
Federal Reserve Bank of Minneapolis 
Research Department Staff Report 433 
 
August 2009 
 
 

Methods versus Substance:  
Measuring the Effects of Technology Shocks on Hours* 
 
Cristina Fuentes-Albero 

University of Pennsylvania 
 
Maxym Kryshko 

University of Pennsylvania 
 
José-Víctor Ríos-Rull 

University of Minnesota,  
Federal Reserve Bank of Minneapolis,  
CAERP, CEPR, and NBER 
 
Raül Santaeulàlia-Llopis  

Washington University in St. Louis 
 
Frank Schorfheide 

University of Pennsylvania, CEPR, and NBER 
 
 
ABSTRACT  __________________________________________________________________________ 

In this paper, we employ both calibration and modern (Bayesian) estimation methods to assess the role of 
neutral and investment-specific technology shocks in generating fluctuations in hours. Using a neoclassical 
stochastic growth model, we show how answers are shaped by the identification strategies and not by the 
statistical approaches. The crucial parameter is the labor supply elasticity. Both a calibration procedure that 
uses modern assessments of the Frisch elasticity and the estimation procedures result in technology shocks 
accounting for 2% to 9% of the variation in hours worked in the data. We infer that we should be talking 
more about identification and less about the choice of particular quantitative approaches. 

_____________________________________________________________________________________ 
 

*J.-V. Ríos Rull: vr0j@umn.edu; F. Schorfheide, schorf@ssc.upenn.edu; C. Fuentes-Albero: fuentesa@econ. 
upenn.edu; M. Kryshko: mkryshko@sas.upenn.edu; R. Santaeulàlia-Llopis: rauls@wustl.edu. We thank seminar 
participants at the 2007 NASM, the 2007 San Sebastían Summer School, FRB Philadelphia, the 2007 CREI Con-
ference on “How Much Structure in Macro Models,” CEMFI, Cornell, NYU, USC, and the Wharton Macro Lunch, 
for helpful comments. Ríos-Rull thanks the National Science Foundation (Grant SES-0079504). Schorfheide grate-
fully acknowledges financial support from the Alfred P. Sloan Foundation and the National Science Foundation un-
der Grant SES 0617803. The views expressed herein are those of the authors and not necessarily those of the Federal 
Reserve Bank of Minneapolis or the Federal Reserve System. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6717727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Over the past three decades, quantitative macroeconomics has witnessed controversies about

the role of formal econometric methods. While there is some broad consensus that the

neoclassical stochastic growth model — potentially augmented by heterogeneity, various

types of frictions, and different sources of idiosyncratic as well as aggregate uncertainty —

provides a useful framework for substantive empirical work, there is less consensus on how

such models should be parameterized in view of the available economic data and on how

to document the precision and robustness of quantitative results. Following Kydland and

Prescott (1982), many researchers calibrate dynamic stochastic general equilibrium (DSGE)

models, whereas other researchers use formal econometric methods to parameterize DSGE

models and study their quantitative implications.

Most of the methodological controversy can be attributed to an apparent trade-off be-

tween theoretical coherence and empirical fit of macroeconomic models and its implications

for empirical research. In this paper, we make the case that it is not the choice of quan-

titative approach per se that is responsible for empirical findings, but rather the implicit

identification of key parameters associated with the particular mappings from data into the

parameter space. Thus, sources of identification and not a controversy over the use of formal

statistical methods should be at the center of the debate in quantitative macroeconomics.

To build our case, we measure the contribution of both neutral and investment-specific

technology shocks to movements in hours worked. We compare the answers obtained with

the calibration and likelihood-based estimation of a neoclassical stochastic growth model.

The key parameter in the analysis is the labor supply elasticity. If this elasticity is chosen

according to the most recent household-level estimates, those that carefully account for

movements in and out of the labor force as well as the joint behavior of two spouses, then

productivity shocks are responsible for less than 10% of hours variation. For other values of

the Frisch elasticity used in the calibration literature, the contribution of technology shocks

ranges from less than 1% to almost 150%. Our likelihood-based analysis, implemented with

Bayesian techniques,1 also leads to the conclusion that technology shocks account for less

than 10% of the variance of hours. Unlike previous papers, we carefully discuss the source of

1Our use of Bayesian techniques instead of a frequentist econometric approach is partly a personal choice,

and partly a statement about the state of the art in DSGE model estimation. Differences between the two

modes of statistical inference are the object of other research.
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labor supply elasticity identification and its potential sensitivity to model misspecification

in a likelihood-based framework.

To make our empirical analysis as transparent as possible, we have deliberately chosen a

fairly simple DSGE model, rather than a more sophisticated specification as in Justiniano,

Primiceri, and Tambalotti (2009a). Our model allows us to focus on a single parameter,

which is difficult to measure and at the same time crucial for the quantitative result. The

difficulty in determining the labor supply elasticity is in part caused by the stylized nature

of our theoretical model. While a more sophisticated DSGE model might remedy some of

the misspecifications of a simpler model, it is natural to confront the larger model with

a richer set of observations. Hence, the data will always have patterns that the enlarged

model is unable to explain, and misspecification will be a concern. While our empirical

analysis is concerned with a question of the form How much of Y can be explained by X?

our main point extends to other questions, for instance, about the quantitative effects of

fiscal or monetary policy changes.

Calibration procedures provide a clear-cut separation between the information used to

parameterize the model and the quantitative question that is being addressed by the theory.

For instance, inference about the sources of business cycle fluctuations is not based on infor-

mation about the cyclical properties of macroeconomic time series, such as output and hours

worked, unless the theory has deemed this variability to be exogenous. While this approach

may provide clear and understandable answers, they are only as good as the information

that has been used to restrict and parameterize the models (and this information is rarely

discussed). The fact that the calibration approach ignores salient features of the economic

time series that it wants to understand is often seen as a serious shortcoming by its critics.

Its advocates, on the other hand, emphasize that most of our models are not designed to

capture all the dynamics that we observe in macroeconomic aggregates and that ignoring

(some of) them makes the quantitative analysis more robust to model misspecification.

A starting point for the use of formal econometric methods is the observation that DSGE

models deliver a complete multivariate stochastic process representation for the data they

aim to explain and hence a likelihood function. This likelihood function can in principle be

used to efficiently extract information about model parameters contained in macroeconomic

time series and to generate sharp quantitative results. Unlike in the calibration approach,

inference about the sources of business cycle fluctuations will be based on all the available
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information about the cyclical variability of macroeconomic time series. To the extent that

a theoretical DSGE model is not designed to capture all of the observed dynamics because

it omits some important alternative sources of business cycle fluctuations or the internal

propagation of exogenous shocks is very stylized, one would need to remove effects of non-

modelled shocks from the data and/or enlarge the theoretical model through the inclusion

of additional shocks and frictions in the propagation mechanism to improve its ability to fit

actual data. For instance, both ? and Christiano, Eichenbaum, and Evans (2005) consider

stochastic growth models that are enriched by various forms of adjustment costs to generate

more realistic dynamics. The authors of the former paper augment their model by a large set

of structural shocks to capture all comovements of seven macroeconomic variables, whereas

the latter paper essentially uses a structural vector autoregression (VAR) to remove all

variation from the data except for the fluctuations generated by monetary policy shocks.

Regardless of affiliation with the calibration or estimation tribe, the following principles

seem desirable to us. First, a careful empirical analysis based on a dynamic macroeconomic

model should convey to the reader which model parameters are most influential in gener-

ating a quantitative answer to the substantive question addressed in the study. Second, a

detailed discussion (and careful choice) of observations that are suitable to identify plausible

values for the DSGE model parameters is important. Third, measures of precision and/or

robustness of the quantitative findings should be reported.

Documenting key properties of the model has nothing to do with a choice between cal-

ibration and estimation. Instead parameter identification is what is crucial in this respect.

While the identification of model parameters is closely linked to, say, the choice of a cri-

terion function for an econometric estimator, we will make the case that the choice of the

criterion function is context-specific and should be preceded by a careful examination of

which observations could be most informative about particular parameters. Some calibra-

tors simply take parameter values from previous studies and plug them into their model

without verifying that these parameter values lead to the same observational patterns that

have motivated their choice in the first place. Researchers who estimate DSGE models often

ignore important observations and do examine whether it is possible to identify all model

parameters based on the autocovariance properties of the limited number of time series

that do enter the likelihood function. The recent surge of papers discussing and diagnosing

identification problems in estimated DSGE models, e.g., Canova and Sala (2009) and Iskrev
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(2009), is a testament to this neglect. While measures of precision in calibration papers of-

ten take the form of robustness exercises that perturb key parameters, econometric studies

tend to make probabilistic statements about quantitative findings.

Although our paper focuses on quantitative methodologies, a brief review of the very

extensive yet non-conclusive literature on the importance of technology shocks for fluctua-

tions of hours worked is in order. We will distinguish between papers that calibrate DSGE

models, estimate DSGE models, and estimate structural VARs. A stylized version of the

neoclassical growth model calibrated to U.S. data can generate around 20% of the observed

variation2 in hours worked (see Cooley and Prescott (1995)). In Hansen (1985)’s indivisi-

ble labor model the volatility of hours reaches about 66% of the actual volatility as long as

households are capable of using lotteries to allocate time to market activities. Other studies

allow for variations of labor on both the intensive and extensive margin, variable capital

utilization, home production, imperfect competition, incomplete markets, and labor search

frictions. Based on our reading of the literature, the fraction of variation of hours worked

explained by technology shocks ranges from 10% to 80%, with a median of about 30%.

Altug (1989) estimated the Kydland and Prescott (1982) one-shock time-to-build model

using maximum likelihood techniques. She introduced measurement errors to account for

the fluctuations of hours worked (and other variables used in the estimation procedure)

that are not driven by technology shocks and obtained that the 12% of variation in hours

was due to variation in technology shocks. McGrattan (1994) estimates a stochastic growth

model with distortionary labor and capital taxes and finds that 20% of the fluctuations in

hours worked are due to technology shocks. Chang and Schorfheide (2003) consider a home

production model, which is estimated based on data of aggregate output, hours worked, and

consumption of durable goods. According to their analysis, technology shocks account for

50% of the variation in hours worked. Gaĺı and Rabanal (2004) fit a New Keynesian DSGE

model to observations on output, inflation, interest rates, and hours worked and find that

technology shocks have virtually no effect on hours over the business cycle. Most recently,

Justiniano, Primiceri, and Tambalotti (2009a) estimate a state-of-the-art DSGE model with

nominal wage and price rigidities and find that at low frequencies, hours fluctuations are

due to a fairly persistent wage mark-up shock. At business cycle frequencies, 60% and 10%

2Throughout the paper, we report findings in terms of variances or ratios of variances, because unlike

standard deviations variances are additive.
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of the variance of hours are explained by investment-specific and neutral technology shocks,

respectively.

