnings and report them to
everyone. These will appear on a screen that will resemble the figure below. We will now explain the
numbers in the figure to make sure you understand how you will eamn money during this experiment.

Period: 1 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Other
Your  Counterparts’ Total Earnings Period Group’s Group’s
Choice  Choices Given Eamings Choices Choices
Period (A/B) S T U #As#Bs As+ Bs = vV W XY Z
1 B A A B 2 1 20 0 20 B A B AB
MESSAGES

Your choice was B.
2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR to continue

In the setting described above, you chose B. Of the three counterparts you were matched with, 2 chose A,
and 1 chose B. So you MATCHED 1 (earnings zero per match) , and DID NOT MATCH with 2 (earnings
10 cents per match), which adds up to period eamnings of 20 cents. On your screen, S, T and U are the
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columns for your three counterparts. So S is your first counterpart, T your second and U your third. Their
choices are shown separately, just before the earnings calculation.

In this experiment, there are nine subjects divided into three groups. As far as you are concerned, these are
“your group”, “your counterparts’ group” and the “other group.” Each group has three members. Once
people have been assigned to groups at the beginning of the experiment, there are no further changes, so
members of these three groups are the same throughout the experiment. “Your counterparts’ group”
consists of S,T and U. Their choices appear under the columns S, T and U respectively. In “your group”
there are two other members, denoted by V and W, whose choices appear under the columns V and W
respectively. In the “other group” there are three other members, denoted by X, Y and Z: their choices
appear under the columns X, Y and Z respectively. To repeat, “your group” will always consist of the same
three people V, W and yourself; “your counterparts’ group” will always consist of the same three people S,
T and U and the “other group” will always consist of the same three people X, Y and Z.

For all the people in your group, i.e. yourself, V and W, your counterparts will always be “your
counterparts’ group” consisting of S,T and U. So each person in your group has three counterparts, namely
S, Tand U.

Now, let’s describe what happens to “your counterparts’ group” consisting of S,T and U. Their
counterparts will always be the “other group” consisting of X, Y and Z. So each person in “your
counterparts’ group” has three counterparts, namely X, Y and Z. Thus S has three counterparts, namely X,
Y and Z. The same is true for T and also for U.

Now, let’s describe what happens to the “other group” consisting of X, Y and Z. Their counterparts will
always be “your group” consisting of V, W and yourself. So each person in the “other group” has three
counterparts, namely V, W and yourself. Thus X has three counterparts, namely X, Y and Z. The same is
true for Y and also for Z.

In the form of a diagram, this is what it looks like:

(V W and yourselD

Your Group
s

“The other group"'s
counterparts
are, "your group".

Your counterparts
are "your counterparts'
group".

The “ Counterparts'
Other Group

Their counterparts
Group are the "other group".
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Follow the arrows to see which group is the counterpart of which other group. To summarize, everyone
in your group has the same three counterparts, in what we call your counterparts’ group. Everyone
of them has the same three counterparts, in what we call the other group. Everyone in the other
group has the same three counterparts, and they are your group.

Remember any person’s payoffs depend upon a comparison of their choices with their counterparts’
choices. So if you choose B and your counterparts S,T and U respectively choose A, A and B, you earn 20
cents. But §’s payoffs depend on a comparison of their choices with the other group’s choices i.e.
comparing the choices of S with those of X,Y and Z. [The same is true of T and U.] And X’s choices are
compared with those of you and the two other people in your group V and W to determine X's payoffs.

At the end of the period, please press the SPACE-BAR on your keyboard to continue to the next period.
The same procedure will be repeated for several periods. At the end of the experiment, we will pay you the
total earnings (sum of your period earnings) in cash.

Here’s what the screen might look like after 5 periods.

Period: 5 Payoffs: 0 for MATCH, 10 for NOT MATCH
HISTORY
Your Other
Your  Counterparts’ Total Earnings Period  Group’s Group’s
Choice  Choices Given Eamings Choices Choices
Period (A/B) S8 T U #As#Bs As+ Bs = vV W XY 2z
1 B A A B 2 1 20 0 20 B A B A B
2 A A A A3 O 0 0 0 A A B A B
3 A B B B 0 3 0 30 30 A B B A A
4 A A B A 2 1 0 10 10 B A B B B
5 B B A A 2 1 20 0 20 B A B A B
MESSAGES
Your choice was B.

2 counterparts chose A and 1 chose B
resulting in a payoff of 20 cents.  Press SPACE-BAR to continue

So if you look down the column for S, you will see the decisions made by person S during the
experiment for the last 5 periods on this screen. To repeat, your three counterparts are code-named S,T and
U; you can see the decision for your first counterpart in column S, for your second in column T, for your
third in column U; though not necessarily in that order. The same person’s decision is in each column
every period. So for example, S chose A, A, B, A and B in the first five periods.

To ensure that you understand the instructions dnswer the following questions. An experimenter will check
your answers when you are finished.

(a) Please write T if you believe the following statement is true or F if false.
T F You will be matched with the same three counterparts every period.

{(b) In period 5, you chose A. Two of your counterparts chose B, and one chose A. Your earnings for this
period were (circle one) :
zero 10c 20c 30c none of these

{c) In period 11, you chose B. Two of your counterparts chose A, and one chose B. Your earnings for this

period were (circle one)
zero 10¢ 20c 30c¢ none of these
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(d) In period 18, you chose A. All three counterparts chose B. Your earnings for this period were (circle

one)
zero 10c 20c¢

30c none of these

(e) In period 25, you chose B. All three counterparts chose B. Your earnings for this period were (circle

one)
zero 10c 20c

30c none of these

(f) Please write T if you believe the following statement is true or F if false.
T F Decisions reported under a particular column such as S, T or U [for counterparts] or V,W,
X, Y or Z [ for other decision makers] are those of the same person every period. .

() Please match the two items reported below:

1. Three counterparts’ choices DV, W,X,YorZ

2. Other five decision-makers’ choices S, T, U

(h) For period 1, the choices were as follows

Your Other
Your  Counterparts’ Total Earnings Period  Group’s Group's
Choice  Choices Given Eamnings Choices Choices
Period (A/BY S T U #As#Bs As+ Bs = vV W X Y 2
1 B A A B 2 1 20 0 20 B A B A B
* How much did S eam? (circle one)
zero 10c 20c¢ 30c none of these
* How much did X eam? (circle one)
zero 10c¢ 20c 30c none of these
Are there any questions?
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