In structural VARs, technology shocks are often identified through the assumption that

they are the only shocks that have a permanent effect on labor productivity. Shapiro

and Watson (1988) estimate VARs using data on aggregate output, hours worked, the

aggregate price level, and interest rates. They report that 32% (40%) of the variation in

hours is due to technology shocks, assuming that hours have a stochastic trend (are trend

stationary). Following the work of Greenwood, Hercowitz, and Krusell (1997), the more

recent literature distinguishes between neutral and investment-specific technology shocks.

Using a structural VAR, Gaĺı and Rabanal (2004) find that neutral technology shocks

explain very little of the variation in hours. Investment-specific technology shocks, on the

other hand, can explain about 60%. According to Fisher (2006), neutral technology shocks

account for 21% (15%) over the period 1955:Q1-1979:Q2 (1982:Q3 to 2000:Q4), whereas

investment-specific technology shocks account for up to 47% (36%) of the fluctuations in

hours worked. Canova, Lopez-Salido, and Michelacci (2007) estimate that the contribution

of the neutral technology shock to hours variation is close to zero, while the investment-

specific shock accounts for between 20% and 50% of the variance of hours.

The remainder of this paper is organized as follows. We present the model in Section 2.

The empirical analysis is carried out in Sections 3 and 4. In both sections, we parameterize

the DSGE model, then repeatedly simulate artificial data with the model using the two

technology shocks as driving forces, and compute the average ratio of the sample variance

of simulated data to the variance of postwar U.S. data. Section 3 focuses on standard

calibration procedures. In particular, we discuss how different sources of information about

the labor elasticity completely determine the results. Productivity shocks are important for

hours worked fluctuations if the Frisch elasticity is around two or larger. Section 4 reports

on the DSGE model estimation using state-of-the-art Bayesian techniques and the answer

that it yields to our main question. We also provide novel insights about the identification

of the labor supply elasticity in a likelihood-based approach. Roughly speaking, the DSGE

model incorporates enough restrictions to identify technology shock innovations from the

observables. The dynamic responses of labor productivity and hours to these innovations

identify the Frisch elasticity. However, to the extent that the estimated DSGE model has

difficulties reproducing the dynamic responses of a less restrictive vector autoregressive
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specification, this identification approach is on shaky grounds.

Finally, Section 5 concludes. In a nutshell, we think that the specific statistical meth-

ods that are used to relate the model to the data are not the source of disparity in the

quantitative results. Instead, the disparity is caused by the identification strategy that is

used to choose the key parameter, which is the labor supply elasticity in our application.

The appendix provides detailed information on the data set as well as the implementation

of the empirical analysis. Data and software to replicate the empirical analysis are available

on the web at http://www.ssc.upenn.edu/˜schorf.

2 The Model Economy

We consider what we think is the latest implementation of the plain-vanilla real business

cycles model: a stochastic growth model with two types of technology shocks. A neutral

productivity shock affects total factor productivity. The second shock is investment-specific

and shifts the slope of the transformation curve between consumption and capital goods.

Our model is very similar to the one used by Fisher (2006). It is a simplified version of

the model studied by Greenwood, Hercowitz, and Krusell (2000) in that we only have one

capital good and the degree of capital utilization is fixed.

Instead of using a more elaborate model specification as in Justiniano, Primiceri, and

Tambalotti (2009a), we focus on a frictionless version of the neoclassical growth model for

two reasons. First, our stylized theoretical model is likely to fit worse, in terms of being able

to track and forecast the observed time series, than a more densely parameterized statistical

model such as a VAR. Therefore, our illustration captures a key aspect of most empirical

work with DSGE models: the theoretically coherent model is limited in its ability to fit

time series data and misspecification is a concern. Second, there will only be one parameter

for which identification is tenuous and that crucially affects the quantitative findings: the

aggregate Frisch labor supply elasticity. This makes it easy to pinpoint how the criterion

functions, used to specify parameters in each of the quantitative approaches, translate into

different answers for the role of technology shocks in shaping the behavior of aggregate

output and hours.

The model economy is populated with a continuum of households with the following
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preferences:

max
{Ct,Xt,Ht,Kt+1}

IE0

[ ∞∑
t=0

βt

(
lnCt − ξ

H
1+1/ν
t

1 + 1/ν

)]
. (1)

Here Ct denotes consumption, and Ht hours worked. The nice feature of these preferences

is that the parameter ν is the Frisch elasticity of substitution of labor. β is, as always, the

discount rate. ξ affects the marginal rate of substitution between consumption and leisure

and determines steady state hours. There is a constant returns to scale production function

given by

Ct +
1
Vt
Xt = AtK

α
t H

1−α
t . (2)

The left-hand side of (2) can be interpreted as a linear transformation curve between con-

sumption and investment goods. The slope of this curve is shifted by the investment-specific

technology disturbance Vt. The right-hand side takes the standard Cobb-Douglas form, and

At is an exogenous total factor productivity (or neutral) technology process. In other words,

technology is subject to two shocks: a standard neutral technology shock At and a sector-

specific technology shock Vt. Capital depreciates geometrically at rate δ, yielding

Kt+1 = (1− δ)Kt +Xt. (3)

This economy is not distorted, and the standard procedure of solving the social planner’s

problem in order to find the equilibrium applies. However, it is important to make a few

notes in terms of National Income and Product Accounting (NIPA) that will link the model

naturally with the data. NIPA measures output in terms of the consumption good. Define

It = Xt/Vt, and hence the aggregate resource constraint can be written as

Yt = Ct + It = AtK
α
t H

1−α
t .

Under competitive markets, the relative price of a unit of the investment good using the

consumption good as numeraire, Pt, gives us the technology shock 1/Vt. Using the invest-

ment series and some considerations to be detailed below to get the appropriate depreciation

rate, we can construct a series for capital Kt. From here, using the Cobb-Douglas assump-

tion on production and the average labor share for the entire sample period as an estimate

of α, we can obtain the series At using (2) (see, for example, Ŕıos-Rull and Santaeulalia

(2009) for details).
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The static Euler equation defines the labor supply schedule that, after substituting the

marginal productivity of labor with its associated equilibrium wage, can be expressed as

Ht =
(

1
ξ

Wt

Ct

)ν

.

The dynamic Euler equation, again substituting expressions for the relative price of the

investment good and the interest rate, is of the form

1 = βIEt

[
Pt+1/Ct+1

Pt/Ct

(
(1− δ) +Rt+1

)]
,

where

Rt+1Pt+1 = αAt+1K
α−1
t+1 H

1−α
t+1 .

At this point our model has two exogenous disturbances, namely a neutral and an

investment-specific technology process. To examine the effect of technology fluctuations on

hours worked, we assume that

(lnAt − lnA0 − γat) = ρa,1(lnAt−1 − lnA0 − γa(t− 1)) (4)

+ρa,2(lnAt−2 − lnA0 − γa(t− 2)) + σaεa,t

(lnVt − lnV0 − γvt) = ρv,1(lnVt−1 − lnV0 − γv(t− 1)) (5)

+ρv,2(lnVt−2 − lnV0 − γv(t− 2)) + σvεv,t.

Thus, the log technologies fluctuate around a linear deterministic trend path, given by

lnA0 + γat and lnV0 + γvt, respectively. If the autoregressive coefficients sum to one, the

fluctuations are non-stationary and the technology processes can be rewritten as AR(1)

processes in terms of growth rates. The most widely used specifications for the neutral

technology process can be easily obtained as special cases of (4). If 0 ≤ ρa,1 < 1 and ρa,2 = 0,

then technology follows a stationary AR(1) process. If ρa,1+ρa,2 = 1, then technology has a

unit root and the serial correlation of its growth rates is −ρa,2, which is often assumed to be

zero. In order to restrict the autoregressive processes in (4) and (5) to trend stationarity,

it is convenient to re-parameterize them in terms of partial autocorrelations ψ1 and ψ2.

Omitting the a and v subscripts, we let

ρ1 = ψ1(1− ψ2), ρ2 = ψ2. (6)
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In case of a unit root ψ1 = 1. The analysis in this paper is conducted under the assumption

that the two innovations εa,t and εv,t are normally distributed with mean zero and variances

σ2
a and σ2

v . Moreover, we assume that they are uncorrelated at all leads and lags.3

Regardless of whether the technology shocks have a stochastic trend component (unit

root) or are trend stationary, the following transformations generate stationary variables:

Yt

Qt
,

Ct

Qt
,

It
Qt
,

Xt

QtVt
,

Kt+1

QtVt
,

Wt

Qt
, where Qt = A

1
1−α

t V
α

1−α

t .

To approximate the model dynamics, we rewrite the equilibrium conditions in terms of

these detrended variables, derive a non-stochastic steady state, log-linearize the equilibrium

conditions around the steady state, and use a standard procedure to solve the resulting linear

rational expectations system. For this extremely simple economy, a log-linear approximation

is typically used in the literature as it is deemed to be accurate enough.

The parameters of the model economy belong to three categories: the four that affect

the steady state of the model are α, β, δ, and ξ (capital share of output, discount rate,

depreciation rate, and relative weight of consumption and leisure in the utility function);

those that affect the law of motion of the technology disturbances which are lnA0, ψa,1,

ψa,2, σa, lnV0, ψv,1, ψv,2, and σv; and the Frisch labor supply elasticity ν, which in this

particular model economy only affects non-steady state behavior (the appropriate choice of

ξ makes sure that this is the case), and hence the internal propagation mechanism.

We will subsequently examine the role of shifts in investment-specific technology and

total factor productivity for fluctuations of hours worked. The model economy serves as

a theoretical framework for the quantitative analysis and will be calibrated in Section 3

and estimated in Section 4. In particular, we use calibration and estimation techniques

to determine numerical values for its parameters, simulate data from the model based on

random draws of the technology processes, and compare the variance of the model-generated

data to the sample variance of postwar U.S. data.

3In principle, one could model ln At and ln Vt as vector autoregressive processes. However, empirically

it turns out that the cross-correlations are small. Since the extension to a VAR process seems neither

quantitatively important nor essential to the methodological issues discussed in this paper, we decided to

impose that the two technology shocks are uncorrelated.
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3 Calibration

The calibration process starts by choosing targets that are used to obtain parameter values.

These targets are not supposed to involve the answer that is pursued. Consider our specific

application. We measure the fraction of cyclical variation in hours that is due to technology

shocks. If we would use the cyclical variability of hours as a target, we would attribute all

of it to technology shocks, since these are the only shocks in the model. We would obtain

an answer of 100% by construction. Thus, the calibration does not use evidence from time

series movements of endogenous variables that are centrally related to the question that is

addressed.

For our model economy, most, but not all, of the parameters (labor share of output

α, depreciation rate δ, discount rate, β, and weight of leisure in the utility function ξ) are

easily determined by choosing steady-state conditions pertaining to NIPA aggregates, rates

of return, and average fraction of time allocated to market activities. We discuss how to

set them in Section 3.1. Simple assumptions on competition in factor markets and the

Cobb-Douglas shape of production yield a theory-consistent construction of the exogenous

shock series. Our method of obtaining the parameters that control the process for the two

technology shocks is described in Sections 3.2 and 3.3. Obtaining a value for the Frisch

elasticity, ν, is, however, less straightforward. Hence, we pursue several different strategies

to determine a suitable value in Section 3.4.

Once values for all model parameters have been specified, the answer that we are search-

ing for is the size of the fluctuations of output and hours in the model in response to technol-

ogy shocks relative to the fluctuations of these variables in the data. We obtain the answer

by simulating output and hours worked data from the log-linearized model economy. We

then compute variance ratios for HP-filtered (with the smoothing parameter set to 1600)

simulated and actual data. Unless otherwise noted, our analysis is based on data from

1955:Q3 to 2006:Q4. Our findings are reported in Section 3.5. Precise data definitions are

provided in the appendix.

3.1 Exploiting Steady-State Relationships

According to our specification, factor markets are competitive and the aggregate production

function has a Cobb-Douglas form. Hence, the implied labor shareWtHt/Yt is equal to 1−α.
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While the observed labor share is time-varying (see, for instance, Ŕıos-Rull and Santaeulalia

(2009)), it displays no clear trend. Hence, we target the steady state of the model to have

the average labor share in the data, which we take to be 0.34. We also target an investment

to output ratio of 28%, a yearly interest rate of 4%, and a value of leisure of 2/3 of total

available time. These choices yield values of α = 0.34, β = 0.99, and δ = 0.013 in quarterly

terms.4 The value of parameter ξ, while necessary to set steady-state leisure to two-thirds,

actually does not affect the decision rules in a log-linear approximation and is irrelevant for

the behavior of the model.

3.2 Empirical Measures of the Exogenous Disturbances

In the model economy, the investment-specific technology shock is the relative price of in-

vestment in terms of consumption. We construct this relative price by combining a price

index for quality-adjusted equipment investment with a price index for investment in struc-

tures. With regard to the equipment investment price index, ?, Greenwood, Hercowitz,

and Krusell (1997), and Cummins and Violante (2002) reveal substantial evidence of bi-

ases in the trend of official price indexes due to the lack of quality adjustment. We build

on the annual series of Cummins and Violante (2002) to construct our quarterly series of

quality-adjusted equipment investment. Quarterly movements are imputed based on the of-

ficial index reported by the Bureau of Economic Analysis (BEA) in the Fixed Asset Tables

(FAT-BEA). As a price index for investment in structures we use the consumption deflator,

PC
t . The two indixes are combined with a Tornquist aggregator to obtain a quality-adjusted

price index for total investment, P I
t . We then define

Pt = P I
t /P

C
t and Vt = 1/Pt, (7)

normalizing the index such that P0 = 1 in 1947.

The series for the neutral technology process At is typically computed using measures

of per capita real output Yt, capital Kt, labor input Ht, and an estimate of the capital input

share α:

lnAt = lnYt − α lnKt − (1− α) lnHt. (8)

4The definition of labor share has many subtleties that we avoid here altogether; see the aforementioned

Ŕıos-Rull and Santaeulalia (2009) or Cooley and Prescott (1995). The three parameter values also determined

the capital-to-output ratio, which is sometimes used for calibration instead of the investment-to-output ratio.

For our model specification, capital measured in consumption terms is 2.54 times yearly output.
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What is non-standard in our analysis is that we have to construct a quality-adjusted capital

stock. To do so, we begin by generating a quarterly series for investment in efficiency units:

Xt = (IE
t + IS

t )/QI
t ,

where IE
t and IS

t are total nominal investment in equipment and structures, respectively,

and QI
t is the quality-adjusted price index that appears in (7). The quality-adjusted capital

stock is obtained by the perpetual inventory method:

Kt+1 = (1− δ)Kt +Xt,

where δ corresponds to the average of Cummins and Violante (2002)’s physical depreciation

rates for total capital. The initial capital stock K0 is calibrated using the observed level of

output and the investment to output ratio in 1947.

3.3 Parameterizing the Shock Processes

Based on the measures of lnAt and lnVt, it is straightforward to estimate coefficients for

the autoregressive models (4) and (5). Rather than using least-squares methods, we employ

Bayesian techniques to estimate the shock processes. This makes the estimates directly

comparable to those reported for the full DSGE model in Section 4. Bayesian estimates

are obtained by combining a prior distribution for the parameters of an econometric model,

generically denoted by θ ∈ Θ, with a likelihood function

p(θ|Y ) =
p(Y |θ) p(θ)

p(Y )
, p(Y ) =

∫
θ∈Θ

p(Y |θ) p(θ) dθ. (9)

Here p(θ) denotes the prior density, p(Y |θ) is the likelihood function, that is, the joint

probability density function of the data Y given θ, p(θ|Y ) is the posterior density, and p(Y )

is the so-called marginal likelihood.

As discussed in Section 2, the AR(2) shock processes are parameterized in terms of

partial autocorrelations ψ1 and ψ2; see (6). These processes are trend stationary if −1 <

ψ1, ψ2 < 1 and become difference stationary if ψ1 = 1. We estimate the parameters subject

to 0 ≤ ψ1 < 1 (deterministic trend) and ψ1 = 1 (stochastic trend). In the former case, we

assume that the first order partial autocorrelation has a Beta distribution with mean 0.95

and standard deviation of 0.2. For both the difference-stationary and trend-stationary spec-

ification it is assumed that the second-order partial autocorrelation is uniformly distributed

12



on the interval (−1, 1). Our priors are fairly agnostic with respect to the average growth

rate of the technology processes and the location parameters lnA0 and lnV0, which deter-

mine the log levels of the technology disturbances. The priors for the innovation standard

deviations are centered at 1% with a large variance. A summary is provided in Table 1.

We construct a joint likelihood function for the two technology processes based on a

sample that ranges from 1955:Q3 to 2006:Q4, conditioning on observations from 1954:Q3

to 1955:Q2. Posterior means and 90% probability intervals are reported in Table 2. Both

technology processes are highly persistent and the estimates of ψ1 exceed 0.97. The growth

rates of the neutral technology process are essentially uncorrelated, that is, ψ̂2,a is near

zero, whereas growth rates of lnVt are strongly serially correlated with ψ̂2,v ≈ 0.8. It is

interesting to note that the deterministic component of technology growth is solely due to

lnVt, which implies that it is embodied in the physical capital stock.

In a Bayesian framework, one can assign probabilities to competing model specifica-

tions and update these probabilities in light of the data. We are considering a deterministic

and a stochastic trend specification for the technology shock processes, say M0 and M1.

According to Bayes Theorem, the prior odds in favor of the stochastic trend specification,

π(M1)/π(M0), are updated via marginal likelihood ratios (so-called Bayes factors) to ob-

tain posterior odds:5
π(M1|Y )
π(M0|Y )

=
π(M1)
π(M0)

× p(Y |M1)
p(Y |M0)

. (10)

We report log marginal likelihood values for our two specifications (see (9) for a definition)

in the last row of Table 2. The Bayes factor in favor of the stochastic trend version is

approximately e20, indicating that it is preferable to impose the unit roots.

3.4 Calibrating the Labor Supply Elasticity

At this point, we have chosen numerical values for all model parameters except the Frisch

labor supply elasticity ν. Given our specification of preferences, the steady state does not

depend on this parameter. A variety of approaches have been pursued in the literature to

parameterize ν, which we describe in turn.

5Marginal likelihood values can be interpreted as a measure of in-sample fit that is adjusted by a penalty

for model complexity.
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Calibration through long-run growth properties. A reasonable description of the

last 100 years of Western experience is the statement that while there has been a massive

increase of wages, by an order of magnitude if not more, interest rates and the allocation

of hours per capita have not displayed any such long-run trend. Most preference structures

are not consistent with this pattern. The most widely used preferences in business cycles

research that are consistent with this long-term behavior belong to the Cobb-Douglas family,
(cγ`1−γ)1−σ

1−σ , where ` = 1 − H is leisure and the endowment of time is normalized to one.

The Frisch elasticity of this specification is given by ν = 1−H∗
H∗

, where H∗ is the steady-state

value of hours worked. Clearly, with these preferences the Frisch elasticity is determined

not from short-run variation in hours worked but from the choice of steady-state hours and

indirectly through the lack of variation in the long run.6 If the average hours worked per

adult per week is set to one third,7 which is a standard choice, the implied elasticity is 2.

A choice of 25 hours per week that weighs young people and retirees more heavily yields an

elasticity of 3.

Non-convexities and lotteries. Most of the variation in hours over the business cycle

occurs along the extensive margin (number of workers rather than hours per worker). To

account for such variation, Rogerson (1988) developed a model where agents care about

leisure but face a non-convexity in the opportunities to work. These agents can use a lottery

arrangement to maximize the utility ex ante. Ex post some will work and the others will

not. After aggregation, this arrangement yields quasi-linear preferences for a representative

consumer and the economy-wide elasticity of substitution can be infinite, regardless of the

individual value of the Frisch elasticity. To see this, assume now that h ∈ {0, h}, and that

the agent chooses a probability of working p, solving

max
c,p

ln c− p ξ h
1+1/ν (11)

6Other types of preferences used in the literature that are consistent with a balanced growth path are

those posed by King, Plosser, and Rebelo (1988). With these preferences, the steady-state level of hours

also determines the Frisch elasticity of substitution. Herrendorf and Ŕıos-Rull (2009) argue that balanced

growth paths do not impose any real restrictions on business cycle models.
7The U.S. Bureau of Labor Statistics reports (http://www.bls.gov/opub/working/page17b.htm) 67 hours

per week worked by a married couple between the ages of 25 and 54. Conventionally, we think of 100 hours

per week per person as the available discretionary time.
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subject to h ∈ {0, h} and c = w ph + a, for some wealth a. In this context, the aggregate

amount of hours is just H = ph and the intratemporal first-order condition implies w/c =

ξh
1/ν . Thus, we can replace the individual agents by a representative household that chooses

C and H to maximize lnC − ξH subject to C = wH + a, where ξ = ξh
1/ν . Note that

the utility function of this representative household is obtained from (1) by setting ν = ∞.

Hansen (1985) used these lottery arrangements as the source of his calibration strategy in a

seminal paper and not surprisingly found that hours move a lot in response to productivity

shocks.8 We will use a Frisch elasticity value of 100 to implement these ideas while avoiding

numerical instability.

Calibration from outside the model: Direct estimates of the elasticity of labor

supply from micro-level studies. There is a large literature that provides estimates of

the Frisch elasticity based on micro-level studies.9 These estimates are typically very small.

In his survey paper, Pencavel (1986) reports that most estimates for men are between 0

and 0.45, with 0.2 being a typical point estimate. The labor supply elasticity is typically

measured based on information about the intensive margin of prime age white males, who

are full-time workers in most periods. However, it is well documented that a large fraction

of hours fluctuations is accounted for by movements in and out of employment (see, for

instance, Kydland and Prescott (1991) who describe the extensive margin as responsible

for two-thirds of the variation), and that those that have the most hours variation along

the cycle are not prime age males (see Kydland (1984), Ŕıos-Rull (1993), and Kydland

and Prescott (1993)). In addition, Domeij and Floden (2006) argue that, due to borrowing

constraints, the estimates may be biased downward up to 50%. Imai and Keane (2004)

estimate the elasticity explicitly accounting for human capital accumulation and obtain a

value as high as 3.82. With human capital accumulation of the learning by doing variety, the

macro models would need to be adjusted as in Chang, Gomes, and Schorfheide (2002). More

recently, Heathcote, Storesletten, and Violante (2007) estimate a value for the household

elasticity of 0.72 using a definition of the household that includes both a husband and

8Kydland and Prescott (1991) built a model with both intensive and extensive margin with the use of

lotteries and calibrated it using both balanced growth path restrictions and the relative volatility of hours

and bodies. Unfortunately, this strategy found few followers.
9Becker and Ghez (1975), MaCurdy (1981), Altonji (1986), and Abowd and Card (1989), to name a few

classic papers.
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a wife, while Heathcote, Storesletten, and Violante (2008) obtain 0.38 when taking into

account household heterogeneity and measurement error but without using the notion of a

multi-person household. To encompass the wide range of micro-level estimates, we report

the behavior of an economy with Frisch elasticities of 0.2, 0.38, and 0.72, respectively.

To summarize, the calibration strategy involved in setting the Frisch elasticity of labor

supply does not have a unique or an uncontroversial target to be satisfied by an infinitely

lived, representative agent model. Consequently, we will consider five values for the labor

supply elasticity in the remainder of this section. First, ν = 2 represents a value that is

chosen based on strong functional form assumptions and balanced growth path considera-

tions. Second, we consider ν = 100, which essentially captures the quasi-linear preferences

in Hansen (1985)’s indivisible labor model. Finally, ν = 0.2 represents micro-level esti-

mates based on labor adjustments of males along the intensive margin, while ν = 0.38 and,

especially, ν = 0.72 are micro-level estimates that take to heart some of the criticisms of

macroeconomists (Rogerson and Wallenius (2007), for instance) about what is the object

of interest when measuring the aggregate labor supply elasticity.

3.5 Quantitative Results

We are now in a position to examine the answers obtained from the different calibration

strategies. The main findings are reported in Table 3. The top panel of the table contains

results for the trend stationary parameterization of the shock processes given in the left

half of Table 2, whereas the bottom panel summarizes results under the assumption that

the shocks are difference stationary with parameters given in the right half of that table.

Conditional on the two parameter settings, we simulate the linearized DSGE model for

310 periods using only the neutral technology process (A), only the investment-specific

technology process (V), and both technology disturbances (A+V). We discard the first

100 observations and calculate the variances of HP-filtered output and hours based on

the remaining 210 observations. These variances are then divided by the variances of HP-

filtered postwar U.S. aggregate output and hours worked. The simulation steps are repeated

1,000 times, and the entries in Table 3 correspond to means and standard deviations of the

variance ratios across the 1,000 simulations.

The variance ratios for hours worked lie between 0.01 to 1.50, an enormous range that

encompasses all possible answers. The differences arise not from the shock processes but
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from the choice of substitution elasticity. An elasticity based on the logic that preferences

have to be consistent with balanced growth yields an answer of 0.3210 (0.29 for the stochastic

trend specification). Assuming the existence of complete markets and indivisibilities results

in hours moving (much) more in the model than in the data. An elasticity based on

males responses mostly along the intensive margin yields essentially no contribution of

productivity shocks to movements in hours. If we take the Frisch elasticities estimated by

Heathcote, Storesletten, and Violante (2008) in their clever use of closed form solutions

when taking into account household heterogeneity and measurement error (0.38), and by

Heathcote, Storesletten, and Violante (2007) (0.72) using the total household hours variation

specification, the answers that we obtain are 0.03 and 0.09, respectively (0.02 and 0.07 if

we impose unit roots).

The answers that one obtains are somewhat sensitive to the choice of shock process

(deterministic versus stochastic trend). The contribution of technology shocks is larger for

the deterministic trend than for the unit root specification. However, more striking is the

enormous sensitivity to the Frisch elasticity, which generates variations in the results by

more than two orders of magnitude. Interestingly, the investment-specific technical change

is the main culprit of hours variation with over 80% of the total variation in all model

economies. Output variation, on the other hand, is mostly driven by the neutral technology

process.11 The variance ratios for output range from 20% to 80%. Output variation is

directly affected by the neutral technology shock and indirectly through the fluctuation of

hours and capital over the business cycle.

4 Bayesian Estimation of the DSGE Model

We now turn to the search for the answer of how important are productivity shocks for

movements in hours when using formal econometric methods. We use Bayesian estimation

10This is the same answer obtained by Kydland and Prescott (1991). They reported a ratio of standard

deviations of about two-thirds, which corresponds with around 0.44 in terms of variances.
11One should not compare the contribution of the neutral shock with the total factor productivity (TFP)

shock in most of the literature because they are computed very differently. In fact, the procedure that we

followed in this paper reduces the role of the neutral technology shock because we increase the size of the

stock of capital.
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techniques,12 partly as a result of personal tastes and expertise and partly because they

reflect state-of-the-art econometrics and are by now widely used in practice. First, we

choose the observables and the model specifications to be estimated. Second, we describe

how we elicit priors for DSGE model parameters and for Frisch elasticity of labor supply,

and then discuss posterior estimates. Third, we present variance ratios for hours worked

computed from HP-filtered simulated and actual data for all model specification and data

set combinations. Finally, we discuss the identification of labor supply elasticity and shed

light on why our estimation yields a fairly low estimate of it.

4.1 Data and Estimated Specifications

A crucial step in the estimation is the choice of observables Y that enter the likelihood

function p(Y |θ). Since the goal is to determine the contribution of productivity shocks to

the variation of hours, these series should be ingredients for our estimation. Following the

tradition in econometrics, we use labor productivity instead of total factor productivity,

because the construction of the latter would require the knowledge of parameters that

we are trying to estimate. Fortunately, according to our theory the investment-specific

technology shock is under perfect competition exactly the relative price of consumption

versus investment. This gives us the three main series to use in the estimation: labor

productivity Y/H, hours worked H, and relative price of investment goods P .

With three series and two shocks, one encounters a well-known singularity problem.

According to the model, there exists a linear combination of the three series that can be

predicted without error conditional on past observations. To overcome the singularity,

researchers either introduce measurement errors, e.g., Altug (1989), or include additional

shocks, e.g., Leeper and Sims (1994). In our case, as we want to measure the contribution

of productivity shocks, we have to give the model economy a solid additional mechanism

to also move hours. This makes it more attractive to add structural shocks and not just

measurement errors. Given the findings of, among many others, Hall (1997) and Chari,

Kehoe, and McGrattan (2007), a natural additional shock is a preference shock that affects

the choice of hours worked. Consider the following variation of the utility function Ut =

12A detailed review of the Bayesian estimation of DSGE models can be found in An and Schorfheide

(2007).

18



lnCt−Btξ
H

1+1/ν
t

1+1/ν , where lnBt = ρb lnBt−1− (σb/ν)εb,t is such a preference shock. This will

be our baseline specification.

We will also consider two additional specifications for the sake of completeness. First,

instead of a preference shock, one can introduce a demand shock, such as a government

spending shock, which changes the aggregate resource constraint to Yt = Ct + It +Gt. We

assume that government expenditures are financed by lump-sum taxes and are determined

as a time-varying fraction of total output, Gt = (1 − 1/gt)Yt. The process for government

expenditures is exogenous and evolves according to ln(gt/g
∗) = ρg ln(gt−1/g

∗) + σgεg,t.13

Second, we consider a version of our model in which the preference shock and the government

expenditure shock are simultaneously active. Consequently, we denote the resulting model

specifications by {A, V,B}, {A, V,G}, and {A, V,B,G}.14

Since the accumulation of the quality-adjusted investment series provides a measure of

the capital stock, which in combination with aggregate output and hours worked identifies

the neutral technology shock via the production function (see Section 3.2), we consider

lnXt as a fourth observable. We estimate the model specifications based on three samples:

{Y/H,H,P}, {Y/H,H,X}, and {Y/H,H,P,X}, with the qualification that only the four-

shock model is estimated based on the four-variable sample.

4.2 From Priors to Posteriors

Priors. The prior distributions for the coefficients of the two technology processes are

identical to those used in Section 3.3 and summarized in Table 1. As before, we will estimate

versions of the DSGE model specifications in which technology shocks are stationary and

versions in which we impose unit-root restrictions. The prior densities for the remaining

DSGE model parameters are provided in Table 4. When we estimated only the shock

processes, we introduced the location parameters lnA0 and lnV0. For the estimation of

the full DSGE model based on time series of the log levels of output, hours, and the

relative price of investment, we parameterize the DSGE model in terms of lnY0, which

13This specification leads to the relationship ln Yt = ln(Ct + It) + ln gt and implies that the government

share of output is stationary.
14Modern variations on this model, containing additional frictions such as sticky prices and wages (and

choices of households outside their labor supply function), monopolistic competition, monetary distortions

and the like, allow for many more shocks. See, for example, Smets and Wouters (2007).
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replaces lnA0, as well as lnV0 and the steady-state level of hours lnH∗, which replaces ξ.

This re-parameterization simplifies prior elicitation because in principle it allows us to use

pre-sample observations. However, as before, we use fairly uninformative priors for these

location parameters.

The elicitation of the prior distributions for α, β, and δ follows the same steps as the

calibration in Section 3.1. Note that this elicitation is based on observables that are not

included in the likelihood function, such as real interest rates, the labor share, and the size

of the capital stock. We use degenerate priors for two of the parameters: discount factor

and depreciation rate are fixed at β = 0.99 and δ = 0.013. Based on the labor share data,

we choose a prior for α that is centered at 0.34 with a standard deviation of 0.02. The

prior distribution for the autocorrelation of the preference shock is centered at 0.8 and has

a standard deviation of 0.1. The corresponding values for the government spending shock

process are 0.95 and 0.1. We set g∗ = 1.2 if the government spending shock is included in

the model and equal to one otherwise.

Our prior for the Frisch labor supply elasticity is centered at the balanced growth path

value of ν = 2, but with a standard deviation of one. Hence, a 90% a priori credible interval

encompasses values found in studies that use micro-level data for employed males, as well as

the values necessary to be able to explain most of the observed volatility in hours worked in

a stochastic growth model driven by technology shocks. We will also briefly discuss how our

results change if we center the prior for ν at 0.72 instead of 2, which is the value obtained

from Heathcote, Storesletten, and Violante (2007)’s analysis of micro-level data.

Sample period and estimation. All versions of the DSGE model are estimated based

on observations from 1955:Q3 to 2006:Q4, conditioning on observations from 1954:Q3 to

1955:Q2. This conditioning will allow a comparison of marginal likelihoods between the

DSGE model specifications and a VAR. We use the Markov-Chain Monte-Carlo methods

reviewed in An and Schorfheide (2007) to obtain draws from the posterior distribution of

the DSGE model parameters. Detailed estimation results are provided in Table A-1 in

the appendix. As long as the relative price of investment is included as an observable in

the estimation, the estimates of the technology shock parameters are very similar to those

reported in Table 2. If the DSGE model is estimated on the Y/H, H, X data set, then ψ̂2,v is

close to zero, meaning that the growth rates of the investment-specific technology process are
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approximately serially uncorrelated. In part due to the fairly tight prior on α, the posterior

mean estimates fall in the range of 0.32 to 0.39. Thus, the specific statistical methods used

here did not change the estimates of these parameters. The coefficient estimates for the

preference and government spending shocks are such that the model is able to capture the

variation in output and hours worked that is not explained by the two technology shocks.

We will now turn to the estimates of the Frisch elasticity, which is the parameter that really

matters, as it determines the answer to our quantitative question.

Estimates of the Frisch elasticity. Table 5 reports 90% posterior credible intervals for

the labor supply elasticity. If the observables consist of productivity, hours worked, and

the relative price of investment, the credible intervals span the range 0.05 to 1.1 and are

somewhat larger if the shocks are assumed to be trend stationary, yet highly persistent. If

the price of investment is replaced by the quantity, the estimates of ν tend to increase, in

particular if the government spending shock is included as shock in the model. Finally, if the

four-shock model specification is estimated based on four series, the labor supply elasticity

estimate drops to the range of 0.03 to 0.27. To summarize, if we use three shocks, the

elasticity estimates are in the range of those recently estimated by Heathcote, Storesletten,

and Violante (2007, 2008) that are the modern version of studies that use micro data, while

the use of four shocks reduces the estimate to values obtained using only the variation of

the intensive margin of males.

4.3 Quantitative Results

So far, the econometric analysis has generated multiple sets of parameter estimates, which

in turn will lead to a multitude of answers for our quantitative question. However, not

all model specifications fit the time series data equally well, and one can use a measure of

time series fit to assign more weight to parameter estimates and predictions obtained from

model specifications that attain a better fit. Formally, as in Section 3.3, we use log marginal

likelihoods to update prior model probabilities.

For each of the three data sets, Table 6 reports log marginal likelihood differentials

(or log Bayes factors), using the specification with the highest marginal likelihood as a

benchmark. For the Y/H, H, P data set it appears to be slightly preferable to impose unit

roots in the two technology processes and to augment the DSGE model with a government
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expenditure shock. Based on Y/H, H, X observations, the trend-stationary specifications

are preferred in the three-shock models. However, the best fit is obtained by the four-shock

version with unit root technology processes. However, the log marginal likelihood differ-

entials are overall fairly small, indicating that the data can only imperfectly discriminate

among the various specifications.

Given a set of prior probabilities for the various DSGE model specifications, the log

marginal likelihoods can be transformed into posterior probabilities, using a generaliza-

tion of (10).15 Table 7 reports the posterior probabilities that are calculated under the

assumption that for each data set, all DSGE model specifications have equal prior probabil-

ity. Cells for model specifications with essentially zero posterior probability are left blank.

While these posterior probabilities are not suitable for comparisons of estimates (and their

quantitative implications) across data sets, they do provide coherent model specification

weights conditional on a particular data set.

For each model specification and data set combination, Table 8 reports means and stan-

dard deviations of variance ratios computed from HP-filtered simulated and actual data. All

entries refer to the combined effect of neutral and investment-specific technology shocks on

output and hours worked, and the boldfaced entries indicate posterior probabilities higher

than 5%. The variance ratio results mimic the labor supply elasticity estimates: high

elasticities yield large effects. The largest effect of technology shocks on hours worked fluc-

tuations is obtained from the A, V, G specification estimated based on Y/H, H, X data,

explaining about 20% of the observed variation. Weighted by posterior model probabilities,

we conclude from the Y/H, H, X data that 6% of hours fluctuations (and 26% of output

fluctuations) are generated by technology shocks. The corresponding numbers for the Y/H,

H, P data set are 2% and 21%, respectively. Due to the small value of the estimated labor

supply elasticity based on the Y/H, H, P, X data set, hours essentially do not move in

response to technology shocks and they explain about 21% of output fluctuations. Compar-

ing the standard deviations in Tables 3 and 8, it is apparent that accounting for parameter

uncertainty increases the variability of the variance ratios substantially. We re-estimated

some of the models with a prior for ν centered at 0.72. This lowers the posterior estimates

of ν and slightly reduces the importance of the technology shocks for hours fluctuations.

15Consider a collection of models Mm, m = 1, . . . , M . The posterior probability of Mm is π(Mm|Y ) =

π(Mm)p(Y |Mm)/p(Y ), where p(Y ) =
PM

m=1 π(Mm)p(Y |Mm) and π(Mm) is the prior probability of Mm.
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A recent literature uses an expanded version of the neoclassical growth model, includes

various nominal and real frictions as well as several additional shocks, and provides an

answer to the same question that we pursue. Justiniano, Primiceri, and Tambalotti (2009a)

estimate one of these expanded models with the same Bayesian techniques used in this

paper. They assess the contribution of technology shocks (especially investment-specific

shocks) to be up to 60% of hours variation at business cycle frequencies. The reasons

for this discrepancy with our findings include the fact that in their environment with fixed

wages, a fraction of agents is unable to re-optimize their price and forced to supply whatever

number of hours is demanded at the posted price; thus, even with small Frisch elasticity,

hours tend to move a lot in response to technology shocks. Another source of discrepancy,

at least compared to our estimation with the Y/H, H, P and Y/H, H, P, X data sets, is the

fact that they treat the investment shock as a latent process, which turns out to be much

more volatile than the relative price of investment. Justiniano, Primiceri, and Tambalotti

(2009b) include the relative price of investment as an observable but allow for an additional

(unobserved) shock, to the marginal efficiency of installed investment. They find that this

shock plays a big role in accounting for hours variation relative to the observed shocks to

the relative price of investment. Liu, Waggoner, and Zha (2009) impute most of the role

in shaping fluctuations (especially when focusing on the Great Moderation) on the role of

neutral technological shocks, capital depreciation shocks, and wage mark-up shocks, while

they argue that investment-specific technology shocks played a small role.

Overall, the econometrics procedure points to a relatively low labor supply elasticity,

especially if we let two additional shocks (government expenditure and preference shocks),

on top of the productivity shocks, move hours. There is, however, one important caveat. In

Table 6 we also report log marginal likelihoods for a VAR with four lags under a Minnesota

prior. For all three data sets, the VAR attains a better time series fit than the DSGE

model specification as indicated by the positive marginal likelihood difference in excess of

30 relative to the preferred DSGE model version. The superior fit of the VARs is evidence

for DSGE model misspecification in the sense that some of the theory implied cross-equation

restrictions are at odds with the data. We now look in more detail at how these procedures

identify the elasticity, and the extent to which such identification results are convincing.
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4.4 Identification of the Labor Supply Elasticity

The likelihood-based estimator, at the heart of econometrics, delivers a parameter value

for which the model implied autocovariance function of the observables matches the sample

autocovariance function as closely as possible in terms of a statistical metric. It does so

by forcing each shock in the model to contribute particular autocovariance features, which

in total have to mimic the sample autocovariances. This matching is, unfortunately, often

difficult to interpret because there is no transparent link from patterns in the data to

particular parameter estimates. The goal of this section is to shed some light on why our

likelihood-based estimation yields a fairly low estimate of the labor supply elasticity.

In a traditional simultaneous equations model that characterizes demand and supply

in a market, the identification condition for the supply elasticity is the availability of an

observable exogenous variable that only shifts the demand curve. One can then measure

the simultaneous change in prices and quantities in response to a change in the demand

shifter, which in turn identifies the supply elasticity. Identification in a DSGE model is

more complicated for two reasons. First, unobserved structural shocks rather than directly

observed exogenous variables play the role of demand and supply shifters. Second, any given

structural shock is likely to shift both the demand and the supply function simultaneously. A

neutral technology shock, for example, tends to increase labor demand because the marginal

product of labor increases. At the same time, this rise in income generated by higher

productivity might induce the household to reduce its labor supply. Thus, if one has direct

observations on an exogenous shock and the supply and demand curves shift simultaneously,

the challenge is to disentangle the slopes of both curves. If the exogenous shock is a latent

variable, then the identification of the labor supply elasticity becomes even more tenuous

because the mapping from the observables into the latent shock might depend on it.

According to our simple DSGE model, data on the relative price of investment can serve

as direct observations for the investment-specific technology shock. Thus, the {mY/H,H,P}

and {Y/H,H,P,X} data sets include direct observations of a shock that shifts the labor

market equilibrium. Moreover, data on output, hours worked, and quality-adjusted in-

vestment implicitly generate an observation of the neutral technology shock as follows.

According to the capital accumulation equation:

Kt+1 =
t−1∑
j=0

(1− δ)jXt + (1− δ)t−1K1, t > 1.
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Since δ > 0 for t sufficiently large, the capital stock is well approximated by a weighted

average of past investment. As in the calibration analysis, the neutral technology shock can

be recovered from the production function

At =
Yt

Kα
t H

1−α
t

.

Notice that the construction of At does not depend on the value of the labor supply elasticity

ν and recall that α can be identified from labor share observations, which entered our

analysis indirectly through the prior distribution.

The assumption that the technology shocks are exogenous generates exclusion restric-

tions that are sufficient to identify dynamic responses of labor market variables to innova-

tions in εv,t (εa,t) in the {Y/H,H,P} {Y/H,H,X} and {Y/H,H,P,X} data sets. Since the

two technology shocks enter the model in an identical manner, without loss of generality we

will focus on the response to an investment-specific technology shock. Along the response to

a technology shock, the labor supply condition, here written in terms of temporal differences

∆, has to be satisfied:

∆ĥt = ν(∆ŵt −∆ĉt). (12)

Here ĥt denotes hours in percentage deviations from its steady state, and ŵt and ĉt denote

percentage deviations of detrended real wages and consumption from their respective steady

states. Since consumption is not included in the list of observables used in our likelihood-

based estimation, we will replace it by a function of wages, hours, and technology shock.

Assuming that ψ1,v = 1, that is, the investment-specific technology process is difference

stationary, we show in the appendix that in response to a one standard deviation investment-

specific technology shock in period t = 1 the wage and hours dynamics for t > 1 can be

expressed as:

∆ĥt = ν

[
∆ŵt + r∗(1− α−1)ŵt − (−ψ2,v)t−1 σv

1− α

]
, (13)

where r∗ = R∗/(R∗ + 1 − δ), and R∗ = e(γa+γv)/(1−α)/β − (1 − δ). Recall that r∗ and

α are identifiable from long-run averages of the labor share, real interest rates, and the

investment-capital ratio, which enter our estimation objective function implicitly through

the prior distribution. Thus, information on the impulse responses of wages (which are

equal to average labor productivity in our Cobb-Douglas environment with constant factor

shares) and hours worked to an investment-specific technology shock, which is encoded in

the likelihood function, suffices to identify the labor supply elasticity.
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Broadly speaking, technology shocks for which we can implicitly construct observations

independently of the labor supply elasticity play the same role as exogenous demand shifters

(or instrumental variables) in the analysis of traditional simultaneous equations systems:

they perturb the market equilibrium and move prices and quantities. However, in DSGE

models these technology shocks tend to shift both supply and demand. Since the slope

of the labor demand function is through functional form assumptions essentially identified

from the average labor share, observing the movements of wages and hours in response to

the perturbation is sufficient for the determination of the labor supply elasticity.

Thus far, we have established that the labor supply elasticity is identifiable based on

the information (both prior and sample) that we are using in the estimation. We will focus

on the {Y/H,H,P} data set and the {A, V,B} DSGE model specification in which tech-

nology shocks are difference stationary and the third shock is a preference shock. Using

actual and simulated data we estimate a structural VAR(4) in labor productivity growth,

hours worked, and investment-specific technology growth, imposing the following identi-

fication restrictions: two of the three shocks driving {Y/H,H,P} are technology shocks.

The investment-specific technology growth (inflation in the relative price of investment) is

exogenous and follows an AR(1) process. The non-technology shock does not shift the labor

demand schedule upon impact because capital is fixed in the short-run. These restrictions

are also hardwired into our DSGE model.

Based on the Y/H, H, P data set, we construct posterior estimates of the DSGE model

parameters subject to the restrictions that the two technology shocks have a stochastic trend

and that the Frisch elasticity is equal to either 0.2 or 2.0. We then use these estimates to

generate two time series of 2,000 observations, one based on a model with a low Frisch

elasticity and one based on a large Frisch elasticity. The resulting VAR-based impulse

response estimates are depicted in Figure 1. While the response estimates of productivity

and hours to a neutral technology (A) shock and a non-technology (B) shock obtained

from actual and simulated data more or less match, there is a significant difference across

samples between the estimated response of productivity and hours to an investment-specific

technology (V) shock. For instance, based on actual data the productivity response to the

investment shock is negative, whereas it is (slightly) positive for simulated data. Thus, in

view of this impulse response mismatch, the DSGE model appears to be misspecified or the

investment shock to be mismeasured, which is consistent with the evidence from the log
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marginal likelihoods reported in Table 6.

The hours responses provide conflicting information about the labor supply elasticity. To

match the responses to an investment shock and the non-technology shock, the labor supply

elasticity should be small; that is, a value of 0.2 is preferred over a value of 2. To reproduce

the empirical response to a neutral technology shock, on the other hand, a large Frisch

elasticity is needed. The estimate of ν is ultimately determined by the implicit weighting of

the discrepancy between sample and DSGE model implied autocovariance functions (and

hence VAR-based impulse response function estimates) encoded in the likelihood function.

It turned out to be low, which suggests that the B- and V-shock responses received relatively

more weight than the A-shock response.

To the extent that the relative price of investment potentially provides only a noisy

measure of investment-specific technology and overstates the serial correlation of technol-

ogy growth rates or the propagation of the investment shock is incorrectly modelled, heavily

relying on the hours response to an innovation in the price of investment goods for the iden-

tification of a key parameter may be undesirable. Rather than using the implicit weighting

of the likelihood function, one could construct an alternative estimator of ν based on weight-

ing schemes that place more weight on, say, the response to a neutral technology shock.16

This estimator of ν would be larger than the estimates reported in Table 5. Ultimately,

such a procedure is likely to reproduce the same answer to the question of the importance of

technology shocks, which is obtained from a structural VAR. This VAR uses only a minimal

subset of restrictions implied by our theoretical model, just sufficient to identify innovations

to structural shocks.

5 Conclusion

The analysis in the previous sections suggests that the differences in the answers provided

by the various quantitative methods are not due to the statistical apparatus but instead

due to the source of identification of key parameters, a fundamental economic issue. In

a perfect world, different sources would yield mutually consistent conclusions after the

precision of the information has been properly accounted for. Unfortunately, that is not the

16Christiano, Eichenbaum, and Evans (2005) follow this path when estimating a monetary DSGE model

by matching responses to a monetary policy shock.
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case if one works with fairly stylized and to some extent misspecified models, as we do in

quantitative macroeconomics. The reality is that different identification approaches often

yield conflicting results.

Our application illustrated that among calibrated models, the answers differ dramati-

cally depending on the source of information about the Frisch elasticity. While it is easy to

doubt the two extreme values (which are based on middle-aged full-time working white men,

the most irrelevant group from a business cycle point of view or in never seen lotteries), the

value of 2 is also not free from strong criticism. It is based on the logic of balanced growth

paths, which has come under attack recently (Herrendorf and Ŕıos-Rull (2009)). After all,

it is hard to see what insights long-term trends generate for business cycle issues. The use

of micro based estimates that take into account both the work of men and women and the

intensive and extensive margins as in Heathcote, Storesletten, and Violante (2007, 2008)

deliver arguably the most plausible estimates of ν and imply that between 3% to 9% of

hours fluctuations are explained by technology shocks.

Understanding the source of parameter identification in the context of likelihood-based

estimation is difficult and has been neglected in the recent literature on DSGE model es-

timation. We made some progress in the context of our fairly stylized stochastic growth

model by characterizing the model-implied restrictions that identify structural shocks and

comparing VAR impulse response functions estimated based on actual and simulated data.

While this analysis is useful for understanding whether parameters are identifiable, it is dif-

ficult to disentangle what drives a particular estimate, once it becomes apparent that there

are patterns in the data that the model is unable to reproduce. Moreover, this approach is

potentially sensitive to mismeasurements of shock innovations as well as misspecification of

the propagation mechanisms, such as omissions of short-term adjustment mechanisms that

generate hump-shaped instead of monotonic responses. Nonetheless, based on our Bayesian

estimation, we find that across different model specifications about 6% of the variation

of hours is due to technology shocks, though some specifications yield estimates as high

as 20%. It is interesting to note that despite very different sources of identification, our

preferred calibration and the Bayesian estimation yield similar answers, conditional on a

common theoretical framework.

The exercises conducted in this paper have convinced us that, regardless of our pref-

erences for quantitative methodologies, we should place more emphasis on searching for
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reliable sources of identification of key parameters and making these sources transparent to

our audience.
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Herrendorf, B., and J. V. Ŕıos-Rull (2009): “Balanced Growth Paths and Preferences:

There Is No Need for CRRA Felicity Functions,” Unpublished manuscript, University of

Minnesota.

30



Imai, S., and M. P. Keane (2004): “Intertemporal Labor Supply and Human Capital

Accumulation,” International Economic Review, 45(2), 601–641.

Iskrev, N. (2009): “Local Identification in DSGE Models,” Estudos e Documentos de

Trabalho, Banco de Portugal.

Justiniano, A., G. E. Primiceri, and A. Tambalotti (2009a): “Investment Shocks

and Business Cycles,” http://faculty.wcas.northwestern.edu/˜gep575/samm40 gt.pdf.

(2009b): “Investment Shocks and the Relative Price of Investment,”

http://faculty.wcas.northwestern.edu/˜gep575/ISRP7 gt.pdf.

King, R. G., C. I. Plosser, and S. Rebelo (1988): “Production, Growth and Business

Cycles: I The Basic Neoclassical Model,” 21(2-3), 195–232.

Kydland, F. E. (1984): “Labor-Force Heterogeneity and the Business Cycle,” 21, 173–209.

Kydland, F. E., and E. C. Prescott (1982): “Time to Build and Aggregate Fluctua-

tions,” 50(6), 1345–1370.

(1991): “Hours and Employment Variation in Business Cycle Theory,” 1(1), 63–81.

(1993): “Cyclical Movements of the Labor Input and Its Implicit Real Wage,”

Federal Reserve Bank of Cleveland Economic Review, QII, 12–23.

Leeper, E. M., and C. A. Sims (1994): “Toward a Modern Macroeconomic Model Usable

for Policy Analysis,” in NBER MAcroeconomics Annual 1994, ed. by S. Fischer, and J. J.

Rotemberg, vol. 9, pp. 81–140. Cambridge, MA: MIT Press.

Liu, Z., D. F. Waggoner, and T. Zha (2009): “Sources of the Great Moderation:

Shocks, Frictions, or Monetary Policy?,” Working Paper 2009-03, Federal Reserve Bank

of Atlanta.

MaCurdy, T. E. (1981): “An Empirical Model of Labor Supply in a Life-Cycle Setting,”

89, 1059–1085.

McGrattan, E. R. (1994): “The Macroeconomic Effects of Distortionary Taxation,”

Journal of Monetary Economics, 33(3), 573–601.

31



Pencavel, J. (1986): “Labor Supply of Men: A Survey,” in Handbook of Labor Economics,

ed. by O. Ashenfelter, and R. Layard, vol. 1. Amsterdam: Elsevier Science Publishers.
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Table 1: Prior Distribution for Technology Shock Parameters for the Cali-

bration Version

Name Domain Density Para (1) Para (2)

γa IR Normal 0.00 0.10

ψ1,a IR+ Beta 0.95 0.02

ψ2,a (−1, 1) Uniform -1.0 1.00

σa IR+ InvGamma 0.01 4.00

γv IR Normal 0.00 0.10

ψ1,v IR+ Beta 0.95 0.02

ψ2,v (−1, 1) Uniform -1.0 1.00

σv IR+ InvGamma 0.01 4.00

lnA0 IR Normal 0.00 100

lnV0 IR Normal 0.00 100

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform dis-

tribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

To estimate the stochastic growth version of the model, we set ψ1,a = ψ1,v = 1.
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Table 2: Posterior Distribution for Technology Shock Parameters for the

Calibration Version

Deterministic Trend Stochastic Trend

Name Mean 90 % Intv. Mean 90 % Intv.

γa -0.001 [-0.002, 0.000] 0.000 [-0.001, 0.001]

ψ1,a 0.974 [0.962, 0.987] 1.000

ψ2,a -0.027 [-0.152, 0.094] -0.060 [-0.185, 0.050]

σa 0.007 [0.006, 0.008] 0.007 [0.006, 0.008]

γv 0.008 [0.007, 0.008] 0.007 [0.005, 0.009]

ψ1,v 0.994 [0.991, 0.997] 1.000

ψ2,v -0.762 [-0.835, -0.688] -0.808 [-0.899, -0.726]

σv 0.003 [0.003, 0.004] 0.003 [0.003, 0.004]

lnA0 4.838 [4.744, 4.948] -2.661 [-97.404, 76.500]

lnV0 -0.144 [-0.239, -0.058] -0.846 [-79.870, 86.089]

ln p(Y ) 1585.56 1604.90
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Table 4: Prior Distribution for DSGE Model Parameters

Name Domain Density Para (1) Para (2)

α [0, 1) Beta 0.34 0.02

β fixed 0.99

δ fixed .013

ν IR+ Gamma 2.00 1.00

ρb IR+ Beta 0.80 0.1

σb IR+ InvGamma 0.01 4.00

g∗ fixed 1.00 or 1.20

ρg IR+ Beta 0.95 0.02

σg IR+ InvGamma 0.01 4.00

lnH∗ IR Normal 0.00 10.0

lnY0 IR Normal 0.00 100

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma,

and Normal distributions; the upper and lower bound of the support for the Uniform dis-

tribution; s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2
.

To estimate the stochastic growth version of the model, we set ψ1,a = ψ1,v = 1.
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Table 5: Labor Supply Elasticity Estimates

Unit Roots Data Set

Imposed Shocks Y/H, H, P Y/H, H, X Y/H, H, P, X

Labor Supply Elasticities, 90% Intv.

No A, V, B [ 0.27, 1.09] [ 0.38, 1.10]

A, V, G [ 0.35, 0.89] [ 0.93, 2.17]

A, V, B, G [ 0.34, 1.01] [ 0.33, 1.30] [ 0.05, 0.27]

Yes A, V, B [ 0.05, 0.40] [ 0.24, 0.82]

A, V, G [ 0.17, 0.64] [ 1.05, 2.60]

A, V, B, G [ 0.12, 0.66] [ 0.27, 2.28] [ 0.03, 0.20]
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Table 6: Log Marginal Likelihoods

Unit Roots Data Set

Imposed Shocks Y/H, H, P Y/H, H, X Y/H, H, P, X

Log Marginal Likelihood Differentials

No A, V, B -13.58 -0.46

A, V, G -3.38 -7.10

A, V, B, G -6.94 -5.49 0.00

Yes A, V, B -9.04 -3.52

A, V, G 0.00 -9.52

A, V, B, G -5.68 0.00 -6.00

VAR(4), Minnesota Prior 54.72 34.46 57.30

Notes: For each data set, the log marginal likelihood differences are computed relative

to the DSGE model specification with the highest marginal likelihood. The log marginal

likelihoods for these specifications are 2278.12, 1945.58, and 2820.11, respectively.

Table 7: Posterior Probabilities

Unit Roots Data Set

Imposed Shocks Y/H, H, P Y/H, H, X Y/H, H, P, X

Posterior Probabilities

No A, V, B 0.38

A, V, G 0.03

A, V, B, G 1.00

Yes A, V, B 0.02

A, V, G 0.96

A, V, B, G 0.60
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Table 8: Importance of Technology Shocks

Unit Roots Data Set

Imposed Shocks Series Y/H, H, P Y/H, H, X Y/H, H, P, X

No A, V, B Hours 0.08 (.054) 0.05 (.024

Output 0.25 (.038) 0.25 (.038)

A, V, G Hours 0.08 (.046) 0.22 (.084)

Output 0.25 (.037) 0.33 (.047)

A, V, B, G Hours 0.10 (.055) 0.09 (.058) .009 (.008)

Output 0.25 (.039) 0.28 (.046) 0.21 (.031)

Yes A, V, B Hours 0.01 (.006) 0.03 (.015)

Output 0.20 (.027) 0.22 (.032)

A, V, G Hours 0.02 (.010) 0.20 (.063)

Output 0.21 (.029) 0.32 (.044)

A, V, B, G Hours 0.02 (.012) 0.07 (.052) .002 (.002)

Output 0.21 (.030) 0.26 (.046) 0.19 (.026)

Weighted Hours 0.02 0.06 .009

Output 0.21 0.26 0.21

Notes: Variance ratios from model specifications with posterior probability ≥ 2% in bold.

The last two rows (Weighted) contain weighted averages based on the posterior probabilities

in Table 7.
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Figure 1: VAR Responses, Actual versus Simulated Data

Notes: The figure depicts 90% credible bands for a VAR(4) (solid, blue) estimated based on

actual data and posterior mean responses for VAR(4)’s estimated on long samples of DSGE

model generated observations with ν = 0.2 (red, dashed) and ν = 2.0 (green, dashed).
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A Data Construction

A.1 Raw Data Series

All raw data series retrieved from the Bureau of Economic Analysis (BEA; www.bea.gov)

and the Bureau of Labor Statistics (BLS; www.bls.gov) for the period 1948:Q1–2006:Q4

were current as of April 19, 2007.

National Income and Product Accounts (NIPA-BEA)

1. Table 1.1.5: Consumption of Durable Goods (CDt), Change in Inventories (ChInvt)

2. Table 1.7.5: Gross National Product (GNPt)

3. Tables 2.3.3 and 2.3.5: Quantity Index (QCONSi
t) and Nominal (CONSi

t) Nondurables

Consumption (excluding Energy) and Services (excluding Housing)17

4. Table 3.9.5: Government Investment in Equipment (GovIEQt), Government Invest-

ment in Structures (GovISTt)

5. Table 5.3.5: Private Fixed Investment in Equipment (PrivIEQt), Private Fixed In-

vestment in Structures (PrivISTt)

Fixed Asset Tables (FAT-BEA)

1. Table 5.3.4: Official Price Index for Investment in Equipment (OPIEQt)

Bureau of Labor Statistics(BLS)

1. Aggregate Hours Index (Ht), BLS ID PRS85006033

2. Civilian Noninstitutional Population +16 (Pop16t), BLS ID LNU00000000

17Goods i correspond to nondurables consumption in food, clothing and shoes, and others, and services

in household operations, transportation, medical care, recreation, and others.

A-1



Cummins and Violante (2002), 1947–2000

1. Annual Quality-Adjusted Price Index for Investment in Equipment (QAPIEQCV
year)

2. Annual Quality-Adjusted Depreciation Rates for Total Capital (δCV
year)

A.2 The Relative Price of Quality-Adjusted Investment

We construct the relative price of quality-adjusted investment, P I
t , as a Tornquist aggregate

of the price index of quality-adjusted equipment investment and the price index of structures

investment. We use the price index of consumption, PC
t , as a proxy for the price of structures

investment.18 Based on P I
t and PC

t , we define the relative price of investment goods (using

the consumption good as numeraire) as

Pt =
P I

t

PC
t

.

Its inverse, Vt = 1
Pt

, is investment-specific technical change. We set V0 = 1
P0

= 1, that is,

we assume real capital is equal to capital in efficiency units in 1947.

Quarterly Quality-Adjusted Price Index for Investment in Equipment, QAPIEQt.

We use the U.S. 1947-2000 annual series provided by Cummins and Violante (2002) for the

price index of equipment investment, QAPIEQCV
year, and impute the quarterly movements

of the official FAT-BEA price index of equipment investment, OPIEQt, using the Denton

method. For the years after 2000, we use the official price index OPIEQt, rescaled such that

it equates the value in Cummins and Violante (2002) in the year 2000. Thus, we consider

that the hedonic methods used to compute the official price index correctly quality-adjust

most of types equipment investment after 2000.

Quarterly Quality-Adjusted Price Index for Total Investment, P I
t . We use a

Tornquist price index aggregate that weights growth rates of the price index of invest-

ment in equipment and the price index of investment in structures by their nominal shares

18As is the standard in previous literature, we use the consumption deflator as the price index for in-

vestment in structures (see Fisher (2006) and Canova, Lopez-Salido, and Michelacci (2007)). This provides

internal consistency in the way we compute the quality-adjusted price index for total (equipment + invest-

ment) investment — one of the elements of output is investment, hence, the alternative use of an output

(instead of a consumption) deflator potentially distorts the very same measure we are trying to compute,

an investment deflator.
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sIEQ
t and sIST

t . Nominal equipment investment is the sum of private equipment investment

(PrivIEQt), government equipment investment (GovIEQt), changes in inventories (ChInvt),

and consumer durables (CDt). Nominal structures investment is the sum of private struc-

tures investment (PrivISTt) and government structures investment (GovISTt). The growth

rate of the quarterly quality-adjusted price index for total investment is

λ(P I
t ) =

(
sIEQ
t + sIEQ

t−1

2

)
λ(QAPIEQt) +

(
sIST
t + sIST

t−1

2

)
λ(PC

t ),

where λ(xt) = (xt−xt−1)/xt and changes in the price index for consumption goods, λ(PC
t ),

serve as proxy for inflation in the price of structures. The level of quarterly quality-adjusted

price index for total investment is recovered recursively,

P I
t = P I

t−1[1 + λ(P I
t )].

We use the initial value P I
0 suggested in Cummins and Violante (2002).

Quarterly Price Index for Consumption, PC
t . We use a Tornquist price index ag-

gregate that weights growth rates of price indexes for nondurables consumption (food,

clothing and shoes, and others) and services (household operations, transportation, medical

care, recreation, and others) by their nominal shares. Let PC,i
t be the price index for non-

durable consumption/service good i in quarter t computed as the ratio between nominal

consumption of good i, CONSi
t, and the quantity index of good i, QCONSi

t. Let si
t be the

corresponding nominal share of good i in period t. Then, the growth rate of the price index

for consumption is

λ(PC
t ) =

∑
i

si
t + si

t−1

2
λ(PC,i

t ),

The level of the consumption price index is recovered recursively,

PC
t = PC

t−1 [1 + λ(PC
t )]

where we set PC
0 such that the initial relative price of investment is equal to one; see below.

A.3 Neutral Technical Change

The series of neutral technical change is computed using measures of real output Yt, real

capital Kt, and labor input Ht, together with an estimate of the input shares of production.

Real output Yt is computed as the nominal gross national product, GNPt, deflated by Pt. We
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convert output, capital, and hours in per capita terms dividing by civilian noninstitutional

population Pop16t. We explicitly consider capital quality improvement represented by

the historical fall in the real price of investment. To do so, we build quarterly series for

investment in efficiency units and physical depreciation rates that we use to construct series

of quality-adjusted capital stock. Quality adjustments substantially change the series of

capital — real capital falls below capital in efficiency units and affects the trend of neutral

technical change.

Quarterly Quality-Adjusted Investment, Xt. Total investment in efficiency units is

defined as total deannualized nominal investment deflated by the quality-adjusted price of

investment,

Xt =
InvEQt + InvSTt

P I
t

.

Quarterly Quality-Adjusted Depreciation Rates, δt. We build on the time-varying

annual physical depreciation rates for total capital provided in Cummins and Violante (2002)

for the period 1947-2000, δCV
year. For the years after 2000, we assume a constant depreciation

rate equal to that in year 2000. We define δ as the average quarterly depreciation rate over

the period 1955:Q3 to 2006:Q4: δ = 0.013.

Quarterly Quality-Adjusted Capital Stock, Kt. We have created quarterly quality-

adjusted investment series, Xt, and quarterly series for the quality-adjusted depreciation

rate, δt. Then we can construct the series of capital in efficiency units recursively using the

perpetual inventory method,

Kt+1 = (1− δ) Kt +Xt

where the initial capital stock in efficiency units, K0, is calibrated using the steady-state

investment equation
K0

Y0
=
V0 I0
Y0

(1− (1− δ) exp (−λK))−1 .

We obtain the unconditional mean of the investment-output ratio is 0.284, and the quarterly

capital per capita growth rate averages 1.08%. This yields an initial quarterly capital-output

ratio of 11.6 (or 2.92 annually), which together with the initial value of real output pins

down an initial efficient capital stock.

Neutral Technical Change, At. The series of neutral technical change is computed as

At =
Yt

Kα
t H1−α

t

,
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where α =
∑

t
αt
T is the average capital share augmented to incorporate capital income from

government capital and durables.

B The Model

In terms of the transformed variables, the deterministic steady state of our model is char-

acterized by the following set of equations:

q∗ = e
1

1−α
γa+ α

1−α
γv (A.1)

v∗ = eγv

R∗ =
q∗v∗

β
− (1− δ)

K∗

Y ∗ =
αq∗v∗

R∗

X∗

Y ∗ =
(

1− 1− δ

q∗v∗

)
K∗

Y ∗

I∗ = X∗

I∗

K∗ = 1− 1− δ

q∗v∗

C∗

Y ∗ =
1
g∗
− I∗

Y ∗

For the technology shock processes, let Ât = lnAt−lnA0−γat and V̂t = lnVt−lnV0−γvt.

For other variables Xt, let x̂t = ln(Xt/X
∗). Then the log-linearized equilibrium conditions

are given by (we scale the labor supply shock lnBt by the factor −ν such that b̂t = −ν lnBt):

r̂t = ŷt − k̂t +
1

1− α
(ât + v̂t) (A.2)

ŵt = ŷt − ĥt

ĉt = Et[ĉt+1]−
R∗

R∗ + 1− δ
Et[r̂t+1] +

1
1− α

Et[ât+1 + v̂t+1]

ĥt = ν(ŵt − ĉt) + b̂t

ŷt = g∗
C∗

Y ∗ ĉt + g∗
I∗

Y ∗ ît + ĝt

ŷt = (1− α)ĥt + αk̂t −
α

1− α
(ât + v̂t)

k̂t+1 =
(

1− I∗

K∗

)
k̂t +

I∗

K∗ ît −
1− I∗/K∗

1− α
(ât + v̂t)
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and the exogenous shock processes evolve according to

ât = Ât − Ât−1 (A.3)

v̂t = V̂t − V̂t−1

Ât = ψ1,a(1− ψ2,a)Ât−1 + ψ2,aÂt−2 + σaεa,t

V̂t = ψ1,v(1− ψ2,v)V̂t−1 + ψ2,vV̂t−2 + σvεv,t

b̂t = ρbb̂t−1 + σbεb,t

ĝt = ρg ĝt−1 + σgεg,t

For the likelihood-based estimation of the technology shock processes and the complete

DSGE models we use the Kalman filter. Since Ât and V̂t are potentially non-stationary, we

initialize the filter by assuming that all hat-variables are equal to zero in period t = −20,

where t = 1 corresponds to the first observation in our sample. All likelihood function values

in this paper are computed conditional on the first four sample observations (t = 1, . . . , 4).

C Impulse Response to a Technology Shock

We will show that the impulse response function of labor productivity and hours worked

suffices to identify the labor supply elasticity. It is apparent from (A.2) that the two

technology shocks enter the system in an identical manner, at least as far as detrended

output, consumption, wages, hours, capital, and the rental rate of capital is concerned.

Hence, without loss of generality we will focus on the response to an investment-specific

technology shock. We will assume that ψ1,v = 1 and define ṽt = v̂t/(1−α) and omit the hats

from all other variables. Thus, the impulse response function has to satisfy the following
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equilibrium conditions:

rt = yt − kt + ṽt (A.4)

wt = yt − ht

ct = Et[ct+1]− r∗Et[rt+1] + Et[ṽt+1]

ht = ν(wt − ct)

yt = scct + siit

yt = (1− α)ht + αkt − αṽt

kt+1 = (1− δ∗)kt + δ∗it − (1− δ∗)ṽt

ṽt = −ψ2,vṽt−1 +
σv

1− α
εv,t,

where r∗ = R∗/(R∗ + 1− δ), sc = g∗C
∗/Y ∗, si = g∗I

∗/Y ∗, and δ∗ = 1− (1− δ)/(q∗v∗). To

construct the impulse response function we assume that the system is in its steady state

prior to t = 1, that εv,1 = 1, and εv,t = 0 for t > 1. Thus, the time-path of the technology

growth process is given by

ṽt = (−ψ2,v)t−1 σv

1− α
, Et[ṽt+1] = ṽt. (A.5)

After period 1 there is perfect foresight along the impulse response, and for any variable xt

it is the case that Et[xt+1] = xt+1. With this in mind, we write the system for t > 1 as

wt = yt − ht (A.6)

∆ct+1 = r∗(yt+1 − kt+1) + (r∗ − 1)ṽt+1

ht = ν(wt − ct)

yt = scct + siit

wt = α(kt − ht)− αṽt

kt+1 = (1− δ∗)kt + δ∗it − (1− δ∗)ṽt

The Frisch elasticity can be obtained from the response function of wages, i.e., labor pro-

ductivity, and hours worked, because it has to satisfy

∆ht+1 = ν(∆wt+1 + ∆ct+1). (A.7)
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While we do not use direct information on consumption in our empirical analysis, we can

deduce from (A.6) that

∆ct+1 = r∗(yt+1 − kt+1) + (r∗ − 1)ṽt+1

= r∗(wt+1 − (kt+1 − ht+1)) + (r∗ − 1)ṽt+1

= r∗(wt+1 − α−1wt+1 − ṽt+1) + (r∗ − 1)ṽt+1

= r∗(1− α−1)wt+1 − ṽt+1.

Thus, for t > 1 the impulse response function of wages and hours needs to satisfy

∆ht+1 = ν

[
∆wt+1 + r∗(1− α−1)wt+1 − (−ψ2,v)t σv

1− α

]
. (A.8)

Since r∗, α, ψ2,v, and σv can be identified independently from information other than that

contained in the impulse response function of hours and wages to a technology shock, we

deduce that ν is identifiable as long as the initial response of hours worked to a technology

shock is non-zero.

D Further Results

Table A-1 reports the full set of parameter estimates for the highest posterior probability

specifications based on the data sets Y/H, H, P, Y/H, H, X, and Y/H, H, P, X.
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Table A-1: Posterior Estimates for Highest Post. Prob. Specifications

Series Y/H, H, P Y/H, H, X Y/H, H, P, X

Shocks A, V, G A, V, B, G A, V, B, G

Unit Root Yes Yes No

α 0.340 [0.306, 0.374] 0.325 [0.292, 0.359] 0.390 [0.379, 0.402]

ν 0.419 [0.168, 0.643] 1.235 [0.273, 2.276] 0.162 [0.049, 0.271]

γa 0.000 [-0.001, 0.001] 0.000 [-0.001, 0.001] -0.001 [-0.001, -0.001]

ψ1,a 1.000 1.000 0.950 [0.932, 0.969]

ψ2,a -0.020 [-0.148, 0.120] -0.020 [-0.107, 0.065] -0.086 [-0.200, 0.030]

σa 0.007 [0.006, 0.008] 0.007 [0.007, 0.008] 0.007 [0.007, 0.008]

γv 0.007 [0.006, 0.008] 0.007 [0.006, 0.009] 0.008 [0.007, 0.008]

ψ1,v 1.000 1.000 0.991 [0.988, 0.994]

ψ2,v -0.694 [-0.769, -0.620] -0.073 [-0.154, 0.009] -0.646 [-0.724, -0.570]

σv 0.003 [0.003, 0.004] 0.007 [0.006, 0.008] 0.003 [0.003, 0.004]

ρb 0.950 [0.910, 0.989] 0.946 [0.925, 0.968]

σb 0.010 [0.007, 0.013] 0.009 [0.008, 0.010]

ρg 0.962 [0.944, 0.982] 0.981 [0.967, 0.996] 0.966 [0.952, 0.980]

σg 0.038 [0.021, 0.056] 0.006 [0.004, 0.007] 0.010 [0.008, 0.012]

lnH∗ -0.028 [-0.067, 0.009] -0.023 [-0.072, 0.028] -0.025 [-0.046, -0.005]

lnY0 -32.284 [-49.319, -17.905] 7.861 [4.263, 11.252] 8.630 [8.547, 8.719]

lnV0 27.552 [17.036, 41.493] 0.337 [-2.131, 2.887] -0.149 [-0.230, -0.061]

Notes: The following parameters are fixed during the estimation: β = 0.99, δ = 0.013,

g∗ = 1.2 (in models with G-shock).
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